1 /*- 2 * Copyright (c) 1996 John S. Dyson 3 * Copyright (c) 2012 Giovanni Trematerra 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice immediately at the beginning of the file, without modification, 11 * this list of conditions, and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Absolutely no warranty of function or purpose is made by the author 16 * John S. Dyson. 17 * 4. Modifications may be freely made to this file if the above conditions 18 * are met. 19 */ 20 21 /* 22 * This file contains a high-performance replacement for the socket-based 23 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 24 * all features of sockets, but does do everything that pipes normally 25 * do. 26 */ 27 28 /* 29 * This code has two modes of operation, a small write mode and a large 30 * write mode. The small write mode acts like conventional pipes with 31 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 32 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 33 * and PIPE_SIZE in size, the sending process pins the underlying pages in 34 * memory, and the receiving process copies directly from these pinned pages 35 * in the sending process. 36 * 37 * If the sending process receives a signal, it is possible that it will 38 * go away, and certainly its address space can change, because control 39 * is returned back to the user-mode side. In that case, the pipe code 40 * arranges to copy the buffer supplied by the user process, to a pageable 41 * kernel buffer, and the receiving process will grab the data from the 42 * pageable kernel buffer. Since signals don't happen all that often, 43 * the copy operation is normally eliminated. 44 * 45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 46 * happen for small transfers so that the system will not spend all of 47 * its time context switching. 48 * 49 * In order to limit the resource use of pipes, two sysctls exist: 50 * 51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 52 * address space available to us in pipe_map. This value is normally 53 * autotuned, but may also be loader tuned. 54 * 55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 56 * memory in use by pipes. 57 * 58 * Based on how large pipekva is relative to maxpipekva, the following 59 * will happen: 60 * 61 * 0% - 50%: 62 * New pipes are given 16K of memory backing, pipes may dynamically 63 * grow to as large as 64K where needed. 64 * 50% - 75%: 65 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 66 * existing pipes may NOT grow. 67 * 75% - 100%: 68 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 69 * existing pipes will be shrunk down to 4K whenever possible. 70 * 71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 72 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 73 * resize which MUST occur for reverse-direction pipes when they are 74 * first used. 75 * 76 * Additional information about the current state of pipes may be obtained 77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 78 * and kern.ipc.piperesizefail. 79 * 80 * Locking rules: There are two locks present here: A mutex, used via 81 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 82 * the flag, as mutexes can not persist over uiomove. The mutex 83 * exists only to guard access to the flag, and is not in itself a 84 * locking mechanism. Also note that there is only a single mutex for 85 * both directions of a pipe. 86 * 87 * As pipelock() may have to sleep before it can acquire the flag, it 88 * is important to reread all data after a call to pipelock(); everything 89 * in the structure may have changed. 90 */ 91 92 #include <sys/param.h> 93 #include <sys/systm.h> 94 #include <sys/conf.h> 95 #include <sys/fcntl.h> 96 #include <sys/file.h> 97 #include <sys/filedesc.h> 98 #include <sys/filio.h> 99 #include <sys/kernel.h> 100 #include <sys/lock.h> 101 #include <sys/mutex.h> 102 #include <sys/ttycom.h> 103 #include <sys/stat.h> 104 #include <sys/malloc.h> 105 #include <sys/poll.h> 106 #include <sys/priv.h> 107 #include <sys/selinfo.h> 108 #include <sys/signalvar.h> 109 #include <sys/syscallsubr.h> 110 #include <sys/sysctl.h> 111 #include <sys/sysproto.h> 112 #include <sys/pipe.h> 113 #include <sys/proc.h> 114 #include <sys/vnode.h> 115 #include <sys/uio.h> 116 #include <sys/user.h> 117 #include <sys/event.h> 118 119 #include <security/mac/mac_framework.h> 120 121 #include <vm/vm.h> 122 #include <vm/vm_param.h> 123 #include <vm/vm_object.h> 124 #include <vm/vm_kern.h> 125 #include <vm/vm_extern.h> 126 #include <vm/pmap.h> 127 #include <vm/vm_map.h> 128 #include <vm/vm_page.h> 129 #include <vm/uma.h> 130 131 /* 132 * Use this define if you want to disable *fancy* VM things. Expect an 133 * approx 30% decrease in transfer rate. This could be useful for 134 * NetBSD or OpenBSD. 135 */ 136 /* #define PIPE_NODIRECT */ 137 138 #define PIPE_PEER(pipe) \ 139 (((pipe)->pipe_type & PIPE_TYPE_NAMED) ? (pipe) : ((pipe)->pipe_peer)) 140 141 /* 142 * interfaces to the outside world 143 */ 144 static fo_rdwr_t pipe_read; 145 static fo_rdwr_t pipe_write; 146 static fo_truncate_t pipe_truncate; 147 static fo_ioctl_t pipe_ioctl; 148 static fo_poll_t pipe_poll; 149 static fo_kqfilter_t pipe_kqfilter; 150 static fo_stat_t pipe_stat; 151 static fo_close_t pipe_close; 152 static fo_chmod_t pipe_chmod; 153 static fo_chown_t pipe_chown; 154 static fo_fill_kinfo_t pipe_fill_kinfo; 155 156 const struct fileops pipeops = { 157 .fo_read = pipe_read, 158 .fo_write = pipe_write, 159 .fo_truncate = pipe_truncate, 160 .fo_ioctl = pipe_ioctl, 161 .fo_poll = pipe_poll, 162 .fo_kqfilter = pipe_kqfilter, 163 .fo_stat = pipe_stat, 164 .fo_close = pipe_close, 165 .fo_chmod = pipe_chmod, 166 .fo_chown = pipe_chown, 167 .fo_sendfile = invfo_sendfile, 168 .fo_fill_kinfo = pipe_fill_kinfo, 169 .fo_cmp = file_kcmp_generic, 170 .fo_flags = DFLAG_PASSABLE 171 }; 172 173 static void filt_pipedetach(struct knote *kn); 174 static void filt_pipedetach_notsup(struct knote *kn); 175 static int filt_pipenotsup(struct knote *kn, long hint); 176 static int filt_piperead(struct knote *kn, long hint); 177 static int filt_pipewrite(struct knote *kn, long hint); 178 static int filt_pipedump(struct proc *p, struct knote *kn, 179 struct kinfo_knote *kin); 180 181 static const struct filterops pipe_nfiltops = { 182 .f_isfd = 1, 183 .f_detach = filt_pipedetach_notsup, 184 .f_event = filt_pipenotsup 185 /* no userdump */ 186 }; 187 static const struct filterops pipe_rfiltops = { 188 .f_isfd = 1, 189 .f_detach = filt_pipedetach, 190 .f_event = filt_piperead, 191 .f_userdump = filt_pipedump, 192 }; 193 static const struct filterops pipe_wfiltops = { 194 .f_isfd = 1, 195 .f_detach = filt_pipedetach, 196 .f_event = filt_pipewrite, 197 .f_userdump = filt_pipedump, 198 }; 199 200 /* 201 * Default pipe buffer size(s), this can be kind-of large now because pipe 202 * space is pageable. The pipe code will try to maintain locality of 203 * reference for performance reasons, so small amounts of outstanding I/O 204 * will not wipe the cache. 205 */ 206 #define MINPIPESIZE (PIPE_SIZE/3) 207 #define MAXPIPESIZE (2*PIPE_SIZE/3) 208 209 static long amountpipekva; 210 static int pipefragretry; 211 static int pipeallocfail; 212 static int piperesizefail; 213 static int piperesizeallowed = 1; 214 static long pipe_mindirect = PIPE_MINDIRECT; 215 static int pipebuf_reserv = 2; 216 217 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 218 &maxpipekva, 0, "Pipe KVA limit"); 219 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 220 &amountpipekva, 0, "Pipe KVA usage"); 221 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 222 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 223 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 224 &pipeallocfail, 0, "Pipe allocation failures"); 225 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 226 &piperesizefail, 0, "Pipe resize failures"); 227 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 228 &piperesizeallowed, 0, "Pipe resizing allowed"); 229 SYSCTL_INT(_kern_ipc, OID_AUTO, pipebuf_reserv, CTLFLAG_RW, 230 &pipebuf_reserv, 0, 231 "Superuser-reserved percentage of the pipe buffers space"); 232 233 static void pipeinit(void *dummy __unused); 234 static void pipeclose(struct pipe *cpipe); 235 static void pipe_free_kmem(struct pipe *cpipe); 236 static int pipe_create(struct pipe *pipe, bool backing); 237 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp); 238 static __inline int pipelock(struct pipe *cpipe, bool catch); 239 static __inline void pipeunlock(struct pipe *cpipe); 240 static void pipe_timestamp(struct timespec *tsp); 241 #ifndef PIPE_NODIRECT 242 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 243 static void pipe_destroy_write_buffer(struct pipe *wpipe); 244 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 245 static void pipe_clone_write_buffer(struct pipe *wpipe); 246 #endif 247 static int pipespace(struct pipe *cpipe, int size); 248 static int pipespace_new(struct pipe *cpipe, int size); 249 250 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 251 static int pipe_zone_init(void *mem, int size, int flags); 252 static void pipe_zone_fini(void *mem, int size); 253 254 static uma_zone_t pipe_zone; 255 static struct unrhdr64 pipeino_unr; 256 static dev_t pipedev_ino; 257 258 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 259 260 static void 261 pipeinit(void *dummy __unused) 262 { 263 264 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair), 265 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini, 266 UMA_ALIGN_PTR, 0); 267 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 268 new_unrhdr64(&pipeino_unr, 1); 269 pipedev_ino = devfs_alloc_cdp_inode(); 270 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized")); 271 } 272 273 static int 274 sysctl_handle_pipe_mindirect(SYSCTL_HANDLER_ARGS) 275 { 276 int error = 0; 277 long tmp_pipe_mindirect = pipe_mindirect; 278 279 error = sysctl_handle_long(oidp, &tmp_pipe_mindirect, arg2, req); 280 if (error != 0 || req->newptr == NULL) 281 return (error); 282 283 /* 284 * Don't allow pipe_mindirect to be set so low that we violate 285 * atomicity requirements. 286 */ 287 if (tmp_pipe_mindirect <= PIPE_BUF) 288 return (EINVAL); 289 pipe_mindirect = tmp_pipe_mindirect; 290 return (0); 291 } 292 SYSCTL_OID(_kern_ipc, OID_AUTO, pipe_mindirect, CTLTYPE_LONG | CTLFLAG_RW, 293 &pipe_mindirect, 0, sysctl_handle_pipe_mindirect, "L", 294 "Minimum write size triggering VM optimization"); 295 296 static int 297 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 298 { 299 struct pipepair *pp; 300 struct pipe *rpipe, *wpipe; 301 302 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 303 304 pp = (struct pipepair *)mem; 305 306 /* 307 * We zero both pipe endpoints to make sure all the kmem pointers 308 * are NULL, flag fields are zero'd, etc. We timestamp both 309 * endpoints with the same time. 310 */ 311 rpipe = &pp->pp_rpipe; 312 bzero(rpipe, sizeof(*rpipe)); 313 pipe_timestamp(&rpipe->pipe_ctime); 314 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 315 316 wpipe = &pp->pp_wpipe; 317 bzero(wpipe, sizeof(*wpipe)); 318 wpipe->pipe_ctime = rpipe->pipe_ctime; 319 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 320 321 rpipe->pipe_peer = wpipe; 322 rpipe->pipe_pair = pp; 323 wpipe->pipe_peer = rpipe; 324 wpipe->pipe_pair = pp; 325 326 /* 327 * Mark both endpoints as present; they will later get free'd 328 * one at a time. When both are free'd, then the whole pair 329 * is released. 330 */ 331 rpipe->pipe_present = PIPE_ACTIVE; 332 wpipe->pipe_present = PIPE_ACTIVE; 333 334 /* 335 * Eventually, the MAC Framework may initialize the label 336 * in ctor or init, but for now we do it elswhere to avoid 337 * blocking in ctor or init. 338 */ 339 pp->pp_label = NULL; 340 341 return (0); 342 } 343 344 static int 345 pipe_zone_init(void *mem, int size, int flags) 346 { 347 struct pipepair *pp; 348 349 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 350 351 pp = (struct pipepair *)mem; 352 353 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW); 354 return (0); 355 } 356 357 static void 358 pipe_zone_fini(void *mem, int size) 359 { 360 struct pipepair *pp; 361 362 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 363 364 pp = (struct pipepair *)mem; 365 366 mtx_destroy(&pp->pp_mtx); 367 } 368 369 static int 370 pipe_paircreate(struct thread *td, struct pipepair **p_pp) 371 { 372 struct pipepair *pp; 373 struct pipe *rpipe, *wpipe; 374 int error; 375 376 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK); 377 #ifdef MAC 378 /* 379 * The MAC label is shared between the connected endpoints. As a 380 * result mac_pipe_init() and mac_pipe_create() are called once 381 * for the pair, and not on the endpoints. 382 */ 383 mac_pipe_init(pp); 384 mac_pipe_create(td->td_ucred, pp); 385 #endif 386 rpipe = &pp->pp_rpipe; 387 wpipe = &pp->pp_wpipe; 388 pp->pp_owner = crhold(td->td_ucred); 389 390 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe)); 391 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe)); 392 393 /* 394 * Only the forward direction pipe is backed by big buffer by 395 * default. 396 */ 397 error = pipe_create(rpipe, true); 398 if (error != 0) 399 goto fail; 400 error = pipe_create(wpipe, false); 401 if (error != 0) { 402 /* 403 * This cleanup leaves the pipe inode number for rpipe 404 * still allocated, but never used. We do not free 405 * inode numbers for opened pipes, which is required 406 * for correctness because numbers must be unique. 407 * But also it avoids any memory use by the unr 408 * allocator, so stashing away the transient inode 409 * number is reasonable. 410 */ 411 pipe_free_kmem(rpipe); 412 goto fail; 413 } 414 415 rpipe->pipe_state |= PIPE_DIRECTOK; 416 wpipe->pipe_state |= PIPE_DIRECTOK; 417 return (0); 418 419 fail: 420 knlist_destroy(&rpipe->pipe_sel.si_note); 421 knlist_destroy(&wpipe->pipe_sel.si_note); 422 crfree(pp->pp_owner); 423 #ifdef MAC 424 mac_pipe_destroy(pp); 425 #endif 426 uma_zfree(pipe_zone, pp); 427 return (error); 428 } 429 430 int 431 pipe_named_ctor(struct pipe **ppipe, struct thread *td) 432 { 433 struct pipepair *pp; 434 int error; 435 436 error = pipe_paircreate(td, &pp); 437 if (error != 0) 438 return (error); 439 pp->pp_rpipe.pipe_type |= PIPE_TYPE_NAMED; 440 *ppipe = &pp->pp_rpipe; 441 return (0); 442 } 443 444 void 445 pipe_dtor(struct pipe *dpipe) 446 { 447 struct pipe *peer; 448 449 peer = (dpipe->pipe_type & PIPE_TYPE_NAMED) != 0 ? dpipe->pipe_peer : NULL; 450 funsetown(&dpipe->pipe_sigio); 451 pipeclose(dpipe); 452 if (peer != NULL) { 453 funsetown(&peer->pipe_sigio); 454 pipeclose(peer); 455 } 456 } 457 458 /* 459 * Get a timestamp. 460 * 461 * This used to be vfs_timestamp but the higher precision is unnecessary and 462 * can very negatively affect performance in virtualized environments (e.g., on 463 * vms running on amd64 when using the rdtscp instruction). 464 */ 465 static void 466 pipe_timestamp(struct timespec *tsp) 467 { 468 469 getnanotime(tsp); 470 } 471 472 /* 473 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let 474 * the zone pick up the pieces via pipeclose(). 475 */ 476 int 477 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1, 478 struct filecaps *fcaps2) 479 { 480 struct file *rf, *wf; 481 struct pipe *rpipe, *wpipe; 482 struct pipepair *pp; 483 int fd, fflags, error; 484 485 error = pipe_paircreate(td, &pp); 486 if (error != 0) 487 return (error); 488 rpipe = &pp->pp_rpipe; 489 wpipe = &pp->pp_wpipe; 490 error = falloc_caps(td, &rf, &fd, flags, fcaps1); 491 if (error) { 492 pipeclose(rpipe); 493 pipeclose(wpipe); 494 return (error); 495 } 496 /* An extra reference on `rf' has been held for us by falloc_caps(). */ 497 fildes[0] = fd; 498 499 fflags = FREAD | FWRITE; 500 if ((flags & O_NONBLOCK) != 0) 501 fflags |= FNONBLOCK; 502 503 /* 504 * Warning: once we've gotten past allocation of the fd for the 505 * read-side, we can only drop the read side via fdrop() in order 506 * to avoid races against processes which manage to dup() the read 507 * side while we are blocked trying to allocate the write side. 508 */ 509 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops); 510 error = falloc_caps(td, &wf, &fd, flags, fcaps2); 511 if (error) { 512 fdclose(td, rf, fildes[0]); 513 fdrop(rf, td); 514 /* rpipe has been closed by fdrop(). */ 515 pipeclose(wpipe); 516 return (error); 517 } 518 /* An extra reference on `wf' has been held for us by falloc_caps(). */ 519 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops); 520 fdrop(wf, td); 521 fildes[1] = fd; 522 fdrop(rf, td); 523 524 return (0); 525 } 526 527 #ifdef COMPAT_FREEBSD10 528 /* ARGSUSED */ 529 int 530 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused) 531 { 532 int error; 533 int fildes[2]; 534 535 error = kern_pipe(td, fildes, 0, NULL, NULL); 536 if (error) 537 return (error); 538 539 td->td_retval[0] = fildes[0]; 540 td->td_retval[1] = fildes[1]; 541 542 return (0); 543 } 544 #endif 545 546 int 547 sys_pipe2(struct thread *td, struct pipe2_args *uap) 548 { 549 int error, fildes[2]; 550 551 if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK)) 552 return (EINVAL); 553 error = kern_pipe(td, fildes, uap->flags, NULL, NULL); 554 if (error) 555 return (error); 556 error = copyout(fildes, uap->fildes, 2 * sizeof(int)); 557 if (error) { 558 (void)kern_close(td, fildes[0]); 559 (void)kern_close(td, fildes[1]); 560 } 561 return (error); 562 } 563 564 /* 565 * Allocate kva for pipe circular buffer, the space is pageable 566 * This routine will 'realloc' the size of a pipe safely, if it fails 567 * it will retain the old buffer. 568 * If it fails it will return ENOMEM. 569 */ 570 static int 571 pipespace_new(struct pipe *cpipe, int size) 572 { 573 caddr_t buffer; 574 int error, cnt, firstseg; 575 static int curfail = 0; 576 static struct timeval lastfail; 577 578 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 579 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 580 ("pipespace: resize of direct writes not allowed")); 581 retry: 582 cnt = cpipe->pipe_buffer.cnt; 583 if (cnt > size) 584 size = cnt; 585 586 size = round_page(size); 587 buffer = (caddr_t) vm_map_min(pipe_map); 588 589 if (!chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo, 590 size, lim_cur(curthread, RLIMIT_PIPEBUF))) { 591 if (cpipe->pipe_buffer.buffer == NULL && 592 size > SMALL_PIPE_SIZE) { 593 size = SMALL_PIPE_SIZE; 594 goto retry; 595 } 596 return (ENOMEM); 597 } 598 599 vm_map_lock(pipe_map); 600 if (priv_check(curthread, PRIV_PIPEBUF) != 0 && maxpipekva / 100 * 601 (100 - pipebuf_reserv) < amountpipekva + size) { 602 vm_map_unlock(pipe_map); 603 chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo, -size, 0); 604 if (cpipe->pipe_buffer.buffer == NULL && 605 size > SMALL_PIPE_SIZE) { 606 size = SMALL_PIPE_SIZE; 607 pipefragretry++; 608 goto retry; 609 } 610 return (ENOMEM); 611 } 612 error = vm_map_find_locked(pipe_map, NULL, 0, (vm_offset_t *)&buffer, 613 size, 0, VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0); 614 vm_map_unlock(pipe_map); 615 if (error != KERN_SUCCESS) { 616 chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo, -size, 0); 617 if (cpipe->pipe_buffer.buffer == NULL && 618 size > SMALL_PIPE_SIZE) { 619 size = SMALL_PIPE_SIZE; 620 pipefragretry++; 621 goto retry; 622 } 623 if (cpipe->pipe_buffer.buffer == NULL) { 624 pipeallocfail++; 625 if (ppsratecheck(&lastfail, &curfail, 1)) 626 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 627 } else { 628 piperesizefail++; 629 } 630 return (ENOMEM); 631 } 632 633 /* copy data, then free old resources if we're resizing */ 634 if (cnt > 0) { 635 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 636 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 637 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 638 buffer, firstseg); 639 if ((cnt - firstseg) > 0) 640 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 641 cpipe->pipe_buffer.in); 642 } else { 643 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 644 buffer, cnt); 645 } 646 } 647 pipe_free_kmem(cpipe); 648 cpipe->pipe_buffer.buffer = buffer; 649 cpipe->pipe_buffer.size = size; 650 cpipe->pipe_buffer.in = cnt; 651 cpipe->pipe_buffer.out = 0; 652 cpipe->pipe_buffer.cnt = cnt; 653 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size); 654 return (0); 655 } 656 657 /* 658 * Wrapper for pipespace_new() that performs locking assertions. 659 */ 660 static int 661 pipespace(struct pipe *cpipe, int size) 662 { 663 664 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 665 ("Unlocked pipe passed to pipespace")); 666 return (pipespace_new(cpipe, size)); 667 } 668 669 /* 670 * lock a pipe for I/O, blocking other access 671 */ 672 static __inline int 673 pipelock(struct pipe *cpipe, bool catch) 674 { 675 int error, prio; 676 677 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 678 679 prio = PRIBIO; 680 if (catch) 681 prio |= PCATCH; 682 while (cpipe->pipe_state & PIPE_LOCKFL) { 683 KASSERT(cpipe->pipe_waiters >= 0, 684 ("%s: bad waiter count %d", __func__, 685 cpipe->pipe_waiters)); 686 cpipe->pipe_waiters++; 687 error = msleep(&cpipe->pipe_waiters, PIPE_MTX(cpipe), prio, 688 "pipelk", 0); 689 cpipe->pipe_waiters--; 690 if (error != 0) 691 return (error); 692 } 693 cpipe->pipe_state |= PIPE_LOCKFL; 694 return (0); 695 } 696 697 /* 698 * unlock a pipe I/O lock 699 */ 700 static __inline void 701 pipeunlock(struct pipe *cpipe) 702 { 703 704 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 705 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 706 ("Unlocked pipe passed to pipeunlock")); 707 KASSERT(cpipe->pipe_waiters >= 0, 708 ("%s: bad waiter count %d", __func__, 709 cpipe->pipe_waiters)); 710 cpipe->pipe_state &= ~PIPE_LOCKFL; 711 if (cpipe->pipe_waiters > 0) 712 wakeup_one(&cpipe->pipe_waiters); 713 } 714 715 void 716 pipeselwakeup(struct pipe *cpipe) 717 { 718 719 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 720 if (cpipe->pipe_state & PIPE_SEL) { 721 selwakeuppri(&cpipe->pipe_sel, PSOCK); 722 if (!SEL_WAITING(&cpipe->pipe_sel)) 723 cpipe->pipe_state &= ~PIPE_SEL; 724 } 725 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 726 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 727 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 728 } 729 730 /* 731 * Initialize and allocate VM and memory for pipe. The structure 732 * will start out zero'd from the ctor, so we just manage the kmem. 733 */ 734 static int 735 pipe_create(struct pipe *pipe, bool large_backing) 736 { 737 int error; 738 739 error = pipespace_new(pipe, !large_backing || amountpipekva > 740 maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE); 741 if (error == 0) 742 pipe->pipe_ino = alloc_unr64(&pipeino_unr); 743 return (error); 744 } 745 746 /* ARGSUSED */ 747 static int 748 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred, 749 int flags, struct thread *td) 750 { 751 struct pipe *rpipe; 752 int error; 753 int nread = 0; 754 int size; 755 756 rpipe = fp->f_data; 757 758 /* 759 * Try to avoid locking the pipe if we have nothing to do. 760 * 761 * There are programs which share one pipe amongst multiple processes 762 * and perform non-blocking reads in parallel, even if the pipe is 763 * empty. This in particular is the case with BSD make, which when 764 * spawned with a high -j number can find itself with over half of the 765 * calls failing to find anything. 766 */ 767 if ((fp->f_flag & FNONBLOCK) != 0 && !mac_pipe_check_read_enabled()) { 768 if (__predict_false(uio->uio_resid == 0)) 769 return (0); 770 if ((atomic_load_short(&rpipe->pipe_state) & PIPE_EOF) == 0 && 771 atomic_load_int(&rpipe->pipe_buffer.cnt) == 0 && 772 atomic_load_int(&rpipe->pipe_pages.cnt) == 0) 773 return (EAGAIN); 774 } 775 776 PIPE_LOCK(rpipe); 777 ++rpipe->pipe_busy; 778 error = pipelock(rpipe, true); 779 if (error) 780 goto unlocked_error; 781 782 #ifdef MAC 783 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair); 784 if (error) 785 goto locked_error; 786 #endif 787 if (amountpipekva > (3 * maxpipekva) / 4) { 788 if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 && 789 rpipe->pipe_buffer.size > SMALL_PIPE_SIZE && 790 rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE && 791 piperesizeallowed == 1) { 792 PIPE_UNLOCK(rpipe); 793 pipespace(rpipe, SMALL_PIPE_SIZE); 794 PIPE_LOCK(rpipe); 795 } 796 } 797 798 while (uio->uio_resid) { 799 /* 800 * normal pipe buffer receive 801 */ 802 if (rpipe->pipe_buffer.cnt > 0) { 803 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 804 if (size > rpipe->pipe_buffer.cnt) 805 size = rpipe->pipe_buffer.cnt; 806 if (size > uio->uio_resid) 807 size = uio->uio_resid; 808 809 PIPE_UNLOCK(rpipe); 810 error = uiomove( 811 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 812 size, uio); 813 PIPE_LOCK(rpipe); 814 if (error) 815 break; 816 817 rpipe->pipe_buffer.out += size; 818 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 819 rpipe->pipe_buffer.out = 0; 820 821 rpipe->pipe_buffer.cnt -= size; 822 823 /* 824 * If there is no more to read in the pipe, reset 825 * its pointers to the beginning. This improves 826 * cache hit stats. 827 */ 828 if (rpipe->pipe_buffer.cnt == 0) { 829 rpipe->pipe_buffer.in = 0; 830 rpipe->pipe_buffer.out = 0; 831 } 832 nread += size; 833 #ifndef PIPE_NODIRECT 834 /* 835 * Direct copy, bypassing a kernel buffer. 836 */ 837 } else if ((size = rpipe->pipe_pages.cnt) != 0) { 838 if (size > uio->uio_resid) 839 size = (u_int) uio->uio_resid; 840 PIPE_UNLOCK(rpipe); 841 error = uiomove_fromphys(rpipe->pipe_pages.ms, 842 rpipe->pipe_pages.pos, size, uio); 843 PIPE_LOCK(rpipe); 844 if (error) 845 break; 846 nread += size; 847 rpipe->pipe_pages.pos += size; 848 rpipe->pipe_pages.cnt -= size; 849 if (rpipe->pipe_pages.cnt == 0) { 850 rpipe->pipe_state &= ~PIPE_WANTW; 851 wakeup(rpipe); 852 } 853 #endif 854 } else { 855 /* 856 * detect EOF condition 857 * read returns 0 on EOF, no need to set error 858 */ 859 if (rpipe->pipe_state & PIPE_EOF) 860 break; 861 862 /* 863 * If the "write-side" has been blocked, wake it up now. 864 */ 865 if (rpipe->pipe_state & PIPE_WANTW) { 866 rpipe->pipe_state &= ~PIPE_WANTW; 867 wakeup(rpipe); 868 } 869 870 /* 871 * Break if some data was read. 872 */ 873 if (nread > 0) 874 break; 875 876 /* 877 * Unlock the pipe buffer for our remaining processing. 878 * We will either break out with an error or we will 879 * sleep and relock to loop. 880 */ 881 pipeunlock(rpipe); 882 883 /* 884 * Handle non-blocking mode operation or 885 * wait for more data. 886 */ 887 if (fp->f_flag & FNONBLOCK) { 888 error = EAGAIN; 889 } else { 890 rpipe->pipe_state |= PIPE_WANTR; 891 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 892 PRIBIO | PCATCH, 893 "piperd", 0)) == 0) 894 error = pipelock(rpipe, true); 895 } 896 if (error) 897 goto unlocked_error; 898 } 899 } 900 #ifdef MAC 901 locked_error: 902 #endif 903 pipeunlock(rpipe); 904 905 /* XXX: should probably do this before getting any locks. */ 906 if (error == 0) 907 pipe_timestamp(&rpipe->pipe_atime); 908 unlocked_error: 909 --rpipe->pipe_busy; 910 911 /* 912 * PIPE_WANT processing only makes sense if pipe_busy is 0. 913 */ 914 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 915 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 916 wakeup(rpipe); 917 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 918 /* 919 * Handle write blocking hysteresis. 920 */ 921 if (rpipe->pipe_state & PIPE_WANTW) { 922 rpipe->pipe_state &= ~PIPE_WANTW; 923 wakeup(rpipe); 924 } 925 } 926 927 /* 928 * Only wake up writers if there was actually something read. 929 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs. 930 */ 931 if (nread > 0 && 932 rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF) 933 pipeselwakeup(rpipe); 934 935 PIPE_UNLOCK(rpipe); 936 if (nread > 0) 937 td->td_ru.ru_msgrcv++; 938 return (error); 939 } 940 941 #ifndef PIPE_NODIRECT 942 /* 943 * Map the sending processes' buffer into kernel space and wire it. 944 * This is similar to a physical write operation. 945 */ 946 static int 947 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio) 948 { 949 u_int size; 950 int i; 951 952 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 953 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0, 954 ("%s: PIPE_DIRECTW set on %p", __func__, wpipe)); 955 KASSERT(wpipe->pipe_pages.cnt == 0, 956 ("%s: pipe map for %p contains residual data", __func__, wpipe)); 957 958 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size) 959 size = wpipe->pipe_buffer.size; 960 else 961 size = uio->uio_iov->iov_len; 962 963 wpipe->pipe_state |= PIPE_DIRECTW; 964 PIPE_UNLOCK(wpipe); 965 i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 966 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ, 967 wpipe->pipe_pages.ms, PIPENPAGES); 968 PIPE_LOCK(wpipe); 969 if (i < 0) { 970 wpipe->pipe_state &= ~PIPE_DIRECTW; 971 return (EFAULT); 972 } 973 974 wpipe->pipe_pages.npages = i; 975 wpipe->pipe_pages.pos = 976 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 977 wpipe->pipe_pages.cnt = size; 978 979 uio->uio_iov->iov_len -= size; 980 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 981 if (uio->uio_iov->iov_len == 0) { 982 uio->uio_iov++; 983 uio->uio_iovcnt--; 984 } 985 uio->uio_resid -= size; 986 uio->uio_offset += size; 987 return (0); 988 } 989 990 /* 991 * Unwire the process buffer. 992 */ 993 static void 994 pipe_destroy_write_buffer(struct pipe *wpipe) 995 { 996 997 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 998 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0, 999 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe)); 1000 KASSERT(wpipe->pipe_pages.cnt == 0, 1001 ("%s: pipe map for %p contains residual data", __func__, wpipe)); 1002 1003 wpipe->pipe_state &= ~PIPE_DIRECTW; 1004 vm_page_unhold_pages(wpipe->pipe_pages.ms, wpipe->pipe_pages.npages); 1005 wpipe->pipe_pages.npages = 0; 1006 } 1007 1008 /* 1009 * In the case of a signal, the writing process might go away. This 1010 * code copies the data into the circular buffer so that the source 1011 * pages can be freed without loss of data. 1012 */ 1013 static void 1014 pipe_clone_write_buffer(struct pipe *wpipe) 1015 { 1016 struct uio uio; 1017 struct iovec iov; 1018 int size; 1019 int pos; 1020 1021 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 1022 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0, 1023 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe)); 1024 1025 size = wpipe->pipe_pages.cnt; 1026 pos = wpipe->pipe_pages.pos; 1027 wpipe->pipe_pages.cnt = 0; 1028 1029 wpipe->pipe_buffer.in = size; 1030 wpipe->pipe_buffer.out = 0; 1031 wpipe->pipe_buffer.cnt = size; 1032 1033 PIPE_UNLOCK(wpipe); 1034 iov.iov_base = wpipe->pipe_buffer.buffer; 1035 iov.iov_len = size; 1036 uio.uio_iov = &iov; 1037 uio.uio_iovcnt = 1; 1038 uio.uio_offset = 0; 1039 uio.uio_resid = size; 1040 uio.uio_segflg = UIO_SYSSPACE; 1041 uio.uio_rw = UIO_READ; 1042 uio.uio_td = curthread; 1043 uiomove_fromphys(wpipe->pipe_pages.ms, pos, size, &uio); 1044 PIPE_LOCK(wpipe); 1045 pipe_destroy_write_buffer(wpipe); 1046 } 1047 1048 /* 1049 * This implements the pipe buffer write mechanism. Note that only 1050 * a direct write OR a normal pipe write can be pending at any given time. 1051 * If there are any characters in the pipe buffer, the direct write will 1052 * be deferred until the receiving process grabs all of the bytes from 1053 * the pipe buffer. Then the direct mapping write is set-up. 1054 */ 1055 static int 1056 pipe_direct_write(struct pipe *wpipe, struct uio *uio) 1057 { 1058 int error; 1059 1060 retry: 1061 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 1062 if ((wpipe->pipe_state & PIPE_EOF) != 0) { 1063 error = EPIPE; 1064 goto error1; 1065 } 1066 if (wpipe->pipe_state & PIPE_DIRECTW) { 1067 if (wpipe->pipe_state & PIPE_WANTR) { 1068 wpipe->pipe_state &= ~PIPE_WANTR; 1069 wakeup(wpipe); 1070 } 1071 pipeselwakeup(wpipe); 1072 wpipe->pipe_state |= PIPE_WANTW; 1073 pipeunlock(wpipe); 1074 error = msleep(wpipe, PIPE_MTX(wpipe), 1075 PRIBIO | PCATCH, "pipdww", 0); 1076 pipelock(wpipe, false); 1077 if (error != 0) 1078 goto error1; 1079 goto retry; 1080 } 1081 if (wpipe->pipe_buffer.cnt > 0) { 1082 if (wpipe->pipe_state & PIPE_WANTR) { 1083 wpipe->pipe_state &= ~PIPE_WANTR; 1084 wakeup(wpipe); 1085 } 1086 pipeselwakeup(wpipe); 1087 wpipe->pipe_state |= PIPE_WANTW; 1088 pipeunlock(wpipe); 1089 error = msleep(wpipe, PIPE_MTX(wpipe), 1090 PRIBIO | PCATCH, "pipdwc", 0); 1091 pipelock(wpipe, false); 1092 if (error != 0) 1093 goto error1; 1094 goto retry; 1095 } 1096 1097 error = pipe_build_write_buffer(wpipe, uio); 1098 if (error) { 1099 goto error1; 1100 } 1101 1102 while (wpipe->pipe_pages.cnt != 0 && 1103 (wpipe->pipe_state & PIPE_EOF) == 0) { 1104 if (wpipe->pipe_state & PIPE_WANTR) { 1105 wpipe->pipe_state &= ~PIPE_WANTR; 1106 wakeup(wpipe); 1107 } 1108 pipeselwakeup(wpipe); 1109 wpipe->pipe_state |= PIPE_WANTW; 1110 pipeunlock(wpipe); 1111 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 1112 "pipdwt", 0); 1113 pipelock(wpipe, false); 1114 if (error != 0) 1115 break; 1116 } 1117 1118 if ((wpipe->pipe_state & PIPE_EOF) != 0) { 1119 wpipe->pipe_pages.cnt = 0; 1120 pipe_destroy_write_buffer(wpipe); 1121 pipeselwakeup(wpipe); 1122 error = EPIPE; 1123 } else if (error == EINTR || error == ERESTART) { 1124 pipe_clone_write_buffer(wpipe); 1125 } else { 1126 pipe_destroy_write_buffer(wpipe); 1127 } 1128 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0, 1129 ("pipe %p leaked PIPE_DIRECTW", wpipe)); 1130 return (error); 1131 1132 error1: 1133 wakeup(wpipe); 1134 return (error); 1135 } 1136 #endif 1137 1138 static int 1139 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred, 1140 int flags, struct thread *td) 1141 { 1142 struct pipe *wpipe, *rpipe; 1143 ssize_t orig_resid; 1144 int desiredsize, error; 1145 1146 rpipe = fp->f_data; 1147 wpipe = PIPE_PEER(rpipe); 1148 PIPE_LOCK(rpipe); 1149 error = pipelock(wpipe, true); 1150 if (error) { 1151 PIPE_UNLOCK(rpipe); 1152 return (error); 1153 } 1154 /* 1155 * detect loss of pipe read side, issue SIGPIPE if lost. 1156 */ 1157 if (wpipe->pipe_present != PIPE_ACTIVE || 1158 (wpipe->pipe_state & PIPE_EOF)) { 1159 pipeunlock(wpipe); 1160 PIPE_UNLOCK(rpipe); 1161 return (EPIPE); 1162 } 1163 #ifdef MAC 1164 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair); 1165 if (error) { 1166 pipeunlock(wpipe); 1167 PIPE_UNLOCK(rpipe); 1168 return (error); 1169 } 1170 #endif 1171 ++wpipe->pipe_busy; 1172 1173 /* Choose a larger size if it's advantageous */ 1174 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1175 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1176 if (piperesizeallowed != 1) 1177 break; 1178 if (amountpipekva > maxpipekva / 2) 1179 break; 1180 if (desiredsize == BIG_PIPE_SIZE) 1181 break; 1182 desiredsize = desiredsize * 2; 1183 } 1184 1185 /* Choose a smaller size if we're in a OOM situation */ 1186 if (amountpipekva > (3 * maxpipekva) / 4 && 1187 wpipe->pipe_buffer.size > SMALL_PIPE_SIZE && 1188 wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE && 1189 piperesizeallowed == 1) 1190 desiredsize = SMALL_PIPE_SIZE; 1191 1192 /* Resize if the above determined that a new size was necessary */ 1193 if (desiredsize != wpipe->pipe_buffer.size && 1194 (wpipe->pipe_state & PIPE_DIRECTW) == 0) { 1195 PIPE_UNLOCK(wpipe); 1196 pipespace(wpipe, desiredsize); 1197 PIPE_LOCK(wpipe); 1198 } 1199 MPASS(wpipe->pipe_buffer.size != 0); 1200 1201 orig_resid = uio->uio_resid; 1202 1203 while (uio->uio_resid) { 1204 int space; 1205 1206 if (wpipe->pipe_state & PIPE_EOF) { 1207 error = EPIPE; 1208 break; 1209 } 1210 #ifndef PIPE_NODIRECT 1211 /* 1212 * If the transfer is large, we can gain performance if 1213 * we do process-to-process copies directly. 1214 * If the write is non-blocking, we don't use the 1215 * direct write mechanism. 1216 * 1217 * The direct write mechanism will detect the reader going 1218 * away on us. 1219 */ 1220 if (uio->uio_segflg == UIO_USERSPACE && 1221 uio->uio_iov->iov_len >= pipe_mindirect && 1222 wpipe->pipe_buffer.size >= pipe_mindirect && 1223 (fp->f_flag & FNONBLOCK) == 0) { 1224 error = pipe_direct_write(wpipe, uio); 1225 if (error != 0) 1226 break; 1227 continue; 1228 } 1229 #endif 1230 1231 /* 1232 * Pipe buffered writes cannot be coincidental with 1233 * direct writes. We wait until the currently executing 1234 * direct write is completed before we start filling the 1235 * pipe buffer. We break out if a signal occurs or the 1236 * reader goes away. 1237 */ 1238 if (wpipe->pipe_pages.cnt != 0) { 1239 if (wpipe->pipe_state & PIPE_WANTR) { 1240 wpipe->pipe_state &= ~PIPE_WANTR; 1241 wakeup(wpipe); 1242 } 1243 pipeselwakeup(wpipe); 1244 wpipe->pipe_state |= PIPE_WANTW; 1245 pipeunlock(wpipe); 1246 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1247 "pipbww", 0); 1248 pipelock(wpipe, false); 1249 if (error != 0) 1250 break; 1251 continue; 1252 } 1253 1254 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1255 1256 /* Writes of size <= PIPE_BUF must be atomic. */ 1257 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1258 space = 0; 1259 1260 if (space > 0) { 1261 int size; /* Transfer size */ 1262 int segsize; /* first segment to transfer */ 1263 1264 /* 1265 * Transfer size is minimum of uio transfer 1266 * and free space in pipe buffer. 1267 */ 1268 if (space > uio->uio_resid) 1269 size = uio->uio_resid; 1270 else 1271 size = space; 1272 /* 1273 * First segment to transfer is minimum of 1274 * transfer size and contiguous space in 1275 * pipe buffer. If first segment to transfer 1276 * is less than the transfer size, we've got 1277 * a wraparound in the buffer. 1278 */ 1279 segsize = wpipe->pipe_buffer.size - 1280 wpipe->pipe_buffer.in; 1281 if (segsize > size) 1282 segsize = size; 1283 1284 /* Transfer first segment */ 1285 1286 PIPE_UNLOCK(rpipe); 1287 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1288 segsize, uio); 1289 PIPE_LOCK(rpipe); 1290 1291 if (error == 0 && segsize < size) { 1292 KASSERT(wpipe->pipe_buffer.in + segsize == 1293 wpipe->pipe_buffer.size, 1294 ("Pipe buffer wraparound disappeared")); 1295 /* 1296 * Transfer remaining part now, to 1297 * support atomic writes. Wraparound 1298 * happened. 1299 */ 1300 1301 PIPE_UNLOCK(rpipe); 1302 error = uiomove( 1303 &wpipe->pipe_buffer.buffer[0], 1304 size - segsize, uio); 1305 PIPE_LOCK(rpipe); 1306 } 1307 if (error == 0) { 1308 wpipe->pipe_buffer.in += size; 1309 if (wpipe->pipe_buffer.in >= 1310 wpipe->pipe_buffer.size) { 1311 KASSERT(wpipe->pipe_buffer.in == 1312 size - segsize + 1313 wpipe->pipe_buffer.size, 1314 ("Expected wraparound bad")); 1315 wpipe->pipe_buffer.in = size - segsize; 1316 } 1317 1318 wpipe->pipe_buffer.cnt += size; 1319 KASSERT(wpipe->pipe_buffer.cnt <= 1320 wpipe->pipe_buffer.size, 1321 ("Pipe buffer overflow")); 1322 } 1323 if (error != 0) 1324 break; 1325 continue; 1326 } else { 1327 /* 1328 * If the "read-side" has been blocked, wake it up now. 1329 */ 1330 if (wpipe->pipe_state & PIPE_WANTR) { 1331 wpipe->pipe_state &= ~PIPE_WANTR; 1332 wakeup(wpipe); 1333 } 1334 1335 /* 1336 * don't block on non-blocking I/O 1337 */ 1338 if (fp->f_flag & FNONBLOCK) { 1339 error = EAGAIN; 1340 break; 1341 } 1342 1343 /* 1344 * We have no more space and have something to offer, 1345 * wake up select/poll. 1346 */ 1347 pipeselwakeup(wpipe); 1348 1349 wpipe->pipe_state |= PIPE_WANTW; 1350 pipeunlock(wpipe); 1351 error = msleep(wpipe, PIPE_MTX(rpipe), 1352 PRIBIO | PCATCH, "pipewr", 0); 1353 pipelock(wpipe, false); 1354 if (error != 0) 1355 break; 1356 continue; 1357 } 1358 } 1359 1360 --wpipe->pipe_busy; 1361 1362 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1363 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1364 wakeup(wpipe); 1365 } else if (wpipe->pipe_buffer.cnt > 0) { 1366 /* 1367 * If we have put any characters in the buffer, we wake up 1368 * the reader. 1369 */ 1370 if (wpipe->pipe_state & PIPE_WANTR) { 1371 wpipe->pipe_state &= ~PIPE_WANTR; 1372 wakeup(wpipe); 1373 } 1374 } 1375 1376 /* 1377 * Don't return EPIPE if any byte was written. 1378 * EINTR and other interrupts are handled by generic I/O layer. 1379 * Do not pretend that I/O succeeded for obvious user error 1380 * like EFAULT. 1381 */ 1382 if (uio->uio_resid != orig_resid && error == EPIPE) 1383 error = 0; 1384 1385 if (error == 0) 1386 pipe_timestamp(&wpipe->pipe_mtime); 1387 1388 /* 1389 * We have something to offer, 1390 * wake up select/poll. 1391 */ 1392 if (wpipe->pipe_buffer.cnt) 1393 pipeselwakeup(wpipe); 1394 1395 pipeunlock(wpipe); 1396 PIPE_UNLOCK(rpipe); 1397 if (uio->uio_resid != orig_resid) 1398 td->td_ru.ru_msgsnd++; 1399 return (error); 1400 } 1401 1402 /* ARGSUSED */ 1403 static int 1404 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1405 struct thread *td) 1406 { 1407 struct pipe *cpipe; 1408 int error; 1409 1410 cpipe = fp->f_data; 1411 if (cpipe->pipe_type & PIPE_TYPE_NAMED) 1412 error = vnops.fo_truncate(fp, length, active_cred, td); 1413 else 1414 error = invfo_truncate(fp, length, active_cred, td); 1415 return (error); 1416 } 1417 1418 /* 1419 * we implement a very minimal set of ioctls for compatibility with sockets. 1420 */ 1421 static int 1422 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred, 1423 struct thread *td) 1424 { 1425 struct pipe *mpipe = fp->f_data; 1426 int error; 1427 1428 PIPE_LOCK(mpipe); 1429 1430 #ifdef MAC 1431 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1432 if (error) { 1433 PIPE_UNLOCK(mpipe); 1434 return (error); 1435 } 1436 #endif 1437 1438 error = 0; 1439 switch (cmd) { 1440 case FIONBIO: 1441 break; 1442 1443 case FIOASYNC: 1444 if (*(int *)data) { 1445 mpipe->pipe_state |= PIPE_ASYNC; 1446 } else { 1447 mpipe->pipe_state &= ~PIPE_ASYNC; 1448 } 1449 break; 1450 1451 case FIONREAD: 1452 if (!(fp->f_flag & FREAD)) { 1453 *(int *)data = 0; 1454 PIPE_UNLOCK(mpipe); 1455 return (0); 1456 } 1457 if (mpipe->pipe_pages.cnt != 0) 1458 *(int *)data = mpipe->pipe_pages.cnt; 1459 else 1460 *(int *)data = mpipe->pipe_buffer.cnt; 1461 break; 1462 1463 case FIOSETOWN: 1464 PIPE_UNLOCK(mpipe); 1465 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1466 goto out_unlocked; 1467 1468 case FIOGETOWN: 1469 *(int *)data = fgetown(&mpipe->pipe_sigio); 1470 break; 1471 1472 /* This is deprecated, FIOSETOWN should be used instead. */ 1473 case TIOCSPGRP: 1474 PIPE_UNLOCK(mpipe); 1475 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1476 goto out_unlocked; 1477 1478 /* This is deprecated, FIOGETOWN should be used instead. */ 1479 case TIOCGPGRP: 1480 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1481 break; 1482 1483 default: 1484 error = ENOTTY; 1485 break; 1486 } 1487 PIPE_UNLOCK(mpipe); 1488 out_unlocked: 1489 return (error); 1490 } 1491 1492 static int 1493 pipe_poll(struct file *fp, int events, struct ucred *active_cred, 1494 struct thread *td) 1495 { 1496 struct pipe *rpipe; 1497 struct pipe *wpipe; 1498 int levents, revents; 1499 #ifdef MAC 1500 int error; 1501 #endif 1502 1503 revents = 0; 1504 rpipe = fp->f_data; 1505 wpipe = PIPE_PEER(rpipe); 1506 PIPE_LOCK(rpipe); 1507 #ifdef MAC 1508 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair); 1509 if (error) 1510 goto locked_error; 1511 #endif 1512 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) 1513 if (rpipe->pipe_pages.cnt > 0 || rpipe->pipe_buffer.cnt > 0) 1514 revents |= events & (POLLIN | POLLRDNORM); 1515 1516 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) 1517 if (wpipe->pipe_present != PIPE_ACTIVE || 1518 (wpipe->pipe_state & PIPE_EOF) || 1519 ((wpipe->pipe_state & PIPE_DIRECTW) == 0 && 1520 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF || 1521 wpipe->pipe_buffer.size == 0))) 1522 revents |= events & (POLLOUT | POLLWRNORM); 1523 1524 levents = events & 1525 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND); 1526 if (rpipe->pipe_type & PIPE_TYPE_NAMED && fp->f_flag & FREAD && levents && 1527 fp->f_pipegen == rpipe->pipe_wgen) 1528 events |= POLLINIGNEOF; 1529 1530 if ((events & POLLINIGNEOF) == 0) { 1531 if (rpipe->pipe_state & PIPE_EOF) { 1532 if (fp->f_flag & FREAD) 1533 revents |= (events & (POLLIN | POLLRDNORM)); 1534 if (wpipe->pipe_present != PIPE_ACTIVE || 1535 (wpipe->pipe_state & PIPE_EOF)) 1536 revents |= POLLHUP; 1537 } 1538 } 1539 1540 if (revents == 0) { 1541 /* 1542 * Add ourselves regardless of eventmask as we have to return 1543 * POLLHUP even if it was not asked for. 1544 */ 1545 if ((fp->f_flag & FREAD) != 0) { 1546 selrecord(td, &rpipe->pipe_sel); 1547 if (SEL_WAITING(&rpipe->pipe_sel)) 1548 rpipe->pipe_state |= PIPE_SEL; 1549 } 1550 1551 if ((fp->f_flag & FWRITE) != 0 && 1552 wpipe->pipe_present == PIPE_ACTIVE) { 1553 selrecord(td, &wpipe->pipe_sel); 1554 if (SEL_WAITING(&wpipe->pipe_sel)) 1555 wpipe->pipe_state |= PIPE_SEL; 1556 } 1557 } 1558 #ifdef MAC 1559 locked_error: 1560 #endif 1561 PIPE_UNLOCK(rpipe); 1562 1563 return (revents); 1564 } 1565 1566 /* 1567 * We shouldn't need locks here as we're doing a read and this should 1568 * be a natural race. 1569 */ 1570 static int 1571 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred) 1572 { 1573 struct pipe *pipe; 1574 #ifdef MAC 1575 int error; 1576 #endif 1577 1578 pipe = fp->f_data; 1579 #ifdef MAC 1580 if (mac_pipe_check_stat_enabled()) { 1581 PIPE_LOCK(pipe); 1582 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair); 1583 PIPE_UNLOCK(pipe); 1584 if (error) { 1585 return (error); 1586 } 1587 } 1588 #endif 1589 1590 /* For named pipes ask the underlying filesystem. */ 1591 if (pipe->pipe_type & PIPE_TYPE_NAMED) { 1592 return (vnops.fo_stat(fp, ub, active_cred)); 1593 } 1594 1595 bzero(ub, sizeof(*ub)); 1596 ub->st_mode = S_IFIFO; 1597 ub->st_blksize = PAGE_SIZE; 1598 if (pipe->pipe_pages.cnt != 0) 1599 ub->st_size = pipe->pipe_pages.cnt; 1600 else 1601 ub->st_size = pipe->pipe_buffer.cnt; 1602 ub->st_blocks = howmany(ub->st_size, ub->st_blksize); 1603 ub->st_atim = pipe->pipe_atime; 1604 ub->st_mtim = pipe->pipe_mtime; 1605 ub->st_ctim = pipe->pipe_ctime; 1606 ub->st_uid = fp->f_cred->cr_uid; 1607 ub->st_gid = fp->f_cred->cr_gid; 1608 ub->st_dev = pipedev_ino; 1609 ub->st_ino = pipe->pipe_ino; 1610 /* 1611 * Left as 0: st_nlink, st_rdev, st_flags, st_gen. 1612 */ 1613 return (0); 1614 } 1615 1616 /* ARGSUSED */ 1617 static int 1618 pipe_close(struct file *fp, struct thread *td) 1619 { 1620 1621 if (fp->f_vnode != NULL) 1622 return vnops.fo_close(fp, td); 1623 fp->f_ops = &badfileops; 1624 pipe_dtor(fp->f_data); 1625 fp->f_data = NULL; 1626 return (0); 1627 } 1628 1629 static int 1630 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td) 1631 { 1632 struct pipe *cpipe; 1633 int error; 1634 1635 cpipe = fp->f_data; 1636 if (cpipe->pipe_type & PIPE_TYPE_NAMED) 1637 error = vn_chmod(fp, mode, active_cred, td); 1638 else 1639 error = invfo_chmod(fp, mode, active_cred, td); 1640 return (error); 1641 } 1642 1643 static int 1644 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 1645 struct thread *td) 1646 { 1647 struct pipe *cpipe; 1648 int error; 1649 1650 cpipe = fp->f_data; 1651 if (cpipe->pipe_type & PIPE_TYPE_NAMED) 1652 error = vn_chown(fp, uid, gid, active_cred, td); 1653 else 1654 error = invfo_chown(fp, uid, gid, active_cred, td); 1655 return (error); 1656 } 1657 1658 static int 1659 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) 1660 { 1661 struct pipe *pi; 1662 1663 if (fp->f_type == DTYPE_FIFO) 1664 return (vn_fill_kinfo(fp, kif, fdp)); 1665 kif->kf_type = KF_TYPE_PIPE; 1666 pi = fp->f_data; 1667 kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi; 1668 kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer; 1669 kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt; 1670 kif->kf_un.kf_pipe.kf_pipe_buffer_in = pi->pipe_buffer.in; 1671 kif->kf_un.kf_pipe.kf_pipe_buffer_out = pi->pipe_buffer.out; 1672 kif->kf_un.kf_pipe.kf_pipe_buffer_size = pi->pipe_buffer.size; 1673 return (0); 1674 } 1675 1676 static void 1677 pipe_free_kmem(struct pipe *cpipe) 1678 { 1679 1680 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1681 ("pipe_free_kmem: pipe mutex locked")); 1682 1683 if (cpipe->pipe_buffer.buffer != NULL) { 1684 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size); 1685 chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo, 1686 -cpipe->pipe_buffer.size, 0); 1687 vm_map_remove(pipe_map, 1688 (vm_offset_t)cpipe->pipe_buffer.buffer, 1689 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1690 cpipe->pipe_buffer.buffer = NULL; 1691 } 1692 #ifndef PIPE_NODIRECT 1693 { 1694 cpipe->pipe_pages.cnt = 0; 1695 cpipe->pipe_pages.pos = 0; 1696 cpipe->pipe_pages.npages = 0; 1697 } 1698 #endif 1699 } 1700 1701 /* 1702 * shutdown the pipe 1703 */ 1704 static void 1705 pipeclose(struct pipe *cpipe) 1706 { 1707 #ifdef MAC 1708 struct pipepair *pp; 1709 #endif 1710 struct pipe *ppipe; 1711 1712 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1713 1714 PIPE_LOCK(cpipe); 1715 pipelock(cpipe, false); 1716 #ifdef MAC 1717 pp = cpipe->pipe_pair; 1718 #endif 1719 1720 /* 1721 * If the other side is blocked, wake it up saying that 1722 * we want to close it down. 1723 */ 1724 cpipe->pipe_state |= PIPE_EOF; 1725 while (cpipe->pipe_busy) { 1726 wakeup(cpipe); 1727 cpipe->pipe_state |= PIPE_WANT; 1728 pipeunlock(cpipe); 1729 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1730 pipelock(cpipe, false); 1731 } 1732 1733 pipeselwakeup(cpipe); 1734 1735 /* 1736 * Disconnect from peer, if any. 1737 */ 1738 ppipe = cpipe->pipe_peer; 1739 if (ppipe->pipe_present == PIPE_ACTIVE) { 1740 ppipe->pipe_state |= PIPE_EOF; 1741 wakeup(ppipe); 1742 pipeselwakeup(ppipe); 1743 } 1744 1745 /* 1746 * Mark this endpoint as free. Release kmem resources. We 1747 * don't mark this endpoint as unused until we've finished 1748 * doing that, or the pipe might disappear out from under 1749 * us. 1750 */ 1751 PIPE_UNLOCK(cpipe); 1752 pipe_free_kmem(cpipe); 1753 PIPE_LOCK(cpipe); 1754 cpipe->pipe_present = PIPE_CLOSING; 1755 pipeunlock(cpipe); 1756 1757 /* 1758 * knlist_clear() may sleep dropping the PIPE_MTX. Set the 1759 * PIPE_FINALIZED, that allows other end to free the 1760 * pipe_pair, only after the knotes are completely dismantled. 1761 */ 1762 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1763 cpipe->pipe_present = PIPE_FINALIZED; 1764 seldrain(&cpipe->pipe_sel); 1765 knlist_destroy(&cpipe->pipe_sel.si_note); 1766 1767 /* 1768 * If both endpoints are now closed, release the memory for the 1769 * pipe pair. If not, unlock. 1770 */ 1771 if (ppipe->pipe_present == PIPE_FINALIZED) { 1772 PIPE_UNLOCK(cpipe); 1773 crfree(cpipe->pipe_pair->pp_owner); 1774 #ifdef MAC 1775 mac_pipe_destroy(pp); 1776 #endif 1777 uma_zfree(pipe_zone, cpipe->pipe_pair); 1778 } else 1779 PIPE_UNLOCK(cpipe); 1780 } 1781 1782 /*ARGSUSED*/ 1783 static int 1784 pipe_kqfilter(struct file *fp, struct knote *kn) 1785 { 1786 struct pipe *cpipe; 1787 1788 /* 1789 * If a filter is requested that is not supported by this file 1790 * descriptor, don't return an error, but also don't ever generate an 1791 * event. 1792 */ 1793 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) { 1794 kn->kn_fop = &pipe_nfiltops; 1795 return (0); 1796 } 1797 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) { 1798 kn->kn_fop = &pipe_nfiltops; 1799 return (0); 1800 } 1801 cpipe = fp->f_data; 1802 PIPE_LOCK(cpipe); 1803 switch (kn->kn_filter) { 1804 case EVFILT_READ: 1805 kn->kn_fop = &pipe_rfiltops; 1806 break; 1807 case EVFILT_WRITE: 1808 kn->kn_fop = &pipe_wfiltops; 1809 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) { 1810 /* other end of pipe has been closed */ 1811 PIPE_UNLOCK(cpipe); 1812 return (EPIPE); 1813 } 1814 cpipe = PIPE_PEER(cpipe); 1815 break; 1816 default: 1817 if ((cpipe->pipe_type & PIPE_TYPE_NAMED) != 0) { 1818 PIPE_UNLOCK(cpipe); 1819 return (vnops.fo_kqfilter(fp, kn)); 1820 } 1821 PIPE_UNLOCK(cpipe); 1822 return (EINVAL); 1823 } 1824 1825 kn->kn_hook = cpipe; 1826 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1827 PIPE_UNLOCK(cpipe); 1828 return (0); 1829 } 1830 1831 static void 1832 filt_pipedetach(struct knote *kn) 1833 { 1834 struct pipe *cpipe = kn->kn_hook; 1835 1836 PIPE_LOCK(cpipe); 1837 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1838 PIPE_UNLOCK(cpipe); 1839 } 1840 1841 /*ARGSUSED*/ 1842 static int 1843 filt_piperead(struct knote *kn, long hint) 1844 { 1845 struct file *fp = kn->kn_fp; 1846 struct pipe *rpipe = kn->kn_hook; 1847 1848 PIPE_LOCK_ASSERT(rpipe, MA_OWNED); 1849 kn->kn_data = rpipe->pipe_buffer.cnt; 1850 if (kn->kn_data == 0) 1851 kn->kn_data = rpipe->pipe_pages.cnt; 1852 1853 if ((rpipe->pipe_state & PIPE_EOF) != 0 && 1854 ((rpipe->pipe_type & PIPE_TYPE_NAMED) == 0 || 1855 fp->f_pipegen != rpipe->pipe_wgen)) { 1856 kn->kn_flags |= EV_EOF; 1857 return (1); 1858 } 1859 kn->kn_flags &= ~EV_EOF; 1860 return (kn->kn_data > 0); 1861 } 1862 1863 /*ARGSUSED*/ 1864 static int 1865 filt_pipewrite(struct knote *kn, long hint) 1866 { 1867 struct pipe *wpipe = kn->kn_hook; 1868 1869 /* 1870 * If this end of the pipe is closed, the knote was removed from the 1871 * knlist and the list lock (i.e., the pipe lock) is therefore not held. 1872 */ 1873 if (wpipe->pipe_present == PIPE_ACTIVE || 1874 (wpipe->pipe_type & PIPE_TYPE_NAMED) != 0) { 1875 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 1876 1877 if (wpipe->pipe_state & PIPE_DIRECTW) { 1878 kn->kn_data = 0; 1879 } else if (wpipe->pipe_buffer.size > 0) { 1880 kn->kn_data = wpipe->pipe_buffer.size - 1881 wpipe->pipe_buffer.cnt; 1882 } else { 1883 kn->kn_data = PIPE_BUF; 1884 } 1885 } 1886 1887 if (wpipe->pipe_present != PIPE_ACTIVE || 1888 (wpipe->pipe_state & PIPE_EOF)) { 1889 kn->kn_flags |= EV_EOF; 1890 return (1); 1891 } 1892 kn->kn_flags &= ~EV_EOF; 1893 return (kn->kn_data >= PIPE_BUF); 1894 } 1895 1896 static void 1897 filt_pipedetach_notsup(struct knote *kn) 1898 { 1899 1900 } 1901 1902 static int 1903 filt_pipenotsup(struct knote *kn, long hint) 1904 { 1905 1906 return (0); 1907 } 1908 1909 static int 1910 filt_pipedump(struct proc *p, struct knote *kn, 1911 struct kinfo_knote *kin) 1912 { 1913 struct pipe *pipe = kn->kn_hook; 1914 1915 kin->knt_extdata = KNOTE_EXTDATA_PIPE; 1916 kin->knt_pipe.knt_pipe_ino = pipe->pipe_ino; 1917 return (0); 1918 } 1919