xref: /freebsd/sys/kern/sys_pipe.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1996 John S. Dyson
5  * Copyright (c) 2012 Giovanni Trematerra
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Absolutely no warranty of function or purpose is made by the author
18  *    John S. Dyson.
19  * 4. Modifications may be freely made to this file if the above conditions
20  *    are met.
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, the sending process pins the underlying pages in
36  * memory, and the receiving process copies directly from these pinned pages
37  * in the sending process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.
50  *
51  * In order to limit the resource use of pipes, two sysctls exist:
52  *
53  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54  * address space available to us in pipe_map. This value is normally
55  * autotuned, but may also be loader tuned.
56  *
57  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58  * memory in use by pipes.
59  *
60  * Based on how large pipekva is relative to maxpipekva, the following
61  * will happen:
62  *
63  * 0% - 50%:
64  *     New pipes are given 16K of memory backing, pipes may dynamically
65  *     grow to as large as 64K where needed.
66  * 50% - 75%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes may NOT grow.
69  * 75% - 100%:
70  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
71  *     existing pipes will be shrunk down to 4K whenever possible.
72  *
73  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
74  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75  * resize which MUST occur for reverse-direction pipes when they are
76  * first used.
77  *
78  * Additional information about the current state of pipes may be obtained
79  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80  * and kern.ipc.piperesizefail.
81  *
82  * Locking rules:  There are two locks present here:  A mutex, used via
83  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
84  * the flag, as mutexes can not persist over uiomove.  The mutex
85  * exists only to guard access to the flag, and is not in itself a
86  * locking mechanism.  Also note that there is only a single mutex for
87  * both directions of a pipe.
88  *
89  * As pipelock() may have to sleep before it can acquire the flag, it
90  * is important to reread all data after a call to pipelock(); everything
91  * in the structure may have changed.
92  */
93 
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD$");
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122 
123 #include <security/mac/mac_framework.h>
124 
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134 
135 /*
136  * Use this define if you want to disable *fancy* VM things.  Expect an
137  * approx 30% decrease in transfer rate.  This could be useful for
138  * NetBSD or OpenBSD.
139  */
140 /* #define PIPE_NODIRECT */
141 
142 #define PIPE_PEER(pipe)	\
143 	(((pipe)->pipe_type & PIPE_TYPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144 
145 /*
146  * interfaces to the outside world
147  */
148 static fo_rdwr_t	pipe_read;
149 static fo_rdwr_t	pipe_write;
150 static fo_truncate_t	pipe_truncate;
151 static fo_ioctl_t	pipe_ioctl;
152 static fo_poll_t	pipe_poll;
153 static fo_kqfilter_t	pipe_kqfilter;
154 static fo_stat_t	pipe_stat;
155 static fo_close_t	pipe_close;
156 static fo_chmod_t	pipe_chmod;
157 static fo_chown_t	pipe_chown;
158 static fo_fill_kinfo_t	pipe_fill_kinfo;
159 
160 struct fileops pipeops = {
161 	.fo_read = pipe_read,
162 	.fo_write = pipe_write,
163 	.fo_truncate = pipe_truncate,
164 	.fo_ioctl = pipe_ioctl,
165 	.fo_poll = pipe_poll,
166 	.fo_kqfilter = pipe_kqfilter,
167 	.fo_stat = pipe_stat,
168 	.fo_close = pipe_close,
169 	.fo_chmod = pipe_chmod,
170 	.fo_chown = pipe_chown,
171 	.fo_sendfile = invfo_sendfile,
172 	.fo_fill_kinfo = pipe_fill_kinfo,
173 	.fo_flags = DFLAG_PASSABLE
174 };
175 
176 static void	filt_pipedetach(struct knote *kn);
177 static void	filt_pipedetach_notsup(struct knote *kn);
178 static int	filt_pipenotsup(struct knote *kn, long hint);
179 static int	filt_piperead(struct knote *kn, long hint);
180 static int	filt_pipewrite(struct knote *kn, long hint);
181 
182 static struct filterops pipe_nfiltops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_pipedetach_notsup,
185 	.f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_pipedetach,
190 	.f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_pipedetach,
195 	.f_event = filt_pipewrite
196 };
197 
198 /*
199  * Default pipe buffer size(s), this can be kind-of large now because pipe
200  * space is pageable.  The pipe code will try to maintain locality of
201  * reference for performance reasons, so small amounts of outstanding I/O
202  * will not wipe the cache.
203  */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206 
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212 
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 	   &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216 	   &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220 	  &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222 	  &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224 	  &piperesizeallowed, 0, "Pipe resizing allowed");
225 
226 static void pipeinit(void *dummy __unused);
227 static void pipeclose(struct pipe *cpipe);
228 static void pipe_free_kmem(struct pipe *cpipe);
229 static int pipe_create(struct pipe *pipe, bool backing);
230 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231 static __inline int pipelock(struct pipe *cpipe, int catch);
232 static __inline void pipeunlock(struct pipe *cpipe);
233 static void pipe_timestamp(struct timespec *tsp);
234 #ifndef PIPE_NODIRECT
235 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
236 static void pipe_destroy_write_buffer(struct pipe *wpipe);
237 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
238 static void pipe_clone_write_buffer(struct pipe *wpipe);
239 #endif
240 static int pipespace(struct pipe *cpipe, int size);
241 static int pipespace_new(struct pipe *cpipe, int size);
242 
243 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
244 static int	pipe_zone_init(void *mem, int size, int flags);
245 static void	pipe_zone_fini(void *mem, int size);
246 
247 static uma_zone_t pipe_zone;
248 static struct unrhdr64 pipeino_unr;
249 static dev_t pipedev_ino;
250 
251 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
252 
253 static void
254 pipeinit(void *dummy __unused)
255 {
256 
257 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
258 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
259 	    UMA_ALIGN_PTR, 0);
260 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
261 	new_unrhdr64(&pipeino_unr, 1);
262 	pipedev_ino = devfs_alloc_cdp_inode();
263 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
264 }
265 
266 static int
267 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
268 {
269 	struct pipepair *pp;
270 	struct pipe *rpipe, *wpipe;
271 
272 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
273 
274 	pp = (struct pipepair *)mem;
275 
276 	/*
277 	 * We zero both pipe endpoints to make sure all the kmem pointers
278 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
279 	 * endpoints with the same time.
280 	 */
281 	rpipe = &pp->pp_rpipe;
282 	bzero(rpipe, sizeof(*rpipe));
283 	pipe_timestamp(&rpipe->pipe_ctime);
284 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
285 
286 	wpipe = &pp->pp_wpipe;
287 	bzero(wpipe, sizeof(*wpipe));
288 	wpipe->pipe_ctime = rpipe->pipe_ctime;
289 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
290 
291 	rpipe->pipe_peer = wpipe;
292 	rpipe->pipe_pair = pp;
293 	wpipe->pipe_peer = rpipe;
294 	wpipe->pipe_pair = pp;
295 
296 	/*
297 	 * Mark both endpoints as present; they will later get free'd
298 	 * one at a time.  When both are free'd, then the whole pair
299 	 * is released.
300 	 */
301 	rpipe->pipe_present = PIPE_ACTIVE;
302 	wpipe->pipe_present = PIPE_ACTIVE;
303 
304 	/*
305 	 * Eventually, the MAC Framework may initialize the label
306 	 * in ctor or init, but for now we do it elswhere to avoid
307 	 * blocking in ctor or init.
308 	 */
309 	pp->pp_label = NULL;
310 
311 	return (0);
312 }
313 
314 static int
315 pipe_zone_init(void *mem, int size, int flags)
316 {
317 	struct pipepair *pp;
318 
319 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
320 
321 	pp = (struct pipepair *)mem;
322 
323 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
324 	return (0);
325 }
326 
327 static void
328 pipe_zone_fini(void *mem, int size)
329 {
330 	struct pipepair *pp;
331 
332 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
333 
334 	pp = (struct pipepair *)mem;
335 
336 	mtx_destroy(&pp->pp_mtx);
337 }
338 
339 static int
340 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
341 {
342 	struct pipepair *pp;
343 	struct pipe *rpipe, *wpipe;
344 	int error;
345 
346 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
347 #ifdef MAC
348 	/*
349 	 * The MAC label is shared between the connected endpoints.  As a
350 	 * result mac_pipe_init() and mac_pipe_create() are called once
351 	 * for the pair, and not on the endpoints.
352 	 */
353 	mac_pipe_init(pp);
354 	mac_pipe_create(td->td_ucred, pp);
355 #endif
356 	rpipe = &pp->pp_rpipe;
357 	wpipe = &pp->pp_wpipe;
358 
359 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
360 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
361 
362 	/*
363 	 * Only the forward direction pipe is backed by big buffer by
364 	 * default.
365 	 */
366 	error = pipe_create(rpipe, true);
367 	if (error != 0)
368 		goto fail;
369 	error = pipe_create(wpipe, false);
370 	if (error != 0) {
371 		/*
372 		 * This cleanup leaves the pipe inode number for rpipe
373 		 * still allocated, but never used.  We do not free
374 		 * inode numbers for opened pipes, which is required
375 		 * for correctness because numbers must be unique.
376 		 * But also it avoids any memory use by the unr
377 		 * allocator, so stashing away the transient inode
378 		 * number is reasonable.
379 		 */
380 		pipe_free_kmem(rpipe);
381 		goto fail;
382 	}
383 
384 	rpipe->pipe_state |= PIPE_DIRECTOK;
385 	wpipe->pipe_state |= PIPE_DIRECTOK;
386 	return (0);
387 
388 fail:
389 	knlist_destroy(&rpipe->pipe_sel.si_note);
390 	knlist_destroy(&wpipe->pipe_sel.si_note);
391 #ifdef MAC
392 	mac_pipe_destroy(pp);
393 #endif
394 	return (error);
395 }
396 
397 int
398 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
399 {
400 	struct pipepair *pp;
401 	int error;
402 
403 	error = pipe_paircreate(td, &pp);
404 	if (error != 0)
405 		return (error);
406 	pp->pp_rpipe.pipe_type |= PIPE_TYPE_NAMED;
407 	*ppipe = &pp->pp_rpipe;
408 	return (0);
409 }
410 
411 void
412 pipe_dtor(struct pipe *dpipe)
413 {
414 	struct pipe *peer;
415 
416 	peer = (dpipe->pipe_type & PIPE_TYPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
417 	funsetown(&dpipe->pipe_sigio);
418 	pipeclose(dpipe);
419 	if (peer != NULL) {
420 		funsetown(&peer->pipe_sigio);
421 		pipeclose(peer);
422 	}
423 }
424 
425 /*
426  * Get a timestamp.
427  *
428  * This used to be vfs_timestamp but the higher precision is unnecessary and
429  * can very negatively affect performance in virtualized environments (e.g., on
430  * vms running on amd64 when using the rdtscp instruction).
431  */
432 static void
433 pipe_timestamp(struct timespec *tsp)
434 {
435 
436 	getnanotime(tsp);
437 }
438 
439 /*
440  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
441  * the zone pick up the pieces via pipeclose().
442  */
443 int
444 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
445     struct filecaps *fcaps2)
446 {
447 	struct file *rf, *wf;
448 	struct pipe *rpipe, *wpipe;
449 	struct pipepair *pp;
450 	int fd, fflags, error;
451 
452 	error = pipe_paircreate(td, &pp);
453 	if (error != 0)
454 		return (error);
455 	rpipe = &pp->pp_rpipe;
456 	wpipe = &pp->pp_wpipe;
457 	error = falloc_caps(td, &rf, &fd, flags, fcaps1);
458 	if (error) {
459 		pipeclose(rpipe);
460 		pipeclose(wpipe);
461 		return (error);
462 	}
463 	/* An extra reference on `rf' has been held for us by falloc_caps(). */
464 	fildes[0] = fd;
465 
466 	fflags = FREAD | FWRITE;
467 	if ((flags & O_NONBLOCK) != 0)
468 		fflags |= FNONBLOCK;
469 
470 	/*
471 	 * Warning: once we've gotten past allocation of the fd for the
472 	 * read-side, we can only drop the read side via fdrop() in order
473 	 * to avoid races against processes which manage to dup() the read
474 	 * side while we are blocked trying to allocate the write side.
475 	 */
476 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
477 	error = falloc_caps(td, &wf, &fd, flags, fcaps2);
478 	if (error) {
479 		fdclose(td, rf, fildes[0]);
480 		fdrop(rf, td);
481 		/* rpipe has been closed by fdrop(). */
482 		pipeclose(wpipe);
483 		return (error);
484 	}
485 	/* An extra reference on `wf' has been held for us by falloc_caps(). */
486 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
487 	fdrop(wf, td);
488 	fildes[1] = fd;
489 	fdrop(rf, td);
490 
491 	return (0);
492 }
493 
494 #ifdef COMPAT_FREEBSD10
495 /* ARGSUSED */
496 int
497 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
498 {
499 	int error;
500 	int fildes[2];
501 
502 	error = kern_pipe(td, fildes, 0, NULL, NULL);
503 	if (error)
504 		return (error);
505 
506 	td->td_retval[0] = fildes[0];
507 	td->td_retval[1] = fildes[1];
508 
509 	return (0);
510 }
511 #endif
512 
513 int
514 sys_pipe2(struct thread *td, struct pipe2_args *uap)
515 {
516 	int error, fildes[2];
517 
518 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
519 		return (EINVAL);
520 	error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
521 	if (error)
522 		return (error);
523 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
524 	if (error) {
525 		(void)kern_close(td, fildes[0]);
526 		(void)kern_close(td, fildes[1]);
527 	}
528 	return (error);
529 }
530 
531 /*
532  * Allocate kva for pipe circular buffer, the space is pageable
533  * This routine will 'realloc' the size of a pipe safely, if it fails
534  * it will retain the old buffer.
535  * If it fails it will return ENOMEM.
536  */
537 static int
538 pipespace_new(struct pipe *cpipe, int size)
539 {
540 	caddr_t buffer;
541 	int error, cnt, firstseg;
542 	static int curfail = 0;
543 	static struct timeval lastfail;
544 
545 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
546 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
547 		("pipespace: resize of direct writes not allowed"));
548 retry:
549 	cnt = cpipe->pipe_buffer.cnt;
550 	if (cnt > size)
551 		size = cnt;
552 
553 	size = round_page(size);
554 	buffer = (caddr_t) vm_map_min(pipe_map);
555 
556 	error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
557 	    VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
558 	if (error != KERN_SUCCESS) {
559 		if (cpipe->pipe_buffer.buffer == NULL &&
560 		    size > SMALL_PIPE_SIZE) {
561 			size = SMALL_PIPE_SIZE;
562 			pipefragretry++;
563 			goto retry;
564 		}
565 		if (cpipe->pipe_buffer.buffer == NULL) {
566 			pipeallocfail++;
567 			if (ppsratecheck(&lastfail, &curfail, 1))
568 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
569 		} else {
570 			piperesizefail++;
571 		}
572 		return (ENOMEM);
573 	}
574 
575 	/* copy data, then free old resources if we're resizing */
576 	if (cnt > 0) {
577 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
578 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
579 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
580 				buffer, firstseg);
581 			if ((cnt - firstseg) > 0)
582 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
583 					cpipe->pipe_buffer.in);
584 		} else {
585 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
586 				buffer, cnt);
587 		}
588 	}
589 	pipe_free_kmem(cpipe);
590 	cpipe->pipe_buffer.buffer = buffer;
591 	cpipe->pipe_buffer.size = size;
592 	cpipe->pipe_buffer.in = cnt;
593 	cpipe->pipe_buffer.out = 0;
594 	cpipe->pipe_buffer.cnt = cnt;
595 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
596 	return (0);
597 }
598 
599 /*
600  * Wrapper for pipespace_new() that performs locking assertions.
601  */
602 static int
603 pipespace(struct pipe *cpipe, int size)
604 {
605 
606 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
607 	    ("Unlocked pipe passed to pipespace"));
608 	return (pipespace_new(cpipe, size));
609 }
610 
611 /*
612  * lock a pipe for I/O, blocking other access
613  */
614 static __inline int
615 pipelock(struct pipe *cpipe, int catch)
616 {
617 	int error, prio;
618 
619 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
620 
621 	prio = PRIBIO;
622 	if (catch)
623 		prio |= PCATCH;
624 	while (cpipe->pipe_state & PIPE_LOCKFL) {
625 		KASSERT(cpipe->pipe_waiters >= 0,
626 		    ("%s: bad waiter count %d", __func__,
627 		    cpipe->pipe_waiters));
628 		cpipe->pipe_waiters++;
629 		error = msleep(cpipe, PIPE_MTX(cpipe),
630 		    prio, "pipelk", 0);
631 		cpipe->pipe_waiters--;
632 		if (error != 0)
633 			return (error);
634 	}
635 	cpipe->pipe_state |= PIPE_LOCKFL;
636 	return (0);
637 }
638 
639 /*
640  * unlock a pipe I/O lock
641  */
642 static __inline void
643 pipeunlock(struct pipe *cpipe)
644 {
645 
646 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
647 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
648 		("Unlocked pipe passed to pipeunlock"));
649 	KASSERT(cpipe->pipe_waiters >= 0,
650 	    ("%s: bad waiter count %d", __func__,
651 	    cpipe->pipe_waiters));
652 	cpipe->pipe_state &= ~PIPE_LOCKFL;
653 	if (cpipe->pipe_waiters > 0) {
654 		wakeup_one(cpipe);
655 	}
656 }
657 
658 void
659 pipeselwakeup(struct pipe *cpipe)
660 {
661 
662 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
663 	if (cpipe->pipe_state & PIPE_SEL) {
664 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
665 		if (!SEL_WAITING(&cpipe->pipe_sel))
666 			cpipe->pipe_state &= ~PIPE_SEL;
667 	}
668 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
669 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
670 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
671 }
672 
673 /*
674  * Initialize and allocate VM and memory for pipe.  The structure
675  * will start out zero'd from the ctor, so we just manage the kmem.
676  */
677 static int
678 pipe_create(struct pipe *pipe, bool large_backing)
679 {
680 	int error;
681 
682 	error = pipespace_new(pipe, !large_backing || amountpipekva >
683 	    maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE);
684 	if (error == 0)
685 		pipe->pipe_ino = alloc_unr64(&pipeino_unr);
686 	return (error);
687 }
688 
689 /* ARGSUSED */
690 static int
691 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
692     int flags, struct thread *td)
693 {
694 	struct pipe *rpipe;
695 	int error;
696 	int nread = 0;
697 	int size;
698 
699 	rpipe = fp->f_data;
700 	PIPE_LOCK(rpipe);
701 	++rpipe->pipe_busy;
702 	error = pipelock(rpipe, 1);
703 	if (error)
704 		goto unlocked_error;
705 
706 #ifdef MAC
707 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
708 	if (error)
709 		goto locked_error;
710 #endif
711 	if (amountpipekva > (3 * maxpipekva) / 4) {
712 		if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 &&
713 		    rpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
714 		    rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
715 		    piperesizeallowed == 1) {
716 			PIPE_UNLOCK(rpipe);
717 			pipespace(rpipe, SMALL_PIPE_SIZE);
718 			PIPE_LOCK(rpipe);
719 		}
720 	}
721 
722 	while (uio->uio_resid) {
723 		/*
724 		 * normal pipe buffer receive
725 		 */
726 		if (rpipe->pipe_buffer.cnt > 0) {
727 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
728 			if (size > rpipe->pipe_buffer.cnt)
729 				size = rpipe->pipe_buffer.cnt;
730 			if (size > uio->uio_resid)
731 				size = uio->uio_resid;
732 
733 			PIPE_UNLOCK(rpipe);
734 			error = uiomove(
735 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
736 			    size, uio);
737 			PIPE_LOCK(rpipe);
738 			if (error)
739 				break;
740 
741 			rpipe->pipe_buffer.out += size;
742 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
743 				rpipe->pipe_buffer.out = 0;
744 
745 			rpipe->pipe_buffer.cnt -= size;
746 
747 			/*
748 			 * If there is no more to read in the pipe, reset
749 			 * its pointers to the beginning.  This improves
750 			 * cache hit stats.
751 			 */
752 			if (rpipe->pipe_buffer.cnt == 0) {
753 				rpipe->pipe_buffer.in = 0;
754 				rpipe->pipe_buffer.out = 0;
755 			}
756 			nread += size;
757 #ifndef PIPE_NODIRECT
758 		/*
759 		 * Direct copy, bypassing a kernel buffer.
760 		 */
761 		} else if ((size = rpipe->pipe_pages.cnt) != 0) {
762 			if (size > uio->uio_resid)
763 				size = (u_int) uio->uio_resid;
764 			PIPE_UNLOCK(rpipe);
765 			error = uiomove_fromphys(rpipe->pipe_pages.ms,
766 			    rpipe->pipe_pages.pos, size, uio);
767 			PIPE_LOCK(rpipe);
768 			if (error)
769 				break;
770 			nread += size;
771 			rpipe->pipe_pages.pos += size;
772 			rpipe->pipe_pages.cnt -= size;
773 			if (rpipe->pipe_pages.cnt == 0) {
774 				rpipe->pipe_state &= ~PIPE_WANTW;
775 				wakeup(rpipe);
776 			}
777 #endif
778 		} else {
779 			/*
780 			 * detect EOF condition
781 			 * read returns 0 on EOF, no need to set error
782 			 */
783 			if (rpipe->pipe_state & PIPE_EOF)
784 				break;
785 
786 			/*
787 			 * If the "write-side" has been blocked, wake it up now.
788 			 */
789 			if (rpipe->pipe_state & PIPE_WANTW) {
790 				rpipe->pipe_state &= ~PIPE_WANTW;
791 				wakeup(rpipe);
792 			}
793 
794 			/*
795 			 * Break if some data was read.
796 			 */
797 			if (nread > 0)
798 				break;
799 
800 			/*
801 			 * Unlock the pipe buffer for our remaining processing.
802 			 * We will either break out with an error or we will
803 			 * sleep and relock to loop.
804 			 */
805 			pipeunlock(rpipe);
806 
807 			/*
808 			 * Handle non-blocking mode operation or
809 			 * wait for more data.
810 			 */
811 			if (fp->f_flag & FNONBLOCK) {
812 				error = EAGAIN;
813 			} else {
814 				rpipe->pipe_state |= PIPE_WANTR;
815 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
816 				    PRIBIO | PCATCH,
817 				    "piperd", 0)) == 0)
818 					error = pipelock(rpipe, 1);
819 			}
820 			if (error)
821 				goto unlocked_error;
822 		}
823 	}
824 #ifdef MAC
825 locked_error:
826 #endif
827 	pipeunlock(rpipe);
828 
829 	/* XXX: should probably do this before getting any locks. */
830 	if (error == 0)
831 		pipe_timestamp(&rpipe->pipe_atime);
832 unlocked_error:
833 	--rpipe->pipe_busy;
834 
835 	/*
836 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
837 	 */
838 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
839 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
840 		wakeup(rpipe);
841 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
842 		/*
843 		 * Handle write blocking hysteresis.
844 		 */
845 		if (rpipe->pipe_state & PIPE_WANTW) {
846 			rpipe->pipe_state &= ~PIPE_WANTW;
847 			wakeup(rpipe);
848 		}
849 	}
850 
851 	/*
852 	 * Only wake up writers if there was actually something read.
853 	 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs.
854 	 */
855 	if (nread > 0 &&
856 	    rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
857 		pipeselwakeup(rpipe);
858 
859 	PIPE_UNLOCK(rpipe);
860 	return (error);
861 }
862 
863 #ifndef PIPE_NODIRECT
864 /*
865  * Map the sending processes' buffer into kernel space and wire it.
866  * This is similar to a physical write operation.
867  */
868 static int
869 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
870 {
871 	u_int size;
872 	int i;
873 
874 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
875 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
876 	    ("%s: PIPE_DIRECTW set on %p", __func__, wpipe));
877 	KASSERT(wpipe->pipe_pages.cnt == 0,
878 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
879 
880 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
881                 size = wpipe->pipe_buffer.size;
882 	else
883                 size = uio->uio_iov->iov_len;
884 
885 	wpipe->pipe_state |= PIPE_DIRECTW;
886 	PIPE_UNLOCK(wpipe);
887 	i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
888 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
889 	    wpipe->pipe_pages.ms, PIPENPAGES);
890 	PIPE_LOCK(wpipe);
891 	if (i < 0) {
892 		wpipe->pipe_state &= ~PIPE_DIRECTW;
893 		return (EFAULT);
894 	}
895 
896 	wpipe->pipe_pages.npages = i;
897 	wpipe->pipe_pages.pos =
898 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
899 	wpipe->pipe_pages.cnt = size;
900 
901 	uio->uio_iov->iov_len -= size;
902 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
903 	if (uio->uio_iov->iov_len == 0)
904 		uio->uio_iov++;
905 	uio->uio_resid -= size;
906 	uio->uio_offset += size;
907 	return (0);
908 }
909 
910 /*
911  * Unwire the process buffer.
912  */
913 static void
914 pipe_destroy_write_buffer(struct pipe *wpipe)
915 {
916 
917 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
918 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
919 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
920 	KASSERT(wpipe->pipe_pages.cnt == 0,
921 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
922 
923 	wpipe->pipe_state &= ~PIPE_DIRECTW;
924 	vm_page_unhold_pages(wpipe->pipe_pages.ms, wpipe->pipe_pages.npages);
925 	wpipe->pipe_pages.npages = 0;
926 }
927 
928 /*
929  * In the case of a signal, the writing process might go away.  This
930  * code copies the data into the circular buffer so that the source
931  * pages can be freed without loss of data.
932  */
933 static void
934 pipe_clone_write_buffer(struct pipe *wpipe)
935 {
936 	struct uio uio;
937 	struct iovec iov;
938 	int size;
939 	int pos;
940 
941 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
942 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
943 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
944 
945 	size = wpipe->pipe_pages.cnt;
946 	pos = wpipe->pipe_pages.pos;
947 	wpipe->pipe_pages.cnt = 0;
948 
949 	wpipe->pipe_buffer.in = size;
950 	wpipe->pipe_buffer.out = 0;
951 	wpipe->pipe_buffer.cnt = size;
952 
953 	PIPE_UNLOCK(wpipe);
954 	iov.iov_base = wpipe->pipe_buffer.buffer;
955 	iov.iov_len = size;
956 	uio.uio_iov = &iov;
957 	uio.uio_iovcnt = 1;
958 	uio.uio_offset = 0;
959 	uio.uio_resid = size;
960 	uio.uio_segflg = UIO_SYSSPACE;
961 	uio.uio_rw = UIO_READ;
962 	uio.uio_td = curthread;
963 	uiomove_fromphys(wpipe->pipe_pages.ms, pos, size, &uio);
964 	PIPE_LOCK(wpipe);
965 	pipe_destroy_write_buffer(wpipe);
966 }
967 
968 /*
969  * This implements the pipe buffer write mechanism.  Note that only
970  * a direct write OR a normal pipe write can be pending at any given time.
971  * If there are any characters in the pipe buffer, the direct write will
972  * be deferred until the receiving process grabs all of the bytes from
973  * the pipe buffer.  Then the direct mapping write is set-up.
974  */
975 static int
976 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
977 {
978 	int error;
979 
980 retry:
981 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
982 	error = pipelock(wpipe, 1);
983 	if (error != 0)
984 		goto error1;
985 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
986 		error = EPIPE;
987 		pipeunlock(wpipe);
988 		goto error1;
989 	}
990 	if (wpipe->pipe_state & PIPE_DIRECTW) {
991 		if (wpipe->pipe_state & PIPE_WANTR) {
992 			wpipe->pipe_state &= ~PIPE_WANTR;
993 			wakeup(wpipe);
994 		}
995 		pipeselwakeup(wpipe);
996 		wpipe->pipe_state |= PIPE_WANTW;
997 		pipeunlock(wpipe);
998 		error = msleep(wpipe, PIPE_MTX(wpipe),
999 		    PRIBIO | PCATCH, "pipdww", 0);
1000 		if (error)
1001 			goto error1;
1002 		else
1003 			goto retry;
1004 	}
1005 	if (wpipe->pipe_buffer.cnt > 0) {
1006 		if (wpipe->pipe_state & PIPE_WANTR) {
1007 			wpipe->pipe_state &= ~PIPE_WANTR;
1008 			wakeup(wpipe);
1009 		}
1010 		pipeselwakeup(wpipe);
1011 		wpipe->pipe_state |= PIPE_WANTW;
1012 		pipeunlock(wpipe);
1013 		error = msleep(wpipe, PIPE_MTX(wpipe),
1014 		    PRIBIO | PCATCH, "pipdwc", 0);
1015 		if (error)
1016 			goto error1;
1017 		else
1018 			goto retry;
1019 	}
1020 
1021 	error = pipe_build_write_buffer(wpipe, uio);
1022 	if (error) {
1023 		pipeunlock(wpipe);
1024 		goto error1;
1025 	}
1026 
1027 	while (wpipe->pipe_pages.cnt != 0 &&
1028 	    (wpipe->pipe_state & PIPE_EOF) == 0) {
1029 		if (wpipe->pipe_state & PIPE_WANTR) {
1030 			wpipe->pipe_state &= ~PIPE_WANTR;
1031 			wakeup(wpipe);
1032 		}
1033 		pipeselwakeup(wpipe);
1034 		wpipe->pipe_state |= PIPE_WANTW;
1035 		pipeunlock(wpipe);
1036 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1037 		    "pipdwt", 0);
1038 		pipelock(wpipe, 0);
1039 		if (error != 0)
1040 			break;
1041 	}
1042 
1043 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1044 		wpipe->pipe_pages.cnt = 0;
1045 		pipe_destroy_write_buffer(wpipe);
1046 		pipeselwakeup(wpipe);
1047 		error = EPIPE;
1048 	} else if (error == EINTR || error == ERESTART) {
1049 		pipe_clone_write_buffer(wpipe);
1050 	} else {
1051 		pipe_destroy_write_buffer(wpipe);
1052 	}
1053 	pipeunlock(wpipe);
1054 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
1055 	    ("pipe %p leaked PIPE_DIRECTW", wpipe));
1056 	return (error);
1057 
1058 error1:
1059 	wakeup(wpipe);
1060 	return (error);
1061 }
1062 #endif
1063 
1064 static int
1065 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1066     int flags, struct thread *td)
1067 {
1068 	struct pipe *wpipe, *rpipe;
1069 	ssize_t orig_resid;
1070 	int desiredsize, error;
1071 
1072 	rpipe = fp->f_data;
1073 	wpipe = PIPE_PEER(rpipe);
1074 	PIPE_LOCK(rpipe);
1075 	error = pipelock(wpipe, 1);
1076 	if (error) {
1077 		PIPE_UNLOCK(rpipe);
1078 		return (error);
1079 	}
1080 	/*
1081 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1082 	 */
1083 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1084 	    (wpipe->pipe_state & PIPE_EOF)) {
1085 		pipeunlock(wpipe);
1086 		PIPE_UNLOCK(rpipe);
1087 		return (EPIPE);
1088 	}
1089 #ifdef MAC
1090 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1091 	if (error) {
1092 		pipeunlock(wpipe);
1093 		PIPE_UNLOCK(rpipe);
1094 		return (error);
1095 	}
1096 #endif
1097 	++wpipe->pipe_busy;
1098 
1099 	/* Choose a larger size if it's advantageous */
1100 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1101 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1102 		if (piperesizeallowed != 1)
1103 			break;
1104 		if (amountpipekva > maxpipekva / 2)
1105 			break;
1106 		if (desiredsize == BIG_PIPE_SIZE)
1107 			break;
1108 		desiredsize = desiredsize * 2;
1109 	}
1110 
1111 	/* Choose a smaller size if we're in a OOM situation */
1112 	if (amountpipekva > (3 * maxpipekva) / 4 &&
1113 	    wpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
1114 	    wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
1115 	    piperesizeallowed == 1)
1116 		desiredsize = SMALL_PIPE_SIZE;
1117 
1118 	/* Resize if the above determined that a new size was necessary */
1119 	if (desiredsize != wpipe->pipe_buffer.size &&
1120 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0) {
1121 		PIPE_UNLOCK(wpipe);
1122 		pipespace(wpipe, desiredsize);
1123 		PIPE_LOCK(wpipe);
1124 	}
1125 	MPASS(wpipe->pipe_buffer.size != 0);
1126 
1127 	pipeunlock(wpipe);
1128 
1129 	orig_resid = uio->uio_resid;
1130 
1131 	while (uio->uio_resid) {
1132 		int space;
1133 
1134 		pipelock(wpipe, 0);
1135 		if (wpipe->pipe_state & PIPE_EOF) {
1136 			pipeunlock(wpipe);
1137 			error = EPIPE;
1138 			break;
1139 		}
1140 #ifndef PIPE_NODIRECT
1141 		/*
1142 		 * If the transfer is large, we can gain performance if
1143 		 * we do process-to-process copies directly.
1144 		 * If the write is non-blocking, we don't use the
1145 		 * direct write mechanism.
1146 		 *
1147 		 * The direct write mechanism will detect the reader going
1148 		 * away on us.
1149 		 */
1150 		if (uio->uio_segflg == UIO_USERSPACE &&
1151 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1152 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1153 		    (fp->f_flag & FNONBLOCK) == 0) {
1154 			pipeunlock(wpipe);
1155 			error = pipe_direct_write(wpipe, uio);
1156 			if (error)
1157 				break;
1158 			continue;
1159 		}
1160 #endif
1161 
1162 		/*
1163 		 * Pipe buffered writes cannot be coincidental with
1164 		 * direct writes.  We wait until the currently executing
1165 		 * direct write is completed before we start filling the
1166 		 * pipe buffer.  We break out if a signal occurs or the
1167 		 * reader goes away.
1168 		 */
1169 		if (wpipe->pipe_pages.cnt != 0) {
1170 			if (wpipe->pipe_state & PIPE_WANTR) {
1171 				wpipe->pipe_state &= ~PIPE_WANTR;
1172 				wakeup(wpipe);
1173 			}
1174 			pipeselwakeup(wpipe);
1175 			wpipe->pipe_state |= PIPE_WANTW;
1176 			pipeunlock(wpipe);
1177 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1178 			    "pipbww", 0);
1179 			if (error)
1180 				break;
1181 			else
1182 				continue;
1183 		}
1184 
1185 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1186 
1187 		/* Writes of size <= PIPE_BUF must be atomic. */
1188 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1189 			space = 0;
1190 
1191 		if (space > 0) {
1192 			int size;	/* Transfer size */
1193 			int segsize;	/* first segment to transfer */
1194 
1195 			/*
1196 			 * Transfer size is minimum of uio transfer
1197 			 * and free space in pipe buffer.
1198 			 */
1199 			if (space > uio->uio_resid)
1200 				size = uio->uio_resid;
1201 			else
1202 				size = space;
1203 			/*
1204 			 * First segment to transfer is minimum of
1205 			 * transfer size and contiguous space in
1206 			 * pipe buffer.  If first segment to transfer
1207 			 * is less than the transfer size, we've got
1208 			 * a wraparound in the buffer.
1209 			 */
1210 			segsize = wpipe->pipe_buffer.size -
1211 				wpipe->pipe_buffer.in;
1212 			if (segsize > size)
1213 				segsize = size;
1214 
1215 			/* Transfer first segment */
1216 
1217 			PIPE_UNLOCK(rpipe);
1218 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1219 					segsize, uio);
1220 			PIPE_LOCK(rpipe);
1221 
1222 			if (error == 0 && segsize < size) {
1223 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1224 					wpipe->pipe_buffer.size,
1225 					("Pipe buffer wraparound disappeared"));
1226 				/*
1227 				 * Transfer remaining part now, to
1228 				 * support atomic writes.  Wraparound
1229 				 * happened.
1230 				 */
1231 
1232 				PIPE_UNLOCK(rpipe);
1233 				error = uiomove(
1234 				    &wpipe->pipe_buffer.buffer[0],
1235 				    size - segsize, uio);
1236 				PIPE_LOCK(rpipe);
1237 			}
1238 			if (error == 0) {
1239 				wpipe->pipe_buffer.in += size;
1240 				if (wpipe->pipe_buffer.in >=
1241 				    wpipe->pipe_buffer.size) {
1242 					KASSERT(wpipe->pipe_buffer.in ==
1243 						size - segsize +
1244 						wpipe->pipe_buffer.size,
1245 						("Expected wraparound bad"));
1246 					wpipe->pipe_buffer.in = size - segsize;
1247 				}
1248 
1249 				wpipe->pipe_buffer.cnt += size;
1250 				KASSERT(wpipe->pipe_buffer.cnt <=
1251 					wpipe->pipe_buffer.size,
1252 					("Pipe buffer overflow"));
1253 			}
1254 			pipeunlock(wpipe);
1255 			if (error != 0)
1256 				break;
1257 		} else {
1258 			/*
1259 			 * If the "read-side" has been blocked, wake it up now.
1260 			 */
1261 			if (wpipe->pipe_state & PIPE_WANTR) {
1262 				wpipe->pipe_state &= ~PIPE_WANTR;
1263 				wakeup(wpipe);
1264 			}
1265 
1266 			/*
1267 			 * don't block on non-blocking I/O
1268 			 */
1269 			if (fp->f_flag & FNONBLOCK) {
1270 				error = EAGAIN;
1271 				pipeunlock(wpipe);
1272 				break;
1273 			}
1274 
1275 			/*
1276 			 * We have no more space and have something to offer,
1277 			 * wake up select/poll.
1278 			 */
1279 			pipeselwakeup(wpipe);
1280 
1281 			wpipe->pipe_state |= PIPE_WANTW;
1282 			pipeunlock(wpipe);
1283 			error = msleep(wpipe, PIPE_MTX(rpipe),
1284 			    PRIBIO | PCATCH, "pipewr", 0);
1285 			if (error != 0)
1286 				break;
1287 		}
1288 	}
1289 
1290 	pipelock(wpipe, 0);
1291 	--wpipe->pipe_busy;
1292 
1293 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1294 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1295 		wakeup(wpipe);
1296 	} else if (wpipe->pipe_buffer.cnt > 0) {
1297 		/*
1298 		 * If we have put any characters in the buffer, we wake up
1299 		 * the reader.
1300 		 */
1301 		if (wpipe->pipe_state & PIPE_WANTR) {
1302 			wpipe->pipe_state &= ~PIPE_WANTR;
1303 			wakeup(wpipe);
1304 		}
1305 	}
1306 
1307 	/*
1308 	 * Don't return EPIPE if any byte was written.
1309 	 * EINTR and other interrupts are handled by generic I/O layer.
1310 	 * Do not pretend that I/O succeeded for obvious user error
1311 	 * like EFAULT.
1312 	 */
1313 	if (uio->uio_resid != orig_resid && error == EPIPE)
1314 		error = 0;
1315 
1316 	if (error == 0)
1317 		pipe_timestamp(&wpipe->pipe_mtime);
1318 
1319 	/*
1320 	 * We have something to offer,
1321 	 * wake up select/poll.
1322 	 */
1323 	if (wpipe->pipe_buffer.cnt)
1324 		pipeselwakeup(wpipe);
1325 
1326 	pipeunlock(wpipe);
1327 	PIPE_UNLOCK(rpipe);
1328 	return (error);
1329 }
1330 
1331 /* ARGSUSED */
1332 static int
1333 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1334     struct thread *td)
1335 {
1336 	struct pipe *cpipe;
1337 	int error;
1338 
1339 	cpipe = fp->f_data;
1340 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1341 		error = vnops.fo_truncate(fp, length, active_cred, td);
1342 	else
1343 		error = invfo_truncate(fp, length, active_cred, td);
1344 	return (error);
1345 }
1346 
1347 /*
1348  * we implement a very minimal set of ioctls for compatibility with sockets.
1349  */
1350 static int
1351 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1352     struct thread *td)
1353 {
1354 	struct pipe *mpipe = fp->f_data;
1355 	int error;
1356 
1357 	PIPE_LOCK(mpipe);
1358 
1359 #ifdef MAC
1360 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1361 	if (error) {
1362 		PIPE_UNLOCK(mpipe);
1363 		return (error);
1364 	}
1365 #endif
1366 
1367 	error = 0;
1368 	switch (cmd) {
1369 	case FIONBIO:
1370 		break;
1371 
1372 	case FIOASYNC:
1373 		if (*(int *)data) {
1374 			mpipe->pipe_state |= PIPE_ASYNC;
1375 		} else {
1376 			mpipe->pipe_state &= ~PIPE_ASYNC;
1377 		}
1378 		break;
1379 
1380 	case FIONREAD:
1381 		if (!(fp->f_flag & FREAD)) {
1382 			*(int *)data = 0;
1383 			PIPE_UNLOCK(mpipe);
1384 			return (0);
1385 		}
1386 		if (mpipe->pipe_pages.cnt != 0)
1387 			*(int *)data = mpipe->pipe_pages.cnt;
1388 		else
1389 			*(int *)data = mpipe->pipe_buffer.cnt;
1390 		break;
1391 
1392 	case FIOSETOWN:
1393 		PIPE_UNLOCK(mpipe);
1394 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1395 		goto out_unlocked;
1396 
1397 	case FIOGETOWN:
1398 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1399 		break;
1400 
1401 	/* This is deprecated, FIOSETOWN should be used instead. */
1402 	case TIOCSPGRP:
1403 		PIPE_UNLOCK(mpipe);
1404 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1405 		goto out_unlocked;
1406 
1407 	/* This is deprecated, FIOGETOWN should be used instead. */
1408 	case TIOCGPGRP:
1409 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1410 		break;
1411 
1412 	default:
1413 		error = ENOTTY;
1414 		break;
1415 	}
1416 	PIPE_UNLOCK(mpipe);
1417 out_unlocked:
1418 	return (error);
1419 }
1420 
1421 static int
1422 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1423     struct thread *td)
1424 {
1425 	struct pipe *rpipe;
1426 	struct pipe *wpipe;
1427 	int levents, revents;
1428 #ifdef MAC
1429 	int error;
1430 #endif
1431 
1432 	revents = 0;
1433 	rpipe = fp->f_data;
1434 	wpipe = PIPE_PEER(rpipe);
1435 	PIPE_LOCK(rpipe);
1436 #ifdef MAC
1437 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1438 	if (error)
1439 		goto locked_error;
1440 #endif
1441 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1442 		if (rpipe->pipe_pages.cnt > 0 || rpipe->pipe_buffer.cnt > 0)
1443 			revents |= events & (POLLIN | POLLRDNORM);
1444 
1445 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1446 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1447 		    (wpipe->pipe_state & PIPE_EOF) ||
1448 		    ((wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1449 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1450 			 wpipe->pipe_buffer.size == 0)))
1451 			revents |= events & (POLLOUT | POLLWRNORM);
1452 
1453 	levents = events &
1454 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1455 	if (rpipe->pipe_type & PIPE_TYPE_NAMED && fp->f_flag & FREAD && levents &&
1456 	    fp->f_pipegen == rpipe->pipe_wgen)
1457 		events |= POLLINIGNEOF;
1458 
1459 	if ((events & POLLINIGNEOF) == 0) {
1460 		if (rpipe->pipe_state & PIPE_EOF) {
1461 			if (fp->f_flag & FREAD)
1462 				revents |= (events & (POLLIN | POLLRDNORM));
1463 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1464 			    (wpipe->pipe_state & PIPE_EOF))
1465 				revents |= POLLHUP;
1466 		}
1467 	}
1468 
1469 	if (revents == 0) {
1470 		/*
1471 		 * Add ourselves regardless of eventmask as we have to return
1472 		 * POLLHUP even if it was not asked for.
1473 		 */
1474 		if ((fp->f_flag & FREAD) != 0) {
1475 			selrecord(td, &rpipe->pipe_sel);
1476 			if (SEL_WAITING(&rpipe->pipe_sel))
1477 				rpipe->pipe_state |= PIPE_SEL;
1478 		}
1479 
1480 		if ((fp->f_flag & FWRITE) != 0) {
1481 			selrecord(td, &wpipe->pipe_sel);
1482 			if (SEL_WAITING(&wpipe->pipe_sel))
1483 				wpipe->pipe_state |= PIPE_SEL;
1484 		}
1485 	}
1486 #ifdef MAC
1487 locked_error:
1488 #endif
1489 	PIPE_UNLOCK(rpipe);
1490 
1491 	return (revents);
1492 }
1493 
1494 /*
1495  * We shouldn't need locks here as we're doing a read and this should
1496  * be a natural race.
1497  */
1498 static int
1499 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred,
1500     struct thread *td)
1501 {
1502 	struct pipe *pipe;
1503 #ifdef MAC
1504 	int error;
1505 #endif
1506 
1507 	pipe = fp->f_data;
1508 #ifdef MAC
1509 	if (mac_pipe_check_stat_enabled()) {
1510 		PIPE_LOCK(pipe);
1511 		error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1512 		PIPE_UNLOCK(pipe);
1513 		if (error) {
1514 			return (error);
1515 		}
1516 	}
1517 #endif
1518 
1519 	/* For named pipes ask the underlying filesystem. */
1520 	if (pipe->pipe_type & PIPE_TYPE_NAMED) {
1521 		return (vnops.fo_stat(fp, ub, active_cred, td));
1522 	}
1523 
1524 	bzero(ub, sizeof(*ub));
1525 	ub->st_mode = S_IFIFO;
1526 	ub->st_blksize = PAGE_SIZE;
1527 	if (pipe->pipe_pages.cnt != 0)
1528 		ub->st_size = pipe->pipe_pages.cnt;
1529 	else
1530 		ub->st_size = pipe->pipe_buffer.cnt;
1531 	ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1532 	ub->st_atim = pipe->pipe_atime;
1533 	ub->st_mtim = pipe->pipe_mtime;
1534 	ub->st_ctim = pipe->pipe_ctime;
1535 	ub->st_uid = fp->f_cred->cr_uid;
1536 	ub->st_gid = fp->f_cred->cr_gid;
1537 	ub->st_dev = pipedev_ino;
1538 	ub->st_ino = pipe->pipe_ino;
1539 	/*
1540 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1541 	 */
1542 	return (0);
1543 }
1544 
1545 /* ARGSUSED */
1546 static int
1547 pipe_close(struct file *fp, struct thread *td)
1548 {
1549 
1550 	if (fp->f_vnode != NULL)
1551 		return vnops.fo_close(fp, td);
1552 	fp->f_ops = &badfileops;
1553 	pipe_dtor(fp->f_data);
1554 	fp->f_data = NULL;
1555 	return (0);
1556 }
1557 
1558 static int
1559 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1560 {
1561 	struct pipe *cpipe;
1562 	int error;
1563 
1564 	cpipe = fp->f_data;
1565 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1566 		error = vn_chmod(fp, mode, active_cred, td);
1567 	else
1568 		error = invfo_chmod(fp, mode, active_cred, td);
1569 	return (error);
1570 }
1571 
1572 static int
1573 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1574     struct thread *td)
1575 {
1576 	struct pipe *cpipe;
1577 	int error;
1578 
1579 	cpipe = fp->f_data;
1580 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1581 		error = vn_chown(fp, uid, gid, active_cred, td);
1582 	else
1583 		error = invfo_chown(fp, uid, gid, active_cred, td);
1584 	return (error);
1585 }
1586 
1587 static int
1588 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1589 {
1590 	struct pipe *pi;
1591 
1592 	if (fp->f_type == DTYPE_FIFO)
1593 		return (vn_fill_kinfo(fp, kif, fdp));
1594 	kif->kf_type = KF_TYPE_PIPE;
1595 	pi = fp->f_data;
1596 	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1597 	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1598 	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1599 	return (0);
1600 }
1601 
1602 static void
1603 pipe_free_kmem(struct pipe *cpipe)
1604 {
1605 
1606 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1607 	    ("pipe_free_kmem: pipe mutex locked"));
1608 
1609 	if (cpipe->pipe_buffer.buffer != NULL) {
1610 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1611 		vm_map_remove(pipe_map,
1612 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1613 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1614 		cpipe->pipe_buffer.buffer = NULL;
1615 	}
1616 #ifndef PIPE_NODIRECT
1617 	{
1618 		cpipe->pipe_pages.cnt = 0;
1619 		cpipe->pipe_pages.pos = 0;
1620 		cpipe->pipe_pages.npages = 0;
1621 	}
1622 #endif
1623 }
1624 
1625 /*
1626  * shutdown the pipe
1627  */
1628 static void
1629 pipeclose(struct pipe *cpipe)
1630 {
1631 	struct pipepair *pp;
1632 	struct pipe *ppipe;
1633 
1634 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1635 
1636 	PIPE_LOCK(cpipe);
1637 	pipelock(cpipe, 0);
1638 	pp = cpipe->pipe_pair;
1639 
1640 	/*
1641 	 * If the other side is blocked, wake it up saying that
1642 	 * we want to close it down.
1643 	 */
1644 	cpipe->pipe_state |= PIPE_EOF;
1645 	while (cpipe->pipe_busy) {
1646 		wakeup(cpipe);
1647 		cpipe->pipe_state |= PIPE_WANT;
1648 		pipeunlock(cpipe);
1649 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1650 		pipelock(cpipe, 0);
1651 	}
1652 
1653 	pipeselwakeup(cpipe);
1654 
1655 	/*
1656 	 * Disconnect from peer, if any.
1657 	 */
1658 	ppipe = cpipe->pipe_peer;
1659 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1660 		ppipe->pipe_state |= PIPE_EOF;
1661 		wakeup(ppipe);
1662 		pipeselwakeup(ppipe);
1663 	}
1664 
1665 	/*
1666 	 * Mark this endpoint as free.  Release kmem resources.  We
1667 	 * don't mark this endpoint as unused until we've finished
1668 	 * doing that, or the pipe might disappear out from under
1669 	 * us.
1670 	 */
1671 	PIPE_UNLOCK(cpipe);
1672 	pipe_free_kmem(cpipe);
1673 	PIPE_LOCK(cpipe);
1674 	cpipe->pipe_present = PIPE_CLOSING;
1675 	pipeunlock(cpipe);
1676 
1677 	/*
1678 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1679 	 * PIPE_FINALIZED, that allows other end to free the
1680 	 * pipe_pair, only after the knotes are completely dismantled.
1681 	 */
1682 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1683 	cpipe->pipe_present = PIPE_FINALIZED;
1684 	seldrain(&cpipe->pipe_sel);
1685 	knlist_destroy(&cpipe->pipe_sel.si_note);
1686 
1687 	/*
1688 	 * If both endpoints are now closed, release the memory for the
1689 	 * pipe pair.  If not, unlock.
1690 	 */
1691 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1692 		PIPE_UNLOCK(cpipe);
1693 #ifdef MAC
1694 		mac_pipe_destroy(pp);
1695 #endif
1696 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1697 	} else
1698 		PIPE_UNLOCK(cpipe);
1699 }
1700 
1701 /*ARGSUSED*/
1702 static int
1703 pipe_kqfilter(struct file *fp, struct knote *kn)
1704 {
1705 	struct pipe *cpipe;
1706 
1707 	/*
1708 	 * If a filter is requested that is not supported by this file
1709 	 * descriptor, don't return an error, but also don't ever generate an
1710 	 * event.
1711 	 */
1712 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1713 		kn->kn_fop = &pipe_nfiltops;
1714 		return (0);
1715 	}
1716 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1717 		kn->kn_fop = &pipe_nfiltops;
1718 		return (0);
1719 	}
1720 	cpipe = fp->f_data;
1721 	PIPE_LOCK(cpipe);
1722 	switch (kn->kn_filter) {
1723 	case EVFILT_READ:
1724 		kn->kn_fop = &pipe_rfiltops;
1725 		break;
1726 	case EVFILT_WRITE:
1727 		kn->kn_fop = &pipe_wfiltops;
1728 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1729 			/* other end of pipe has been closed */
1730 			PIPE_UNLOCK(cpipe);
1731 			return (EPIPE);
1732 		}
1733 		cpipe = PIPE_PEER(cpipe);
1734 		break;
1735 	default:
1736 		PIPE_UNLOCK(cpipe);
1737 		return (EINVAL);
1738 	}
1739 
1740 	kn->kn_hook = cpipe;
1741 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1742 	PIPE_UNLOCK(cpipe);
1743 	return (0);
1744 }
1745 
1746 static void
1747 filt_pipedetach(struct knote *kn)
1748 {
1749 	struct pipe *cpipe = kn->kn_hook;
1750 
1751 	PIPE_LOCK(cpipe);
1752 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1753 	PIPE_UNLOCK(cpipe);
1754 }
1755 
1756 /*ARGSUSED*/
1757 static int
1758 filt_piperead(struct knote *kn, long hint)
1759 {
1760 	struct file *fp = kn->kn_fp;
1761 	struct pipe *rpipe = kn->kn_hook;
1762 
1763 	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1764 	kn->kn_data = rpipe->pipe_buffer.cnt;
1765 	if (kn->kn_data == 0)
1766 		kn->kn_data = rpipe->pipe_pages.cnt;
1767 
1768 	if ((rpipe->pipe_state & PIPE_EOF) != 0 &&
1769 	    ((rpipe->pipe_type & PIPE_TYPE_NAMED) == 0 ||
1770 	    fp->f_pipegen != rpipe->pipe_wgen)) {
1771 		kn->kn_flags |= EV_EOF;
1772 		return (1);
1773 	}
1774 	kn->kn_flags &= ~EV_EOF;
1775 	return (kn->kn_data > 0);
1776 }
1777 
1778 /*ARGSUSED*/
1779 static int
1780 filt_pipewrite(struct knote *kn, long hint)
1781 {
1782 	struct pipe *wpipe = kn->kn_hook;
1783 
1784 	/*
1785 	 * If this end of the pipe is closed, the knote was removed from the
1786 	 * knlist and the list lock (i.e., the pipe lock) is therefore not held.
1787 	 */
1788 	if (wpipe->pipe_present == PIPE_ACTIVE ||
1789 	    (wpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1790 		PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1791 
1792 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1793 			kn->kn_data = 0;
1794 		} else if (wpipe->pipe_buffer.size > 0) {
1795 			kn->kn_data = wpipe->pipe_buffer.size -
1796 			    wpipe->pipe_buffer.cnt;
1797 		} else {
1798 			kn->kn_data = PIPE_BUF;
1799 		}
1800 	}
1801 
1802 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1803 	    (wpipe->pipe_state & PIPE_EOF)) {
1804 		kn->kn_flags |= EV_EOF;
1805 		return (1);
1806 	}
1807 	kn->kn_flags &= ~EV_EOF;
1808 	return (kn->kn_data >= PIPE_BUF);
1809 }
1810 
1811 static void
1812 filt_pipedetach_notsup(struct knote *kn)
1813 {
1814 
1815 }
1816 
1817 static int
1818 filt_pipenotsup(struct knote *kn, long hint)
1819 {
1820 
1821 	return (0);
1822 }
1823