xref: /freebsd/sys/kern/sys_pipe.c (revision ef8b872301c5fbeeea3b0410b369b8f36584cd65)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1996 John S. Dyson
5  * Copyright (c) 2012 Giovanni Trematerra
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Absolutely no warranty of function or purpose is made by the author
18  *    John S. Dyson.
19  * 4. Modifications may be freely made to this file if the above conditions
20  *    are met.
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, the sending process pins the underlying pages in
36  * memory, and the receiving process copies directly from these pinned pages
37  * in the sending process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.
50  *
51  * In order to limit the resource use of pipes, two sysctls exist:
52  *
53  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54  * address space available to us in pipe_map. This value is normally
55  * autotuned, but may also be loader tuned.
56  *
57  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58  * memory in use by pipes.
59  *
60  * Based on how large pipekva is relative to maxpipekva, the following
61  * will happen:
62  *
63  * 0% - 50%:
64  *     New pipes are given 16K of memory backing, pipes may dynamically
65  *     grow to as large as 64K where needed.
66  * 50% - 75%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes may NOT grow.
69  * 75% - 100%:
70  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
71  *     existing pipes will be shrunk down to 4K whenever possible.
72  *
73  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
74  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75  * resize which MUST occur for reverse-direction pipes when they are
76  * first used.
77  *
78  * Additional information about the current state of pipes may be obtained
79  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80  * and kern.ipc.piperesizefail.
81  *
82  * Locking rules:  There are two locks present here:  A mutex, used via
83  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
84  * the flag, as mutexes can not persist over uiomove.  The mutex
85  * exists only to guard access to the flag, and is not in itself a
86  * locking mechanism.  Also note that there is only a single mutex for
87  * both directions of a pipe.
88  *
89  * As pipelock() may have to sleep before it can acquire the flag, it
90  * is important to reread all data after a call to pipelock(); everything
91  * in the structure may have changed.
92  */
93 
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD$");
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122 
123 #include <security/mac/mac_framework.h>
124 
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134 
135 /*
136  * Use this define if you want to disable *fancy* VM things.  Expect an
137  * approx 30% decrease in transfer rate.  This could be useful for
138  * NetBSD or OpenBSD.
139  */
140 /* #define PIPE_NODIRECT */
141 
142 #define PIPE_PEER(pipe)	\
143 	(((pipe)->pipe_type & PIPE_TYPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144 
145 /*
146  * interfaces to the outside world
147  */
148 static fo_rdwr_t	pipe_read;
149 static fo_rdwr_t	pipe_write;
150 static fo_truncate_t	pipe_truncate;
151 static fo_ioctl_t	pipe_ioctl;
152 static fo_poll_t	pipe_poll;
153 static fo_kqfilter_t	pipe_kqfilter;
154 static fo_stat_t	pipe_stat;
155 static fo_close_t	pipe_close;
156 static fo_chmod_t	pipe_chmod;
157 static fo_chown_t	pipe_chown;
158 static fo_fill_kinfo_t	pipe_fill_kinfo;
159 
160 struct fileops pipeops = {
161 	.fo_read = pipe_read,
162 	.fo_write = pipe_write,
163 	.fo_truncate = pipe_truncate,
164 	.fo_ioctl = pipe_ioctl,
165 	.fo_poll = pipe_poll,
166 	.fo_kqfilter = pipe_kqfilter,
167 	.fo_stat = pipe_stat,
168 	.fo_close = pipe_close,
169 	.fo_chmod = pipe_chmod,
170 	.fo_chown = pipe_chown,
171 	.fo_sendfile = invfo_sendfile,
172 	.fo_fill_kinfo = pipe_fill_kinfo,
173 	.fo_flags = DFLAG_PASSABLE
174 };
175 
176 static void	filt_pipedetach(struct knote *kn);
177 static void	filt_pipedetach_notsup(struct knote *kn);
178 static int	filt_pipenotsup(struct knote *kn, long hint);
179 static int	filt_piperead(struct knote *kn, long hint);
180 static int	filt_pipewrite(struct knote *kn, long hint);
181 
182 static struct filterops pipe_nfiltops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_pipedetach_notsup,
185 	.f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_pipedetach,
190 	.f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_pipedetach,
195 	.f_event = filt_pipewrite
196 };
197 
198 /*
199  * Default pipe buffer size(s), this can be kind-of large now because pipe
200  * space is pageable.  The pipe code will try to maintain locality of
201  * reference for performance reasons, so small amounts of outstanding I/O
202  * will not wipe the cache.
203  */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206 
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212 static long pipe_mindirect = PIPE_MINDIRECT;
213 
214 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
215 	   &maxpipekva, 0, "Pipe KVA limit");
216 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
217 	   &amountpipekva, 0, "Pipe KVA usage");
218 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
219 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
220 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
221 	  &pipeallocfail, 0, "Pipe allocation failures");
222 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
223 	  &piperesizefail, 0, "Pipe resize failures");
224 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
225 	  &piperesizeallowed, 0, "Pipe resizing allowed");
226 
227 static void pipeinit(void *dummy __unused);
228 static void pipeclose(struct pipe *cpipe);
229 static void pipe_free_kmem(struct pipe *cpipe);
230 static int pipe_create(struct pipe *pipe, bool backing);
231 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
232 static __inline int pipelock(struct pipe *cpipe, int catch);
233 static __inline void pipeunlock(struct pipe *cpipe);
234 static void pipe_timestamp(struct timespec *tsp);
235 #ifndef PIPE_NODIRECT
236 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
237 static void pipe_destroy_write_buffer(struct pipe *wpipe);
238 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
239 static void pipe_clone_write_buffer(struct pipe *wpipe);
240 #endif
241 static int pipespace(struct pipe *cpipe, int size);
242 static int pipespace_new(struct pipe *cpipe, int size);
243 
244 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
245 static int	pipe_zone_init(void *mem, int size, int flags);
246 static void	pipe_zone_fini(void *mem, int size);
247 
248 static uma_zone_t pipe_zone;
249 static struct unrhdr64 pipeino_unr;
250 static dev_t pipedev_ino;
251 
252 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
253 
254 static void
255 pipeinit(void *dummy __unused)
256 {
257 
258 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
259 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
260 	    UMA_ALIGN_PTR, 0);
261 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
262 	new_unrhdr64(&pipeino_unr, 1);
263 	pipedev_ino = devfs_alloc_cdp_inode();
264 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
265 }
266 
267 static int
268 sysctl_handle_pipe_mindirect(SYSCTL_HANDLER_ARGS)
269 {
270 	int error = 0;
271 	long tmp_pipe_mindirect = pipe_mindirect;
272 
273 	error = sysctl_handle_long(oidp, &tmp_pipe_mindirect, arg2, req);
274 	if (error != 0 || req->newptr == NULL)
275 		return (error);
276 
277 	/*
278 	 * Don't allow pipe_mindirect to be set so low that we violate
279 	 * atomicity requirements.
280 	 */
281 	if (tmp_pipe_mindirect <= PIPE_BUF)
282 		return (EINVAL);
283 	pipe_mindirect = tmp_pipe_mindirect;
284 	return (0);
285 }
286 SYSCTL_OID(_kern_ipc, OID_AUTO, pipe_mindirect, CTLTYPE_LONG | CTLFLAG_RW,
287     &pipe_mindirect, 0, sysctl_handle_pipe_mindirect, "L",
288     "Minimum write size triggering VM optimization");
289 
290 static int
291 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
292 {
293 	struct pipepair *pp;
294 	struct pipe *rpipe, *wpipe;
295 
296 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
297 
298 	pp = (struct pipepair *)mem;
299 
300 	/*
301 	 * We zero both pipe endpoints to make sure all the kmem pointers
302 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
303 	 * endpoints with the same time.
304 	 */
305 	rpipe = &pp->pp_rpipe;
306 	bzero(rpipe, sizeof(*rpipe));
307 	pipe_timestamp(&rpipe->pipe_ctime);
308 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
309 
310 	wpipe = &pp->pp_wpipe;
311 	bzero(wpipe, sizeof(*wpipe));
312 	wpipe->pipe_ctime = rpipe->pipe_ctime;
313 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
314 
315 	rpipe->pipe_peer = wpipe;
316 	rpipe->pipe_pair = pp;
317 	wpipe->pipe_peer = rpipe;
318 	wpipe->pipe_pair = pp;
319 
320 	/*
321 	 * Mark both endpoints as present; they will later get free'd
322 	 * one at a time.  When both are free'd, then the whole pair
323 	 * is released.
324 	 */
325 	rpipe->pipe_present = PIPE_ACTIVE;
326 	wpipe->pipe_present = PIPE_ACTIVE;
327 
328 	/*
329 	 * Eventually, the MAC Framework may initialize the label
330 	 * in ctor or init, but for now we do it elswhere to avoid
331 	 * blocking in ctor or init.
332 	 */
333 	pp->pp_label = NULL;
334 
335 	return (0);
336 }
337 
338 static int
339 pipe_zone_init(void *mem, int size, int flags)
340 {
341 	struct pipepair *pp;
342 
343 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
344 
345 	pp = (struct pipepair *)mem;
346 
347 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
348 	return (0);
349 }
350 
351 static void
352 pipe_zone_fini(void *mem, int size)
353 {
354 	struct pipepair *pp;
355 
356 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
357 
358 	pp = (struct pipepair *)mem;
359 
360 	mtx_destroy(&pp->pp_mtx);
361 }
362 
363 static int
364 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
365 {
366 	struct pipepair *pp;
367 	struct pipe *rpipe, *wpipe;
368 	int error;
369 
370 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
371 #ifdef MAC
372 	/*
373 	 * The MAC label is shared between the connected endpoints.  As a
374 	 * result mac_pipe_init() and mac_pipe_create() are called once
375 	 * for the pair, and not on the endpoints.
376 	 */
377 	mac_pipe_init(pp);
378 	mac_pipe_create(td->td_ucred, pp);
379 #endif
380 	rpipe = &pp->pp_rpipe;
381 	wpipe = &pp->pp_wpipe;
382 
383 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
384 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
385 
386 	/*
387 	 * Only the forward direction pipe is backed by big buffer by
388 	 * default.
389 	 */
390 	error = pipe_create(rpipe, true);
391 	if (error != 0)
392 		goto fail;
393 	error = pipe_create(wpipe, false);
394 	if (error != 0) {
395 		/*
396 		 * This cleanup leaves the pipe inode number for rpipe
397 		 * still allocated, but never used.  We do not free
398 		 * inode numbers for opened pipes, which is required
399 		 * for correctness because numbers must be unique.
400 		 * But also it avoids any memory use by the unr
401 		 * allocator, so stashing away the transient inode
402 		 * number is reasonable.
403 		 */
404 		pipe_free_kmem(rpipe);
405 		goto fail;
406 	}
407 
408 	rpipe->pipe_state |= PIPE_DIRECTOK;
409 	wpipe->pipe_state |= PIPE_DIRECTOK;
410 	return (0);
411 
412 fail:
413 	knlist_destroy(&rpipe->pipe_sel.si_note);
414 	knlist_destroy(&wpipe->pipe_sel.si_note);
415 #ifdef MAC
416 	mac_pipe_destroy(pp);
417 #endif
418 	uma_zfree(pipe_zone, pp);
419 	return (error);
420 }
421 
422 int
423 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
424 {
425 	struct pipepair *pp;
426 	int error;
427 
428 	error = pipe_paircreate(td, &pp);
429 	if (error != 0)
430 		return (error);
431 	pp->pp_rpipe.pipe_type |= PIPE_TYPE_NAMED;
432 	*ppipe = &pp->pp_rpipe;
433 	return (0);
434 }
435 
436 void
437 pipe_dtor(struct pipe *dpipe)
438 {
439 	struct pipe *peer;
440 
441 	peer = (dpipe->pipe_type & PIPE_TYPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
442 	funsetown(&dpipe->pipe_sigio);
443 	pipeclose(dpipe);
444 	if (peer != NULL) {
445 		funsetown(&peer->pipe_sigio);
446 		pipeclose(peer);
447 	}
448 }
449 
450 /*
451  * Get a timestamp.
452  *
453  * This used to be vfs_timestamp but the higher precision is unnecessary and
454  * can very negatively affect performance in virtualized environments (e.g., on
455  * vms running on amd64 when using the rdtscp instruction).
456  */
457 static void
458 pipe_timestamp(struct timespec *tsp)
459 {
460 
461 	getnanotime(tsp);
462 }
463 
464 /*
465  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
466  * the zone pick up the pieces via pipeclose().
467  */
468 int
469 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
470     struct filecaps *fcaps2)
471 {
472 	struct file *rf, *wf;
473 	struct pipe *rpipe, *wpipe;
474 	struct pipepair *pp;
475 	int fd, fflags, error;
476 
477 	error = pipe_paircreate(td, &pp);
478 	if (error != 0)
479 		return (error);
480 	rpipe = &pp->pp_rpipe;
481 	wpipe = &pp->pp_wpipe;
482 	error = falloc_caps(td, &rf, &fd, flags, fcaps1);
483 	if (error) {
484 		pipeclose(rpipe);
485 		pipeclose(wpipe);
486 		return (error);
487 	}
488 	/* An extra reference on `rf' has been held for us by falloc_caps(). */
489 	fildes[0] = fd;
490 
491 	fflags = FREAD | FWRITE;
492 	if ((flags & O_NONBLOCK) != 0)
493 		fflags |= FNONBLOCK;
494 
495 	/*
496 	 * Warning: once we've gotten past allocation of the fd for the
497 	 * read-side, we can only drop the read side via fdrop() in order
498 	 * to avoid races against processes which manage to dup() the read
499 	 * side while we are blocked trying to allocate the write side.
500 	 */
501 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
502 	error = falloc_caps(td, &wf, &fd, flags, fcaps2);
503 	if (error) {
504 		fdclose(td, rf, fildes[0]);
505 		fdrop(rf, td);
506 		/* rpipe has been closed by fdrop(). */
507 		pipeclose(wpipe);
508 		return (error);
509 	}
510 	/* An extra reference on `wf' has been held for us by falloc_caps(). */
511 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
512 	fdrop(wf, td);
513 	fildes[1] = fd;
514 	fdrop(rf, td);
515 
516 	return (0);
517 }
518 
519 #ifdef COMPAT_FREEBSD10
520 /* ARGSUSED */
521 int
522 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
523 {
524 	int error;
525 	int fildes[2];
526 
527 	error = kern_pipe(td, fildes, 0, NULL, NULL);
528 	if (error)
529 		return (error);
530 
531 	td->td_retval[0] = fildes[0];
532 	td->td_retval[1] = fildes[1];
533 
534 	return (0);
535 }
536 #endif
537 
538 int
539 sys_pipe2(struct thread *td, struct pipe2_args *uap)
540 {
541 	int error, fildes[2];
542 
543 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
544 		return (EINVAL);
545 	error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
546 	if (error)
547 		return (error);
548 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
549 	if (error) {
550 		(void)kern_close(td, fildes[0]);
551 		(void)kern_close(td, fildes[1]);
552 	}
553 	return (error);
554 }
555 
556 /*
557  * Allocate kva for pipe circular buffer, the space is pageable
558  * This routine will 'realloc' the size of a pipe safely, if it fails
559  * it will retain the old buffer.
560  * If it fails it will return ENOMEM.
561  */
562 static int
563 pipespace_new(struct pipe *cpipe, int size)
564 {
565 	caddr_t buffer;
566 	int error, cnt, firstseg;
567 	static int curfail = 0;
568 	static struct timeval lastfail;
569 
570 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
571 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
572 		("pipespace: resize of direct writes not allowed"));
573 retry:
574 	cnt = cpipe->pipe_buffer.cnt;
575 	if (cnt > size)
576 		size = cnt;
577 
578 	size = round_page(size);
579 	buffer = (caddr_t) vm_map_min(pipe_map);
580 
581 	error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
582 	    VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
583 	if (error != KERN_SUCCESS) {
584 		if (cpipe->pipe_buffer.buffer == NULL &&
585 		    size > SMALL_PIPE_SIZE) {
586 			size = SMALL_PIPE_SIZE;
587 			pipefragretry++;
588 			goto retry;
589 		}
590 		if (cpipe->pipe_buffer.buffer == NULL) {
591 			pipeallocfail++;
592 			if (ppsratecheck(&lastfail, &curfail, 1))
593 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
594 		} else {
595 			piperesizefail++;
596 		}
597 		return (ENOMEM);
598 	}
599 
600 	/* copy data, then free old resources if we're resizing */
601 	if (cnt > 0) {
602 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
603 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
604 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
605 				buffer, firstseg);
606 			if ((cnt - firstseg) > 0)
607 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
608 					cpipe->pipe_buffer.in);
609 		} else {
610 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
611 				buffer, cnt);
612 		}
613 	}
614 	pipe_free_kmem(cpipe);
615 	cpipe->pipe_buffer.buffer = buffer;
616 	cpipe->pipe_buffer.size = size;
617 	cpipe->pipe_buffer.in = cnt;
618 	cpipe->pipe_buffer.out = 0;
619 	cpipe->pipe_buffer.cnt = cnt;
620 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
621 	return (0);
622 }
623 
624 /*
625  * Wrapper for pipespace_new() that performs locking assertions.
626  */
627 static int
628 pipespace(struct pipe *cpipe, int size)
629 {
630 
631 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
632 	    ("Unlocked pipe passed to pipespace"));
633 	return (pipespace_new(cpipe, size));
634 }
635 
636 /*
637  * lock a pipe for I/O, blocking other access
638  */
639 static __inline int
640 pipelock(struct pipe *cpipe, int catch)
641 {
642 	int error, prio;
643 
644 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
645 
646 	prio = PRIBIO;
647 	if (catch)
648 		prio |= PCATCH;
649 	while (cpipe->pipe_state & PIPE_LOCKFL) {
650 		KASSERT(cpipe->pipe_waiters >= 0,
651 		    ("%s: bad waiter count %d", __func__,
652 		    cpipe->pipe_waiters));
653 		cpipe->pipe_waiters++;
654 		error = msleep(&cpipe->pipe_waiters, PIPE_MTX(cpipe), prio,
655 		    "pipelk", 0);
656 		cpipe->pipe_waiters--;
657 		if (error != 0)
658 			return (error);
659 	}
660 	cpipe->pipe_state |= PIPE_LOCKFL;
661 	return (0);
662 }
663 
664 /*
665  * unlock a pipe I/O lock
666  */
667 static __inline void
668 pipeunlock(struct pipe *cpipe)
669 {
670 
671 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
672 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
673 		("Unlocked pipe passed to pipeunlock"));
674 	KASSERT(cpipe->pipe_waiters >= 0,
675 	    ("%s: bad waiter count %d", __func__,
676 	    cpipe->pipe_waiters));
677 	cpipe->pipe_state &= ~PIPE_LOCKFL;
678 	if (cpipe->pipe_waiters > 0)
679 		wakeup_one(&cpipe->pipe_waiters);
680 }
681 
682 void
683 pipeselwakeup(struct pipe *cpipe)
684 {
685 
686 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
687 	if (cpipe->pipe_state & PIPE_SEL) {
688 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
689 		if (!SEL_WAITING(&cpipe->pipe_sel))
690 			cpipe->pipe_state &= ~PIPE_SEL;
691 	}
692 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
693 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
694 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
695 }
696 
697 /*
698  * Initialize and allocate VM and memory for pipe.  The structure
699  * will start out zero'd from the ctor, so we just manage the kmem.
700  */
701 static int
702 pipe_create(struct pipe *pipe, bool large_backing)
703 {
704 	int error;
705 
706 	error = pipespace_new(pipe, !large_backing || amountpipekva >
707 	    maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE);
708 	if (error == 0)
709 		pipe->pipe_ino = alloc_unr64(&pipeino_unr);
710 	return (error);
711 }
712 
713 /* ARGSUSED */
714 static int
715 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
716     int flags, struct thread *td)
717 {
718 	struct pipe *rpipe;
719 	int error;
720 	int nread = 0;
721 	int size;
722 
723 	rpipe = fp->f_data;
724 
725 	/*
726 	 * Try to avoid locking the pipe if we have nothing to do.
727 	 *
728 	 * There are programs which share one pipe amongst multiple processes
729 	 * and perform non-blocking reads in parallel, even if the pipe is
730 	 * empty.  This in particular is the case with BSD make, which when
731 	 * spawned with a high -j number can find itself with over half of the
732 	 * calls failing to find anything.
733 	 */
734 	if ((fp->f_flag & FNONBLOCK) != 0 && !mac_pipe_check_read_enabled()) {
735 		if (__predict_false(uio->uio_resid == 0))
736 			return (0);
737 		if ((atomic_load_short(&rpipe->pipe_state) & PIPE_EOF) != 0)
738 			return (0);
739 		if (atomic_load_int(&rpipe->pipe_buffer.cnt) == 0 &&
740 		    atomic_load_int(&rpipe->pipe_pages.cnt) == 0)
741 			return (EAGAIN);
742 	}
743 
744 	PIPE_LOCK(rpipe);
745 	++rpipe->pipe_busy;
746 	error = pipelock(rpipe, 1);
747 	if (error)
748 		goto unlocked_error;
749 
750 #ifdef MAC
751 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
752 	if (error)
753 		goto locked_error;
754 #endif
755 	if (amountpipekva > (3 * maxpipekva) / 4) {
756 		if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 &&
757 		    rpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
758 		    rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
759 		    piperesizeallowed == 1) {
760 			PIPE_UNLOCK(rpipe);
761 			pipespace(rpipe, SMALL_PIPE_SIZE);
762 			PIPE_LOCK(rpipe);
763 		}
764 	}
765 
766 	while (uio->uio_resid) {
767 		/*
768 		 * normal pipe buffer receive
769 		 */
770 		if (rpipe->pipe_buffer.cnt > 0) {
771 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
772 			if (size > rpipe->pipe_buffer.cnt)
773 				size = rpipe->pipe_buffer.cnt;
774 			if (size > uio->uio_resid)
775 				size = uio->uio_resid;
776 
777 			PIPE_UNLOCK(rpipe);
778 			error = uiomove(
779 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
780 			    size, uio);
781 			PIPE_LOCK(rpipe);
782 			if (error)
783 				break;
784 
785 			rpipe->pipe_buffer.out += size;
786 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
787 				rpipe->pipe_buffer.out = 0;
788 
789 			rpipe->pipe_buffer.cnt -= size;
790 
791 			/*
792 			 * If there is no more to read in the pipe, reset
793 			 * its pointers to the beginning.  This improves
794 			 * cache hit stats.
795 			 */
796 			if (rpipe->pipe_buffer.cnt == 0) {
797 				rpipe->pipe_buffer.in = 0;
798 				rpipe->pipe_buffer.out = 0;
799 			}
800 			nread += size;
801 #ifndef PIPE_NODIRECT
802 		/*
803 		 * Direct copy, bypassing a kernel buffer.
804 		 */
805 		} else if ((size = rpipe->pipe_pages.cnt) != 0) {
806 			if (size > uio->uio_resid)
807 				size = (u_int) uio->uio_resid;
808 			PIPE_UNLOCK(rpipe);
809 			error = uiomove_fromphys(rpipe->pipe_pages.ms,
810 			    rpipe->pipe_pages.pos, size, uio);
811 			PIPE_LOCK(rpipe);
812 			if (error)
813 				break;
814 			nread += size;
815 			rpipe->pipe_pages.pos += size;
816 			rpipe->pipe_pages.cnt -= size;
817 			if (rpipe->pipe_pages.cnt == 0) {
818 				rpipe->pipe_state &= ~PIPE_WANTW;
819 				wakeup(rpipe);
820 			}
821 #endif
822 		} else {
823 			/*
824 			 * detect EOF condition
825 			 * read returns 0 on EOF, no need to set error
826 			 */
827 			if (rpipe->pipe_state & PIPE_EOF)
828 				break;
829 
830 			/*
831 			 * If the "write-side" has been blocked, wake it up now.
832 			 */
833 			if (rpipe->pipe_state & PIPE_WANTW) {
834 				rpipe->pipe_state &= ~PIPE_WANTW;
835 				wakeup(rpipe);
836 			}
837 
838 			/*
839 			 * Break if some data was read.
840 			 */
841 			if (nread > 0)
842 				break;
843 
844 			/*
845 			 * Unlock the pipe buffer for our remaining processing.
846 			 * We will either break out with an error or we will
847 			 * sleep and relock to loop.
848 			 */
849 			pipeunlock(rpipe);
850 
851 			/*
852 			 * Handle non-blocking mode operation or
853 			 * wait for more data.
854 			 */
855 			if (fp->f_flag & FNONBLOCK) {
856 				error = EAGAIN;
857 			} else {
858 				rpipe->pipe_state |= PIPE_WANTR;
859 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
860 				    PRIBIO | PCATCH,
861 				    "piperd", 0)) == 0)
862 					error = pipelock(rpipe, 1);
863 			}
864 			if (error)
865 				goto unlocked_error;
866 		}
867 	}
868 #ifdef MAC
869 locked_error:
870 #endif
871 	pipeunlock(rpipe);
872 
873 	/* XXX: should probably do this before getting any locks. */
874 	if (error == 0)
875 		pipe_timestamp(&rpipe->pipe_atime);
876 unlocked_error:
877 	--rpipe->pipe_busy;
878 
879 	/*
880 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
881 	 */
882 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
883 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
884 		wakeup(rpipe);
885 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
886 		/*
887 		 * Handle write blocking hysteresis.
888 		 */
889 		if (rpipe->pipe_state & PIPE_WANTW) {
890 			rpipe->pipe_state &= ~PIPE_WANTW;
891 			wakeup(rpipe);
892 		}
893 	}
894 
895 	/*
896 	 * Only wake up writers if there was actually something read.
897 	 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs.
898 	 */
899 	if (nread > 0 &&
900 	    rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
901 		pipeselwakeup(rpipe);
902 
903 	PIPE_UNLOCK(rpipe);
904 	if (nread > 0)
905 		td->td_ru.ru_msgrcv++;
906 	return (error);
907 }
908 
909 #ifndef PIPE_NODIRECT
910 /*
911  * Map the sending processes' buffer into kernel space and wire it.
912  * This is similar to a physical write operation.
913  */
914 static int
915 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
916 {
917 	u_int size;
918 	int i;
919 
920 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
921 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
922 	    ("%s: PIPE_DIRECTW set on %p", __func__, wpipe));
923 	KASSERT(wpipe->pipe_pages.cnt == 0,
924 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
925 
926 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
927                 size = wpipe->pipe_buffer.size;
928 	else
929                 size = uio->uio_iov->iov_len;
930 
931 	wpipe->pipe_state |= PIPE_DIRECTW;
932 	PIPE_UNLOCK(wpipe);
933 	i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
934 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
935 	    wpipe->pipe_pages.ms, PIPENPAGES);
936 	PIPE_LOCK(wpipe);
937 	if (i < 0) {
938 		wpipe->pipe_state &= ~PIPE_DIRECTW;
939 		return (EFAULT);
940 	}
941 
942 	wpipe->pipe_pages.npages = i;
943 	wpipe->pipe_pages.pos =
944 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
945 	wpipe->pipe_pages.cnt = size;
946 
947 	uio->uio_iov->iov_len -= size;
948 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
949 	if (uio->uio_iov->iov_len == 0)
950 		uio->uio_iov++;
951 	uio->uio_resid -= size;
952 	uio->uio_offset += size;
953 	return (0);
954 }
955 
956 /*
957  * Unwire the process buffer.
958  */
959 static void
960 pipe_destroy_write_buffer(struct pipe *wpipe)
961 {
962 
963 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
964 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
965 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
966 	KASSERT(wpipe->pipe_pages.cnt == 0,
967 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
968 
969 	wpipe->pipe_state &= ~PIPE_DIRECTW;
970 	vm_page_unhold_pages(wpipe->pipe_pages.ms, wpipe->pipe_pages.npages);
971 	wpipe->pipe_pages.npages = 0;
972 }
973 
974 /*
975  * In the case of a signal, the writing process might go away.  This
976  * code copies the data into the circular buffer so that the source
977  * pages can be freed without loss of data.
978  */
979 static void
980 pipe_clone_write_buffer(struct pipe *wpipe)
981 {
982 	struct uio uio;
983 	struct iovec iov;
984 	int size;
985 	int pos;
986 
987 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
988 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
989 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
990 
991 	size = wpipe->pipe_pages.cnt;
992 	pos = wpipe->pipe_pages.pos;
993 	wpipe->pipe_pages.cnt = 0;
994 
995 	wpipe->pipe_buffer.in = size;
996 	wpipe->pipe_buffer.out = 0;
997 	wpipe->pipe_buffer.cnt = size;
998 
999 	PIPE_UNLOCK(wpipe);
1000 	iov.iov_base = wpipe->pipe_buffer.buffer;
1001 	iov.iov_len = size;
1002 	uio.uio_iov = &iov;
1003 	uio.uio_iovcnt = 1;
1004 	uio.uio_offset = 0;
1005 	uio.uio_resid = size;
1006 	uio.uio_segflg = UIO_SYSSPACE;
1007 	uio.uio_rw = UIO_READ;
1008 	uio.uio_td = curthread;
1009 	uiomove_fromphys(wpipe->pipe_pages.ms, pos, size, &uio);
1010 	PIPE_LOCK(wpipe);
1011 	pipe_destroy_write_buffer(wpipe);
1012 }
1013 
1014 /*
1015  * This implements the pipe buffer write mechanism.  Note that only
1016  * a direct write OR a normal pipe write can be pending at any given time.
1017  * If there are any characters in the pipe buffer, the direct write will
1018  * be deferred until the receiving process grabs all of the bytes from
1019  * the pipe buffer.  Then the direct mapping write is set-up.
1020  */
1021 static int
1022 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
1023 {
1024 	int error;
1025 
1026 retry:
1027 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1028 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1029 		error = EPIPE;
1030 		goto error1;
1031 	}
1032 	if (wpipe->pipe_state & PIPE_DIRECTW) {
1033 		if (wpipe->pipe_state & PIPE_WANTR) {
1034 			wpipe->pipe_state &= ~PIPE_WANTR;
1035 			wakeup(wpipe);
1036 		}
1037 		pipeselwakeup(wpipe);
1038 		wpipe->pipe_state |= PIPE_WANTW;
1039 		pipeunlock(wpipe);
1040 		error = msleep(wpipe, PIPE_MTX(wpipe),
1041 		    PRIBIO | PCATCH, "pipdww", 0);
1042 		pipelock(wpipe, 0);
1043 		if (error != 0)
1044 			goto error1;
1045 		goto retry;
1046 	}
1047 	if (wpipe->pipe_buffer.cnt > 0) {
1048 		if (wpipe->pipe_state & PIPE_WANTR) {
1049 			wpipe->pipe_state &= ~PIPE_WANTR;
1050 			wakeup(wpipe);
1051 		}
1052 		pipeselwakeup(wpipe);
1053 		wpipe->pipe_state |= PIPE_WANTW;
1054 		pipeunlock(wpipe);
1055 		error = msleep(wpipe, PIPE_MTX(wpipe),
1056 		    PRIBIO | PCATCH, "pipdwc", 0);
1057 		pipelock(wpipe, 0);
1058 		if (error != 0)
1059 			goto error1;
1060 		goto retry;
1061 	}
1062 
1063 	error = pipe_build_write_buffer(wpipe, uio);
1064 	if (error) {
1065 		goto error1;
1066 	}
1067 
1068 	while (wpipe->pipe_pages.cnt != 0 &&
1069 	    (wpipe->pipe_state & PIPE_EOF) == 0) {
1070 		if (wpipe->pipe_state & PIPE_WANTR) {
1071 			wpipe->pipe_state &= ~PIPE_WANTR;
1072 			wakeup(wpipe);
1073 		}
1074 		pipeselwakeup(wpipe);
1075 		wpipe->pipe_state |= PIPE_WANTW;
1076 		pipeunlock(wpipe);
1077 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1078 		    "pipdwt", 0);
1079 		pipelock(wpipe, 0);
1080 		if (error != 0)
1081 			break;
1082 	}
1083 
1084 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1085 		wpipe->pipe_pages.cnt = 0;
1086 		pipe_destroy_write_buffer(wpipe);
1087 		pipeselwakeup(wpipe);
1088 		error = EPIPE;
1089 	} else if (error == EINTR || error == ERESTART) {
1090 		pipe_clone_write_buffer(wpipe);
1091 	} else {
1092 		pipe_destroy_write_buffer(wpipe);
1093 	}
1094 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
1095 	    ("pipe %p leaked PIPE_DIRECTW", wpipe));
1096 	return (error);
1097 
1098 error1:
1099 	wakeup(wpipe);
1100 	return (error);
1101 }
1102 #endif
1103 
1104 static int
1105 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1106     int flags, struct thread *td)
1107 {
1108 	struct pipe *wpipe, *rpipe;
1109 	ssize_t orig_resid;
1110 	int desiredsize, error;
1111 
1112 	rpipe = fp->f_data;
1113 	wpipe = PIPE_PEER(rpipe);
1114 	PIPE_LOCK(rpipe);
1115 	error = pipelock(wpipe, 1);
1116 	if (error) {
1117 		PIPE_UNLOCK(rpipe);
1118 		return (error);
1119 	}
1120 	/*
1121 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1122 	 */
1123 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1124 	    (wpipe->pipe_state & PIPE_EOF)) {
1125 		pipeunlock(wpipe);
1126 		PIPE_UNLOCK(rpipe);
1127 		return (EPIPE);
1128 	}
1129 #ifdef MAC
1130 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1131 	if (error) {
1132 		pipeunlock(wpipe);
1133 		PIPE_UNLOCK(rpipe);
1134 		return (error);
1135 	}
1136 #endif
1137 	++wpipe->pipe_busy;
1138 
1139 	/* Choose a larger size if it's advantageous */
1140 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1141 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1142 		if (piperesizeallowed != 1)
1143 			break;
1144 		if (amountpipekva > maxpipekva / 2)
1145 			break;
1146 		if (desiredsize == BIG_PIPE_SIZE)
1147 			break;
1148 		desiredsize = desiredsize * 2;
1149 	}
1150 
1151 	/* Choose a smaller size if we're in a OOM situation */
1152 	if (amountpipekva > (3 * maxpipekva) / 4 &&
1153 	    wpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
1154 	    wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
1155 	    piperesizeallowed == 1)
1156 		desiredsize = SMALL_PIPE_SIZE;
1157 
1158 	/* Resize if the above determined that a new size was necessary */
1159 	if (desiredsize != wpipe->pipe_buffer.size &&
1160 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0) {
1161 		PIPE_UNLOCK(wpipe);
1162 		pipespace(wpipe, desiredsize);
1163 		PIPE_LOCK(wpipe);
1164 	}
1165 	MPASS(wpipe->pipe_buffer.size != 0);
1166 
1167 	orig_resid = uio->uio_resid;
1168 
1169 	while (uio->uio_resid) {
1170 		int space;
1171 
1172 		if (wpipe->pipe_state & PIPE_EOF) {
1173 			error = EPIPE;
1174 			break;
1175 		}
1176 #ifndef PIPE_NODIRECT
1177 		/*
1178 		 * If the transfer is large, we can gain performance if
1179 		 * we do process-to-process copies directly.
1180 		 * If the write is non-blocking, we don't use the
1181 		 * direct write mechanism.
1182 		 *
1183 		 * The direct write mechanism will detect the reader going
1184 		 * away on us.
1185 		 */
1186 		if (uio->uio_segflg == UIO_USERSPACE &&
1187 		    uio->uio_iov->iov_len >= pipe_mindirect &&
1188 		    wpipe->pipe_buffer.size >= pipe_mindirect &&
1189 		    (fp->f_flag & FNONBLOCK) == 0) {
1190 			error = pipe_direct_write(wpipe, uio);
1191 			if (error != 0)
1192 				break;
1193 			continue;
1194 		}
1195 #endif
1196 
1197 		/*
1198 		 * Pipe buffered writes cannot be coincidental with
1199 		 * direct writes.  We wait until the currently executing
1200 		 * direct write is completed before we start filling the
1201 		 * pipe buffer.  We break out if a signal occurs or the
1202 		 * reader goes away.
1203 		 */
1204 		if (wpipe->pipe_pages.cnt != 0) {
1205 			if (wpipe->pipe_state & PIPE_WANTR) {
1206 				wpipe->pipe_state &= ~PIPE_WANTR;
1207 				wakeup(wpipe);
1208 			}
1209 			pipeselwakeup(wpipe);
1210 			wpipe->pipe_state |= PIPE_WANTW;
1211 			pipeunlock(wpipe);
1212 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1213 			    "pipbww", 0);
1214 			pipelock(wpipe, 0);
1215 			if (error != 0)
1216 				break;
1217 			continue;
1218 		}
1219 
1220 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1221 
1222 		/* Writes of size <= PIPE_BUF must be atomic. */
1223 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1224 			space = 0;
1225 
1226 		if (space > 0) {
1227 			int size;	/* Transfer size */
1228 			int segsize;	/* first segment to transfer */
1229 
1230 			/*
1231 			 * Transfer size is minimum of uio transfer
1232 			 * and free space in pipe buffer.
1233 			 */
1234 			if (space > uio->uio_resid)
1235 				size = uio->uio_resid;
1236 			else
1237 				size = space;
1238 			/*
1239 			 * First segment to transfer is minimum of
1240 			 * transfer size and contiguous space in
1241 			 * pipe buffer.  If first segment to transfer
1242 			 * is less than the transfer size, we've got
1243 			 * a wraparound in the buffer.
1244 			 */
1245 			segsize = wpipe->pipe_buffer.size -
1246 				wpipe->pipe_buffer.in;
1247 			if (segsize > size)
1248 				segsize = size;
1249 
1250 			/* Transfer first segment */
1251 
1252 			PIPE_UNLOCK(rpipe);
1253 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1254 					segsize, uio);
1255 			PIPE_LOCK(rpipe);
1256 
1257 			if (error == 0 && segsize < size) {
1258 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1259 					wpipe->pipe_buffer.size,
1260 					("Pipe buffer wraparound disappeared"));
1261 				/*
1262 				 * Transfer remaining part now, to
1263 				 * support atomic writes.  Wraparound
1264 				 * happened.
1265 				 */
1266 
1267 				PIPE_UNLOCK(rpipe);
1268 				error = uiomove(
1269 				    &wpipe->pipe_buffer.buffer[0],
1270 				    size - segsize, uio);
1271 				PIPE_LOCK(rpipe);
1272 			}
1273 			if (error == 0) {
1274 				wpipe->pipe_buffer.in += size;
1275 				if (wpipe->pipe_buffer.in >=
1276 				    wpipe->pipe_buffer.size) {
1277 					KASSERT(wpipe->pipe_buffer.in ==
1278 						size - segsize +
1279 						wpipe->pipe_buffer.size,
1280 						("Expected wraparound bad"));
1281 					wpipe->pipe_buffer.in = size - segsize;
1282 				}
1283 
1284 				wpipe->pipe_buffer.cnt += size;
1285 				KASSERT(wpipe->pipe_buffer.cnt <=
1286 					wpipe->pipe_buffer.size,
1287 					("Pipe buffer overflow"));
1288 			}
1289 			if (error != 0)
1290 				break;
1291 			continue;
1292 		} else {
1293 			/*
1294 			 * If the "read-side" has been blocked, wake it up now.
1295 			 */
1296 			if (wpipe->pipe_state & PIPE_WANTR) {
1297 				wpipe->pipe_state &= ~PIPE_WANTR;
1298 				wakeup(wpipe);
1299 			}
1300 
1301 			/*
1302 			 * don't block on non-blocking I/O
1303 			 */
1304 			if (fp->f_flag & FNONBLOCK) {
1305 				error = EAGAIN;
1306 				break;
1307 			}
1308 
1309 			/*
1310 			 * We have no more space and have something to offer,
1311 			 * wake up select/poll.
1312 			 */
1313 			pipeselwakeup(wpipe);
1314 
1315 			wpipe->pipe_state |= PIPE_WANTW;
1316 			pipeunlock(wpipe);
1317 			error = msleep(wpipe, PIPE_MTX(rpipe),
1318 			    PRIBIO | PCATCH, "pipewr", 0);
1319 			pipelock(wpipe, 0);
1320 			if (error != 0)
1321 				break;
1322 			continue;
1323 		}
1324 	}
1325 
1326 	--wpipe->pipe_busy;
1327 
1328 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1329 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1330 		wakeup(wpipe);
1331 	} else if (wpipe->pipe_buffer.cnt > 0) {
1332 		/*
1333 		 * If we have put any characters in the buffer, we wake up
1334 		 * the reader.
1335 		 */
1336 		if (wpipe->pipe_state & PIPE_WANTR) {
1337 			wpipe->pipe_state &= ~PIPE_WANTR;
1338 			wakeup(wpipe);
1339 		}
1340 	}
1341 
1342 	/*
1343 	 * Don't return EPIPE if any byte was written.
1344 	 * EINTR and other interrupts are handled by generic I/O layer.
1345 	 * Do not pretend that I/O succeeded for obvious user error
1346 	 * like EFAULT.
1347 	 */
1348 	if (uio->uio_resid != orig_resid && error == EPIPE)
1349 		error = 0;
1350 
1351 	if (error == 0)
1352 		pipe_timestamp(&wpipe->pipe_mtime);
1353 
1354 	/*
1355 	 * We have something to offer,
1356 	 * wake up select/poll.
1357 	 */
1358 	if (wpipe->pipe_buffer.cnt)
1359 		pipeselwakeup(wpipe);
1360 
1361 	pipeunlock(wpipe);
1362 	PIPE_UNLOCK(rpipe);
1363 	if (uio->uio_resid != orig_resid)
1364 		td->td_ru.ru_msgsnd++;
1365 	return (error);
1366 }
1367 
1368 /* ARGSUSED */
1369 static int
1370 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1371     struct thread *td)
1372 {
1373 	struct pipe *cpipe;
1374 	int error;
1375 
1376 	cpipe = fp->f_data;
1377 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1378 		error = vnops.fo_truncate(fp, length, active_cred, td);
1379 	else
1380 		error = invfo_truncate(fp, length, active_cred, td);
1381 	return (error);
1382 }
1383 
1384 /*
1385  * we implement a very minimal set of ioctls for compatibility with sockets.
1386  */
1387 static int
1388 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1389     struct thread *td)
1390 {
1391 	struct pipe *mpipe = fp->f_data;
1392 	int error;
1393 
1394 	PIPE_LOCK(mpipe);
1395 
1396 #ifdef MAC
1397 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1398 	if (error) {
1399 		PIPE_UNLOCK(mpipe);
1400 		return (error);
1401 	}
1402 #endif
1403 
1404 	error = 0;
1405 	switch (cmd) {
1406 	case FIONBIO:
1407 		break;
1408 
1409 	case FIOASYNC:
1410 		if (*(int *)data) {
1411 			mpipe->pipe_state |= PIPE_ASYNC;
1412 		} else {
1413 			mpipe->pipe_state &= ~PIPE_ASYNC;
1414 		}
1415 		break;
1416 
1417 	case FIONREAD:
1418 		if (!(fp->f_flag & FREAD)) {
1419 			*(int *)data = 0;
1420 			PIPE_UNLOCK(mpipe);
1421 			return (0);
1422 		}
1423 		if (mpipe->pipe_pages.cnt != 0)
1424 			*(int *)data = mpipe->pipe_pages.cnt;
1425 		else
1426 			*(int *)data = mpipe->pipe_buffer.cnt;
1427 		break;
1428 
1429 	case FIOSETOWN:
1430 		PIPE_UNLOCK(mpipe);
1431 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1432 		goto out_unlocked;
1433 
1434 	case FIOGETOWN:
1435 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1436 		break;
1437 
1438 	/* This is deprecated, FIOSETOWN should be used instead. */
1439 	case TIOCSPGRP:
1440 		PIPE_UNLOCK(mpipe);
1441 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1442 		goto out_unlocked;
1443 
1444 	/* This is deprecated, FIOGETOWN should be used instead. */
1445 	case TIOCGPGRP:
1446 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1447 		break;
1448 
1449 	default:
1450 		error = ENOTTY;
1451 		break;
1452 	}
1453 	PIPE_UNLOCK(mpipe);
1454 out_unlocked:
1455 	return (error);
1456 }
1457 
1458 static int
1459 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1460     struct thread *td)
1461 {
1462 	struct pipe *rpipe;
1463 	struct pipe *wpipe;
1464 	int levents, revents;
1465 #ifdef MAC
1466 	int error;
1467 #endif
1468 
1469 	revents = 0;
1470 	rpipe = fp->f_data;
1471 	wpipe = PIPE_PEER(rpipe);
1472 	PIPE_LOCK(rpipe);
1473 #ifdef MAC
1474 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1475 	if (error)
1476 		goto locked_error;
1477 #endif
1478 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1479 		if (rpipe->pipe_pages.cnt > 0 || rpipe->pipe_buffer.cnt > 0)
1480 			revents |= events & (POLLIN | POLLRDNORM);
1481 
1482 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1483 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1484 		    (wpipe->pipe_state & PIPE_EOF) ||
1485 		    ((wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1486 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1487 			 wpipe->pipe_buffer.size == 0)))
1488 			revents |= events & (POLLOUT | POLLWRNORM);
1489 
1490 	levents = events &
1491 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1492 	if (rpipe->pipe_type & PIPE_TYPE_NAMED && fp->f_flag & FREAD && levents &&
1493 	    fp->f_pipegen == rpipe->pipe_wgen)
1494 		events |= POLLINIGNEOF;
1495 
1496 	if ((events & POLLINIGNEOF) == 0) {
1497 		if (rpipe->pipe_state & PIPE_EOF) {
1498 			if (fp->f_flag & FREAD)
1499 				revents |= (events & (POLLIN | POLLRDNORM));
1500 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1501 			    (wpipe->pipe_state & PIPE_EOF))
1502 				revents |= POLLHUP;
1503 		}
1504 	}
1505 
1506 	if (revents == 0) {
1507 		/*
1508 		 * Add ourselves regardless of eventmask as we have to return
1509 		 * POLLHUP even if it was not asked for.
1510 		 */
1511 		if ((fp->f_flag & FREAD) != 0) {
1512 			selrecord(td, &rpipe->pipe_sel);
1513 			if (SEL_WAITING(&rpipe->pipe_sel))
1514 				rpipe->pipe_state |= PIPE_SEL;
1515 		}
1516 
1517 		if ((fp->f_flag & FWRITE) != 0 &&
1518 		    wpipe->pipe_present == PIPE_ACTIVE) {
1519 			selrecord(td, &wpipe->pipe_sel);
1520 			if (SEL_WAITING(&wpipe->pipe_sel))
1521 				wpipe->pipe_state |= PIPE_SEL;
1522 		}
1523 	}
1524 #ifdef MAC
1525 locked_error:
1526 #endif
1527 	PIPE_UNLOCK(rpipe);
1528 
1529 	return (revents);
1530 }
1531 
1532 /*
1533  * We shouldn't need locks here as we're doing a read and this should
1534  * be a natural race.
1535  */
1536 static int
1537 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred)
1538 {
1539 	struct pipe *pipe;
1540 #ifdef MAC
1541 	int error;
1542 #endif
1543 
1544 	pipe = fp->f_data;
1545 #ifdef MAC
1546 	if (mac_pipe_check_stat_enabled()) {
1547 		PIPE_LOCK(pipe);
1548 		error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1549 		PIPE_UNLOCK(pipe);
1550 		if (error) {
1551 			return (error);
1552 		}
1553 	}
1554 #endif
1555 
1556 	/* For named pipes ask the underlying filesystem. */
1557 	if (pipe->pipe_type & PIPE_TYPE_NAMED) {
1558 		return (vnops.fo_stat(fp, ub, active_cred));
1559 	}
1560 
1561 	bzero(ub, sizeof(*ub));
1562 	ub->st_mode = S_IFIFO;
1563 	ub->st_blksize = PAGE_SIZE;
1564 	if (pipe->pipe_pages.cnt != 0)
1565 		ub->st_size = pipe->pipe_pages.cnt;
1566 	else
1567 		ub->st_size = pipe->pipe_buffer.cnt;
1568 	ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1569 	ub->st_atim = pipe->pipe_atime;
1570 	ub->st_mtim = pipe->pipe_mtime;
1571 	ub->st_ctim = pipe->pipe_ctime;
1572 	ub->st_uid = fp->f_cred->cr_uid;
1573 	ub->st_gid = fp->f_cred->cr_gid;
1574 	ub->st_dev = pipedev_ino;
1575 	ub->st_ino = pipe->pipe_ino;
1576 	/*
1577 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1578 	 */
1579 	return (0);
1580 }
1581 
1582 /* ARGSUSED */
1583 static int
1584 pipe_close(struct file *fp, struct thread *td)
1585 {
1586 
1587 	if (fp->f_vnode != NULL)
1588 		return vnops.fo_close(fp, td);
1589 	fp->f_ops = &badfileops;
1590 	pipe_dtor(fp->f_data);
1591 	fp->f_data = NULL;
1592 	return (0);
1593 }
1594 
1595 static int
1596 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1597 {
1598 	struct pipe *cpipe;
1599 	int error;
1600 
1601 	cpipe = fp->f_data;
1602 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1603 		error = vn_chmod(fp, mode, active_cred, td);
1604 	else
1605 		error = invfo_chmod(fp, mode, active_cred, td);
1606 	return (error);
1607 }
1608 
1609 static int
1610 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1611     struct thread *td)
1612 {
1613 	struct pipe *cpipe;
1614 	int error;
1615 
1616 	cpipe = fp->f_data;
1617 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1618 		error = vn_chown(fp, uid, gid, active_cred, td);
1619 	else
1620 		error = invfo_chown(fp, uid, gid, active_cred, td);
1621 	return (error);
1622 }
1623 
1624 static int
1625 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1626 {
1627 	struct pipe *pi;
1628 
1629 	if (fp->f_type == DTYPE_FIFO)
1630 		return (vn_fill_kinfo(fp, kif, fdp));
1631 	kif->kf_type = KF_TYPE_PIPE;
1632 	pi = fp->f_data;
1633 	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1634 	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1635 	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1636 	kif->kf_un.kf_pipe.kf_pipe_buffer_in = pi->pipe_buffer.in;
1637 	kif->kf_un.kf_pipe.kf_pipe_buffer_out = pi->pipe_buffer.out;
1638 	kif->kf_un.kf_pipe.kf_pipe_buffer_size = pi->pipe_buffer.size;
1639 	return (0);
1640 }
1641 
1642 static void
1643 pipe_free_kmem(struct pipe *cpipe)
1644 {
1645 
1646 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1647 	    ("pipe_free_kmem: pipe mutex locked"));
1648 
1649 	if (cpipe->pipe_buffer.buffer != NULL) {
1650 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1651 		vm_map_remove(pipe_map,
1652 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1653 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1654 		cpipe->pipe_buffer.buffer = NULL;
1655 	}
1656 #ifndef PIPE_NODIRECT
1657 	{
1658 		cpipe->pipe_pages.cnt = 0;
1659 		cpipe->pipe_pages.pos = 0;
1660 		cpipe->pipe_pages.npages = 0;
1661 	}
1662 #endif
1663 }
1664 
1665 /*
1666  * shutdown the pipe
1667  */
1668 static void
1669 pipeclose(struct pipe *cpipe)
1670 {
1671 #ifdef MAC
1672 	struct pipepair *pp;
1673 #endif
1674 	struct pipe *ppipe;
1675 
1676 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1677 
1678 	PIPE_LOCK(cpipe);
1679 	pipelock(cpipe, 0);
1680 #ifdef MAC
1681 	pp = cpipe->pipe_pair;
1682 #endif
1683 
1684 	/*
1685 	 * If the other side is blocked, wake it up saying that
1686 	 * we want to close it down.
1687 	 */
1688 	cpipe->pipe_state |= PIPE_EOF;
1689 	while (cpipe->pipe_busy) {
1690 		wakeup(cpipe);
1691 		cpipe->pipe_state |= PIPE_WANT;
1692 		pipeunlock(cpipe);
1693 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1694 		pipelock(cpipe, 0);
1695 	}
1696 
1697 	pipeselwakeup(cpipe);
1698 
1699 	/*
1700 	 * Disconnect from peer, if any.
1701 	 */
1702 	ppipe = cpipe->pipe_peer;
1703 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1704 		ppipe->pipe_state |= PIPE_EOF;
1705 		wakeup(ppipe);
1706 		pipeselwakeup(ppipe);
1707 	}
1708 
1709 	/*
1710 	 * Mark this endpoint as free.  Release kmem resources.  We
1711 	 * don't mark this endpoint as unused until we've finished
1712 	 * doing that, or the pipe might disappear out from under
1713 	 * us.
1714 	 */
1715 	PIPE_UNLOCK(cpipe);
1716 	pipe_free_kmem(cpipe);
1717 	PIPE_LOCK(cpipe);
1718 	cpipe->pipe_present = PIPE_CLOSING;
1719 	pipeunlock(cpipe);
1720 
1721 	/*
1722 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1723 	 * PIPE_FINALIZED, that allows other end to free the
1724 	 * pipe_pair, only after the knotes are completely dismantled.
1725 	 */
1726 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1727 	cpipe->pipe_present = PIPE_FINALIZED;
1728 	seldrain(&cpipe->pipe_sel);
1729 	knlist_destroy(&cpipe->pipe_sel.si_note);
1730 
1731 	/*
1732 	 * If both endpoints are now closed, release the memory for the
1733 	 * pipe pair.  If not, unlock.
1734 	 */
1735 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1736 		PIPE_UNLOCK(cpipe);
1737 #ifdef MAC
1738 		mac_pipe_destroy(pp);
1739 #endif
1740 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1741 	} else
1742 		PIPE_UNLOCK(cpipe);
1743 }
1744 
1745 /*ARGSUSED*/
1746 static int
1747 pipe_kqfilter(struct file *fp, struct knote *kn)
1748 {
1749 	struct pipe *cpipe;
1750 
1751 	/*
1752 	 * If a filter is requested that is not supported by this file
1753 	 * descriptor, don't return an error, but also don't ever generate an
1754 	 * event.
1755 	 */
1756 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1757 		kn->kn_fop = &pipe_nfiltops;
1758 		return (0);
1759 	}
1760 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1761 		kn->kn_fop = &pipe_nfiltops;
1762 		return (0);
1763 	}
1764 	cpipe = fp->f_data;
1765 	PIPE_LOCK(cpipe);
1766 	switch (kn->kn_filter) {
1767 	case EVFILT_READ:
1768 		kn->kn_fop = &pipe_rfiltops;
1769 		break;
1770 	case EVFILT_WRITE:
1771 		kn->kn_fop = &pipe_wfiltops;
1772 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1773 			/* other end of pipe has been closed */
1774 			PIPE_UNLOCK(cpipe);
1775 			return (EPIPE);
1776 		}
1777 		cpipe = PIPE_PEER(cpipe);
1778 		break;
1779 	default:
1780 		if ((cpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1781 			PIPE_UNLOCK(cpipe);
1782 			return (vnops.fo_kqfilter(fp, kn));
1783 		}
1784 		PIPE_UNLOCK(cpipe);
1785 		return (EINVAL);
1786 	}
1787 
1788 	kn->kn_hook = cpipe;
1789 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1790 	PIPE_UNLOCK(cpipe);
1791 	return (0);
1792 }
1793 
1794 static void
1795 filt_pipedetach(struct knote *kn)
1796 {
1797 	struct pipe *cpipe = kn->kn_hook;
1798 
1799 	PIPE_LOCK(cpipe);
1800 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1801 	PIPE_UNLOCK(cpipe);
1802 }
1803 
1804 /*ARGSUSED*/
1805 static int
1806 filt_piperead(struct knote *kn, long hint)
1807 {
1808 	struct file *fp = kn->kn_fp;
1809 	struct pipe *rpipe = kn->kn_hook;
1810 
1811 	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1812 	kn->kn_data = rpipe->pipe_buffer.cnt;
1813 	if (kn->kn_data == 0)
1814 		kn->kn_data = rpipe->pipe_pages.cnt;
1815 
1816 	if ((rpipe->pipe_state & PIPE_EOF) != 0 &&
1817 	    ((rpipe->pipe_type & PIPE_TYPE_NAMED) == 0 ||
1818 	    fp->f_pipegen != rpipe->pipe_wgen)) {
1819 		kn->kn_flags |= EV_EOF;
1820 		return (1);
1821 	}
1822 	kn->kn_flags &= ~EV_EOF;
1823 	return (kn->kn_data > 0);
1824 }
1825 
1826 /*ARGSUSED*/
1827 static int
1828 filt_pipewrite(struct knote *kn, long hint)
1829 {
1830 	struct pipe *wpipe = kn->kn_hook;
1831 
1832 	/*
1833 	 * If this end of the pipe is closed, the knote was removed from the
1834 	 * knlist and the list lock (i.e., the pipe lock) is therefore not held.
1835 	 */
1836 	if (wpipe->pipe_present == PIPE_ACTIVE ||
1837 	    (wpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1838 		PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1839 
1840 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1841 			kn->kn_data = 0;
1842 		} else if (wpipe->pipe_buffer.size > 0) {
1843 			kn->kn_data = wpipe->pipe_buffer.size -
1844 			    wpipe->pipe_buffer.cnt;
1845 		} else {
1846 			kn->kn_data = PIPE_BUF;
1847 		}
1848 	}
1849 
1850 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1851 	    (wpipe->pipe_state & PIPE_EOF)) {
1852 		kn->kn_flags |= EV_EOF;
1853 		return (1);
1854 	}
1855 	kn->kn_flags &= ~EV_EOF;
1856 	return (kn->kn_data >= PIPE_BUF);
1857 }
1858 
1859 static void
1860 filt_pipedetach_notsup(struct knote *kn)
1861 {
1862 
1863 }
1864 
1865 static int
1866 filt_pipenotsup(struct knote *kn, long hint)
1867 {
1868 
1869 	return (0);
1870 }
1871