1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1994, Sean Eric Fagan 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Sean Eric Fagan. 18 * 4. The name of the author may not be used to endorse or promote products 19 * derived from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/ktr.h> 38 #include <sys/limits.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/reg.h> 42 #include <sys/syscallsubr.h> 43 #include <sys/sysent.h> 44 #include <sys/sysproto.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/vnode.h> 48 #include <sys/ptrace.h> 49 #include <sys/rwlock.h> 50 #include <sys/sx.h> 51 #include <sys/malloc.h> 52 #include <sys/signalvar.h> 53 #include <sys/caprights.h> 54 #include <sys/filedesc.h> 55 56 #include <security/audit/audit.h> 57 58 #include <vm/vm.h> 59 #include <vm/pmap.h> 60 #include <vm/vm_extern.h> 61 #include <vm/vm_map.h> 62 #include <vm/vm_kern.h> 63 #include <vm/vm_object.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_param.h> 66 67 #ifdef COMPAT_FREEBSD32 68 #include <sys/procfs.h> 69 #endif 70 71 /* Assert it's safe to unlock a process, e.g. to allocate working memory */ 72 #define PROC_ASSERT_TRACEREQ(p) MPASS(((p)->p_flag2 & P2_PTRACEREQ) != 0) 73 74 /* 75 * Functions implemented using PROC_ACTION(): 76 * 77 * proc_read_regs(proc, regs) 78 * Get the current user-visible register set from the process 79 * and copy it into the regs structure (<machine/reg.h>). 80 * The process is stopped at the time read_regs is called. 81 * 82 * proc_write_regs(proc, regs) 83 * Update the current register set from the passed in regs 84 * structure. Take care to avoid clobbering special CPU 85 * registers or privileged bits in the PSL. 86 * Depending on the architecture this may have fix-up work to do, 87 * especially if the IAR or PCW are modified. 88 * The process is stopped at the time write_regs is called. 89 * 90 * proc_read_fpregs, proc_write_fpregs 91 * deal with the floating point register set, otherwise as above. 92 * 93 * proc_read_dbregs, proc_write_dbregs 94 * deal with the processor debug register set, otherwise as above. 95 * 96 * proc_sstep(proc) 97 * Arrange for the process to trap after executing a single instruction. 98 */ 99 100 #define PROC_ACTION(action) do { \ 101 int error; \ 102 \ 103 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); \ 104 if ((td->td_proc->p_flag & P_INMEM) == 0) \ 105 error = EIO; \ 106 else \ 107 error = (action); \ 108 return (error); \ 109 } while (0) 110 111 int 112 proc_read_regs(struct thread *td, struct reg *regs) 113 { 114 115 PROC_ACTION(fill_regs(td, regs)); 116 } 117 118 int 119 proc_write_regs(struct thread *td, struct reg *regs) 120 { 121 122 PROC_ACTION(set_regs(td, regs)); 123 } 124 125 int 126 proc_read_dbregs(struct thread *td, struct dbreg *dbregs) 127 { 128 129 PROC_ACTION(fill_dbregs(td, dbregs)); 130 } 131 132 int 133 proc_write_dbregs(struct thread *td, struct dbreg *dbregs) 134 { 135 136 PROC_ACTION(set_dbregs(td, dbregs)); 137 } 138 139 /* 140 * Ptrace doesn't support fpregs at all, and there are no security holes 141 * or translations for fpregs, so we can just copy them. 142 */ 143 int 144 proc_read_fpregs(struct thread *td, struct fpreg *fpregs) 145 { 146 147 PROC_ACTION(fill_fpregs(td, fpregs)); 148 } 149 150 int 151 proc_write_fpregs(struct thread *td, struct fpreg *fpregs) 152 { 153 154 PROC_ACTION(set_fpregs(td, fpregs)); 155 } 156 157 static struct regset * 158 proc_find_regset(struct thread *td, int note) 159 { 160 struct regset **regsetp, **regset_end, *regset; 161 struct sysentvec *sv; 162 163 sv = td->td_proc->p_sysent; 164 regsetp = sv->sv_regset_begin; 165 if (regsetp == NULL) 166 return (NULL); 167 regset_end = sv->sv_regset_end; 168 MPASS(regset_end != NULL); 169 for (; regsetp < regset_end; regsetp++) { 170 regset = *regsetp; 171 if (regset->note != note) 172 continue; 173 174 return (regset); 175 } 176 177 return (NULL); 178 } 179 180 static int 181 proc_read_regset(struct thread *td, int note, struct iovec *iov) 182 { 183 struct regset *regset; 184 struct proc *p; 185 void *buf; 186 size_t size; 187 int error; 188 189 regset = proc_find_regset(td, note); 190 if (regset == NULL) 191 return (EINVAL); 192 193 if (regset->get == NULL) 194 return (EINVAL); 195 196 size = regset->size; 197 /* 198 * The regset is dynamically sized, e.g. the size could change 199 * depending on the hardware, or may have a per-thread size. 200 */ 201 if (size == 0) { 202 if (!regset->get(regset, td, NULL, &size)) 203 return (EINVAL); 204 } 205 206 if (iov->iov_base == NULL) { 207 iov->iov_len = size; 208 if (iov->iov_len == 0) 209 return (EINVAL); 210 211 return (0); 212 } 213 214 /* The length is wrong, return an error */ 215 if (iov->iov_len != size) 216 return (EINVAL); 217 218 error = 0; 219 p = td->td_proc; 220 221 /* Drop the proc lock while allocating the temp buffer */ 222 PROC_ASSERT_TRACEREQ(p); 223 PROC_UNLOCK(p); 224 buf = malloc(size, M_TEMP, M_WAITOK); 225 PROC_LOCK(p); 226 227 if (!regset->get(regset, td, buf, &size)) { 228 error = EINVAL; 229 } else { 230 KASSERT(size == regset->size || regset->size == 0, 231 ("%s: Getter function changed the size", __func__)); 232 233 iov->iov_len = size; 234 PROC_UNLOCK(p); 235 error = copyout(buf, iov->iov_base, size); 236 PROC_LOCK(p); 237 } 238 239 free(buf, M_TEMP); 240 241 return (error); 242 } 243 244 static int 245 proc_write_regset(struct thread *td, int note, struct iovec *iov) 246 { 247 struct regset *regset; 248 struct proc *p; 249 void *buf; 250 size_t size; 251 int error; 252 253 regset = proc_find_regset(td, note); 254 if (regset == NULL) 255 return (EINVAL); 256 257 size = regset->size; 258 /* 259 * The regset is dynamically sized, e.g. the size could change 260 * depending on the hardware, or may have a per-thread size. 261 */ 262 if (size == 0) { 263 if (!regset->get(regset, td, NULL, &size)) 264 return (EINVAL); 265 } 266 267 /* The length is wrong, return an error */ 268 if (iov->iov_len != size) 269 return (EINVAL); 270 271 if (regset->set == NULL) 272 return (EINVAL); 273 274 p = td->td_proc; 275 276 /* Drop the proc lock while allocating the temp buffer */ 277 PROC_ASSERT_TRACEREQ(p); 278 PROC_UNLOCK(p); 279 buf = malloc(size, M_TEMP, M_WAITOK); 280 error = copyin(iov->iov_base, buf, size); 281 PROC_LOCK(p); 282 283 if (error == 0) { 284 if (!regset->set(regset, td, buf, size)) { 285 error = EINVAL; 286 } 287 } 288 289 free(buf, M_TEMP); 290 291 return (error); 292 } 293 294 #ifdef COMPAT_FREEBSD32 295 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */ 296 int 297 proc_read_regs32(struct thread *td, struct reg32 *regs32) 298 { 299 300 PROC_ACTION(fill_regs32(td, regs32)); 301 } 302 303 int 304 proc_write_regs32(struct thread *td, struct reg32 *regs32) 305 { 306 307 PROC_ACTION(set_regs32(td, regs32)); 308 } 309 310 int 311 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 312 { 313 314 PROC_ACTION(fill_dbregs32(td, dbregs32)); 315 } 316 317 int 318 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 319 { 320 321 PROC_ACTION(set_dbregs32(td, dbregs32)); 322 } 323 324 int 325 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 326 { 327 328 PROC_ACTION(fill_fpregs32(td, fpregs32)); 329 } 330 331 int 332 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 333 { 334 335 PROC_ACTION(set_fpregs32(td, fpregs32)); 336 } 337 #endif 338 339 int 340 proc_sstep(struct thread *td) 341 { 342 343 PROC_ACTION(ptrace_single_step(td)); 344 } 345 346 int 347 proc_rwmem(struct proc *p, struct uio *uio) 348 { 349 vm_map_t map; 350 vm_offset_t pageno; /* page number */ 351 vm_prot_t reqprot; 352 int error, fault_flags, page_offset, writing; 353 354 /* 355 * Make sure that the process' vmspace remains live. 356 */ 357 if (p != curproc) 358 PROC_ASSERT_HELD(p); 359 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 360 361 /* 362 * The map we want... 363 */ 364 map = &p->p_vmspace->vm_map; 365 366 /* 367 * If we are writing, then we request vm_fault() to create a private 368 * copy of each page. Since these copies will not be writeable by the 369 * process, we must explicity request that they be dirtied. 370 */ 371 writing = uio->uio_rw == UIO_WRITE; 372 reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ; 373 fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL; 374 375 /* 376 * Only map in one page at a time. We don't have to, but it 377 * makes things easier. This way is trivial - right? 378 */ 379 do { 380 vm_offset_t uva; 381 u_int len; 382 vm_page_t m; 383 384 uva = (vm_offset_t)uio->uio_offset; 385 386 /* 387 * Get the page number of this segment. 388 */ 389 pageno = trunc_page(uva); 390 page_offset = uva - pageno; 391 392 /* 393 * How many bytes to copy 394 */ 395 len = min(PAGE_SIZE - page_offset, uio->uio_resid); 396 397 /* 398 * Fault and hold the page on behalf of the process. 399 */ 400 error = vm_fault(map, pageno, reqprot, fault_flags, &m); 401 if (error != KERN_SUCCESS) { 402 if (error == KERN_RESOURCE_SHORTAGE) 403 error = ENOMEM; 404 else 405 error = EFAULT; 406 break; 407 } 408 409 /* 410 * Now do the i/o move. 411 */ 412 error = uiomove_fromphys(&m, page_offset, len, uio); 413 414 /* Make the I-cache coherent for breakpoints. */ 415 if (writing && error == 0) { 416 vm_map_lock_read(map); 417 if (vm_map_check_protection(map, pageno, pageno + 418 PAGE_SIZE, VM_PROT_EXECUTE)) 419 vm_sync_icache(map, uva, len); 420 vm_map_unlock_read(map); 421 } 422 423 /* 424 * Release the page. 425 */ 426 vm_page_unwire(m, PQ_ACTIVE); 427 428 } while (error == 0 && uio->uio_resid > 0); 429 430 return (error); 431 } 432 433 static ssize_t 434 proc_iop(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 435 size_t len, enum uio_rw rw) 436 { 437 struct iovec iov; 438 struct uio uio; 439 ssize_t slen; 440 441 MPASS(len < SSIZE_MAX); 442 slen = (ssize_t)len; 443 444 iov.iov_base = (caddr_t)buf; 445 iov.iov_len = len; 446 uio.uio_iov = &iov; 447 uio.uio_iovcnt = 1; 448 uio.uio_offset = va; 449 uio.uio_resid = slen; 450 uio.uio_segflg = UIO_SYSSPACE; 451 uio.uio_rw = rw; 452 uio.uio_td = td; 453 proc_rwmem(p, &uio); 454 if (uio.uio_resid == slen) 455 return (-1); 456 return (slen - uio.uio_resid); 457 } 458 459 ssize_t 460 proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 461 size_t len) 462 { 463 464 return (proc_iop(td, p, va, buf, len, UIO_READ)); 465 } 466 467 ssize_t 468 proc_writemem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 469 size_t len) 470 { 471 472 return (proc_iop(td, p, va, buf, len, UIO_WRITE)); 473 } 474 475 static int 476 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve) 477 { 478 struct vattr vattr; 479 vm_map_t map; 480 vm_map_entry_t entry; 481 vm_object_t obj, tobj, lobj; 482 struct vmspace *vm; 483 struct vnode *vp; 484 char *freepath, *fullpath; 485 u_int pathlen; 486 int error, index; 487 488 error = 0; 489 obj = NULL; 490 491 vm = vmspace_acquire_ref(p); 492 map = &vm->vm_map; 493 vm_map_lock_read(map); 494 495 do { 496 KASSERT((map->header.eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 497 ("Submap in map header")); 498 index = 0; 499 VM_MAP_ENTRY_FOREACH(entry, map) { 500 if (index >= pve->pve_entry && 501 (entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 502 break; 503 index++; 504 } 505 if (index < pve->pve_entry) { 506 error = EINVAL; 507 break; 508 } 509 if (entry == &map->header) { 510 error = ENOENT; 511 break; 512 } 513 514 /* We got an entry. */ 515 pve->pve_entry = index + 1; 516 pve->pve_timestamp = map->timestamp; 517 pve->pve_start = entry->start; 518 pve->pve_end = entry->end - 1; 519 pve->pve_offset = entry->offset; 520 pve->pve_prot = entry->protection; 521 522 /* Backing object's path needed? */ 523 if (pve->pve_pathlen == 0) 524 break; 525 526 pathlen = pve->pve_pathlen; 527 pve->pve_pathlen = 0; 528 529 obj = entry->object.vm_object; 530 if (obj != NULL) 531 VM_OBJECT_RLOCK(obj); 532 } while (0); 533 534 vm_map_unlock_read(map); 535 536 pve->pve_fsid = VNOVAL; 537 pve->pve_fileid = VNOVAL; 538 539 if (error == 0 && obj != NULL) { 540 lobj = obj; 541 for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { 542 if (tobj != obj) 543 VM_OBJECT_RLOCK(tobj); 544 if (lobj != obj) 545 VM_OBJECT_RUNLOCK(lobj); 546 lobj = tobj; 547 pve->pve_offset += tobj->backing_object_offset; 548 } 549 vp = vm_object_vnode(lobj); 550 if (vp != NULL) 551 vref(vp); 552 if (lobj != obj) 553 VM_OBJECT_RUNLOCK(lobj); 554 VM_OBJECT_RUNLOCK(obj); 555 556 if (vp != NULL) { 557 freepath = NULL; 558 fullpath = NULL; 559 vn_fullpath(vp, &fullpath, &freepath); 560 vn_lock(vp, LK_SHARED | LK_RETRY); 561 if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) { 562 pve->pve_fileid = vattr.va_fileid; 563 pve->pve_fsid = vattr.va_fsid; 564 } 565 vput(vp); 566 567 if (fullpath != NULL) { 568 pve->pve_pathlen = strlen(fullpath) + 1; 569 if (pve->pve_pathlen <= pathlen) { 570 error = copyout(fullpath, pve->pve_path, 571 pve->pve_pathlen); 572 } else 573 error = ENAMETOOLONG; 574 } 575 if (freepath != NULL) 576 free(freepath, M_TEMP); 577 } 578 } 579 vmspace_free(vm); 580 if (error == 0) 581 CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p", 582 p->p_pid, pve->pve_entry, pve->pve_start); 583 584 return (error); 585 } 586 587 /* 588 * Process debugging system call. 589 */ 590 #ifndef _SYS_SYSPROTO_H_ 591 struct ptrace_args { 592 int req; 593 pid_t pid; 594 caddr_t addr; 595 int data; 596 }; 597 #endif 598 599 int 600 sys_ptrace(struct thread *td, struct ptrace_args *uap) 601 { 602 /* 603 * XXX this obfuscation is to reduce stack usage, but the register 604 * structs may be too large to put on the stack anyway. 605 */ 606 union { 607 struct ptrace_io_desc piod; 608 struct ptrace_lwpinfo pl; 609 struct ptrace_vm_entry pve; 610 struct ptrace_coredump pc; 611 struct ptrace_sc_remote sr; 612 struct dbreg dbreg; 613 struct fpreg fpreg; 614 struct reg reg; 615 struct iovec vec; 616 syscallarg_t args[nitems(td->td_sa.args)]; 617 struct ptrace_sc_ret psr; 618 int ptevents; 619 } r; 620 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 621 void *addr; 622 int error; 623 624 if (!allow_ptrace) 625 return (ENOSYS); 626 error = 0; 627 628 AUDIT_ARG_PID(uap->pid); 629 AUDIT_ARG_CMD(uap->req); 630 AUDIT_ARG_VALUE(uap->data); 631 addr = &r; 632 switch (uap->req) { 633 case PT_GET_EVENT_MASK: 634 case PT_LWPINFO: 635 case PT_GET_SC_ARGS: 636 case PT_GET_SC_RET: 637 break; 638 case PT_GETREGS: 639 bzero(&r.reg, sizeof(r.reg)); 640 break; 641 case PT_GETFPREGS: 642 bzero(&r.fpreg, sizeof(r.fpreg)); 643 break; 644 case PT_GETDBREGS: 645 bzero(&r.dbreg, sizeof(r.dbreg)); 646 break; 647 case PT_GETREGSET: 648 case PT_SETREGSET: 649 error = copyin(uap->addr, &r.vec, sizeof(r.vec)); 650 break; 651 case PT_SETREGS: 652 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 653 break; 654 case PT_SETFPREGS: 655 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 656 break; 657 case PT_SETDBREGS: 658 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 659 break; 660 case PT_SET_EVENT_MASK: 661 if (uap->data != sizeof(r.ptevents)) 662 error = EINVAL; 663 else 664 error = copyin(uap->addr, &r.ptevents, uap->data); 665 break; 666 case PT_IO: 667 error = copyin(uap->addr, &r.piod, sizeof(r.piod)); 668 break; 669 case PT_VM_ENTRY: 670 error = copyin(uap->addr, &r.pve, sizeof(r.pve)); 671 break; 672 case PT_COREDUMP: 673 if (uap->data != sizeof(r.pc)) 674 error = EINVAL; 675 else 676 error = copyin(uap->addr, &r.pc, uap->data); 677 break; 678 case PT_SC_REMOTE: 679 if (uap->data != sizeof(r.sr)) { 680 error = EINVAL; 681 break; 682 } 683 error = copyin(uap->addr, &r.sr, uap->data); 684 if (error != 0) 685 break; 686 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 687 error = EINVAL; 688 break; 689 } 690 error = copyin(r.sr.pscr_args, pscr_args, 691 sizeof(u_long) * r.sr.pscr_nargs); 692 if (error != 0) 693 break; 694 r.sr.pscr_args = pscr_args; 695 break; 696 default: 697 addr = uap->addr; 698 break; 699 } 700 if (error) 701 return (error); 702 703 error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data); 704 if (error) 705 return (error); 706 707 switch (uap->req) { 708 case PT_VM_ENTRY: 709 error = copyout(&r.pve, uap->addr, sizeof(r.pve)); 710 break; 711 case PT_IO: 712 error = copyout(&r.piod, uap->addr, sizeof(r.piod)); 713 break; 714 case PT_GETREGS: 715 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 716 break; 717 case PT_GETFPREGS: 718 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 719 break; 720 case PT_GETDBREGS: 721 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 722 break; 723 case PT_GETREGSET: 724 error = copyout(&r.vec, uap->addr, sizeof(r.vec)); 725 break; 726 case PT_GET_EVENT_MASK: 727 /* NB: The size in uap->data is validated in kern_ptrace(). */ 728 error = copyout(&r.ptevents, uap->addr, uap->data); 729 break; 730 case PT_LWPINFO: 731 /* NB: The size in uap->data is validated in kern_ptrace(). */ 732 error = copyout(&r.pl, uap->addr, uap->data); 733 break; 734 case PT_GET_SC_ARGS: 735 error = copyout(r.args, uap->addr, MIN(uap->data, 736 sizeof(r.args))); 737 break; 738 case PT_GET_SC_RET: 739 error = copyout(&r.psr, uap->addr, MIN(uap->data, 740 sizeof(r.psr))); 741 break; 742 case PT_SC_REMOTE: 743 error = copyout(&r.sr.pscr_ret, uap->addr + 744 offsetof(struct ptrace_sc_remote, pscr_ret), 745 sizeof(r.sr.pscr_ret)); 746 break; 747 } 748 749 return (error); 750 } 751 752 #ifdef COMPAT_FREEBSD32 753 /* 754 * PROC_READ(regs, td2, addr); 755 * becomes either: 756 * proc_read_regs(td2, addr); 757 * or 758 * proc_read_regs32(td2, addr); 759 * .. except this is done at runtime. There is an additional 760 * complication in that PROC_WRITE disallows 32 bit consumers 761 * from writing to 64 bit address space targets. 762 */ 763 #define PROC_READ(w, t, a) wrap32 ? \ 764 proc_read_ ## w ## 32(t, a) : \ 765 proc_read_ ## w (t, a) 766 #define PROC_WRITE(w, t, a) wrap32 ? \ 767 (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \ 768 proc_write_ ## w (t, a) 769 #else 770 #define PROC_READ(w, t, a) proc_read_ ## w (t, a) 771 #define PROC_WRITE(w, t, a) proc_write_ ## w (t, a) 772 #endif 773 774 void 775 proc_set_traced(struct proc *p, bool stop) 776 { 777 778 sx_assert(&proctree_lock, SX_XLOCKED); 779 PROC_LOCK_ASSERT(p, MA_OWNED); 780 p->p_flag |= P_TRACED; 781 if (stop) 782 p->p_flag2 |= P2_PTRACE_FSTP; 783 p->p_ptevents = PTRACE_DEFAULT; 784 } 785 786 void 787 ptrace_unsuspend(struct proc *p) 788 { 789 PROC_LOCK_ASSERT(p, MA_OWNED); 790 791 PROC_SLOCK(p); 792 p->p_flag &= ~(P_STOPPED_TRACE | P_STOPPED_SIG | P_WAITED); 793 thread_unsuspend(p); 794 PROC_SUNLOCK(p); 795 itimer_proc_continue(p); 796 kqtimer_proc_continue(p); 797 } 798 799 static int 800 proc_can_ptrace(struct thread *td, struct proc *p) 801 { 802 int error; 803 804 PROC_LOCK_ASSERT(p, MA_OWNED); 805 806 if ((p->p_flag & P_WEXIT) != 0) 807 return (ESRCH); 808 809 if ((error = p_cansee(td, p)) != 0) 810 return (error); 811 if ((error = p_candebug(td, p)) != 0) 812 return (error); 813 814 /* not being traced... */ 815 if ((p->p_flag & P_TRACED) == 0) 816 return (EPERM); 817 818 /* not being traced by YOU */ 819 if (p->p_pptr != td->td_proc) 820 return (EBUSY); 821 822 /* not currently stopped */ 823 if ((p->p_flag & P_STOPPED_TRACE) == 0 || 824 p->p_suspcount != p->p_numthreads || 825 (p->p_flag & P_WAITED) == 0) 826 return (EBUSY); 827 828 return (0); 829 } 830 831 static struct thread * 832 ptrace_sel_coredump_thread(struct proc *p) 833 { 834 struct thread *td2; 835 836 PROC_LOCK_ASSERT(p, MA_OWNED); 837 MPASS((p->p_flag & P_STOPPED_TRACE) != 0); 838 839 FOREACH_THREAD_IN_PROC(p, td2) { 840 if ((td2->td_dbgflags & TDB_SSWITCH) != 0) 841 return (td2); 842 } 843 return (NULL); 844 } 845 846 int 847 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data) 848 { 849 struct iovec iov; 850 struct uio uio; 851 struct proc *curp, *p, *pp; 852 struct thread *td2 = NULL, *td3; 853 struct ptrace_io_desc *piod = NULL; 854 struct ptrace_lwpinfo *pl; 855 struct ptrace_sc_ret *psr; 856 struct ptrace_sc_remote *pscr; 857 struct file *fp; 858 struct ptrace_coredump *pc; 859 struct thr_coredump_req *tcq; 860 struct thr_syscall_req *tsr; 861 int error, num, tmp; 862 lwpid_t tid = 0, *buf; 863 #ifdef COMPAT_FREEBSD32 864 int wrap32 = 0, safe = 0; 865 #endif 866 bool proctree_locked, p2_req_set; 867 868 curp = td->td_proc; 869 proctree_locked = false; 870 p2_req_set = false; 871 872 /* Lock proctree before locking the process. */ 873 switch (req) { 874 case PT_TRACE_ME: 875 case PT_ATTACH: 876 case PT_STEP: 877 case PT_CONTINUE: 878 case PT_TO_SCE: 879 case PT_TO_SCX: 880 case PT_SYSCALL: 881 case PT_FOLLOW_FORK: 882 case PT_LWP_EVENTS: 883 case PT_GET_EVENT_MASK: 884 case PT_SET_EVENT_MASK: 885 case PT_DETACH: 886 case PT_GET_SC_ARGS: 887 sx_xlock(&proctree_lock); 888 proctree_locked = true; 889 break; 890 default: 891 break; 892 } 893 894 if (req == PT_TRACE_ME) { 895 p = td->td_proc; 896 PROC_LOCK(p); 897 } else { 898 if (pid <= PID_MAX) { 899 if ((p = pfind(pid)) == NULL) { 900 if (proctree_locked) 901 sx_xunlock(&proctree_lock); 902 return (ESRCH); 903 } 904 } else { 905 td2 = tdfind(pid, -1); 906 if (td2 == NULL) { 907 if (proctree_locked) 908 sx_xunlock(&proctree_lock); 909 return (ESRCH); 910 } 911 p = td2->td_proc; 912 tid = pid; 913 pid = p->p_pid; 914 } 915 } 916 AUDIT_ARG_PROCESS(p); 917 918 if ((p->p_flag & P_WEXIT) != 0) { 919 error = ESRCH; 920 goto fail; 921 } 922 if ((error = p_cansee(td, p)) != 0) 923 goto fail; 924 925 if ((error = p_candebug(td, p)) != 0) 926 goto fail; 927 928 /* 929 * System processes can't be debugged. 930 */ 931 if ((p->p_flag & P_SYSTEM) != 0) { 932 error = EINVAL; 933 goto fail; 934 } 935 936 if (tid == 0) { 937 if ((p->p_flag & P_STOPPED_TRACE) != 0) { 938 KASSERT(p->p_xthread != NULL, ("NULL p_xthread")); 939 td2 = p->p_xthread; 940 } else { 941 td2 = FIRST_THREAD_IN_PROC(p); 942 } 943 tid = td2->td_tid; 944 } 945 946 #ifdef COMPAT_FREEBSD32 947 /* 948 * Test if we're a 32 bit client and what the target is. 949 * Set the wrap controls accordingly. 950 */ 951 if (SV_CURPROC_FLAG(SV_ILP32)) { 952 if (SV_PROC_FLAG(td2->td_proc, SV_ILP32)) 953 safe = 1; 954 wrap32 = 1; 955 } 956 #endif 957 /* 958 * Permissions check 959 */ 960 switch (req) { 961 case PT_TRACE_ME: 962 /* 963 * Always legal, when there is a parent process which 964 * could trace us. Otherwise, reject. 965 */ 966 if ((p->p_flag & P_TRACED) != 0) { 967 error = EBUSY; 968 goto fail; 969 } 970 if (p->p_pptr == initproc) { 971 error = EPERM; 972 goto fail; 973 } 974 break; 975 976 case PT_ATTACH: 977 /* Self */ 978 if (p == td->td_proc) { 979 error = EINVAL; 980 goto fail; 981 } 982 983 /* Already traced */ 984 if (p->p_flag & P_TRACED) { 985 error = EBUSY; 986 goto fail; 987 } 988 989 /* Can't trace an ancestor if you're being traced. */ 990 if (curp->p_flag & P_TRACED) { 991 for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) { 992 if (pp == p) { 993 error = EINVAL; 994 goto fail; 995 } 996 } 997 } 998 999 /* OK */ 1000 break; 1001 1002 case PT_CLEARSTEP: 1003 /* Allow thread to clear single step for itself */ 1004 if (td->td_tid == tid) 1005 break; 1006 1007 /* FALLTHROUGH */ 1008 default: 1009 /* 1010 * Check for ptrace eligibility before waiting for 1011 * holds to drain. 1012 */ 1013 error = proc_can_ptrace(td, p); 1014 if (error != 0) 1015 goto fail; 1016 1017 /* 1018 * Block parallel ptrace requests. Most important, do 1019 * not allow other thread in debugger to continue the 1020 * debuggee until coredump finished. 1021 */ 1022 while ((p->p_flag2 & P2_PTRACEREQ) != 0) { 1023 if (proctree_locked) 1024 sx_xunlock(&proctree_lock); 1025 error = msleep(&p->p_flag2, &p->p_mtx, PPAUSE | PCATCH | 1026 (proctree_locked ? PDROP : 0), "pptrace", 0); 1027 if (proctree_locked) { 1028 sx_xlock(&proctree_lock); 1029 PROC_LOCK(p); 1030 } 1031 if (error == 0 && td2->td_proc != p) 1032 error = ESRCH; 1033 if (error == 0) 1034 error = proc_can_ptrace(td, p); 1035 if (error != 0) 1036 goto fail; 1037 } 1038 1039 /* Ok */ 1040 break; 1041 } 1042 1043 /* 1044 * Keep this process around and request parallel ptrace() 1045 * request to wait until we finish this request. 1046 */ 1047 MPASS((p->p_flag2 & P2_PTRACEREQ) == 0); 1048 p->p_flag2 |= P2_PTRACEREQ; 1049 p2_req_set = true; 1050 _PHOLD(p); 1051 1052 /* 1053 * Actually do the requests 1054 */ 1055 1056 td->td_retval[0] = 0; 1057 1058 switch (req) { 1059 case PT_TRACE_ME: 1060 /* set my trace flag and "owner" so it can read/write me */ 1061 proc_set_traced(p, false); 1062 if (p->p_flag & P_PPWAIT) 1063 p->p_flag |= P_PPTRACE; 1064 CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid); 1065 break; 1066 1067 case PT_ATTACH: 1068 /* security check done above */ 1069 /* 1070 * It would be nice if the tracing relationship was separate 1071 * from the parent relationship but that would require 1072 * another set of links in the proc struct or for "wait" 1073 * to scan the entire proc table. To make life easier, 1074 * we just re-parent the process we're trying to trace. 1075 * The old parent is remembered so we can put things back 1076 * on a "detach". 1077 */ 1078 proc_set_traced(p, true); 1079 proc_reparent(p, td->td_proc, false); 1080 CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid, 1081 p->p_oppid); 1082 1083 sx_xunlock(&proctree_lock); 1084 proctree_locked = false; 1085 MPASS(p->p_xthread == NULL); 1086 MPASS((p->p_flag & P_STOPPED_TRACE) == 0); 1087 1088 /* 1089 * If already stopped due to a stop signal, clear the 1090 * existing stop before triggering a traced SIGSTOP. 1091 */ 1092 if ((p->p_flag & P_STOPPED_SIG) != 0) { 1093 PROC_SLOCK(p); 1094 p->p_flag &= ~(P_STOPPED_SIG | P_WAITED); 1095 thread_unsuspend(p); 1096 PROC_SUNLOCK(p); 1097 } 1098 1099 kern_psignal(p, SIGSTOP); 1100 break; 1101 1102 case PT_CLEARSTEP: 1103 CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid, 1104 p->p_pid); 1105 error = ptrace_clear_single_step(td2); 1106 break; 1107 1108 case PT_SETSTEP: 1109 CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid, 1110 p->p_pid); 1111 error = ptrace_single_step(td2); 1112 break; 1113 1114 case PT_SUSPEND: 1115 CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid, 1116 p->p_pid); 1117 td2->td_dbgflags |= TDB_SUSPEND; 1118 ast_sched(td2, TDA_SUSPEND); 1119 break; 1120 1121 case PT_RESUME: 1122 CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid, 1123 p->p_pid); 1124 td2->td_dbgflags &= ~TDB_SUSPEND; 1125 break; 1126 1127 case PT_FOLLOW_FORK: 1128 CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid, 1129 p->p_ptevents & PTRACE_FORK ? "enabled" : "disabled", 1130 data ? "enabled" : "disabled"); 1131 if (data) 1132 p->p_ptevents |= PTRACE_FORK; 1133 else 1134 p->p_ptevents &= ~PTRACE_FORK; 1135 break; 1136 1137 case PT_LWP_EVENTS: 1138 CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid, 1139 p->p_ptevents & PTRACE_LWP ? "enabled" : "disabled", 1140 data ? "enabled" : "disabled"); 1141 if (data) 1142 p->p_ptevents |= PTRACE_LWP; 1143 else 1144 p->p_ptevents &= ~PTRACE_LWP; 1145 break; 1146 1147 case PT_GET_EVENT_MASK: 1148 if (data != sizeof(p->p_ptevents)) { 1149 error = EINVAL; 1150 break; 1151 } 1152 CTR2(KTR_PTRACE, "PT_GET_EVENT_MASK: pid %d mask %#x", p->p_pid, 1153 p->p_ptevents); 1154 *(int *)addr = p->p_ptevents; 1155 break; 1156 1157 case PT_SET_EVENT_MASK: 1158 if (data != sizeof(p->p_ptevents)) { 1159 error = EINVAL; 1160 break; 1161 } 1162 tmp = *(int *)addr; 1163 if ((tmp & ~(PTRACE_EXEC | PTRACE_SCE | PTRACE_SCX | 1164 PTRACE_FORK | PTRACE_LWP | PTRACE_VFORK)) != 0) { 1165 error = EINVAL; 1166 break; 1167 } 1168 CTR3(KTR_PTRACE, "PT_SET_EVENT_MASK: pid %d mask %#x -> %#x", 1169 p->p_pid, p->p_ptevents, tmp); 1170 p->p_ptevents = tmp; 1171 break; 1172 1173 case PT_GET_SC_ARGS: 1174 CTR1(KTR_PTRACE, "PT_GET_SC_ARGS: pid %d", p->p_pid); 1175 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) == 0 1176 #ifdef COMPAT_FREEBSD32 1177 || (wrap32 && !safe) 1178 #endif 1179 ) { 1180 error = EINVAL; 1181 break; 1182 } 1183 bzero(addr, sizeof(td2->td_sa.args)); 1184 /* See the explanation in linux_ptrace_get_syscall_info(). */ 1185 bcopy(td2->td_sa.args, addr, SV_PROC_ABI(td->td_proc) == 1186 SV_ABI_LINUX ? sizeof(td2->td_sa.args) : 1187 td2->td_sa.callp->sy_narg * sizeof(syscallarg_t)); 1188 break; 1189 1190 case PT_GET_SC_RET: 1191 if ((td2->td_dbgflags & (TDB_SCX)) == 0 1192 #ifdef COMPAT_FREEBSD32 1193 || (wrap32 && !safe) 1194 #endif 1195 ) { 1196 error = EINVAL; 1197 break; 1198 } 1199 psr = addr; 1200 bzero(psr, sizeof(*psr)); 1201 psr->sr_error = td2->td_errno; 1202 if (psr->sr_error == 0) { 1203 psr->sr_retval[0] = td2->td_retval[0]; 1204 psr->sr_retval[1] = td2->td_retval[1]; 1205 } 1206 CTR4(KTR_PTRACE, 1207 "PT_GET_SC_RET: pid %d error %d retval %#lx,%#lx", 1208 p->p_pid, psr->sr_error, psr->sr_retval[0], 1209 psr->sr_retval[1]); 1210 break; 1211 1212 case PT_STEP: 1213 case PT_CONTINUE: 1214 case PT_TO_SCE: 1215 case PT_TO_SCX: 1216 case PT_SYSCALL: 1217 case PT_DETACH: 1218 /* Zero means do not send any signal */ 1219 if (data < 0 || data > _SIG_MAXSIG) { 1220 error = EINVAL; 1221 break; 1222 } 1223 1224 switch (req) { 1225 case PT_STEP: 1226 CTR3(KTR_PTRACE, "PT_STEP: tid %d (pid %d), sig = %d", 1227 td2->td_tid, p->p_pid, data); 1228 error = ptrace_single_step(td2); 1229 if (error) 1230 goto out; 1231 break; 1232 case PT_CONTINUE: 1233 case PT_TO_SCE: 1234 case PT_TO_SCX: 1235 case PT_SYSCALL: 1236 if (addr != (void *)1) { 1237 error = ptrace_set_pc(td2, 1238 (u_long)(uintfptr_t)addr); 1239 if (error) 1240 goto out; 1241 } 1242 switch (req) { 1243 case PT_TO_SCE: 1244 p->p_ptevents |= PTRACE_SCE; 1245 CTR4(KTR_PTRACE, 1246 "PT_TO_SCE: pid %d, events = %#x, PC = %#lx, sig = %d", 1247 p->p_pid, p->p_ptevents, 1248 (u_long)(uintfptr_t)addr, data); 1249 break; 1250 case PT_TO_SCX: 1251 p->p_ptevents |= PTRACE_SCX; 1252 CTR4(KTR_PTRACE, 1253 "PT_TO_SCX: pid %d, events = %#x, PC = %#lx, sig = %d", 1254 p->p_pid, p->p_ptevents, 1255 (u_long)(uintfptr_t)addr, data); 1256 break; 1257 case PT_SYSCALL: 1258 p->p_ptevents |= PTRACE_SYSCALL; 1259 CTR4(KTR_PTRACE, 1260 "PT_SYSCALL: pid %d, events = %#x, PC = %#lx, sig = %d", 1261 p->p_pid, p->p_ptevents, 1262 (u_long)(uintfptr_t)addr, data); 1263 break; 1264 case PT_CONTINUE: 1265 CTR3(KTR_PTRACE, 1266 "PT_CONTINUE: pid %d, PC = %#lx, sig = %d", 1267 p->p_pid, (u_long)(uintfptr_t)addr, data); 1268 break; 1269 } 1270 break; 1271 case PT_DETACH: 1272 /* 1273 * Clear P_TRACED before reparenting 1274 * a detached process back to its original 1275 * parent. Otherwise the debugee will be set 1276 * as an orphan of the debugger. 1277 */ 1278 p->p_flag &= ~(P_TRACED | P_WAITED); 1279 1280 /* 1281 * Reset the process parent. 1282 */ 1283 if (p->p_oppid != p->p_pptr->p_pid) { 1284 PROC_LOCK(p->p_pptr); 1285 sigqueue_take(p->p_ksi); 1286 PROC_UNLOCK(p->p_pptr); 1287 1288 pp = proc_realparent(p); 1289 proc_reparent(p, pp, false); 1290 if (pp == initproc) 1291 p->p_sigparent = SIGCHLD; 1292 CTR3(KTR_PTRACE, 1293 "PT_DETACH: pid %d reparented to pid %d, sig %d", 1294 p->p_pid, pp->p_pid, data); 1295 } else { 1296 CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d", 1297 p->p_pid, data); 1298 } 1299 1300 p->p_ptevents = 0; 1301 FOREACH_THREAD_IN_PROC(p, td3) { 1302 if ((td3->td_dbgflags & TDB_FSTP) != 0) { 1303 sigqueue_delete(&td3->td_sigqueue, 1304 SIGSTOP); 1305 } 1306 td3->td_dbgflags &= ~(TDB_XSIG | TDB_FSTP | 1307 TDB_SUSPEND | TDB_BORN); 1308 } 1309 1310 if ((p->p_flag2 & P2_PTRACE_FSTP) != 0) { 1311 sigqueue_delete(&p->p_sigqueue, SIGSTOP); 1312 p->p_flag2 &= ~P2_PTRACE_FSTP; 1313 } 1314 1315 /* should we send SIGCHLD? */ 1316 /* childproc_continued(p); */ 1317 break; 1318 } 1319 1320 sx_xunlock(&proctree_lock); 1321 proctree_locked = false; 1322 1323 sendsig: 1324 MPASS(!proctree_locked); 1325 1326 /* 1327 * Clear the pending event for the thread that just 1328 * reported its event (p_xthread). This may not be 1329 * the thread passed to PT_CONTINUE, PT_STEP, etc. if 1330 * the debugger is resuming a different thread. 1331 * 1332 * Deliver any pending signal via the reporting thread. 1333 */ 1334 MPASS(p->p_xthread != NULL); 1335 p->p_xthread->td_dbgflags &= ~TDB_XSIG; 1336 p->p_xthread->td_xsig = data; 1337 p->p_xthread = NULL; 1338 p->p_xsig = data; 1339 1340 /* 1341 * P_WKILLED is insurance that a PT_KILL/SIGKILL 1342 * always works immediately, even if another thread is 1343 * unsuspended first and attempts to handle a 1344 * different signal or if the POSIX.1b style signal 1345 * queue cannot accommodate any new signals. 1346 */ 1347 if (data == SIGKILL) 1348 proc_wkilled(p); 1349 1350 /* 1351 * Unsuspend all threads. To leave a thread 1352 * suspended, use PT_SUSPEND to suspend it before 1353 * continuing the process. 1354 */ 1355 ptrace_unsuspend(p); 1356 break; 1357 1358 case PT_WRITE_I: 1359 case PT_WRITE_D: 1360 td2->td_dbgflags |= TDB_USERWR; 1361 PROC_UNLOCK(p); 1362 error = 0; 1363 if (proc_writemem(td, p, (off_t)(uintptr_t)addr, &data, 1364 sizeof(int)) != sizeof(int)) 1365 error = ENOMEM; 1366 else 1367 CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x", 1368 p->p_pid, addr, data); 1369 PROC_LOCK(p); 1370 break; 1371 1372 case PT_READ_I: 1373 case PT_READ_D: 1374 PROC_UNLOCK(p); 1375 error = tmp = 0; 1376 if (proc_readmem(td, p, (off_t)(uintptr_t)addr, &tmp, 1377 sizeof(int)) != sizeof(int)) 1378 error = ENOMEM; 1379 else 1380 CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x", 1381 p->p_pid, addr, tmp); 1382 td->td_retval[0] = tmp; 1383 PROC_LOCK(p); 1384 break; 1385 1386 case PT_IO: 1387 piod = addr; 1388 iov.iov_base = piod->piod_addr; 1389 iov.iov_len = piod->piod_len; 1390 uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs; 1391 uio.uio_resid = piod->piod_len; 1392 uio.uio_iov = &iov; 1393 uio.uio_iovcnt = 1; 1394 uio.uio_segflg = UIO_USERSPACE; 1395 uio.uio_td = td; 1396 switch (piod->piod_op) { 1397 case PIOD_READ_D: 1398 case PIOD_READ_I: 1399 CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)", 1400 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1401 uio.uio_rw = UIO_READ; 1402 break; 1403 case PIOD_WRITE_D: 1404 case PIOD_WRITE_I: 1405 CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)", 1406 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1407 td2->td_dbgflags |= TDB_USERWR; 1408 uio.uio_rw = UIO_WRITE; 1409 break; 1410 default: 1411 error = EINVAL; 1412 goto out; 1413 } 1414 PROC_UNLOCK(p); 1415 error = proc_rwmem(p, &uio); 1416 piod->piod_len -= uio.uio_resid; 1417 PROC_LOCK(p); 1418 break; 1419 1420 case PT_KILL: 1421 CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid); 1422 data = SIGKILL; 1423 goto sendsig; /* in PT_CONTINUE above */ 1424 1425 case PT_SETREGS: 1426 CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid, 1427 p->p_pid); 1428 td2->td_dbgflags |= TDB_USERWR; 1429 error = PROC_WRITE(regs, td2, addr); 1430 break; 1431 1432 case PT_GETREGS: 1433 CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid, 1434 p->p_pid); 1435 error = PROC_READ(regs, td2, addr); 1436 break; 1437 1438 case PT_SETFPREGS: 1439 CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid, 1440 p->p_pid); 1441 td2->td_dbgflags |= TDB_USERWR; 1442 error = PROC_WRITE(fpregs, td2, addr); 1443 break; 1444 1445 case PT_GETFPREGS: 1446 CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid, 1447 p->p_pid); 1448 error = PROC_READ(fpregs, td2, addr); 1449 break; 1450 1451 case PT_SETDBREGS: 1452 CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid, 1453 p->p_pid); 1454 td2->td_dbgflags |= TDB_USERWR; 1455 error = PROC_WRITE(dbregs, td2, addr); 1456 break; 1457 1458 case PT_GETDBREGS: 1459 CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid, 1460 p->p_pid); 1461 error = PROC_READ(dbregs, td2, addr); 1462 break; 1463 1464 case PT_SETREGSET: 1465 CTR2(KTR_PTRACE, "PT_SETREGSET: tid %d (pid %d)", td2->td_tid, 1466 p->p_pid); 1467 error = proc_write_regset(td2, data, addr); 1468 break; 1469 1470 case PT_GETREGSET: 1471 CTR2(KTR_PTRACE, "PT_GETREGSET: tid %d (pid %d)", td2->td_tid, 1472 p->p_pid); 1473 error = proc_read_regset(td2, data, addr); 1474 break; 1475 1476 case PT_LWPINFO: 1477 if (data <= 0 || data > sizeof(*pl)) { 1478 error = EINVAL; 1479 break; 1480 } 1481 pl = addr; 1482 bzero(pl, sizeof(*pl)); 1483 pl->pl_lwpid = td2->td_tid; 1484 pl->pl_event = PL_EVENT_NONE; 1485 pl->pl_flags = 0; 1486 if (td2->td_dbgflags & TDB_XSIG) { 1487 pl->pl_event = PL_EVENT_SIGNAL; 1488 if (td2->td_si.si_signo != 0 && 1489 data >= offsetof(struct ptrace_lwpinfo, pl_siginfo) 1490 + sizeof(pl->pl_siginfo)){ 1491 pl->pl_flags |= PL_FLAG_SI; 1492 pl->pl_siginfo = td2->td_si; 1493 } 1494 } 1495 if (td2->td_dbgflags & TDB_SCE) 1496 pl->pl_flags |= PL_FLAG_SCE; 1497 else if (td2->td_dbgflags & TDB_SCX) 1498 pl->pl_flags |= PL_FLAG_SCX; 1499 if (td2->td_dbgflags & TDB_EXEC) 1500 pl->pl_flags |= PL_FLAG_EXEC; 1501 if (td2->td_dbgflags & TDB_FORK) { 1502 pl->pl_flags |= PL_FLAG_FORKED; 1503 pl->pl_child_pid = td2->td_dbg_forked; 1504 if (td2->td_dbgflags & TDB_VFORK) 1505 pl->pl_flags |= PL_FLAG_VFORKED; 1506 } else if ((td2->td_dbgflags & (TDB_SCX | TDB_VFORK)) == 1507 TDB_VFORK) 1508 pl->pl_flags |= PL_FLAG_VFORK_DONE; 1509 if (td2->td_dbgflags & TDB_CHILD) 1510 pl->pl_flags |= PL_FLAG_CHILD; 1511 if (td2->td_dbgflags & TDB_BORN) 1512 pl->pl_flags |= PL_FLAG_BORN; 1513 if (td2->td_dbgflags & TDB_EXIT) 1514 pl->pl_flags |= PL_FLAG_EXITED; 1515 pl->pl_sigmask = td2->td_sigmask; 1516 pl->pl_siglist = td2->td_siglist; 1517 strcpy(pl->pl_tdname, td2->td_name); 1518 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) { 1519 pl->pl_syscall_code = td2->td_sa.code; 1520 pl->pl_syscall_narg = td2->td_sa.callp->sy_narg; 1521 } else { 1522 pl->pl_syscall_code = 0; 1523 pl->pl_syscall_narg = 0; 1524 } 1525 CTR6(KTR_PTRACE, 1526 "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d", 1527 td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags, 1528 pl->pl_child_pid, pl->pl_syscall_code); 1529 break; 1530 1531 case PT_GETNUMLWPS: 1532 CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid, 1533 p->p_numthreads); 1534 td->td_retval[0] = p->p_numthreads; 1535 break; 1536 1537 case PT_GETLWPLIST: 1538 CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d", 1539 p->p_pid, data, p->p_numthreads); 1540 if (data <= 0) { 1541 error = EINVAL; 1542 break; 1543 } 1544 num = imin(p->p_numthreads, data); 1545 PROC_UNLOCK(p); 1546 buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK); 1547 tmp = 0; 1548 PROC_LOCK(p); 1549 FOREACH_THREAD_IN_PROC(p, td2) { 1550 if (tmp >= num) 1551 break; 1552 buf[tmp++] = td2->td_tid; 1553 } 1554 PROC_UNLOCK(p); 1555 error = copyout(buf, addr, tmp * sizeof(lwpid_t)); 1556 free(buf, M_TEMP); 1557 if (!error) 1558 td->td_retval[0] = tmp; 1559 PROC_LOCK(p); 1560 break; 1561 1562 case PT_VM_TIMESTAMP: 1563 CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d", 1564 p->p_pid, p->p_vmspace->vm_map.timestamp); 1565 td->td_retval[0] = p->p_vmspace->vm_map.timestamp; 1566 break; 1567 1568 case PT_VM_ENTRY: 1569 PROC_UNLOCK(p); 1570 error = ptrace_vm_entry(td, p, addr); 1571 PROC_LOCK(p); 1572 break; 1573 1574 case PT_COREDUMP: 1575 pc = addr; 1576 CTR2(KTR_PTRACE, "PT_COREDUMP: pid %d, fd %d", 1577 p->p_pid, pc->pc_fd); 1578 1579 if ((pc->pc_flags & ~(PC_COMPRESS | PC_ALL)) != 0) { 1580 error = EINVAL; 1581 break; 1582 } 1583 PROC_UNLOCK(p); 1584 1585 tcq = malloc(sizeof(*tcq), M_TEMP, M_WAITOK | M_ZERO); 1586 fp = NULL; 1587 error = fget_write(td, pc->pc_fd, &cap_write_rights, &fp); 1588 if (error != 0) 1589 goto coredump_cleanup_nofp; 1590 if (fp->f_type != DTYPE_VNODE || fp->f_vnode->v_type != VREG) { 1591 error = EPIPE; 1592 goto coredump_cleanup; 1593 } 1594 1595 PROC_LOCK(p); 1596 error = proc_can_ptrace(td, p); 1597 if (error != 0) 1598 goto coredump_cleanup_locked; 1599 1600 td2 = ptrace_sel_coredump_thread(p); 1601 if (td2 == NULL) { 1602 error = EBUSY; 1603 goto coredump_cleanup_locked; 1604 } 1605 KASSERT((td2->td_dbgflags & (TDB_COREDUMPREQ | 1606 TDB_SCREMOTEREQ)) == 0, 1607 ("proc %d tid %d req coredump", p->p_pid, td2->td_tid)); 1608 1609 tcq->tc_vp = fp->f_vnode; 1610 tcq->tc_limit = pc->pc_limit == 0 ? OFF_MAX : pc->pc_limit; 1611 tcq->tc_flags = SVC_PT_COREDUMP; 1612 if ((pc->pc_flags & PC_COMPRESS) == 0) 1613 tcq->tc_flags |= SVC_NOCOMPRESS; 1614 if ((pc->pc_flags & PC_ALL) != 0) 1615 tcq->tc_flags |= SVC_ALL; 1616 td2->td_remotereq = tcq; 1617 td2->td_dbgflags |= TDB_COREDUMPREQ; 1618 thread_run_flash(td2); 1619 while ((td2->td_dbgflags & TDB_COREDUMPREQ) != 0) 1620 msleep(p, &p->p_mtx, PPAUSE, "crdmp", 0); 1621 error = tcq->tc_error; 1622 coredump_cleanup_locked: 1623 PROC_UNLOCK(p); 1624 coredump_cleanup: 1625 fdrop(fp, td); 1626 coredump_cleanup_nofp: 1627 free(tcq, M_TEMP); 1628 PROC_LOCK(p); 1629 break; 1630 1631 case PT_SC_REMOTE: 1632 pscr = addr; 1633 CTR2(KTR_PTRACE, "PT_SC_REMOTE: pid %d, syscall %d", 1634 p->p_pid, pscr->pscr_syscall); 1635 if ((td2->td_dbgflags & TDB_BOUNDARY) == 0) { 1636 error = EBUSY; 1637 break; 1638 } 1639 PROC_UNLOCK(p); 1640 MPASS(pscr->pscr_nargs <= nitems(td->td_sa.args)); 1641 1642 tsr = malloc(sizeof(struct thr_syscall_req), M_TEMP, 1643 M_WAITOK | M_ZERO); 1644 1645 tsr->ts_sa.code = pscr->pscr_syscall; 1646 tsr->ts_nargs = pscr->pscr_nargs; 1647 memcpy(&tsr->ts_sa.args, pscr->pscr_args, 1648 sizeof(syscallarg_t) * tsr->ts_nargs); 1649 1650 PROC_LOCK(p); 1651 error = proc_can_ptrace(td, p); 1652 if (error != 0) { 1653 free(tsr, M_TEMP); 1654 break; 1655 } 1656 if (td2->td_proc != p) { 1657 free(tsr, M_TEMP); 1658 error = ESRCH; 1659 break; 1660 } 1661 KASSERT((td2->td_dbgflags & (TDB_COREDUMPREQ | 1662 TDB_SCREMOTEREQ)) == 0, 1663 ("proc %d tid %d req coredump", p->p_pid, td2->td_tid)); 1664 1665 td2->td_remotereq = tsr; 1666 td2->td_dbgflags |= TDB_SCREMOTEREQ; 1667 thread_run_flash(td2); 1668 while ((td2->td_dbgflags & TDB_SCREMOTEREQ) != 0) 1669 msleep(p, &p->p_mtx, PPAUSE, "pscrx", 0); 1670 error = 0; 1671 memcpy(&pscr->pscr_ret, &tsr->ts_ret, sizeof(tsr->ts_ret)); 1672 free(tsr, M_TEMP); 1673 break; 1674 1675 default: 1676 #ifdef __HAVE_PTRACE_MACHDEP 1677 if (req >= PT_FIRSTMACH) { 1678 PROC_UNLOCK(p); 1679 error = cpu_ptrace(td2, req, addr, data); 1680 PROC_LOCK(p); 1681 } else 1682 #endif 1683 /* Unknown request. */ 1684 error = EINVAL; 1685 break; 1686 } 1687 out: 1688 /* Drop our hold on this process now that the request has completed. */ 1689 _PRELE(p); 1690 fail: 1691 if (p2_req_set) { 1692 if ((p->p_flag2 & P2_PTRACEREQ) != 0) 1693 wakeup(&p->p_flag2); 1694 p->p_flag2 &= ~P2_PTRACEREQ; 1695 } 1696 PROC_UNLOCK(p); 1697 if (proctree_locked) 1698 sx_xunlock(&proctree_lock); 1699 return (error); 1700 } 1701 #undef PROC_READ 1702 #undef PROC_WRITE 1703