1 /* 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 * 19 * $FreeBSD$ 20 */ 21 22 /* 23 * This file contains a high-performance replacement for the socket-based 24 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 25 * all features of sockets, but does do everything that pipes normally 26 * do. 27 */ 28 29 /* 30 * This code has two modes of operation, a small write mode and a large 31 * write mode. The small write mode acts like conventional pipes with 32 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 33 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 34 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and 35 * the receiving process can copy it directly from the pages in the sending 36 * process. 37 * 38 * If the sending process receives a signal, it is possible that it will 39 * go away, and certainly its address space can change, because control 40 * is returned back to the user-mode side. In that case, the pipe code 41 * arranges to copy the buffer supplied by the user process, to a pageable 42 * kernel buffer, and the receiving process will grab the data from the 43 * pageable kernel buffer. Since signals don't happen all that often, 44 * the copy operation is normally eliminated. 45 * 46 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 47 * happen for small transfers so that the system will not spend all of 48 * its time context switching. PIPE_SIZE is constrained by the 49 * amount of kernel virtual memory. 50 */ 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/proc.h> 55 #include <sys/fcntl.h> 56 #include <sys/file.h> 57 #include <sys/filedesc.h> 58 #include <sys/filio.h> 59 #include <sys/ttycom.h> 60 #include <sys/stat.h> 61 #include <sys/poll.h> 62 #include <sys/select.h> 63 #include <sys/signalvar.h> 64 #include <sys/sysproto.h> 65 #include <sys/pipe.h> 66 #include <sys/vnode.h> 67 #include <sys/uio.h> 68 69 #include <vm/vm.h> 70 #include <vm/vm_param.h> 71 #include <sys/lock.h> 72 #include <vm/vm_object.h> 73 #include <vm/vm_kern.h> 74 #include <vm/vm_extern.h> 75 #include <vm/pmap.h> 76 #include <vm/vm_map.h> 77 #include <vm/vm_page.h> 78 #include <vm/vm_zone.h> 79 80 /* 81 * Use this define if you want to disable *fancy* VM things. Expect an 82 * approx 30% decrease in transfer rate. This could be useful for 83 * NetBSD or OpenBSD. 84 */ 85 /* #define PIPE_NODIRECT */ 86 87 /* 88 * interfaces to the outside world 89 */ 90 static int pipe_read __P((struct file *fp, struct uio *uio, 91 struct ucred *cred, int flags, struct proc *p)); 92 static int pipe_write __P((struct file *fp, struct uio *uio, 93 struct ucred *cred, int flags, struct proc *p)); 94 static int pipe_close __P((struct file *fp, struct proc *p)); 95 static int pipe_poll __P((struct file *fp, int events, struct ucred *cred, 96 struct proc *p)); 97 static int pipe_stat __P((struct file *fp, struct stat *sb, struct proc *p)); 98 static int pipe_ioctl __P((struct file *fp, u_long cmd, caddr_t data, struct proc *p)); 99 100 static struct fileops pipeops = 101 { pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_stat, pipe_close }; 102 103 /* 104 * Default pipe buffer size(s), this can be kind-of large now because pipe 105 * space is pageable. The pipe code will try to maintain locality of 106 * reference for performance reasons, so small amounts of outstanding I/O 107 * will not wipe the cache. 108 */ 109 #define MINPIPESIZE (PIPE_SIZE/3) 110 #define MAXPIPESIZE (2*PIPE_SIZE/3) 111 112 /* 113 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but 114 * is there so that on large systems, we don't exhaust it. 115 */ 116 #define MAXPIPEKVA (8*1024*1024) 117 118 /* 119 * Limit for direct transfers, we cannot, of course limit 120 * the amount of kva for pipes in general though. 121 */ 122 #define LIMITPIPEKVA (16*1024*1024) 123 124 /* 125 * Limit the number of "big" pipes 126 */ 127 #define LIMITBIGPIPES 32 128 static int nbigpipe; 129 130 static int amountpipekva; 131 132 static void pipeclose __P((struct pipe *cpipe)); 133 static void pipeinit __P((struct pipe *cpipe)); 134 static __inline int pipelock __P((struct pipe *cpipe, int catch)); 135 static __inline void pipeunlock __P((struct pipe *cpipe)); 136 static __inline void pipeselwakeup __P((struct pipe *cpipe)); 137 #ifndef PIPE_NODIRECT 138 static int pipe_build_write_buffer __P((struct pipe *wpipe, struct uio *uio)); 139 static void pipe_destroy_write_buffer __P((struct pipe *wpipe)); 140 static int pipe_direct_write __P((struct pipe *wpipe, struct uio *uio)); 141 static void pipe_clone_write_buffer __P((struct pipe *wpipe)); 142 #endif 143 static void pipespace __P((struct pipe *cpipe)); 144 145 static vm_zone_t pipe_zone; 146 147 /* 148 * The pipe system call for the DTYPE_PIPE type of pipes 149 */ 150 151 /* ARGSUSED */ 152 int 153 pipe(p, uap) 154 struct proc *p; 155 struct pipe_args /* { 156 int dummy; 157 } */ *uap; 158 { 159 register struct filedesc *fdp = p->p_fd; 160 struct file *rf, *wf; 161 struct pipe *rpipe, *wpipe; 162 int fd, error; 163 164 if (pipe_zone == NULL) 165 pipe_zone = zinit("PIPE", sizeof (struct pipe), 0, 0, 4); 166 167 rpipe = zalloc( pipe_zone); 168 pipeinit(rpipe); 169 rpipe->pipe_state |= PIPE_DIRECTOK; 170 wpipe = zalloc( pipe_zone); 171 pipeinit(wpipe); 172 wpipe->pipe_state |= PIPE_DIRECTOK; 173 174 error = falloc(p, &rf, &fd); 175 if (error) 176 goto free2; 177 p->p_retval[0] = fd; 178 rf->f_flag = FREAD | FWRITE; 179 rf->f_type = DTYPE_PIPE; 180 rf->f_data = (caddr_t)rpipe; 181 rf->f_ops = &pipeops; 182 error = falloc(p, &wf, &fd); 183 if (error) 184 goto free3; 185 wf->f_flag = FREAD | FWRITE; 186 wf->f_type = DTYPE_PIPE; 187 wf->f_data = (caddr_t)wpipe; 188 wf->f_ops = &pipeops; 189 p->p_retval[1] = fd; 190 191 rpipe->pipe_peer = wpipe; 192 wpipe->pipe_peer = rpipe; 193 194 return (0); 195 free3: 196 fdp->fd_ofiles[p->p_retval[0]] = 0; 197 ffree(rf); 198 free2: 199 (void)pipeclose(wpipe); 200 (void)pipeclose(rpipe); 201 return (error); 202 } 203 204 /* 205 * Allocate kva for pipe circular buffer, the space is pageable 206 */ 207 static void 208 pipespace(cpipe) 209 struct pipe *cpipe; 210 { 211 int npages, error; 212 213 npages = round_page(cpipe->pipe_buffer.size)/PAGE_SIZE; 214 /* 215 * Create an object, I don't like the idea of paging to/from 216 * kernel_object. 217 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems. 218 */ 219 cpipe->pipe_buffer.object = vm_object_allocate(OBJT_DEFAULT, npages); 220 cpipe->pipe_buffer.buffer = (caddr_t) vm_map_min(kernel_map); 221 222 /* 223 * Insert the object into the kernel map, and allocate kva for it. 224 * The map entry is, by default, pageable. 225 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems. 226 */ 227 error = vm_map_find(kernel_map, cpipe->pipe_buffer.object, 0, 228 (vm_offset_t *) &cpipe->pipe_buffer.buffer, 229 cpipe->pipe_buffer.size, 1, 230 VM_PROT_ALL, VM_PROT_ALL, 0); 231 232 if (error != KERN_SUCCESS) 233 panic("pipeinit: cannot allocate pipe -- out of kvm -- code = %d", error); 234 amountpipekva += cpipe->pipe_buffer.size; 235 } 236 237 /* 238 * initialize and allocate VM and memory for pipe 239 */ 240 static void 241 pipeinit(cpipe) 242 struct pipe *cpipe; 243 { 244 245 cpipe->pipe_buffer.in = 0; 246 cpipe->pipe_buffer.out = 0; 247 cpipe->pipe_buffer.cnt = 0; 248 cpipe->pipe_buffer.size = PIPE_SIZE; 249 250 /* Buffer kva gets dynamically allocated */ 251 cpipe->pipe_buffer.buffer = NULL; 252 /* cpipe->pipe_buffer.object = invalid */ 253 254 cpipe->pipe_state = 0; 255 cpipe->pipe_peer = NULL; 256 cpipe->pipe_busy = 0; 257 vfs_timestamp(&cpipe->pipe_ctime); 258 cpipe->pipe_atime = cpipe->pipe_ctime; 259 cpipe->pipe_mtime = cpipe->pipe_ctime; 260 bzero(&cpipe->pipe_sel, sizeof cpipe->pipe_sel); 261 262 #ifndef PIPE_NODIRECT 263 /* 264 * pipe data structure initializations to support direct pipe I/O 265 */ 266 cpipe->pipe_map.cnt = 0; 267 cpipe->pipe_map.kva = 0; 268 cpipe->pipe_map.pos = 0; 269 cpipe->pipe_map.npages = 0; 270 /* cpipe->pipe_map.ms[] = invalid */ 271 #endif 272 } 273 274 275 /* 276 * lock a pipe for I/O, blocking other access 277 */ 278 static __inline int 279 pipelock(cpipe, catch) 280 struct pipe *cpipe; 281 int catch; 282 { 283 int error; 284 while (cpipe->pipe_state & PIPE_LOCK) { 285 cpipe->pipe_state |= PIPE_LWANT; 286 if ((error = tsleep( cpipe, 287 catch?(PRIBIO|PCATCH):PRIBIO, "pipelk", 0)) != 0) { 288 return error; 289 } 290 } 291 cpipe->pipe_state |= PIPE_LOCK; 292 return 0; 293 } 294 295 /* 296 * unlock a pipe I/O lock 297 */ 298 static __inline void 299 pipeunlock(cpipe) 300 struct pipe *cpipe; 301 { 302 cpipe->pipe_state &= ~PIPE_LOCK; 303 if (cpipe->pipe_state & PIPE_LWANT) { 304 cpipe->pipe_state &= ~PIPE_LWANT; 305 wakeup(cpipe); 306 } 307 } 308 309 static __inline void 310 pipeselwakeup(cpipe) 311 struct pipe *cpipe; 312 { 313 if (cpipe->pipe_state & PIPE_SEL) { 314 cpipe->pipe_state &= ~PIPE_SEL; 315 selwakeup(&cpipe->pipe_sel); 316 } 317 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 318 pgsigio(cpipe->pipe_sigio, SIGIO, 0); 319 } 320 321 /* ARGSUSED */ 322 static int 323 pipe_read(fp, uio, cred, flags, p) 324 struct file *fp; 325 struct uio *uio; 326 struct ucred *cred; 327 struct proc *p; 328 int flags; 329 { 330 331 struct pipe *rpipe = (struct pipe *) fp->f_data; 332 int error; 333 int nread = 0; 334 u_int size; 335 336 ++rpipe->pipe_busy; 337 error = pipelock(rpipe, 1); 338 if (error) 339 goto unlocked_error; 340 341 while (uio->uio_resid) { 342 /* 343 * normal pipe buffer receive 344 */ 345 if (rpipe->pipe_buffer.cnt > 0) { 346 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 347 if (size > rpipe->pipe_buffer.cnt) 348 size = rpipe->pipe_buffer.cnt; 349 if (size > (u_int) uio->uio_resid) 350 size = (u_int) uio->uio_resid; 351 352 error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 353 size, uio); 354 if (error) { 355 break; 356 } 357 rpipe->pipe_buffer.out += size; 358 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 359 rpipe->pipe_buffer.out = 0; 360 361 rpipe->pipe_buffer.cnt -= size; 362 363 /* 364 * If there is no more to read in the pipe, reset 365 * its pointers to the beginning. This improves 366 * cache hit stats. 367 */ 368 if (rpipe->pipe_buffer.cnt == 0) { 369 rpipe->pipe_buffer.in = 0; 370 rpipe->pipe_buffer.out = 0; 371 } 372 nread += size; 373 #ifndef PIPE_NODIRECT 374 /* 375 * Direct copy, bypassing a kernel buffer. 376 */ 377 } else if ((size = rpipe->pipe_map.cnt) && 378 (rpipe->pipe_state & PIPE_DIRECTW)) { 379 caddr_t va; 380 if (size > (u_int) uio->uio_resid) 381 size = (u_int) uio->uio_resid; 382 383 va = (caddr_t) rpipe->pipe_map.kva + rpipe->pipe_map.pos; 384 error = uiomove(va, size, uio); 385 if (error) 386 break; 387 nread += size; 388 rpipe->pipe_map.pos += size; 389 rpipe->pipe_map.cnt -= size; 390 if (rpipe->pipe_map.cnt == 0) { 391 rpipe->pipe_state &= ~PIPE_DIRECTW; 392 wakeup(rpipe); 393 } 394 #endif 395 } else { 396 /* 397 * detect EOF condition 398 */ 399 if (rpipe->pipe_state & PIPE_EOF) { 400 /* XXX error = ? */ 401 break; 402 } 403 404 /* 405 * If the "write-side" has been blocked, wake it up now. 406 */ 407 if (rpipe->pipe_state & PIPE_WANTW) { 408 rpipe->pipe_state &= ~PIPE_WANTW; 409 wakeup(rpipe); 410 } 411 412 /* 413 * Break if some data was read. 414 */ 415 if (nread > 0) 416 break; 417 418 /* 419 * Unlock the pipe buffer for our remaining processing. We 420 * will either break out with an error or we will sleep and 421 * relock to loop. 422 */ 423 pipeunlock(rpipe); 424 425 /* 426 * Handle non-blocking mode operation or 427 * wait for more data. 428 */ 429 if (fp->f_flag & FNONBLOCK) 430 error = EAGAIN; 431 else { 432 rpipe->pipe_state |= PIPE_WANTR; 433 if ((error = tsleep(rpipe, PRIBIO|PCATCH, "piperd", 0)) == 0) 434 error = pipelock(rpipe, 1); 435 } 436 if (error) 437 goto unlocked_error; 438 } 439 } 440 pipeunlock(rpipe); 441 442 if (error == 0) 443 vfs_timestamp(&rpipe->pipe_atime); 444 unlocked_error: 445 --rpipe->pipe_busy; 446 447 /* 448 * PIPE_WANT processing only makes sense if pipe_busy is 0. 449 */ 450 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 451 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 452 wakeup(rpipe); 453 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 454 /* 455 * Handle write blocking hysteresis. 456 */ 457 if (rpipe->pipe_state & PIPE_WANTW) { 458 rpipe->pipe_state &= ~PIPE_WANTW; 459 wakeup(rpipe); 460 } 461 } 462 463 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 464 pipeselwakeup(rpipe); 465 466 return error; 467 } 468 469 #ifndef PIPE_NODIRECT 470 /* 471 * Map the sending processes' buffer into kernel space and wire it. 472 * This is similar to a physical write operation. 473 */ 474 static int 475 pipe_build_write_buffer(wpipe, uio) 476 struct pipe *wpipe; 477 struct uio *uio; 478 { 479 u_int size; 480 int i; 481 vm_offset_t addr, endaddr, paddr; 482 483 size = (u_int) uio->uio_iov->iov_len; 484 if (size > wpipe->pipe_buffer.size) 485 size = wpipe->pipe_buffer.size; 486 487 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size); 488 for(i = 0, addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base); 489 addr < endaddr; 490 addr += PAGE_SIZE, i+=1) { 491 492 vm_page_t m; 493 494 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 || 495 (paddr = pmap_kextract(addr)) == 0) { 496 int j; 497 for(j=0;j<i;j++) 498 vm_page_unwire(wpipe->pipe_map.ms[j], 1); 499 return EFAULT; 500 } 501 502 m = PHYS_TO_VM_PAGE(paddr); 503 vm_page_wire(m); 504 wpipe->pipe_map.ms[i] = m; 505 } 506 507 /* 508 * set up the control block 509 */ 510 wpipe->pipe_map.npages = i; 511 wpipe->pipe_map.pos = ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 512 wpipe->pipe_map.cnt = size; 513 514 /* 515 * and map the buffer 516 */ 517 if (wpipe->pipe_map.kva == 0) { 518 /* 519 * We need to allocate space for an extra page because the 520 * address range might (will) span pages at times. 521 */ 522 wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map, 523 wpipe->pipe_buffer.size + PAGE_SIZE); 524 amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE; 525 } 526 pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms, 527 wpipe->pipe_map.npages); 528 529 /* 530 * and update the uio data 531 */ 532 533 uio->uio_iov->iov_len -= size; 534 uio->uio_iov->iov_base += size; 535 if (uio->uio_iov->iov_len == 0) 536 uio->uio_iov++; 537 uio->uio_resid -= size; 538 uio->uio_offset += size; 539 return 0; 540 } 541 542 /* 543 * unmap and unwire the process buffer 544 */ 545 static void 546 pipe_destroy_write_buffer(wpipe) 547 struct pipe *wpipe; 548 { 549 int i; 550 if (wpipe->pipe_map.kva) { 551 pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages); 552 553 if (amountpipekva > MAXPIPEKVA) { 554 vm_offset_t kva = wpipe->pipe_map.kva; 555 wpipe->pipe_map.kva = 0; 556 kmem_free(kernel_map, kva, 557 wpipe->pipe_buffer.size + PAGE_SIZE); 558 amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE; 559 } 560 } 561 for (i=0;i<wpipe->pipe_map.npages;i++) 562 vm_page_unwire(wpipe->pipe_map.ms[i], 1); 563 } 564 565 /* 566 * In the case of a signal, the writing process might go away. This 567 * code copies the data into the circular buffer so that the source 568 * pages can be freed without loss of data. 569 */ 570 static void 571 pipe_clone_write_buffer(wpipe) 572 struct pipe *wpipe; 573 { 574 int size; 575 int pos; 576 577 size = wpipe->pipe_map.cnt; 578 pos = wpipe->pipe_map.pos; 579 bcopy((caddr_t) wpipe->pipe_map.kva+pos, 580 (caddr_t) wpipe->pipe_buffer.buffer, 581 size); 582 583 wpipe->pipe_buffer.in = size; 584 wpipe->pipe_buffer.out = 0; 585 wpipe->pipe_buffer.cnt = size; 586 wpipe->pipe_state &= ~PIPE_DIRECTW; 587 588 pipe_destroy_write_buffer(wpipe); 589 } 590 591 /* 592 * This implements the pipe buffer write mechanism. Note that only 593 * a direct write OR a normal pipe write can be pending at any given time. 594 * If there are any characters in the pipe buffer, the direct write will 595 * be deferred until the receiving process grabs all of the bytes from 596 * the pipe buffer. Then the direct mapping write is set-up. 597 */ 598 static int 599 pipe_direct_write(wpipe, uio) 600 struct pipe *wpipe; 601 struct uio *uio; 602 { 603 int error; 604 retry: 605 while (wpipe->pipe_state & PIPE_DIRECTW) { 606 if ( wpipe->pipe_state & PIPE_WANTR) { 607 wpipe->pipe_state &= ~PIPE_WANTR; 608 wakeup(wpipe); 609 } 610 wpipe->pipe_state |= PIPE_WANTW; 611 error = tsleep(wpipe, 612 PRIBIO|PCATCH, "pipdww", 0); 613 if (error) 614 goto error1; 615 if (wpipe->pipe_state & PIPE_EOF) { 616 error = EPIPE; 617 goto error1; 618 } 619 } 620 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 621 if (wpipe->pipe_buffer.cnt > 0) { 622 if ( wpipe->pipe_state & PIPE_WANTR) { 623 wpipe->pipe_state &= ~PIPE_WANTR; 624 wakeup(wpipe); 625 } 626 627 wpipe->pipe_state |= PIPE_WANTW; 628 error = tsleep(wpipe, 629 PRIBIO|PCATCH, "pipdwc", 0); 630 if (error) 631 goto error1; 632 if (wpipe->pipe_state & PIPE_EOF) { 633 error = EPIPE; 634 goto error1; 635 } 636 goto retry; 637 } 638 639 wpipe->pipe_state |= PIPE_DIRECTW; 640 641 error = pipe_build_write_buffer(wpipe, uio); 642 if (error) { 643 wpipe->pipe_state &= ~PIPE_DIRECTW; 644 goto error1; 645 } 646 647 error = 0; 648 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 649 if (wpipe->pipe_state & PIPE_EOF) { 650 pipelock(wpipe, 0); 651 pipe_destroy_write_buffer(wpipe); 652 pipeunlock(wpipe); 653 pipeselwakeup(wpipe); 654 error = EPIPE; 655 goto error1; 656 } 657 if (wpipe->pipe_state & PIPE_WANTR) { 658 wpipe->pipe_state &= ~PIPE_WANTR; 659 wakeup(wpipe); 660 } 661 pipeselwakeup(wpipe); 662 error = tsleep(wpipe, PRIBIO|PCATCH, "pipdwt", 0); 663 } 664 665 pipelock(wpipe,0); 666 if (wpipe->pipe_state & PIPE_DIRECTW) { 667 /* 668 * this bit of trickery substitutes a kernel buffer for 669 * the process that might be going away. 670 */ 671 pipe_clone_write_buffer(wpipe); 672 } else { 673 pipe_destroy_write_buffer(wpipe); 674 } 675 pipeunlock(wpipe); 676 return error; 677 678 error1: 679 wakeup(wpipe); 680 return error; 681 } 682 #endif 683 684 static int 685 pipe_write(fp, uio, cred, flags, p) 686 struct file *fp; 687 struct uio *uio; 688 struct ucred *cred; 689 struct proc *p; 690 int flags; 691 { 692 int error = 0; 693 int orig_resid; 694 695 struct pipe *wpipe, *rpipe; 696 697 rpipe = (struct pipe *) fp->f_data; 698 wpipe = rpipe->pipe_peer; 699 700 /* 701 * detect loss of pipe read side, issue SIGPIPE if lost. 702 */ 703 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 704 return EPIPE; 705 } 706 707 /* 708 * If it is advantageous to resize the pipe buffer, do 709 * so. 710 */ 711 if ((uio->uio_resid > PIPE_SIZE) && 712 (nbigpipe < LIMITBIGPIPES) && 713 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 714 (wpipe->pipe_buffer.size <= PIPE_SIZE) && 715 (wpipe->pipe_buffer.cnt == 0)) { 716 717 if (wpipe->pipe_buffer.buffer) { 718 amountpipekva -= wpipe->pipe_buffer.size; 719 kmem_free(kernel_map, 720 (vm_offset_t)wpipe->pipe_buffer.buffer, 721 wpipe->pipe_buffer.size); 722 } 723 724 #ifndef PIPE_NODIRECT 725 if (wpipe->pipe_map.kva) { 726 amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE; 727 kmem_free(kernel_map, 728 wpipe->pipe_map.kva, 729 wpipe->pipe_buffer.size + PAGE_SIZE); 730 } 731 #endif 732 733 wpipe->pipe_buffer.in = 0; 734 wpipe->pipe_buffer.out = 0; 735 wpipe->pipe_buffer.cnt = 0; 736 wpipe->pipe_buffer.size = BIG_PIPE_SIZE; 737 wpipe->pipe_buffer.buffer = NULL; 738 ++nbigpipe; 739 740 #ifndef PIPE_NODIRECT 741 wpipe->pipe_map.cnt = 0; 742 wpipe->pipe_map.kva = 0; 743 wpipe->pipe_map.pos = 0; 744 wpipe->pipe_map.npages = 0; 745 #endif 746 747 } 748 749 750 if( wpipe->pipe_buffer.buffer == NULL) { 751 if ((error = pipelock(wpipe,1)) == 0) { 752 pipespace(wpipe); 753 pipeunlock(wpipe); 754 } else { 755 return error; 756 } 757 } 758 759 ++wpipe->pipe_busy; 760 orig_resid = uio->uio_resid; 761 while (uio->uio_resid) { 762 int space; 763 #ifndef PIPE_NODIRECT 764 /* 765 * If the transfer is large, we can gain performance if 766 * we do process-to-process copies directly. 767 * If the write is non-blocking, we don't use the 768 * direct write mechanism. 769 */ 770 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 771 (fp->f_flag & FNONBLOCK) == 0 && 772 (wpipe->pipe_map.kva || (amountpipekva < LIMITPIPEKVA)) && 773 (uio->uio_iov->iov_len >= PIPE_MINDIRECT)) { 774 error = pipe_direct_write( wpipe, uio); 775 if (error) { 776 break; 777 } 778 continue; 779 } 780 #endif 781 782 /* 783 * Pipe buffered writes cannot be coincidental with 784 * direct writes. We wait until the currently executing 785 * direct write is completed before we start filling the 786 * pipe buffer. 787 */ 788 retrywrite: 789 while (wpipe->pipe_state & PIPE_DIRECTW) { 790 if (wpipe->pipe_state & PIPE_WANTR) { 791 wpipe->pipe_state &= ~PIPE_WANTR; 792 wakeup(wpipe); 793 } 794 error = tsleep(wpipe, 795 PRIBIO|PCATCH, "pipbww", 0); 796 if (error) 797 break; 798 } 799 800 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 801 802 /* Writes of size <= PIPE_BUF must be atomic. */ 803 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 804 space = 0; 805 806 if (space > 0 && (wpipe->pipe_buffer.cnt < PIPE_SIZE)) { 807 if ((error = pipelock(wpipe,1)) == 0) { 808 int size; /* Transfer size */ 809 int segsize; /* first segment to transfer */ 810 /* 811 * It is possible for a direct write to 812 * slip in on us... handle it here... 813 */ 814 if (wpipe->pipe_state & PIPE_DIRECTW) { 815 pipeunlock(wpipe); 816 goto retrywrite; 817 } 818 /* 819 * If a process blocked in uiomove, our 820 * value for space might be bad. 821 */ 822 if (space > wpipe->pipe_buffer.size - 823 wpipe->pipe_buffer.cnt) { 824 pipeunlock(wpipe); 825 goto retrywrite; 826 } 827 828 /* 829 * Transfer size is minimum of uio transfer 830 * and free space in pipe buffer. 831 */ 832 if (space > uio->uio_resid) 833 size = uio->uio_resid; 834 else 835 size = space; 836 /* 837 * First segment to transfer is minimum of 838 * transfer size and contiguous space in 839 * pipe buffer. If first segment to transfer 840 * is less than the transfer size, we've got 841 * a wraparound in the buffer. 842 */ 843 segsize = wpipe->pipe_buffer.size - 844 wpipe->pipe_buffer.in; 845 if (segsize > size) 846 segsize = size; 847 848 /* Transfer first segment */ 849 850 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 851 segsize, uio); 852 853 if (error == 0 && segsize < size) { 854 /* 855 * Transfer remaining part now, to 856 * support atomic writes. Wraparound 857 * happened. 858 */ 859 if (wpipe->pipe_buffer.in + segsize != 860 wpipe->pipe_buffer.size) 861 panic("Expected pipe buffer wraparound disappeared"); 862 863 error = uiomove(&wpipe->pipe_buffer.buffer[0], 864 size - segsize, uio); 865 } 866 if (error == 0) { 867 wpipe->pipe_buffer.in += size; 868 if (wpipe->pipe_buffer.in >= 869 wpipe->pipe_buffer.size) { 870 if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size) 871 panic("Expected wraparound bad"); 872 wpipe->pipe_buffer.in = size - segsize; 873 } 874 875 wpipe->pipe_buffer.cnt += size; 876 if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size) 877 panic("Pipe buffer overflow"); 878 879 } 880 pipeunlock(wpipe); 881 } 882 if (error) 883 break; 884 885 } else { 886 /* 887 * If the "read-side" has been blocked, wake it up now. 888 */ 889 if (wpipe->pipe_state & PIPE_WANTR) { 890 wpipe->pipe_state &= ~PIPE_WANTR; 891 wakeup(wpipe); 892 } 893 894 /* 895 * don't block on non-blocking I/O 896 */ 897 if (fp->f_flag & FNONBLOCK) { 898 error = EAGAIN; 899 break; 900 } 901 902 /* 903 * We have no more space and have something to offer, 904 * wake up select/poll. 905 */ 906 pipeselwakeup(wpipe); 907 908 wpipe->pipe_state |= PIPE_WANTW; 909 if ((error = tsleep(wpipe, (PRIBIO+1)|PCATCH, "pipewr", 0)) != 0) { 910 break; 911 } 912 /* 913 * If read side wants to go away, we just issue a signal 914 * to ourselves. 915 */ 916 if (wpipe->pipe_state & PIPE_EOF) { 917 error = EPIPE; 918 break; 919 } 920 } 921 } 922 923 --wpipe->pipe_busy; 924 if ((wpipe->pipe_busy == 0) && 925 (wpipe->pipe_state & PIPE_WANT)) { 926 wpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTR); 927 wakeup(wpipe); 928 } else if (wpipe->pipe_buffer.cnt > 0) { 929 /* 930 * If we have put any characters in the buffer, we wake up 931 * the reader. 932 */ 933 if (wpipe->pipe_state & PIPE_WANTR) { 934 wpipe->pipe_state &= ~PIPE_WANTR; 935 wakeup(wpipe); 936 } 937 } 938 939 /* 940 * Don't return EPIPE if I/O was successful 941 */ 942 if ((wpipe->pipe_buffer.cnt == 0) && 943 (uio->uio_resid == 0) && 944 (error == EPIPE)) 945 error = 0; 946 947 if (error == 0) 948 vfs_timestamp(&wpipe->pipe_mtime); 949 950 /* 951 * We have something to offer, 952 * wake up select/poll. 953 */ 954 if (wpipe->pipe_buffer.cnt) 955 pipeselwakeup(wpipe); 956 957 return error; 958 } 959 960 /* 961 * we implement a very minimal set of ioctls for compatibility with sockets. 962 */ 963 int 964 pipe_ioctl(fp, cmd, data, p) 965 struct file *fp; 966 u_long cmd; 967 register caddr_t data; 968 struct proc *p; 969 { 970 register struct pipe *mpipe = (struct pipe *)fp->f_data; 971 972 switch (cmd) { 973 974 case FIONBIO: 975 return (0); 976 977 case FIOASYNC: 978 if (*(int *)data) { 979 mpipe->pipe_state |= PIPE_ASYNC; 980 } else { 981 mpipe->pipe_state &= ~PIPE_ASYNC; 982 } 983 return (0); 984 985 case FIONREAD: 986 if (mpipe->pipe_state & PIPE_DIRECTW) 987 *(int *)data = mpipe->pipe_map.cnt; 988 else 989 *(int *)data = mpipe->pipe_buffer.cnt; 990 return (0); 991 992 case FIOSETOWN: 993 return (fsetown(*(int *)data, &mpipe->pipe_sigio)); 994 995 case FIOGETOWN: 996 *(int *)data = fgetown(mpipe->pipe_sigio); 997 return (0); 998 999 /* This is deprecated, FIOSETOWN should be used instead. */ 1000 case TIOCSPGRP: 1001 return (fsetown(-(*(int *)data), &mpipe->pipe_sigio)); 1002 1003 /* This is deprecated, FIOGETOWN should be used instead. */ 1004 case TIOCGPGRP: 1005 *(int *)data = -fgetown(mpipe->pipe_sigio); 1006 return (0); 1007 1008 } 1009 return (ENOTTY); 1010 } 1011 1012 int 1013 pipe_poll(fp, events, cred, p) 1014 struct file *fp; 1015 int events; 1016 struct ucred *cred; 1017 struct proc *p; 1018 { 1019 register struct pipe *rpipe = (struct pipe *)fp->f_data; 1020 struct pipe *wpipe; 1021 int revents = 0; 1022 1023 wpipe = rpipe->pipe_peer; 1024 if (events & (POLLIN | POLLRDNORM)) 1025 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1026 (rpipe->pipe_buffer.cnt > 0) || 1027 (rpipe->pipe_state & PIPE_EOF)) 1028 revents |= events & (POLLIN | POLLRDNORM); 1029 1030 if (events & (POLLOUT | POLLWRNORM)) 1031 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) || 1032 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1033 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1034 revents |= events & (POLLOUT | POLLWRNORM); 1035 1036 if ((rpipe->pipe_state & PIPE_EOF) || 1037 (wpipe == NULL) || 1038 (wpipe->pipe_state & PIPE_EOF)) 1039 revents |= POLLHUP; 1040 1041 if (revents == 0) { 1042 if (events & (POLLIN | POLLRDNORM)) { 1043 selrecord(p, &rpipe->pipe_sel); 1044 rpipe->pipe_state |= PIPE_SEL; 1045 } 1046 1047 if (events & (POLLOUT | POLLWRNORM)) { 1048 selrecord(p, &wpipe->pipe_sel); 1049 wpipe->pipe_state |= PIPE_SEL; 1050 } 1051 } 1052 1053 return (revents); 1054 } 1055 1056 static int 1057 pipe_stat(fp, ub, p) 1058 struct file *fp; 1059 struct stat *ub; 1060 struct proc *p; 1061 { 1062 struct pipe *pipe = (struct pipe *)fp->f_data; 1063 1064 bzero((caddr_t)ub, sizeof (*ub)); 1065 ub->st_mode = S_IFIFO; 1066 ub->st_blksize = pipe->pipe_buffer.size; 1067 ub->st_size = pipe->pipe_buffer.cnt; 1068 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1069 ub->st_atimespec = pipe->pipe_atime; 1070 ub->st_mtimespec = pipe->pipe_mtime; 1071 ub->st_ctimespec = pipe->pipe_ctime; 1072 /* 1073 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev, 1074 * st_flags, st_gen. 1075 * XXX (st_dev, st_ino) should be unique. 1076 */ 1077 return 0; 1078 } 1079 1080 /* ARGSUSED */ 1081 static int 1082 pipe_close(fp, p) 1083 struct file *fp; 1084 struct proc *p; 1085 { 1086 struct pipe *cpipe = (struct pipe *)fp->f_data; 1087 1088 fp->f_ops = &badfileops; 1089 fp->f_data = NULL; 1090 funsetown(cpipe->pipe_sigio); 1091 pipeclose(cpipe); 1092 return 0; 1093 } 1094 1095 /* 1096 * shutdown the pipe 1097 */ 1098 static void 1099 pipeclose(cpipe) 1100 struct pipe *cpipe; 1101 { 1102 struct pipe *ppipe; 1103 if (cpipe) { 1104 1105 pipeselwakeup(cpipe); 1106 1107 /* 1108 * If the other side is blocked, wake it up saying that 1109 * we want to close it down. 1110 */ 1111 while (cpipe->pipe_busy) { 1112 wakeup(cpipe); 1113 cpipe->pipe_state |= PIPE_WANT|PIPE_EOF; 1114 tsleep(cpipe, PRIBIO, "pipecl", 0); 1115 } 1116 1117 /* 1118 * Disconnect from peer 1119 */ 1120 if ((ppipe = cpipe->pipe_peer) != NULL) { 1121 pipeselwakeup(ppipe); 1122 1123 ppipe->pipe_state |= PIPE_EOF; 1124 wakeup(ppipe); 1125 ppipe->pipe_peer = NULL; 1126 } 1127 1128 /* 1129 * free resources 1130 */ 1131 if (cpipe->pipe_buffer.buffer) { 1132 if (cpipe->pipe_buffer.size > PIPE_SIZE) 1133 --nbigpipe; 1134 amountpipekva -= cpipe->pipe_buffer.size; 1135 kmem_free(kernel_map, 1136 (vm_offset_t)cpipe->pipe_buffer.buffer, 1137 cpipe->pipe_buffer.size); 1138 } 1139 #ifndef PIPE_NODIRECT 1140 if (cpipe->pipe_map.kva) { 1141 amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE; 1142 kmem_free(kernel_map, 1143 cpipe->pipe_map.kva, 1144 cpipe->pipe_buffer.size + PAGE_SIZE); 1145 } 1146 #endif 1147 zfree(pipe_zone, cpipe); 1148 } 1149 } 1150