1 /*- 2 * Copyright (c) 1994, Sean Eric Fagan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Sean Eric Fagan. 16 * 4. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/syscallsubr.h> 42 #include <sys/sysent.h> 43 #include <sys/sysproto.h> 44 #include <sys/pioctl.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/vnode.h> 48 #include <sys/ptrace.h> 49 #include <sys/rwlock.h> 50 #include <sys/sx.h> 51 #include <sys/malloc.h> 52 #include <sys/signalvar.h> 53 54 #include <machine/reg.h> 55 56 #include <security/audit/audit.h> 57 58 #include <vm/vm.h> 59 #include <vm/pmap.h> 60 #include <vm/vm_extern.h> 61 #include <vm/vm_map.h> 62 #include <vm/vm_kern.h> 63 #include <vm/vm_object.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_param.h> 66 67 #ifdef COMPAT_FREEBSD32 68 #include <sys/procfs.h> 69 #include <compat/freebsd32/freebsd32_signal.h> 70 71 struct ptrace_io_desc32 { 72 int piod_op; 73 uint32_t piod_offs; 74 uint32_t piod_addr; 75 uint32_t piod_len; 76 }; 77 78 struct ptrace_vm_entry32 { 79 int pve_entry; 80 int pve_timestamp; 81 uint32_t pve_start; 82 uint32_t pve_end; 83 uint32_t pve_offset; 84 u_int pve_prot; 85 u_int pve_pathlen; 86 int32_t pve_fileid; 87 u_int pve_fsid; 88 uint32_t pve_path; 89 }; 90 91 struct ptrace_lwpinfo32 { 92 lwpid_t pl_lwpid; /* LWP described. */ 93 int pl_event; /* Event that stopped the LWP. */ 94 int pl_flags; /* LWP flags. */ 95 sigset_t pl_sigmask; /* LWP signal mask */ 96 sigset_t pl_siglist; /* LWP pending signal */ 97 struct siginfo32 pl_siginfo; /* siginfo for signal */ 98 char pl_tdname[MAXCOMLEN + 1]; /* LWP name. */ 99 pid_t pl_child_pid; /* New child pid */ 100 u_int pl_syscall_code; 101 u_int pl_syscall_narg; 102 }; 103 104 #endif 105 106 /* 107 * Functions implemented using PROC_ACTION(): 108 * 109 * proc_read_regs(proc, regs) 110 * Get the current user-visible register set from the process 111 * and copy it into the regs structure (<machine/reg.h>). 112 * The process is stopped at the time read_regs is called. 113 * 114 * proc_write_regs(proc, regs) 115 * Update the current register set from the passed in regs 116 * structure. Take care to avoid clobbering special CPU 117 * registers or privileged bits in the PSL. 118 * Depending on the architecture this may have fix-up work to do, 119 * especially if the IAR or PCW are modified. 120 * The process is stopped at the time write_regs is called. 121 * 122 * proc_read_fpregs, proc_write_fpregs 123 * deal with the floating point register set, otherwise as above. 124 * 125 * proc_read_dbregs, proc_write_dbregs 126 * deal with the processor debug register set, otherwise as above. 127 * 128 * proc_sstep(proc) 129 * Arrange for the process to trap after executing a single instruction. 130 */ 131 132 #define PROC_ACTION(action) do { \ 133 int error; \ 134 \ 135 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); \ 136 if ((td->td_proc->p_flag & P_INMEM) == 0) \ 137 error = EIO; \ 138 else \ 139 error = (action); \ 140 return (error); \ 141 } while(0) 142 143 int 144 proc_read_regs(struct thread *td, struct reg *regs) 145 { 146 147 PROC_ACTION(fill_regs(td, regs)); 148 } 149 150 int 151 proc_write_regs(struct thread *td, struct reg *regs) 152 { 153 154 PROC_ACTION(set_regs(td, regs)); 155 } 156 157 int 158 proc_read_dbregs(struct thread *td, struct dbreg *dbregs) 159 { 160 161 PROC_ACTION(fill_dbregs(td, dbregs)); 162 } 163 164 int 165 proc_write_dbregs(struct thread *td, struct dbreg *dbregs) 166 { 167 168 PROC_ACTION(set_dbregs(td, dbregs)); 169 } 170 171 /* 172 * Ptrace doesn't support fpregs at all, and there are no security holes 173 * or translations for fpregs, so we can just copy them. 174 */ 175 int 176 proc_read_fpregs(struct thread *td, struct fpreg *fpregs) 177 { 178 179 PROC_ACTION(fill_fpregs(td, fpregs)); 180 } 181 182 int 183 proc_write_fpregs(struct thread *td, struct fpreg *fpregs) 184 { 185 186 PROC_ACTION(set_fpregs(td, fpregs)); 187 } 188 189 #ifdef COMPAT_FREEBSD32 190 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */ 191 int 192 proc_read_regs32(struct thread *td, struct reg32 *regs32) 193 { 194 195 PROC_ACTION(fill_regs32(td, regs32)); 196 } 197 198 int 199 proc_write_regs32(struct thread *td, struct reg32 *regs32) 200 { 201 202 PROC_ACTION(set_regs32(td, regs32)); 203 } 204 205 int 206 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 207 { 208 209 PROC_ACTION(fill_dbregs32(td, dbregs32)); 210 } 211 212 int 213 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 214 { 215 216 PROC_ACTION(set_dbregs32(td, dbregs32)); 217 } 218 219 int 220 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 221 { 222 223 PROC_ACTION(fill_fpregs32(td, fpregs32)); 224 } 225 226 int 227 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 228 { 229 230 PROC_ACTION(set_fpregs32(td, fpregs32)); 231 } 232 #endif 233 234 int 235 proc_sstep(struct thread *td) 236 { 237 238 PROC_ACTION(ptrace_single_step(td)); 239 } 240 241 int 242 proc_rwmem(struct proc *p, struct uio *uio) 243 { 244 vm_map_t map; 245 vm_offset_t pageno; /* page number */ 246 vm_prot_t reqprot; 247 int error, fault_flags, page_offset, writing; 248 249 /* 250 * Assert that someone has locked this vmspace. (Should be 251 * curthread but we can't assert that.) This keeps the process 252 * from exiting out from under us until this operation completes. 253 */ 254 PROC_ASSERT_HELD(p); 255 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 256 257 /* 258 * The map we want... 259 */ 260 map = &p->p_vmspace->vm_map; 261 262 /* 263 * If we are writing, then we request vm_fault() to create a private 264 * copy of each page. Since these copies will not be writeable by the 265 * process, we must explicity request that they be dirtied. 266 */ 267 writing = uio->uio_rw == UIO_WRITE; 268 reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ; 269 fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL; 270 271 /* 272 * Only map in one page at a time. We don't have to, but it 273 * makes things easier. This way is trivial - right? 274 */ 275 do { 276 vm_offset_t uva; 277 u_int len; 278 vm_page_t m; 279 280 uva = (vm_offset_t)uio->uio_offset; 281 282 /* 283 * Get the page number of this segment. 284 */ 285 pageno = trunc_page(uva); 286 page_offset = uva - pageno; 287 288 /* 289 * How many bytes to copy 290 */ 291 len = min(PAGE_SIZE - page_offset, uio->uio_resid); 292 293 /* 294 * Fault and hold the page on behalf of the process. 295 */ 296 error = vm_fault_hold(map, pageno, reqprot, fault_flags, &m); 297 if (error != KERN_SUCCESS) { 298 if (error == KERN_RESOURCE_SHORTAGE) 299 error = ENOMEM; 300 else 301 error = EFAULT; 302 break; 303 } 304 305 /* 306 * Now do the i/o move. 307 */ 308 error = uiomove_fromphys(&m, page_offset, len, uio); 309 310 /* Make the I-cache coherent for breakpoints. */ 311 if (writing && error == 0) { 312 vm_map_lock_read(map); 313 if (vm_map_check_protection(map, pageno, pageno + 314 PAGE_SIZE, VM_PROT_EXECUTE)) 315 vm_sync_icache(map, uva, len); 316 vm_map_unlock_read(map); 317 } 318 319 /* 320 * Release the page. 321 */ 322 vm_page_lock(m); 323 vm_page_unhold(m); 324 vm_page_unlock(m); 325 326 } while (error == 0 && uio->uio_resid > 0); 327 328 return (error); 329 } 330 331 static ssize_t 332 proc_iop(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 333 size_t len, enum uio_rw rw) 334 { 335 struct iovec iov; 336 struct uio uio; 337 ssize_t slen; 338 int error; 339 340 MPASS(len < SSIZE_MAX); 341 slen = (ssize_t)len; 342 343 iov.iov_base = (caddr_t)buf; 344 iov.iov_len = len; 345 uio.uio_iov = &iov; 346 uio.uio_iovcnt = 1; 347 uio.uio_offset = va; 348 uio.uio_resid = slen; 349 uio.uio_segflg = UIO_SYSSPACE; 350 uio.uio_rw = rw; 351 uio.uio_td = td; 352 error = proc_rwmem(p, &uio); 353 if (uio.uio_resid == slen) 354 return (-1); 355 return (slen - uio.uio_resid); 356 } 357 358 ssize_t 359 proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 360 size_t len) 361 { 362 363 return (proc_iop(td, p, va, buf, len, UIO_READ)); 364 } 365 366 ssize_t 367 proc_writemem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 368 size_t len) 369 { 370 371 return (proc_iop(td, p, va, buf, len, UIO_WRITE)); 372 } 373 374 static int 375 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve) 376 { 377 struct vattr vattr; 378 vm_map_t map; 379 vm_map_entry_t entry; 380 vm_object_t obj, tobj, lobj; 381 struct vmspace *vm; 382 struct vnode *vp; 383 char *freepath, *fullpath; 384 u_int pathlen; 385 int error, index; 386 387 error = 0; 388 obj = NULL; 389 390 vm = vmspace_acquire_ref(p); 391 map = &vm->vm_map; 392 vm_map_lock_read(map); 393 394 do { 395 entry = map->header.next; 396 index = 0; 397 while (index < pve->pve_entry && entry != &map->header) { 398 entry = entry->next; 399 index++; 400 } 401 if (index != pve->pve_entry) { 402 error = EINVAL; 403 break; 404 } 405 while (entry != &map->header && 406 (entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 407 entry = entry->next; 408 index++; 409 } 410 if (entry == &map->header) { 411 error = ENOENT; 412 break; 413 } 414 415 /* We got an entry. */ 416 pve->pve_entry = index + 1; 417 pve->pve_timestamp = map->timestamp; 418 pve->pve_start = entry->start; 419 pve->pve_end = entry->end - 1; 420 pve->pve_offset = entry->offset; 421 pve->pve_prot = entry->protection; 422 423 /* Backing object's path needed? */ 424 if (pve->pve_pathlen == 0) 425 break; 426 427 pathlen = pve->pve_pathlen; 428 pve->pve_pathlen = 0; 429 430 obj = entry->object.vm_object; 431 if (obj != NULL) 432 VM_OBJECT_RLOCK(obj); 433 } while (0); 434 435 vm_map_unlock_read(map); 436 437 pve->pve_fsid = VNOVAL; 438 pve->pve_fileid = VNOVAL; 439 440 if (error == 0 && obj != NULL) { 441 lobj = obj; 442 for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { 443 if (tobj != obj) 444 VM_OBJECT_RLOCK(tobj); 445 if (lobj != obj) 446 VM_OBJECT_RUNLOCK(lobj); 447 lobj = tobj; 448 pve->pve_offset += tobj->backing_object_offset; 449 } 450 vp = vm_object_vnode(lobj); 451 if (vp != NULL) 452 vref(vp); 453 if (lobj != obj) 454 VM_OBJECT_RUNLOCK(lobj); 455 VM_OBJECT_RUNLOCK(obj); 456 457 if (vp != NULL) { 458 freepath = NULL; 459 fullpath = NULL; 460 vn_fullpath(td, vp, &fullpath, &freepath); 461 vn_lock(vp, LK_SHARED | LK_RETRY); 462 if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) { 463 pve->pve_fileid = vattr.va_fileid; 464 pve->pve_fsid = vattr.va_fsid; 465 } 466 vput(vp); 467 468 if (fullpath != NULL) { 469 pve->pve_pathlen = strlen(fullpath) + 1; 470 if (pve->pve_pathlen <= pathlen) { 471 error = copyout(fullpath, pve->pve_path, 472 pve->pve_pathlen); 473 } else 474 error = ENAMETOOLONG; 475 } 476 if (freepath != NULL) 477 free(freepath, M_TEMP); 478 } 479 } 480 vmspace_free(vm); 481 if (error == 0) 482 CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p", 483 p->p_pid, pve->pve_entry, pve->pve_start); 484 485 return (error); 486 } 487 488 #ifdef COMPAT_FREEBSD32 489 static int 490 ptrace_vm_entry32(struct thread *td, struct proc *p, 491 struct ptrace_vm_entry32 *pve32) 492 { 493 struct ptrace_vm_entry pve; 494 int error; 495 496 pve.pve_entry = pve32->pve_entry; 497 pve.pve_pathlen = pve32->pve_pathlen; 498 pve.pve_path = (void *)(uintptr_t)pve32->pve_path; 499 500 error = ptrace_vm_entry(td, p, &pve); 501 if (error == 0) { 502 pve32->pve_entry = pve.pve_entry; 503 pve32->pve_timestamp = pve.pve_timestamp; 504 pve32->pve_start = pve.pve_start; 505 pve32->pve_end = pve.pve_end; 506 pve32->pve_offset = pve.pve_offset; 507 pve32->pve_prot = pve.pve_prot; 508 pve32->pve_fileid = pve.pve_fileid; 509 pve32->pve_fsid = pve.pve_fsid; 510 } 511 512 pve32->pve_pathlen = pve.pve_pathlen; 513 return (error); 514 } 515 516 static void 517 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 518 struct ptrace_lwpinfo32 *pl32) 519 { 520 521 pl32->pl_lwpid = pl->pl_lwpid; 522 pl32->pl_event = pl->pl_event; 523 pl32->pl_flags = pl->pl_flags; 524 pl32->pl_sigmask = pl->pl_sigmask; 525 pl32->pl_siglist = pl->pl_siglist; 526 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 527 strcpy(pl32->pl_tdname, pl->pl_tdname); 528 pl32->pl_child_pid = pl->pl_child_pid; 529 pl32->pl_syscall_code = pl->pl_syscall_code; 530 pl32->pl_syscall_narg = pl->pl_syscall_narg; 531 } 532 #endif /* COMPAT_FREEBSD32 */ 533 534 /* 535 * Process debugging system call. 536 */ 537 #ifndef _SYS_SYSPROTO_H_ 538 struct ptrace_args { 539 int req; 540 pid_t pid; 541 caddr_t addr; 542 int data; 543 }; 544 #endif 545 546 #ifdef COMPAT_FREEBSD32 547 /* 548 * This CPP subterfuge is to try and reduce the number of ifdefs in 549 * the body of the code. 550 * COPYIN(uap->addr, &r.reg, sizeof r.reg); 551 * becomes either: 552 * copyin(uap->addr, &r.reg, sizeof r.reg); 553 * or 554 * copyin(uap->addr, &r.reg32, sizeof r.reg32); 555 * .. except this is done at runtime. 556 */ 557 #define COPYIN(u, k, s) wrap32 ? \ 558 copyin(u, k ## 32, s ## 32) : \ 559 copyin(u, k, s) 560 #define COPYOUT(k, u, s) wrap32 ? \ 561 copyout(k ## 32, u, s ## 32) : \ 562 copyout(k, u, s) 563 #else 564 #define COPYIN(u, k, s) copyin(u, k, s) 565 #define COPYOUT(k, u, s) copyout(k, u, s) 566 #endif 567 int 568 sys_ptrace(struct thread *td, struct ptrace_args *uap) 569 { 570 /* 571 * XXX this obfuscation is to reduce stack usage, but the register 572 * structs may be too large to put on the stack anyway. 573 */ 574 union { 575 struct ptrace_io_desc piod; 576 struct ptrace_lwpinfo pl; 577 struct ptrace_vm_entry pve; 578 struct dbreg dbreg; 579 struct fpreg fpreg; 580 struct reg reg; 581 #ifdef COMPAT_FREEBSD32 582 struct dbreg32 dbreg32; 583 struct fpreg32 fpreg32; 584 struct reg32 reg32; 585 struct ptrace_io_desc32 piod32; 586 struct ptrace_lwpinfo32 pl32; 587 struct ptrace_vm_entry32 pve32; 588 #endif 589 int ptevents; 590 } r; 591 void *addr; 592 int error = 0; 593 #ifdef COMPAT_FREEBSD32 594 int wrap32 = 0; 595 596 if (SV_CURPROC_FLAG(SV_ILP32)) 597 wrap32 = 1; 598 #endif 599 AUDIT_ARG_PID(uap->pid); 600 AUDIT_ARG_CMD(uap->req); 601 AUDIT_ARG_VALUE(uap->data); 602 addr = &r; 603 switch (uap->req) { 604 case PT_GET_EVENT_MASK: 605 case PT_GETREGS: 606 case PT_GETFPREGS: 607 case PT_GETDBREGS: 608 case PT_LWPINFO: 609 break; 610 case PT_SETREGS: 611 error = COPYIN(uap->addr, &r.reg, sizeof r.reg); 612 break; 613 case PT_SETFPREGS: 614 error = COPYIN(uap->addr, &r.fpreg, sizeof r.fpreg); 615 break; 616 case PT_SETDBREGS: 617 error = COPYIN(uap->addr, &r.dbreg, sizeof r.dbreg); 618 break; 619 case PT_SET_EVENT_MASK: 620 if (uap->data != sizeof(r.ptevents)) 621 error = EINVAL; 622 else 623 error = copyin(uap->addr, &r.ptevents, uap->data); 624 break; 625 case PT_IO: 626 error = COPYIN(uap->addr, &r.piod, sizeof r.piod); 627 break; 628 case PT_VM_ENTRY: 629 error = COPYIN(uap->addr, &r.pve, sizeof r.pve); 630 break; 631 default: 632 addr = uap->addr; 633 break; 634 } 635 if (error) 636 return (error); 637 638 error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data); 639 if (error) 640 return (error); 641 642 switch (uap->req) { 643 case PT_VM_ENTRY: 644 error = COPYOUT(&r.pve, uap->addr, sizeof r.pve); 645 break; 646 case PT_IO: 647 error = COPYOUT(&r.piod, uap->addr, sizeof r.piod); 648 break; 649 case PT_GETREGS: 650 error = COPYOUT(&r.reg, uap->addr, sizeof r.reg); 651 break; 652 case PT_GETFPREGS: 653 error = COPYOUT(&r.fpreg, uap->addr, sizeof r.fpreg); 654 break; 655 case PT_GETDBREGS: 656 error = COPYOUT(&r.dbreg, uap->addr, sizeof r.dbreg); 657 break; 658 case PT_GET_EVENT_MASK: 659 /* NB: The size in uap->data is validated in kern_ptrace(). */ 660 error = copyout(&r.ptevents, uap->addr, uap->data); 661 break; 662 case PT_LWPINFO: 663 /* NB: The size in uap->data is validated in kern_ptrace(). */ 664 error = copyout(&r.pl, uap->addr, uap->data); 665 break; 666 } 667 668 return (error); 669 } 670 #undef COPYIN 671 #undef COPYOUT 672 673 #ifdef COMPAT_FREEBSD32 674 /* 675 * PROC_READ(regs, td2, addr); 676 * becomes either: 677 * proc_read_regs(td2, addr); 678 * or 679 * proc_read_regs32(td2, addr); 680 * .. except this is done at runtime. There is an additional 681 * complication in that PROC_WRITE disallows 32 bit consumers 682 * from writing to 64 bit address space targets. 683 */ 684 #define PROC_READ(w, t, a) wrap32 ? \ 685 proc_read_ ## w ## 32(t, a) : \ 686 proc_read_ ## w (t, a) 687 #define PROC_WRITE(w, t, a) wrap32 ? \ 688 (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \ 689 proc_write_ ## w (t, a) 690 #else 691 #define PROC_READ(w, t, a) proc_read_ ## w (t, a) 692 #define PROC_WRITE(w, t, a) proc_write_ ## w (t, a) 693 #endif 694 695 void 696 proc_set_traced(struct proc *p, bool stop) 697 { 698 699 PROC_LOCK_ASSERT(p, MA_OWNED); 700 p->p_flag |= P_TRACED; 701 if (stop) 702 p->p_flag2 |= P2_PTRACE_FSTP; 703 p->p_ptevents = PTRACE_DEFAULT; 704 p->p_oppid = p->p_pptr->p_pid; 705 } 706 707 int 708 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data) 709 { 710 struct iovec iov; 711 struct uio uio; 712 struct proc *curp, *p, *pp; 713 struct thread *td2 = NULL, *td3; 714 struct ptrace_io_desc *piod = NULL; 715 struct ptrace_lwpinfo *pl; 716 int error, num, tmp; 717 int proctree_locked = 0; 718 lwpid_t tid = 0, *buf; 719 #ifdef COMPAT_FREEBSD32 720 int wrap32 = 0, safe = 0; 721 struct ptrace_io_desc32 *piod32 = NULL; 722 struct ptrace_lwpinfo32 *pl32 = NULL; 723 struct ptrace_lwpinfo plr; 724 #endif 725 726 curp = td->td_proc; 727 728 /* Lock proctree before locking the process. */ 729 switch (req) { 730 case PT_TRACE_ME: 731 case PT_ATTACH: 732 case PT_STEP: 733 case PT_CONTINUE: 734 case PT_TO_SCE: 735 case PT_TO_SCX: 736 case PT_SYSCALL: 737 case PT_FOLLOW_FORK: 738 case PT_LWP_EVENTS: 739 case PT_GET_EVENT_MASK: 740 case PT_SET_EVENT_MASK: 741 case PT_DETACH: 742 sx_xlock(&proctree_lock); 743 proctree_locked = 1; 744 break; 745 default: 746 break; 747 } 748 749 if (req == PT_TRACE_ME) { 750 p = td->td_proc; 751 PROC_LOCK(p); 752 } else { 753 if (pid <= PID_MAX) { 754 if ((p = pfind(pid)) == NULL) { 755 if (proctree_locked) 756 sx_xunlock(&proctree_lock); 757 return (ESRCH); 758 } 759 } else { 760 td2 = tdfind(pid, -1); 761 if (td2 == NULL) { 762 if (proctree_locked) 763 sx_xunlock(&proctree_lock); 764 return (ESRCH); 765 } 766 p = td2->td_proc; 767 tid = pid; 768 pid = p->p_pid; 769 } 770 } 771 AUDIT_ARG_PROCESS(p); 772 773 if ((p->p_flag & P_WEXIT) != 0) { 774 error = ESRCH; 775 goto fail; 776 } 777 if ((error = p_cansee(td, p)) != 0) 778 goto fail; 779 780 if ((error = p_candebug(td, p)) != 0) 781 goto fail; 782 783 /* 784 * System processes can't be debugged. 785 */ 786 if ((p->p_flag & P_SYSTEM) != 0) { 787 error = EINVAL; 788 goto fail; 789 } 790 791 if (tid == 0) { 792 if ((p->p_flag & P_STOPPED_TRACE) != 0) { 793 KASSERT(p->p_xthread != NULL, ("NULL p_xthread")); 794 td2 = p->p_xthread; 795 } else { 796 td2 = FIRST_THREAD_IN_PROC(p); 797 } 798 tid = td2->td_tid; 799 } 800 801 #ifdef COMPAT_FREEBSD32 802 /* 803 * Test if we're a 32 bit client and what the target is. 804 * Set the wrap controls accordingly. 805 */ 806 if (SV_CURPROC_FLAG(SV_ILP32)) { 807 if (SV_PROC_FLAG(td2->td_proc, SV_ILP32)) 808 safe = 1; 809 wrap32 = 1; 810 } 811 #endif 812 /* 813 * Permissions check 814 */ 815 switch (req) { 816 case PT_TRACE_ME: 817 /* 818 * Always legal, when there is a parent process which 819 * could trace us. Otherwise, reject. 820 */ 821 if ((p->p_flag & P_TRACED) != 0) { 822 error = EBUSY; 823 goto fail; 824 } 825 if (p->p_pptr == initproc) { 826 error = EPERM; 827 goto fail; 828 } 829 break; 830 831 case PT_ATTACH: 832 /* Self */ 833 if (p == td->td_proc) { 834 error = EINVAL; 835 goto fail; 836 } 837 838 /* Already traced */ 839 if (p->p_flag & P_TRACED) { 840 error = EBUSY; 841 goto fail; 842 } 843 844 /* Can't trace an ancestor if you're being traced. */ 845 if (curp->p_flag & P_TRACED) { 846 for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) { 847 if (pp == p) { 848 error = EINVAL; 849 goto fail; 850 } 851 } 852 } 853 854 855 /* OK */ 856 break; 857 858 case PT_CLEARSTEP: 859 /* Allow thread to clear single step for itself */ 860 if (td->td_tid == tid) 861 break; 862 863 /* FALLTHROUGH */ 864 default: 865 /* not being traced... */ 866 if ((p->p_flag & P_TRACED) == 0) { 867 error = EPERM; 868 goto fail; 869 } 870 871 /* not being traced by YOU */ 872 if (p->p_pptr != td->td_proc) { 873 error = EBUSY; 874 goto fail; 875 } 876 877 /* not currently stopped */ 878 if ((p->p_flag & (P_STOPPED_SIG | P_STOPPED_TRACE)) == 0 || 879 p->p_suspcount != p->p_numthreads || 880 (p->p_flag & P_WAITED) == 0) { 881 error = EBUSY; 882 goto fail; 883 } 884 885 if ((p->p_flag & P_STOPPED_TRACE) == 0) { 886 static int count = 0; 887 if (count++ == 0) 888 printf("P_STOPPED_TRACE not set.\n"); 889 } 890 891 /* OK */ 892 break; 893 } 894 895 /* Keep this process around until we finish this request. */ 896 _PHOLD(p); 897 898 #ifdef FIX_SSTEP 899 /* 900 * Single step fixup ala procfs 901 */ 902 FIX_SSTEP(td2); 903 #endif 904 905 /* 906 * Actually do the requests 907 */ 908 909 td->td_retval[0] = 0; 910 911 switch (req) { 912 case PT_TRACE_ME: 913 /* set my trace flag and "owner" so it can read/write me */ 914 proc_set_traced(p, false); 915 if (p->p_flag & P_PPWAIT) 916 p->p_flag |= P_PPTRACE; 917 CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid); 918 break; 919 920 case PT_ATTACH: 921 /* security check done above */ 922 /* 923 * It would be nice if the tracing relationship was separate 924 * from the parent relationship but that would require 925 * another set of links in the proc struct or for "wait" 926 * to scan the entire proc table. To make life easier, 927 * we just re-parent the process we're trying to trace. 928 * The old parent is remembered so we can put things back 929 * on a "detach". 930 */ 931 proc_set_traced(p, true); 932 if (p->p_pptr != td->td_proc) { 933 proc_reparent(p, td->td_proc); 934 } 935 data = SIGSTOP; 936 CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid, 937 p->p_oppid); 938 goto sendsig; /* in PT_CONTINUE below */ 939 940 case PT_CLEARSTEP: 941 CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid, 942 p->p_pid); 943 error = ptrace_clear_single_step(td2); 944 break; 945 946 case PT_SETSTEP: 947 CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid, 948 p->p_pid); 949 error = ptrace_single_step(td2); 950 break; 951 952 case PT_SUSPEND: 953 CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid, 954 p->p_pid); 955 td2->td_dbgflags |= TDB_SUSPEND; 956 thread_lock(td2); 957 td2->td_flags |= TDF_NEEDSUSPCHK; 958 thread_unlock(td2); 959 break; 960 961 case PT_RESUME: 962 CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid, 963 p->p_pid); 964 td2->td_dbgflags &= ~TDB_SUSPEND; 965 break; 966 967 case PT_FOLLOW_FORK: 968 CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid, 969 p->p_ptevents & PTRACE_FORK ? "enabled" : "disabled", 970 data ? "enabled" : "disabled"); 971 if (data) 972 p->p_ptevents |= PTRACE_FORK; 973 else 974 p->p_ptevents &= ~PTRACE_FORK; 975 break; 976 977 case PT_LWP_EVENTS: 978 CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid, 979 p->p_ptevents & PTRACE_LWP ? "enabled" : "disabled", 980 data ? "enabled" : "disabled"); 981 if (data) 982 p->p_ptevents |= PTRACE_LWP; 983 else 984 p->p_ptevents &= ~PTRACE_LWP; 985 break; 986 987 case PT_GET_EVENT_MASK: 988 if (data != sizeof(p->p_ptevents)) { 989 error = EINVAL; 990 break; 991 } 992 CTR2(KTR_PTRACE, "PT_GET_EVENT_MASK: pid %d mask %#x", p->p_pid, 993 p->p_ptevents); 994 *(int *)addr = p->p_ptevents; 995 break; 996 997 case PT_SET_EVENT_MASK: 998 if (data != sizeof(p->p_ptevents)) { 999 error = EINVAL; 1000 break; 1001 } 1002 tmp = *(int *)addr; 1003 if ((tmp & ~(PTRACE_EXEC | PTRACE_SCE | PTRACE_SCX | 1004 PTRACE_FORK | PTRACE_LWP | PTRACE_VFORK)) != 0) { 1005 error = EINVAL; 1006 break; 1007 } 1008 CTR3(KTR_PTRACE, "PT_SET_EVENT_MASK: pid %d mask %#x -> %#x", 1009 p->p_pid, p->p_ptevents, tmp); 1010 p->p_ptevents = tmp; 1011 break; 1012 1013 case PT_STEP: 1014 case PT_CONTINUE: 1015 case PT_TO_SCE: 1016 case PT_TO_SCX: 1017 case PT_SYSCALL: 1018 case PT_DETACH: 1019 /* Zero means do not send any signal */ 1020 if (data < 0 || data > _SIG_MAXSIG) { 1021 error = EINVAL; 1022 break; 1023 } 1024 1025 switch (req) { 1026 case PT_STEP: 1027 CTR2(KTR_PTRACE, "PT_STEP: tid %d (pid %d)", 1028 td2->td_tid, p->p_pid); 1029 error = ptrace_single_step(td2); 1030 if (error) 1031 goto out; 1032 break; 1033 case PT_CONTINUE: 1034 case PT_TO_SCE: 1035 case PT_TO_SCX: 1036 case PT_SYSCALL: 1037 if (addr != (void *)1) { 1038 error = ptrace_set_pc(td2, 1039 (u_long)(uintfptr_t)addr); 1040 if (error) 1041 goto out; 1042 } 1043 switch (req) { 1044 case PT_TO_SCE: 1045 p->p_ptevents |= PTRACE_SCE; 1046 CTR4(KTR_PTRACE, 1047 "PT_TO_SCE: pid %d, events = %#x, PC = %#lx, sig = %d", 1048 p->p_pid, p->p_ptevents, 1049 (u_long)(uintfptr_t)addr, data); 1050 break; 1051 case PT_TO_SCX: 1052 p->p_ptevents |= PTRACE_SCX; 1053 CTR4(KTR_PTRACE, 1054 "PT_TO_SCX: pid %d, events = %#x, PC = %#lx, sig = %d", 1055 p->p_pid, p->p_ptevents, 1056 (u_long)(uintfptr_t)addr, data); 1057 break; 1058 case PT_SYSCALL: 1059 p->p_ptevents |= PTRACE_SYSCALL; 1060 CTR4(KTR_PTRACE, 1061 "PT_SYSCALL: pid %d, events = %#x, PC = %#lx, sig = %d", 1062 p->p_pid, p->p_ptevents, 1063 (u_long)(uintfptr_t)addr, data); 1064 break; 1065 case PT_CONTINUE: 1066 CTR3(KTR_PTRACE, 1067 "PT_CONTINUE: pid %d, PC = %#lx, sig = %d", 1068 p->p_pid, (u_long)(uintfptr_t)addr, data); 1069 break; 1070 } 1071 break; 1072 case PT_DETACH: 1073 /* 1074 * Reset the process parent. 1075 * 1076 * NB: This clears P_TRACED before reparenting 1077 * a detached process back to its original 1078 * parent. Otherwise the debugee will be set 1079 * as an orphan of the debugger. 1080 */ 1081 p->p_flag &= ~(P_TRACED | P_WAITED); 1082 if (p->p_oppid != p->p_pptr->p_pid) { 1083 PROC_LOCK(p->p_pptr); 1084 sigqueue_take(p->p_ksi); 1085 PROC_UNLOCK(p->p_pptr); 1086 1087 pp = proc_realparent(p); 1088 proc_reparent(p, pp); 1089 if (pp == initproc) 1090 p->p_sigparent = SIGCHLD; 1091 CTR3(KTR_PTRACE, 1092 "PT_DETACH: pid %d reparented to pid %d, sig %d", 1093 p->p_pid, pp->p_pid, data); 1094 } else 1095 CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d", 1096 p->p_pid, data); 1097 p->p_oppid = 0; 1098 p->p_ptevents = 0; 1099 FOREACH_THREAD_IN_PROC(p, td3) { 1100 if ((td3->td_dbgflags & TDB_FSTP) != 0) { 1101 sigqueue_delete(&td3->td_sigqueue, 1102 SIGSTOP); 1103 } 1104 td3->td_dbgflags &= ~(TDB_XSIG | TDB_FSTP); 1105 } 1106 if ((p->p_flag2 & P2_PTRACE_FSTP) != 0) { 1107 sigqueue_delete(&p->p_sigqueue, SIGSTOP); 1108 p->p_flag2 &= ~P2_PTRACE_FSTP; 1109 } 1110 1111 /* should we send SIGCHLD? */ 1112 /* childproc_continued(p); */ 1113 break; 1114 } 1115 1116 sendsig: 1117 if (proctree_locked) { 1118 sx_xunlock(&proctree_lock); 1119 proctree_locked = 0; 1120 } 1121 p->p_xsig = data; 1122 p->p_xthread = NULL; 1123 if ((p->p_flag & (P_STOPPED_SIG | P_STOPPED_TRACE)) != 0) { 1124 /* deliver or queue signal */ 1125 td2->td_dbgflags &= ~TDB_XSIG; 1126 td2->td_xsig = data; 1127 1128 /* 1129 * P_WKILLED is insurance that a PT_KILL/SIGKILL always 1130 * works immediately, even if another thread is 1131 * unsuspended first and attempts to handle a different 1132 * signal or if the POSIX.1b style signal queue cannot 1133 * accommodate any new signals. 1134 */ 1135 if (data == SIGKILL) 1136 p->p_flag |= P_WKILLED; 1137 1138 if (req == PT_DETACH) { 1139 FOREACH_THREAD_IN_PROC(p, td3) 1140 td3->td_dbgflags &= ~TDB_SUSPEND; 1141 } 1142 /* 1143 * unsuspend all threads, to not let a thread run, 1144 * you should use PT_SUSPEND to suspend it before 1145 * continuing process. 1146 */ 1147 PROC_SLOCK(p); 1148 p->p_flag &= ~(P_STOPPED_TRACE|P_STOPPED_SIG|P_WAITED); 1149 thread_unsuspend(p); 1150 PROC_SUNLOCK(p); 1151 if (req == PT_ATTACH) 1152 kern_psignal(p, data); 1153 } else { 1154 if (data) 1155 kern_psignal(p, data); 1156 } 1157 break; 1158 1159 case PT_WRITE_I: 1160 case PT_WRITE_D: 1161 td2->td_dbgflags |= TDB_USERWR; 1162 PROC_UNLOCK(p); 1163 error = 0; 1164 if (proc_writemem(td, p, (off_t)(uintptr_t)addr, &data, 1165 sizeof(int)) != sizeof(int)) 1166 error = ENOMEM; 1167 else 1168 CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x", 1169 p->p_pid, addr, data); 1170 PROC_LOCK(p); 1171 break; 1172 1173 case PT_READ_I: 1174 case PT_READ_D: 1175 PROC_UNLOCK(p); 1176 error = tmp = 0; 1177 if (proc_readmem(td, p, (off_t)(uintptr_t)addr, &tmp, 1178 sizeof(int)) != sizeof(int)) 1179 error = ENOMEM; 1180 else 1181 CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x", 1182 p->p_pid, addr, tmp); 1183 td->td_retval[0] = tmp; 1184 PROC_LOCK(p); 1185 break; 1186 1187 case PT_IO: 1188 #ifdef COMPAT_FREEBSD32 1189 if (wrap32) { 1190 piod32 = addr; 1191 iov.iov_base = (void *)(uintptr_t)piod32->piod_addr; 1192 iov.iov_len = piod32->piod_len; 1193 uio.uio_offset = (off_t)(uintptr_t)piod32->piod_offs; 1194 uio.uio_resid = piod32->piod_len; 1195 } else 1196 #endif 1197 { 1198 piod = addr; 1199 iov.iov_base = piod->piod_addr; 1200 iov.iov_len = piod->piod_len; 1201 uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs; 1202 uio.uio_resid = piod->piod_len; 1203 } 1204 uio.uio_iov = &iov; 1205 uio.uio_iovcnt = 1; 1206 uio.uio_segflg = UIO_USERSPACE; 1207 uio.uio_td = td; 1208 #ifdef COMPAT_FREEBSD32 1209 tmp = wrap32 ? piod32->piod_op : piod->piod_op; 1210 #else 1211 tmp = piod->piod_op; 1212 #endif 1213 switch (tmp) { 1214 case PIOD_READ_D: 1215 case PIOD_READ_I: 1216 CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)", 1217 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1218 uio.uio_rw = UIO_READ; 1219 break; 1220 case PIOD_WRITE_D: 1221 case PIOD_WRITE_I: 1222 CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)", 1223 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1224 td2->td_dbgflags |= TDB_USERWR; 1225 uio.uio_rw = UIO_WRITE; 1226 break; 1227 default: 1228 error = EINVAL; 1229 goto out; 1230 } 1231 PROC_UNLOCK(p); 1232 error = proc_rwmem(p, &uio); 1233 #ifdef COMPAT_FREEBSD32 1234 if (wrap32) 1235 piod32->piod_len -= uio.uio_resid; 1236 else 1237 #endif 1238 piod->piod_len -= uio.uio_resid; 1239 PROC_LOCK(p); 1240 break; 1241 1242 case PT_KILL: 1243 CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid); 1244 data = SIGKILL; 1245 goto sendsig; /* in PT_CONTINUE above */ 1246 1247 case PT_SETREGS: 1248 CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid, 1249 p->p_pid); 1250 td2->td_dbgflags |= TDB_USERWR; 1251 error = PROC_WRITE(regs, td2, addr); 1252 break; 1253 1254 case PT_GETREGS: 1255 CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid, 1256 p->p_pid); 1257 error = PROC_READ(regs, td2, addr); 1258 break; 1259 1260 case PT_SETFPREGS: 1261 CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid, 1262 p->p_pid); 1263 td2->td_dbgflags |= TDB_USERWR; 1264 error = PROC_WRITE(fpregs, td2, addr); 1265 break; 1266 1267 case PT_GETFPREGS: 1268 CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid, 1269 p->p_pid); 1270 error = PROC_READ(fpregs, td2, addr); 1271 break; 1272 1273 case PT_SETDBREGS: 1274 CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid, 1275 p->p_pid); 1276 td2->td_dbgflags |= TDB_USERWR; 1277 error = PROC_WRITE(dbregs, td2, addr); 1278 break; 1279 1280 case PT_GETDBREGS: 1281 CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid, 1282 p->p_pid); 1283 error = PROC_READ(dbregs, td2, addr); 1284 break; 1285 1286 case PT_LWPINFO: 1287 if (data <= 0 || 1288 #ifdef COMPAT_FREEBSD32 1289 (!wrap32 && data > sizeof(*pl)) || 1290 (wrap32 && data > sizeof(*pl32))) { 1291 #else 1292 data > sizeof(*pl)) { 1293 #endif 1294 error = EINVAL; 1295 break; 1296 } 1297 #ifdef COMPAT_FREEBSD32 1298 if (wrap32) { 1299 pl = &plr; 1300 pl32 = addr; 1301 } else 1302 #endif 1303 pl = addr; 1304 pl->pl_lwpid = td2->td_tid; 1305 pl->pl_event = PL_EVENT_NONE; 1306 pl->pl_flags = 0; 1307 if (td2->td_dbgflags & TDB_XSIG) { 1308 pl->pl_event = PL_EVENT_SIGNAL; 1309 if (td2->td_dbgksi.ksi_signo != 0 && 1310 #ifdef COMPAT_FREEBSD32 1311 ((!wrap32 && data >= offsetof(struct ptrace_lwpinfo, 1312 pl_siginfo) + sizeof(pl->pl_siginfo)) || 1313 (wrap32 && data >= offsetof(struct ptrace_lwpinfo32, 1314 pl_siginfo) + sizeof(struct siginfo32))) 1315 #else 1316 data >= offsetof(struct ptrace_lwpinfo, pl_siginfo) 1317 + sizeof(pl->pl_siginfo) 1318 #endif 1319 ){ 1320 pl->pl_flags |= PL_FLAG_SI; 1321 pl->pl_siginfo = td2->td_dbgksi.ksi_info; 1322 } 1323 } 1324 if ((pl->pl_flags & PL_FLAG_SI) == 0) 1325 bzero(&pl->pl_siginfo, sizeof(pl->pl_siginfo)); 1326 if (td2->td_dbgflags & TDB_SCE) 1327 pl->pl_flags |= PL_FLAG_SCE; 1328 else if (td2->td_dbgflags & TDB_SCX) 1329 pl->pl_flags |= PL_FLAG_SCX; 1330 if (td2->td_dbgflags & TDB_EXEC) 1331 pl->pl_flags |= PL_FLAG_EXEC; 1332 if (td2->td_dbgflags & TDB_FORK) { 1333 pl->pl_flags |= PL_FLAG_FORKED; 1334 pl->pl_child_pid = td2->td_dbg_forked; 1335 if (td2->td_dbgflags & TDB_VFORK) 1336 pl->pl_flags |= PL_FLAG_VFORKED; 1337 } else if ((td2->td_dbgflags & (TDB_SCX | TDB_VFORK)) == 1338 TDB_VFORK) 1339 pl->pl_flags |= PL_FLAG_VFORK_DONE; 1340 if (td2->td_dbgflags & TDB_CHILD) 1341 pl->pl_flags |= PL_FLAG_CHILD; 1342 if (td2->td_dbgflags & TDB_BORN) 1343 pl->pl_flags |= PL_FLAG_BORN; 1344 if (td2->td_dbgflags & TDB_EXIT) 1345 pl->pl_flags |= PL_FLAG_EXITED; 1346 pl->pl_sigmask = td2->td_sigmask; 1347 pl->pl_siglist = td2->td_siglist; 1348 strcpy(pl->pl_tdname, td2->td_name); 1349 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) { 1350 pl->pl_syscall_code = td2->td_dbg_sc_code; 1351 pl->pl_syscall_narg = td2->td_dbg_sc_narg; 1352 } else { 1353 pl->pl_syscall_code = 0; 1354 pl->pl_syscall_narg = 0; 1355 } 1356 #ifdef COMPAT_FREEBSD32 1357 if (wrap32) 1358 ptrace_lwpinfo_to32(pl, pl32); 1359 #endif 1360 CTR6(KTR_PTRACE, 1361 "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d", 1362 td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags, 1363 pl->pl_child_pid, pl->pl_syscall_code); 1364 break; 1365 1366 case PT_GETNUMLWPS: 1367 CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid, 1368 p->p_numthreads); 1369 td->td_retval[0] = p->p_numthreads; 1370 break; 1371 1372 case PT_GETLWPLIST: 1373 CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d", 1374 p->p_pid, data, p->p_numthreads); 1375 if (data <= 0) { 1376 error = EINVAL; 1377 break; 1378 } 1379 num = imin(p->p_numthreads, data); 1380 PROC_UNLOCK(p); 1381 buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK); 1382 tmp = 0; 1383 PROC_LOCK(p); 1384 FOREACH_THREAD_IN_PROC(p, td2) { 1385 if (tmp >= num) 1386 break; 1387 buf[tmp++] = td2->td_tid; 1388 } 1389 PROC_UNLOCK(p); 1390 error = copyout(buf, addr, tmp * sizeof(lwpid_t)); 1391 free(buf, M_TEMP); 1392 if (!error) 1393 td->td_retval[0] = tmp; 1394 PROC_LOCK(p); 1395 break; 1396 1397 case PT_VM_TIMESTAMP: 1398 CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d", 1399 p->p_pid, p->p_vmspace->vm_map.timestamp); 1400 td->td_retval[0] = p->p_vmspace->vm_map.timestamp; 1401 break; 1402 1403 case PT_VM_ENTRY: 1404 PROC_UNLOCK(p); 1405 #ifdef COMPAT_FREEBSD32 1406 if (wrap32) 1407 error = ptrace_vm_entry32(td, p, addr); 1408 else 1409 #endif 1410 error = ptrace_vm_entry(td, p, addr); 1411 PROC_LOCK(p); 1412 break; 1413 1414 default: 1415 #ifdef __HAVE_PTRACE_MACHDEP 1416 if (req >= PT_FIRSTMACH) { 1417 PROC_UNLOCK(p); 1418 error = cpu_ptrace(td2, req, addr, data); 1419 PROC_LOCK(p); 1420 } else 1421 #endif 1422 /* Unknown request. */ 1423 error = EINVAL; 1424 break; 1425 } 1426 1427 out: 1428 /* Drop our hold on this process now that the request has completed. */ 1429 _PRELE(p); 1430 fail: 1431 PROC_UNLOCK(p); 1432 if (proctree_locked) 1433 sx_xunlock(&proctree_lock); 1434 return (error); 1435 } 1436 #undef PROC_READ 1437 #undef PROC_WRITE 1438 1439 /* 1440 * Stop a process because of a debugging event; 1441 * stay stopped until p->p_step is cleared 1442 * (cleared by PIOCCONT in procfs). 1443 */ 1444 void 1445 stopevent(struct proc *p, unsigned int event, unsigned int val) 1446 { 1447 1448 PROC_LOCK_ASSERT(p, MA_OWNED); 1449 p->p_step = 1; 1450 CTR3(KTR_PTRACE, "stopevent: pid %d event %u val %u", p->p_pid, event, 1451 val); 1452 do { 1453 if (event != S_EXIT) 1454 p->p_xsig = val; 1455 p->p_xthread = NULL; 1456 p->p_stype = event; /* Which event caused the stop? */ 1457 wakeup(&p->p_stype); /* Wake up any PIOCWAIT'ing procs */ 1458 msleep(&p->p_step, &p->p_mtx, PWAIT, "stopevent", 0); 1459 } while (p->p_step); 1460 } 1461