1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1994, Sean Eric Fagan 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Sean Eric Fagan. 18 * 4. The name of the author may not be used to endorse or promote products 19 * derived from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/ktr.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/syscallsubr.h> 44 #include <sys/sysent.h> 45 #include <sys/sysproto.h> 46 #include <sys/pioctl.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 #include <sys/vnode.h> 50 #include <sys/ptrace.h> 51 #include <sys/rwlock.h> 52 #include <sys/sx.h> 53 #include <sys/malloc.h> 54 #include <sys/signalvar.h> 55 56 #include <machine/reg.h> 57 58 #include <security/audit/audit.h> 59 60 #include <vm/vm.h> 61 #include <vm/pmap.h> 62 #include <vm/vm_extern.h> 63 #include <vm/vm_map.h> 64 #include <vm/vm_kern.h> 65 #include <vm/vm_object.h> 66 #include <vm/vm_page.h> 67 #include <vm/vm_param.h> 68 69 #ifdef COMPAT_FREEBSD32 70 #include <sys/procfs.h> 71 #include <compat/freebsd32/freebsd32_signal.h> 72 73 struct ptrace_io_desc32 { 74 int piod_op; 75 uint32_t piod_offs; 76 uint32_t piod_addr; 77 uint32_t piod_len; 78 }; 79 80 struct ptrace_sc_ret32 { 81 uint32_t sr_retval[2]; 82 int sr_error; 83 }; 84 85 struct ptrace_vm_entry32 { 86 int pve_entry; 87 int pve_timestamp; 88 uint32_t pve_start; 89 uint32_t pve_end; 90 uint32_t pve_offset; 91 u_int pve_prot; 92 u_int pve_pathlen; 93 int32_t pve_fileid; 94 u_int pve_fsid; 95 uint32_t pve_path; 96 }; 97 #endif 98 99 /* 100 * Functions implemented using PROC_ACTION(): 101 * 102 * proc_read_regs(proc, regs) 103 * Get the current user-visible register set from the process 104 * and copy it into the regs structure (<machine/reg.h>). 105 * The process is stopped at the time read_regs is called. 106 * 107 * proc_write_regs(proc, regs) 108 * Update the current register set from the passed in regs 109 * structure. Take care to avoid clobbering special CPU 110 * registers or privileged bits in the PSL. 111 * Depending on the architecture this may have fix-up work to do, 112 * especially if the IAR or PCW are modified. 113 * The process is stopped at the time write_regs is called. 114 * 115 * proc_read_fpregs, proc_write_fpregs 116 * deal with the floating point register set, otherwise as above. 117 * 118 * proc_read_dbregs, proc_write_dbregs 119 * deal with the processor debug register set, otherwise as above. 120 * 121 * proc_sstep(proc) 122 * Arrange for the process to trap after executing a single instruction. 123 */ 124 125 #define PROC_ACTION(action) do { \ 126 int error; \ 127 \ 128 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); \ 129 if ((td->td_proc->p_flag & P_INMEM) == 0) \ 130 error = EIO; \ 131 else \ 132 error = (action); \ 133 return (error); \ 134 } while(0) 135 136 int 137 proc_read_regs(struct thread *td, struct reg *regs) 138 { 139 140 PROC_ACTION(fill_regs(td, regs)); 141 } 142 143 int 144 proc_write_regs(struct thread *td, struct reg *regs) 145 { 146 147 PROC_ACTION(set_regs(td, regs)); 148 } 149 150 int 151 proc_read_dbregs(struct thread *td, struct dbreg *dbregs) 152 { 153 154 PROC_ACTION(fill_dbregs(td, dbregs)); 155 } 156 157 int 158 proc_write_dbregs(struct thread *td, struct dbreg *dbregs) 159 { 160 161 PROC_ACTION(set_dbregs(td, dbregs)); 162 } 163 164 /* 165 * Ptrace doesn't support fpregs at all, and there are no security holes 166 * or translations for fpregs, so we can just copy them. 167 */ 168 int 169 proc_read_fpregs(struct thread *td, struct fpreg *fpregs) 170 { 171 172 PROC_ACTION(fill_fpregs(td, fpregs)); 173 } 174 175 int 176 proc_write_fpregs(struct thread *td, struct fpreg *fpregs) 177 { 178 179 PROC_ACTION(set_fpregs(td, fpregs)); 180 } 181 182 #ifdef COMPAT_FREEBSD32 183 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */ 184 int 185 proc_read_regs32(struct thread *td, struct reg32 *regs32) 186 { 187 188 PROC_ACTION(fill_regs32(td, regs32)); 189 } 190 191 int 192 proc_write_regs32(struct thread *td, struct reg32 *regs32) 193 { 194 195 PROC_ACTION(set_regs32(td, regs32)); 196 } 197 198 int 199 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 200 { 201 202 PROC_ACTION(fill_dbregs32(td, dbregs32)); 203 } 204 205 int 206 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 207 { 208 209 PROC_ACTION(set_dbregs32(td, dbregs32)); 210 } 211 212 int 213 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 214 { 215 216 PROC_ACTION(fill_fpregs32(td, fpregs32)); 217 } 218 219 int 220 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 221 { 222 223 PROC_ACTION(set_fpregs32(td, fpregs32)); 224 } 225 #endif 226 227 int 228 proc_sstep(struct thread *td) 229 { 230 231 PROC_ACTION(ptrace_single_step(td)); 232 } 233 234 int 235 proc_rwmem(struct proc *p, struct uio *uio) 236 { 237 vm_map_t map; 238 vm_offset_t pageno; /* page number */ 239 vm_prot_t reqprot; 240 int error, fault_flags, page_offset, writing; 241 242 /* 243 * Assert that someone has locked this vmspace. (Should be 244 * curthread but we can't assert that.) This keeps the process 245 * from exiting out from under us until this operation completes. 246 */ 247 PROC_ASSERT_HELD(p); 248 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 249 250 /* 251 * The map we want... 252 */ 253 map = &p->p_vmspace->vm_map; 254 255 /* 256 * If we are writing, then we request vm_fault() to create a private 257 * copy of each page. Since these copies will not be writeable by the 258 * process, we must explicity request that they be dirtied. 259 */ 260 writing = uio->uio_rw == UIO_WRITE; 261 reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ; 262 fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL; 263 264 /* 265 * Only map in one page at a time. We don't have to, but it 266 * makes things easier. This way is trivial - right? 267 */ 268 do { 269 vm_offset_t uva; 270 u_int len; 271 vm_page_t m; 272 273 uva = (vm_offset_t)uio->uio_offset; 274 275 /* 276 * Get the page number of this segment. 277 */ 278 pageno = trunc_page(uva); 279 page_offset = uva - pageno; 280 281 /* 282 * How many bytes to copy 283 */ 284 len = min(PAGE_SIZE - page_offset, uio->uio_resid); 285 286 /* 287 * Fault and hold the page on behalf of the process. 288 */ 289 error = vm_fault_hold(map, pageno, reqprot, fault_flags, &m); 290 if (error != KERN_SUCCESS) { 291 if (error == KERN_RESOURCE_SHORTAGE) 292 error = ENOMEM; 293 else 294 error = EFAULT; 295 break; 296 } 297 298 /* 299 * Now do the i/o move. 300 */ 301 error = uiomove_fromphys(&m, page_offset, len, uio); 302 303 /* Make the I-cache coherent for breakpoints. */ 304 if (writing && error == 0) { 305 vm_map_lock_read(map); 306 if (vm_map_check_protection(map, pageno, pageno + 307 PAGE_SIZE, VM_PROT_EXECUTE)) 308 vm_sync_icache(map, uva, len); 309 vm_map_unlock_read(map); 310 } 311 312 /* 313 * Release the page. 314 */ 315 vm_page_lock(m); 316 if (vm_page_unwire(m, PQ_ACTIVE) && m->object == NULL) 317 vm_page_free(m); 318 vm_page_unlock(m); 319 320 } while (error == 0 && uio->uio_resid > 0); 321 322 return (error); 323 } 324 325 static ssize_t 326 proc_iop(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 327 size_t len, enum uio_rw rw) 328 { 329 struct iovec iov; 330 struct uio uio; 331 ssize_t slen; 332 333 MPASS(len < SSIZE_MAX); 334 slen = (ssize_t)len; 335 336 iov.iov_base = (caddr_t)buf; 337 iov.iov_len = len; 338 uio.uio_iov = &iov; 339 uio.uio_iovcnt = 1; 340 uio.uio_offset = va; 341 uio.uio_resid = slen; 342 uio.uio_segflg = UIO_SYSSPACE; 343 uio.uio_rw = rw; 344 uio.uio_td = td; 345 proc_rwmem(p, &uio); 346 if (uio.uio_resid == slen) 347 return (-1); 348 return (slen - uio.uio_resid); 349 } 350 351 ssize_t 352 proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 353 size_t len) 354 { 355 356 return (proc_iop(td, p, va, buf, len, UIO_READ)); 357 } 358 359 ssize_t 360 proc_writemem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 361 size_t len) 362 { 363 364 return (proc_iop(td, p, va, buf, len, UIO_WRITE)); 365 } 366 367 static int 368 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve) 369 { 370 struct vattr vattr; 371 vm_map_t map; 372 vm_map_entry_t entry; 373 vm_object_t obj, tobj, lobj; 374 struct vmspace *vm; 375 struct vnode *vp; 376 char *freepath, *fullpath; 377 u_int pathlen; 378 int error, index; 379 380 error = 0; 381 obj = NULL; 382 383 vm = vmspace_acquire_ref(p); 384 map = &vm->vm_map; 385 vm_map_lock_read(map); 386 387 do { 388 entry = map->header.next; 389 index = 0; 390 while (index < pve->pve_entry && entry != &map->header) { 391 entry = entry->next; 392 index++; 393 } 394 if (index != pve->pve_entry) { 395 error = EINVAL; 396 break; 397 } 398 KASSERT((map->header.eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 399 ("Submap in map header")); 400 while ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 401 entry = entry->next; 402 index++; 403 } 404 if (entry == &map->header) { 405 error = ENOENT; 406 break; 407 } 408 409 /* We got an entry. */ 410 pve->pve_entry = index + 1; 411 pve->pve_timestamp = map->timestamp; 412 pve->pve_start = entry->start; 413 pve->pve_end = entry->end - 1; 414 pve->pve_offset = entry->offset; 415 pve->pve_prot = entry->protection; 416 417 /* Backing object's path needed? */ 418 if (pve->pve_pathlen == 0) 419 break; 420 421 pathlen = pve->pve_pathlen; 422 pve->pve_pathlen = 0; 423 424 obj = entry->object.vm_object; 425 if (obj != NULL) 426 VM_OBJECT_RLOCK(obj); 427 } while (0); 428 429 vm_map_unlock_read(map); 430 431 pve->pve_fsid = VNOVAL; 432 pve->pve_fileid = VNOVAL; 433 434 if (error == 0 && obj != NULL) { 435 lobj = obj; 436 for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { 437 if (tobj != obj) 438 VM_OBJECT_RLOCK(tobj); 439 if (lobj != obj) 440 VM_OBJECT_RUNLOCK(lobj); 441 lobj = tobj; 442 pve->pve_offset += tobj->backing_object_offset; 443 } 444 vp = vm_object_vnode(lobj); 445 if (vp != NULL) 446 vref(vp); 447 if (lobj != obj) 448 VM_OBJECT_RUNLOCK(lobj); 449 VM_OBJECT_RUNLOCK(obj); 450 451 if (vp != NULL) { 452 freepath = NULL; 453 fullpath = NULL; 454 vn_fullpath(td, vp, &fullpath, &freepath); 455 vn_lock(vp, LK_SHARED | LK_RETRY); 456 if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) { 457 pve->pve_fileid = vattr.va_fileid; 458 pve->pve_fsid = vattr.va_fsid; 459 } 460 vput(vp); 461 462 if (fullpath != NULL) { 463 pve->pve_pathlen = strlen(fullpath) + 1; 464 if (pve->pve_pathlen <= pathlen) { 465 error = copyout(fullpath, pve->pve_path, 466 pve->pve_pathlen); 467 } else 468 error = ENAMETOOLONG; 469 } 470 if (freepath != NULL) 471 free(freepath, M_TEMP); 472 } 473 } 474 vmspace_free(vm); 475 if (error == 0) 476 CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p", 477 p->p_pid, pve->pve_entry, pve->pve_start); 478 479 return (error); 480 } 481 482 #ifdef COMPAT_FREEBSD32 483 static int 484 ptrace_vm_entry32(struct thread *td, struct proc *p, 485 struct ptrace_vm_entry32 *pve32) 486 { 487 struct ptrace_vm_entry pve; 488 int error; 489 490 pve.pve_entry = pve32->pve_entry; 491 pve.pve_pathlen = pve32->pve_pathlen; 492 pve.pve_path = (void *)(uintptr_t)pve32->pve_path; 493 494 error = ptrace_vm_entry(td, p, &pve); 495 if (error == 0) { 496 pve32->pve_entry = pve.pve_entry; 497 pve32->pve_timestamp = pve.pve_timestamp; 498 pve32->pve_start = pve.pve_start; 499 pve32->pve_end = pve.pve_end; 500 pve32->pve_offset = pve.pve_offset; 501 pve32->pve_prot = pve.pve_prot; 502 pve32->pve_fileid = pve.pve_fileid; 503 pve32->pve_fsid = pve.pve_fsid; 504 } 505 506 pve32->pve_pathlen = pve.pve_pathlen; 507 return (error); 508 } 509 510 static void 511 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 512 struct ptrace_lwpinfo32 *pl32) 513 { 514 515 bzero(pl32, sizeof(*pl32)); 516 pl32->pl_lwpid = pl->pl_lwpid; 517 pl32->pl_event = pl->pl_event; 518 pl32->pl_flags = pl->pl_flags; 519 pl32->pl_sigmask = pl->pl_sigmask; 520 pl32->pl_siglist = pl->pl_siglist; 521 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 522 strcpy(pl32->pl_tdname, pl->pl_tdname); 523 pl32->pl_child_pid = pl->pl_child_pid; 524 pl32->pl_syscall_code = pl->pl_syscall_code; 525 pl32->pl_syscall_narg = pl->pl_syscall_narg; 526 } 527 528 static void 529 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 530 struct ptrace_sc_ret32 *psr32) 531 { 532 533 bzero(psr32, sizeof(*psr32)); 534 psr32->sr_retval[0] = psr->sr_retval[0]; 535 psr32->sr_retval[1] = psr->sr_retval[1]; 536 psr32->sr_error = psr->sr_error; 537 } 538 #endif /* COMPAT_FREEBSD32 */ 539 540 /* 541 * Process debugging system call. 542 */ 543 #ifndef _SYS_SYSPROTO_H_ 544 struct ptrace_args { 545 int req; 546 pid_t pid; 547 caddr_t addr; 548 int data; 549 }; 550 #endif 551 552 #ifdef COMPAT_FREEBSD32 553 /* 554 * This CPP subterfuge is to try and reduce the number of ifdefs in 555 * the body of the code. 556 * COPYIN(uap->addr, &r.reg, sizeof r.reg); 557 * becomes either: 558 * copyin(uap->addr, &r.reg, sizeof r.reg); 559 * or 560 * copyin(uap->addr, &r.reg32, sizeof r.reg32); 561 * .. except this is done at runtime. 562 */ 563 #define BZERO(a, s) wrap32 ? \ 564 bzero(a ## 32, s ## 32) : \ 565 bzero(a, s) 566 #define COPYIN(u, k, s) wrap32 ? \ 567 copyin(u, k ## 32, s ## 32) : \ 568 copyin(u, k, s) 569 #define COPYOUT(k, u, s) wrap32 ? \ 570 copyout(k ## 32, u, s ## 32) : \ 571 copyout(k, u, s) 572 #else 573 #define BZERO(a, s) bzero(a, s) 574 #define COPYIN(u, k, s) copyin(u, k, s) 575 #define COPYOUT(k, u, s) copyout(k, u, s) 576 #endif 577 int 578 sys_ptrace(struct thread *td, struct ptrace_args *uap) 579 { 580 /* 581 * XXX this obfuscation is to reduce stack usage, but the register 582 * structs may be too large to put on the stack anyway. 583 */ 584 union { 585 struct ptrace_io_desc piod; 586 struct ptrace_lwpinfo pl; 587 struct ptrace_vm_entry pve; 588 struct dbreg dbreg; 589 struct fpreg fpreg; 590 struct reg reg; 591 #ifdef COMPAT_FREEBSD32 592 struct dbreg32 dbreg32; 593 struct fpreg32 fpreg32; 594 struct reg32 reg32; 595 struct ptrace_io_desc32 piod32; 596 struct ptrace_lwpinfo32 pl32; 597 struct ptrace_vm_entry32 pve32; 598 #endif 599 char args[sizeof(td->td_sa.args)]; 600 struct ptrace_sc_ret psr; 601 int ptevents; 602 } r; 603 void *addr; 604 int error = 0; 605 #ifdef COMPAT_FREEBSD32 606 int wrap32 = 0; 607 608 if (SV_CURPROC_FLAG(SV_ILP32)) 609 wrap32 = 1; 610 #endif 611 AUDIT_ARG_PID(uap->pid); 612 AUDIT_ARG_CMD(uap->req); 613 AUDIT_ARG_VALUE(uap->data); 614 addr = &r; 615 switch (uap->req) { 616 case PT_GET_EVENT_MASK: 617 case PT_LWPINFO: 618 case PT_GET_SC_ARGS: 619 case PT_GET_SC_RET: 620 break; 621 case PT_GETREGS: 622 BZERO(&r.reg, sizeof r.reg); 623 break; 624 case PT_GETFPREGS: 625 BZERO(&r.fpreg, sizeof r.fpreg); 626 break; 627 case PT_GETDBREGS: 628 BZERO(&r.dbreg, sizeof r.dbreg); 629 break; 630 case PT_SETREGS: 631 error = COPYIN(uap->addr, &r.reg, sizeof r.reg); 632 break; 633 case PT_SETFPREGS: 634 error = COPYIN(uap->addr, &r.fpreg, sizeof r.fpreg); 635 break; 636 case PT_SETDBREGS: 637 error = COPYIN(uap->addr, &r.dbreg, sizeof r.dbreg); 638 break; 639 case PT_SET_EVENT_MASK: 640 if (uap->data != sizeof(r.ptevents)) 641 error = EINVAL; 642 else 643 error = copyin(uap->addr, &r.ptevents, uap->data); 644 break; 645 case PT_IO: 646 error = COPYIN(uap->addr, &r.piod, sizeof r.piod); 647 break; 648 case PT_VM_ENTRY: 649 error = COPYIN(uap->addr, &r.pve, sizeof r.pve); 650 break; 651 default: 652 addr = uap->addr; 653 break; 654 } 655 if (error) 656 return (error); 657 658 error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data); 659 if (error) 660 return (error); 661 662 switch (uap->req) { 663 case PT_VM_ENTRY: 664 error = COPYOUT(&r.pve, uap->addr, sizeof r.pve); 665 break; 666 case PT_IO: 667 error = COPYOUT(&r.piod, uap->addr, sizeof r.piod); 668 break; 669 case PT_GETREGS: 670 error = COPYOUT(&r.reg, uap->addr, sizeof r.reg); 671 break; 672 case PT_GETFPREGS: 673 error = COPYOUT(&r.fpreg, uap->addr, sizeof r.fpreg); 674 break; 675 case PT_GETDBREGS: 676 error = COPYOUT(&r.dbreg, uap->addr, sizeof r.dbreg); 677 break; 678 case PT_GET_EVENT_MASK: 679 /* NB: The size in uap->data is validated in kern_ptrace(). */ 680 error = copyout(&r.ptevents, uap->addr, uap->data); 681 break; 682 case PT_LWPINFO: 683 /* NB: The size in uap->data is validated in kern_ptrace(). */ 684 error = copyout(&r.pl, uap->addr, uap->data); 685 break; 686 case PT_GET_SC_ARGS: 687 error = copyout(r.args, uap->addr, MIN(uap->data, 688 sizeof(r.args))); 689 break; 690 case PT_GET_SC_RET: 691 error = copyout(&r.psr, uap->addr, MIN(uap->data, 692 sizeof(r.psr))); 693 break; 694 } 695 696 return (error); 697 } 698 #undef COPYIN 699 #undef COPYOUT 700 #undef BZERO 701 702 #ifdef COMPAT_FREEBSD32 703 /* 704 * PROC_READ(regs, td2, addr); 705 * becomes either: 706 * proc_read_regs(td2, addr); 707 * or 708 * proc_read_regs32(td2, addr); 709 * .. except this is done at runtime. There is an additional 710 * complication in that PROC_WRITE disallows 32 bit consumers 711 * from writing to 64 bit address space targets. 712 */ 713 #define PROC_READ(w, t, a) wrap32 ? \ 714 proc_read_ ## w ## 32(t, a) : \ 715 proc_read_ ## w (t, a) 716 #define PROC_WRITE(w, t, a) wrap32 ? \ 717 (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \ 718 proc_write_ ## w (t, a) 719 #else 720 #define PROC_READ(w, t, a) proc_read_ ## w (t, a) 721 #define PROC_WRITE(w, t, a) proc_write_ ## w (t, a) 722 #endif 723 724 void 725 proc_set_traced(struct proc *p, bool stop) 726 { 727 728 sx_assert(&proctree_lock, SX_XLOCKED); 729 PROC_LOCK_ASSERT(p, MA_OWNED); 730 p->p_flag |= P_TRACED; 731 if (stop) 732 p->p_flag2 |= P2_PTRACE_FSTP; 733 p->p_ptevents = PTRACE_DEFAULT; 734 } 735 736 int 737 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data) 738 { 739 struct iovec iov; 740 struct uio uio; 741 struct proc *curp, *p, *pp; 742 struct thread *td2 = NULL, *td3; 743 struct ptrace_io_desc *piod = NULL; 744 struct ptrace_lwpinfo *pl; 745 struct ptrace_sc_ret *psr; 746 int error, num, tmp; 747 int proctree_locked = 0; 748 lwpid_t tid = 0, *buf; 749 #ifdef COMPAT_FREEBSD32 750 int wrap32 = 0, safe = 0; 751 struct ptrace_io_desc32 *piod32 = NULL; 752 struct ptrace_lwpinfo32 *pl32 = NULL; 753 struct ptrace_sc_ret32 *psr32 = NULL; 754 union { 755 struct ptrace_lwpinfo pl; 756 struct ptrace_sc_ret psr; 757 } r; 758 #endif 759 760 curp = td->td_proc; 761 762 /* Lock proctree before locking the process. */ 763 switch (req) { 764 case PT_TRACE_ME: 765 case PT_ATTACH: 766 case PT_STEP: 767 case PT_CONTINUE: 768 case PT_TO_SCE: 769 case PT_TO_SCX: 770 case PT_SYSCALL: 771 case PT_FOLLOW_FORK: 772 case PT_LWP_EVENTS: 773 case PT_GET_EVENT_MASK: 774 case PT_SET_EVENT_MASK: 775 case PT_DETACH: 776 case PT_GET_SC_ARGS: 777 sx_xlock(&proctree_lock); 778 proctree_locked = 1; 779 break; 780 default: 781 break; 782 } 783 784 if (req == PT_TRACE_ME) { 785 p = td->td_proc; 786 PROC_LOCK(p); 787 } else { 788 if (pid <= PID_MAX) { 789 if ((p = pfind(pid)) == NULL) { 790 if (proctree_locked) 791 sx_xunlock(&proctree_lock); 792 return (ESRCH); 793 } 794 } else { 795 td2 = tdfind(pid, -1); 796 if (td2 == NULL) { 797 if (proctree_locked) 798 sx_xunlock(&proctree_lock); 799 return (ESRCH); 800 } 801 p = td2->td_proc; 802 tid = pid; 803 pid = p->p_pid; 804 } 805 } 806 AUDIT_ARG_PROCESS(p); 807 808 if ((p->p_flag & P_WEXIT) != 0) { 809 error = ESRCH; 810 goto fail; 811 } 812 if ((error = p_cansee(td, p)) != 0) 813 goto fail; 814 815 if ((error = p_candebug(td, p)) != 0) 816 goto fail; 817 818 /* 819 * System processes can't be debugged. 820 */ 821 if ((p->p_flag & P_SYSTEM) != 0) { 822 error = EINVAL; 823 goto fail; 824 } 825 826 if (tid == 0) { 827 if ((p->p_flag & P_STOPPED_TRACE) != 0) { 828 KASSERT(p->p_xthread != NULL, ("NULL p_xthread")); 829 td2 = p->p_xthread; 830 } else { 831 td2 = FIRST_THREAD_IN_PROC(p); 832 } 833 tid = td2->td_tid; 834 } 835 836 #ifdef COMPAT_FREEBSD32 837 /* 838 * Test if we're a 32 bit client and what the target is. 839 * Set the wrap controls accordingly. 840 */ 841 if (SV_CURPROC_FLAG(SV_ILP32)) { 842 if (SV_PROC_FLAG(td2->td_proc, SV_ILP32)) 843 safe = 1; 844 wrap32 = 1; 845 } 846 #endif 847 /* 848 * Permissions check 849 */ 850 switch (req) { 851 case PT_TRACE_ME: 852 /* 853 * Always legal, when there is a parent process which 854 * could trace us. Otherwise, reject. 855 */ 856 if ((p->p_flag & P_TRACED) != 0) { 857 error = EBUSY; 858 goto fail; 859 } 860 if (p->p_pptr == initproc) { 861 error = EPERM; 862 goto fail; 863 } 864 break; 865 866 case PT_ATTACH: 867 /* Self */ 868 if (p == td->td_proc) { 869 error = EINVAL; 870 goto fail; 871 } 872 873 /* Already traced */ 874 if (p->p_flag & P_TRACED) { 875 error = EBUSY; 876 goto fail; 877 } 878 879 /* Can't trace an ancestor if you're being traced. */ 880 if (curp->p_flag & P_TRACED) { 881 for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) { 882 if (pp == p) { 883 error = EINVAL; 884 goto fail; 885 } 886 } 887 } 888 889 890 /* OK */ 891 break; 892 893 case PT_CLEARSTEP: 894 /* Allow thread to clear single step for itself */ 895 if (td->td_tid == tid) 896 break; 897 898 /* FALLTHROUGH */ 899 default: 900 /* not being traced... */ 901 if ((p->p_flag & P_TRACED) == 0) { 902 error = EPERM; 903 goto fail; 904 } 905 906 /* not being traced by YOU */ 907 if (p->p_pptr != td->td_proc) { 908 error = EBUSY; 909 goto fail; 910 } 911 912 /* not currently stopped */ 913 if ((p->p_flag & P_STOPPED_TRACE) == 0 || 914 p->p_suspcount != p->p_numthreads || 915 (p->p_flag & P_WAITED) == 0) { 916 error = EBUSY; 917 goto fail; 918 } 919 920 /* OK */ 921 break; 922 } 923 924 /* Keep this process around until we finish this request. */ 925 _PHOLD(p); 926 927 #ifdef FIX_SSTEP 928 /* 929 * Single step fixup ala procfs 930 */ 931 FIX_SSTEP(td2); 932 #endif 933 934 /* 935 * Actually do the requests 936 */ 937 938 td->td_retval[0] = 0; 939 940 switch (req) { 941 case PT_TRACE_ME: 942 /* set my trace flag and "owner" so it can read/write me */ 943 proc_set_traced(p, false); 944 if (p->p_flag & P_PPWAIT) 945 p->p_flag |= P_PPTRACE; 946 CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid); 947 break; 948 949 case PT_ATTACH: 950 /* security check done above */ 951 /* 952 * It would be nice if the tracing relationship was separate 953 * from the parent relationship but that would require 954 * another set of links in the proc struct or for "wait" 955 * to scan the entire proc table. To make life easier, 956 * we just re-parent the process we're trying to trace. 957 * The old parent is remembered so we can put things back 958 * on a "detach". 959 */ 960 proc_set_traced(p, true); 961 proc_reparent(p, td->td_proc, false); 962 CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid, 963 p->p_oppid); 964 965 sx_xunlock(&proctree_lock); 966 proctree_locked = 0; 967 MPASS(p->p_xthread == NULL); 968 MPASS((p->p_flag & P_STOPPED_TRACE) == 0); 969 970 /* 971 * If already stopped due to a stop signal, clear the 972 * existing stop before triggering a traced SIGSTOP. 973 */ 974 if ((p->p_flag & P_STOPPED_SIG) != 0) { 975 PROC_SLOCK(p); 976 p->p_flag &= ~(P_STOPPED_SIG | P_WAITED); 977 thread_unsuspend(p); 978 PROC_SUNLOCK(p); 979 } 980 981 kern_psignal(p, SIGSTOP); 982 break; 983 984 case PT_CLEARSTEP: 985 CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid, 986 p->p_pid); 987 error = ptrace_clear_single_step(td2); 988 break; 989 990 case PT_SETSTEP: 991 CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid, 992 p->p_pid); 993 error = ptrace_single_step(td2); 994 break; 995 996 case PT_SUSPEND: 997 CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid, 998 p->p_pid); 999 td2->td_dbgflags |= TDB_SUSPEND; 1000 thread_lock(td2); 1001 td2->td_flags |= TDF_NEEDSUSPCHK; 1002 thread_unlock(td2); 1003 break; 1004 1005 case PT_RESUME: 1006 CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid, 1007 p->p_pid); 1008 td2->td_dbgflags &= ~TDB_SUSPEND; 1009 break; 1010 1011 case PT_FOLLOW_FORK: 1012 CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid, 1013 p->p_ptevents & PTRACE_FORK ? "enabled" : "disabled", 1014 data ? "enabled" : "disabled"); 1015 if (data) 1016 p->p_ptevents |= PTRACE_FORK; 1017 else 1018 p->p_ptevents &= ~PTRACE_FORK; 1019 break; 1020 1021 case PT_LWP_EVENTS: 1022 CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid, 1023 p->p_ptevents & PTRACE_LWP ? "enabled" : "disabled", 1024 data ? "enabled" : "disabled"); 1025 if (data) 1026 p->p_ptevents |= PTRACE_LWP; 1027 else 1028 p->p_ptevents &= ~PTRACE_LWP; 1029 break; 1030 1031 case PT_GET_EVENT_MASK: 1032 if (data != sizeof(p->p_ptevents)) { 1033 error = EINVAL; 1034 break; 1035 } 1036 CTR2(KTR_PTRACE, "PT_GET_EVENT_MASK: pid %d mask %#x", p->p_pid, 1037 p->p_ptevents); 1038 *(int *)addr = p->p_ptevents; 1039 break; 1040 1041 case PT_SET_EVENT_MASK: 1042 if (data != sizeof(p->p_ptevents)) { 1043 error = EINVAL; 1044 break; 1045 } 1046 tmp = *(int *)addr; 1047 if ((tmp & ~(PTRACE_EXEC | PTRACE_SCE | PTRACE_SCX | 1048 PTRACE_FORK | PTRACE_LWP | PTRACE_VFORK)) != 0) { 1049 error = EINVAL; 1050 break; 1051 } 1052 CTR3(KTR_PTRACE, "PT_SET_EVENT_MASK: pid %d mask %#x -> %#x", 1053 p->p_pid, p->p_ptevents, tmp); 1054 p->p_ptevents = tmp; 1055 break; 1056 1057 case PT_GET_SC_ARGS: 1058 CTR1(KTR_PTRACE, "PT_GET_SC_ARGS: pid %d", p->p_pid); 1059 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) == 0 1060 #ifdef COMPAT_FREEBSD32 1061 || (wrap32 && !safe) 1062 #endif 1063 ) { 1064 error = EINVAL; 1065 break; 1066 } 1067 bzero(addr, sizeof(td2->td_sa.args)); 1068 #ifdef COMPAT_FREEBSD32 1069 if (wrap32) 1070 for (num = 0; num < nitems(td2->td_sa.args); num++) 1071 ((uint32_t *)addr)[num] = (uint32_t) 1072 td2->td_sa.args[num]; 1073 else 1074 #endif 1075 bcopy(td2->td_sa.args, addr, td2->td_sa.narg * 1076 sizeof(register_t)); 1077 break; 1078 1079 case PT_GET_SC_RET: 1080 if ((td2->td_dbgflags & (TDB_SCX)) == 0 1081 #ifdef COMPAT_FREEBSD32 1082 || (wrap32 && !safe) 1083 #endif 1084 ) { 1085 error = EINVAL; 1086 break; 1087 } 1088 #ifdef COMPAT_FREEBSD32 1089 if (wrap32) { 1090 psr = &r.psr; 1091 psr32 = addr; 1092 } else 1093 #endif 1094 psr = addr; 1095 bzero(psr, sizeof(*psr)); 1096 psr->sr_error = td2->td_errno; 1097 if (psr->sr_error == 0) { 1098 psr->sr_retval[0] = td2->td_retval[0]; 1099 psr->sr_retval[1] = td2->td_retval[1]; 1100 } 1101 #ifdef COMPAT_FREEBSD32 1102 if (wrap32) 1103 ptrace_sc_ret_to32(psr, psr32); 1104 #endif 1105 CTR4(KTR_PTRACE, 1106 "PT_GET_SC_RET: pid %d error %d retval %#lx,%#lx", 1107 p->p_pid, psr->sr_error, psr->sr_retval[0], 1108 psr->sr_retval[1]); 1109 break; 1110 1111 case PT_STEP: 1112 case PT_CONTINUE: 1113 case PT_TO_SCE: 1114 case PT_TO_SCX: 1115 case PT_SYSCALL: 1116 case PT_DETACH: 1117 /* Zero means do not send any signal */ 1118 if (data < 0 || data > _SIG_MAXSIG) { 1119 error = EINVAL; 1120 break; 1121 } 1122 1123 switch (req) { 1124 case PT_STEP: 1125 CTR3(KTR_PTRACE, "PT_STEP: tid %d (pid %d), sig = %d", 1126 td2->td_tid, p->p_pid, data); 1127 error = ptrace_single_step(td2); 1128 if (error) 1129 goto out; 1130 break; 1131 case PT_CONTINUE: 1132 case PT_TO_SCE: 1133 case PT_TO_SCX: 1134 case PT_SYSCALL: 1135 if (addr != (void *)1) { 1136 error = ptrace_set_pc(td2, 1137 (u_long)(uintfptr_t)addr); 1138 if (error) 1139 goto out; 1140 } 1141 switch (req) { 1142 case PT_TO_SCE: 1143 p->p_ptevents |= PTRACE_SCE; 1144 CTR4(KTR_PTRACE, 1145 "PT_TO_SCE: pid %d, events = %#x, PC = %#lx, sig = %d", 1146 p->p_pid, p->p_ptevents, 1147 (u_long)(uintfptr_t)addr, data); 1148 break; 1149 case PT_TO_SCX: 1150 p->p_ptevents |= PTRACE_SCX; 1151 CTR4(KTR_PTRACE, 1152 "PT_TO_SCX: pid %d, events = %#x, PC = %#lx, sig = %d", 1153 p->p_pid, p->p_ptevents, 1154 (u_long)(uintfptr_t)addr, data); 1155 break; 1156 case PT_SYSCALL: 1157 p->p_ptevents |= PTRACE_SYSCALL; 1158 CTR4(KTR_PTRACE, 1159 "PT_SYSCALL: pid %d, events = %#x, PC = %#lx, sig = %d", 1160 p->p_pid, p->p_ptevents, 1161 (u_long)(uintfptr_t)addr, data); 1162 break; 1163 case PT_CONTINUE: 1164 CTR3(KTR_PTRACE, 1165 "PT_CONTINUE: pid %d, PC = %#lx, sig = %d", 1166 p->p_pid, (u_long)(uintfptr_t)addr, data); 1167 break; 1168 } 1169 break; 1170 case PT_DETACH: 1171 /* 1172 * Reset the process parent. 1173 * 1174 * NB: This clears P_TRACED before reparenting 1175 * a detached process back to its original 1176 * parent. Otherwise the debugee will be set 1177 * as an orphan of the debugger. 1178 */ 1179 p->p_flag &= ~(P_TRACED | P_WAITED); 1180 if (p->p_oppid != p->p_pptr->p_pid) { 1181 PROC_LOCK(p->p_pptr); 1182 sigqueue_take(p->p_ksi); 1183 PROC_UNLOCK(p->p_pptr); 1184 1185 pp = proc_realparent(p); 1186 proc_reparent(p, pp, false); 1187 if (pp == initproc) 1188 p->p_sigparent = SIGCHLD; 1189 CTR3(KTR_PTRACE, 1190 "PT_DETACH: pid %d reparented to pid %d, sig %d", 1191 p->p_pid, pp->p_pid, data); 1192 } else 1193 CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d", 1194 p->p_pid, data); 1195 p->p_ptevents = 0; 1196 FOREACH_THREAD_IN_PROC(p, td3) { 1197 if ((td3->td_dbgflags & TDB_FSTP) != 0) { 1198 sigqueue_delete(&td3->td_sigqueue, 1199 SIGSTOP); 1200 } 1201 td3->td_dbgflags &= ~(TDB_XSIG | TDB_FSTP | 1202 TDB_SUSPEND); 1203 } 1204 1205 if ((p->p_flag2 & P2_PTRACE_FSTP) != 0) { 1206 sigqueue_delete(&p->p_sigqueue, SIGSTOP); 1207 p->p_flag2 &= ~P2_PTRACE_FSTP; 1208 } 1209 1210 /* should we send SIGCHLD? */ 1211 /* childproc_continued(p); */ 1212 break; 1213 } 1214 1215 sx_xunlock(&proctree_lock); 1216 proctree_locked = 0; 1217 1218 sendsig: 1219 MPASS(proctree_locked == 0); 1220 1221 /* 1222 * Clear the pending event for the thread that just 1223 * reported its event (p_xthread). This may not be 1224 * the thread passed to PT_CONTINUE, PT_STEP, etc. if 1225 * the debugger is resuming a different thread. 1226 * 1227 * Deliver any pending signal via the reporting thread. 1228 */ 1229 MPASS(p->p_xthread != NULL); 1230 p->p_xthread->td_dbgflags &= ~TDB_XSIG; 1231 p->p_xthread->td_xsig = data; 1232 p->p_xthread = NULL; 1233 p->p_xsig = data; 1234 1235 /* 1236 * P_WKILLED is insurance that a PT_KILL/SIGKILL 1237 * always works immediately, even if another thread is 1238 * unsuspended first and attempts to handle a 1239 * different signal or if the POSIX.1b style signal 1240 * queue cannot accommodate any new signals. 1241 */ 1242 if (data == SIGKILL) 1243 proc_wkilled(p); 1244 1245 /* 1246 * Unsuspend all threads. To leave a thread 1247 * suspended, use PT_SUSPEND to suspend it before 1248 * continuing the process. 1249 */ 1250 PROC_SLOCK(p); 1251 p->p_flag &= ~(P_STOPPED_TRACE | P_STOPPED_SIG | P_WAITED); 1252 thread_unsuspend(p); 1253 PROC_SUNLOCK(p); 1254 break; 1255 1256 case PT_WRITE_I: 1257 case PT_WRITE_D: 1258 td2->td_dbgflags |= TDB_USERWR; 1259 PROC_UNLOCK(p); 1260 error = 0; 1261 if (proc_writemem(td, p, (off_t)(uintptr_t)addr, &data, 1262 sizeof(int)) != sizeof(int)) 1263 error = ENOMEM; 1264 else 1265 CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x", 1266 p->p_pid, addr, data); 1267 PROC_LOCK(p); 1268 break; 1269 1270 case PT_READ_I: 1271 case PT_READ_D: 1272 PROC_UNLOCK(p); 1273 error = tmp = 0; 1274 if (proc_readmem(td, p, (off_t)(uintptr_t)addr, &tmp, 1275 sizeof(int)) != sizeof(int)) 1276 error = ENOMEM; 1277 else 1278 CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x", 1279 p->p_pid, addr, tmp); 1280 td->td_retval[0] = tmp; 1281 PROC_LOCK(p); 1282 break; 1283 1284 case PT_IO: 1285 #ifdef COMPAT_FREEBSD32 1286 if (wrap32) { 1287 piod32 = addr; 1288 iov.iov_base = (void *)(uintptr_t)piod32->piod_addr; 1289 iov.iov_len = piod32->piod_len; 1290 uio.uio_offset = (off_t)(uintptr_t)piod32->piod_offs; 1291 uio.uio_resid = piod32->piod_len; 1292 } else 1293 #endif 1294 { 1295 piod = addr; 1296 iov.iov_base = piod->piod_addr; 1297 iov.iov_len = piod->piod_len; 1298 uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs; 1299 uio.uio_resid = piod->piod_len; 1300 } 1301 uio.uio_iov = &iov; 1302 uio.uio_iovcnt = 1; 1303 uio.uio_segflg = UIO_USERSPACE; 1304 uio.uio_td = td; 1305 #ifdef COMPAT_FREEBSD32 1306 tmp = wrap32 ? piod32->piod_op : piod->piod_op; 1307 #else 1308 tmp = piod->piod_op; 1309 #endif 1310 switch (tmp) { 1311 case PIOD_READ_D: 1312 case PIOD_READ_I: 1313 CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)", 1314 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1315 uio.uio_rw = UIO_READ; 1316 break; 1317 case PIOD_WRITE_D: 1318 case PIOD_WRITE_I: 1319 CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)", 1320 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1321 td2->td_dbgflags |= TDB_USERWR; 1322 uio.uio_rw = UIO_WRITE; 1323 break; 1324 default: 1325 error = EINVAL; 1326 goto out; 1327 } 1328 PROC_UNLOCK(p); 1329 error = proc_rwmem(p, &uio); 1330 #ifdef COMPAT_FREEBSD32 1331 if (wrap32) 1332 piod32->piod_len -= uio.uio_resid; 1333 else 1334 #endif 1335 piod->piod_len -= uio.uio_resid; 1336 PROC_LOCK(p); 1337 break; 1338 1339 case PT_KILL: 1340 CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid); 1341 data = SIGKILL; 1342 goto sendsig; /* in PT_CONTINUE above */ 1343 1344 case PT_SETREGS: 1345 CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid, 1346 p->p_pid); 1347 td2->td_dbgflags |= TDB_USERWR; 1348 error = PROC_WRITE(regs, td2, addr); 1349 break; 1350 1351 case PT_GETREGS: 1352 CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid, 1353 p->p_pid); 1354 error = PROC_READ(regs, td2, addr); 1355 break; 1356 1357 case PT_SETFPREGS: 1358 CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid, 1359 p->p_pid); 1360 td2->td_dbgflags |= TDB_USERWR; 1361 error = PROC_WRITE(fpregs, td2, addr); 1362 break; 1363 1364 case PT_GETFPREGS: 1365 CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid, 1366 p->p_pid); 1367 error = PROC_READ(fpregs, td2, addr); 1368 break; 1369 1370 case PT_SETDBREGS: 1371 CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid, 1372 p->p_pid); 1373 td2->td_dbgflags |= TDB_USERWR; 1374 error = PROC_WRITE(dbregs, td2, addr); 1375 break; 1376 1377 case PT_GETDBREGS: 1378 CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid, 1379 p->p_pid); 1380 error = PROC_READ(dbregs, td2, addr); 1381 break; 1382 1383 case PT_LWPINFO: 1384 if (data <= 0 || 1385 #ifdef COMPAT_FREEBSD32 1386 (!wrap32 && data > sizeof(*pl)) || 1387 (wrap32 && data > sizeof(*pl32))) { 1388 #else 1389 data > sizeof(*pl)) { 1390 #endif 1391 error = EINVAL; 1392 break; 1393 } 1394 #ifdef COMPAT_FREEBSD32 1395 if (wrap32) { 1396 pl = &r.pl; 1397 pl32 = addr; 1398 } else 1399 #endif 1400 pl = addr; 1401 bzero(pl, sizeof(*pl)); 1402 pl->pl_lwpid = td2->td_tid; 1403 pl->pl_event = PL_EVENT_NONE; 1404 pl->pl_flags = 0; 1405 if (td2->td_dbgflags & TDB_XSIG) { 1406 pl->pl_event = PL_EVENT_SIGNAL; 1407 if (td2->td_si.si_signo != 0 && 1408 #ifdef COMPAT_FREEBSD32 1409 ((!wrap32 && data >= offsetof(struct ptrace_lwpinfo, 1410 pl_siginfo) + sizeof(pl->pl_siginfo)) || 1411 (wrap32 && data >= offsetof(struct ptrace_lwpinfo32, 1412 pl_siginfo) + sizeof(struct siginfo32))) 1413 #else 1414 data >= offsetof(struct ptrace_lwpinfo, pl_siginfo) 1415 + sizeof(pl->pl_siginfo) 1416 #endif 1417 ){ 1418 pl->pl_flags |= PL_FLAG_SI; 1419 pl->pl_siginfo = td2->td_si; 1420 } 1421 } 1422 if (td2->td_dbgflags & TDB_SCE) 1423 pl->pl_flags |= PL_FLAG_SCE; 1424 else if (td2->td_dbgflags & TDB_SCX) 1425 pl->pl_flags |= PL_FLAG_SCX; 1426 if (td2->td_dbgflags & TDB_EXEC) 1427 pl->pl_flags |= PL_FLAG_EXEC; 1428 if (td2->td_dbgflags & TDB_FORK) { 1429 pl->pl_flags |= PL_FLAG_FORKED; 1430 pl->pl_child_pid = td2->td_dbg_forked; 1431 if (td2->td_dbgflags & TDB_VFORK) 1432 pl->pl_flags |= PL_FLAG_VFORKED; 1433 } else if ((td2->td_dbgflags & (TDB_SCX | TDB_VFORK)) == 1434 TDB_VFORK) 1435 pl->pl_flags |= PL_FLAG_VFORK_DONE; 1436 if (td2->td_dbgflags & TDB_CHILD) 1437 pl->pl_flags |= PL_FLAG_CHILD; 1438 if (td2->td_dbgflags & TDB_BORN) 1439 pl->pl_flags |= PL_FLAG_BORN; 1440 if (td2->td_dbgflags & TDB_EXIT) 1441 pl->pl_flags |= PL_FLAG_EXITED; 1442 pl->pl_sigmask = td2->td_sigmask; 1443 pl->pl_siglist = td2->td_siglist; 1444 strcpy(pl->pl_tdname, td2->td_name); 1445 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) { 1446 pl->pl_syscall_code = td2->td_sa.code; 1447 pl->pl_syscall_narg = td2->td_sa.narg; 1448 } else { 1449 pl->pl_syscall_code = 0; 1450 pl->pl_syscall_narg = 0; 1451 } 1452 #ifdef COMPAT_FREEBSD32 1453 if (wrap32) 1454 ptrace_lwpinfo_to32(pl, pl32); 1455 #endif 1456 CTR6(KTR_PTRACE, 1457 "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d", 1458 td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags, 1459 pl->pl_child_pid, pl->pl_syscall_code); 1460 break; 1461 1462 case PT_GETNUMLWPS: 1463 CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid, 1464 p->p_numthreads); 1465 td->td_retval[0] = p->p_numthreads; 1466 break; 1467 1468 case PT_GETLWPLIST: 1469 CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d", 1470 p->p_pid, data, p->p_numthreads); 1471 if (data <= 0) { 1472 error = EINVAL; 1473 break; 1474 } 1475 num = imin(p->p_numthreads, data); 1476 PROC_UNLOCK(p); 1477 buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK); 1478 tmp = 0; 1479 PROC_LOCK(p); 1480 FOREACH_THREAD_IN_PROC(p, td2) { 1481 if (tmp >= num) 1482 break; 1483 buf[tmp++] = td2->td_tid; 1484 } 1485 PROC_UNLOCK(p); 1486 error = copyout(buf, addr, tmp * sizeof(lwpid_t)); 1487 free(buf, M_TEMP); 1488 if (!error) 1489 td->td_retval[0] = tmp; 1490 PROC_LOCK(p); 1491 break; 1492 1493 case PT_VM_TIMESTAMP: 1494 CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d", 1495 p->p_pid, p->p_vmspace->vm_map.timestamp); 1496 td->td_retval[0] = p->p_vmspace->vm_map.timestamp; 1497 break; 1498 1499 case PT_VM_ENTRY: 1500 PROC_UNLOCK(p); 1501 #ifdef COMPAT_FREEBSD32 1502 if (wrap32) 1503 error = ptrace_vm_entry32(td, p, addr); 1504 else 1505 #endif 1506 error = ptrace_vm_entry(td, p, addr); 1507 PROC_LOCK(p); 1508 break; 1509 1510 default: 1511 #ifdef __HAVE_PTRACE_MACHDEP 1512 if (req >= PT_FIRSTMACH) { 1513 PROC_UNLOCK(p); 1514 error = cpu_ptrace(td2, req, addr, data); 1515 PROC_LOCK(p); 1516 } else 1517 #endif 1518 /* Unknown request. */ 1519 error = EINVAL; 1520 break; 1521 } 1522 1523 out: 1524 /* Drop our hold on this process now that the request has completed. */ 1525 _PRELE(p); 1526 fail: 1527 PROC_UNLOCK(p); 1528 if (proctree_locked) 1529 sx_xunlock(&proctree_lock); 1530 return (error); 1531 } 1532 #undef PROC_READ 1533 #undef PROC_WRITE 1534 1535 /* 1536 * Stop a process because of a debugging event; 1537 * stay stopped until p->p_step is cleared 1538 * (cleared by PIOCCONT in procfs). 1539 */ 1540 void 1541 stopevent(struct proc *p, unsigned int event, unsigned int val) 1542 { 1543 1544 PROC_LOCK_ASSERT(p, MA_OWNED); 1545 p->p_step = 1; 1546 CTR3(KTR_PTRACE, "stopevent: pid %d event %u val %u", p->p_pid, event, 1547 val); 1548 do { 1549 if (event != S_EXIT) 1550 p->p_xsig = val; 1551 p->p_xthread = NULL; 1552 p->p_stype = event; /* Which event caused the stop? */ 1553 wakeup(&p->p_stype); /* Wake up any PIOCWAIT'ing procs */ 1554 msleep(&p->p_step, &p->p_mtx, PWAIT, "stopevent", 0); 1555 } while (p->p_step); 1556 } 1557