xref: /freebsd/sys/kern/sys_pipe.c (revision d184218c18d067f8fd47203f54ab02a7b2ed9b11)
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * Copyright (c) 2012 Giovanni Trematerra
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice immediately at the beginning of the file, without modification,
11  *    this list of conditions, and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Absolutely no warranty of function or purpose is made by the author
16  *    John S. Dyson.
17  * 4. Modifications may be freely made to this file if the above conditions
18  *    are met.
19  */
20 
21 /*
22  * This file contains a high-performance replacement for the socket-based
23  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
24  * all features of sockets, but does do everything that pipes normally
25  * do.
26  */
27 
28 /*
29  * This code has two modes of operation, a small write mode and a large
30  * write mode.  The small write mode acts like conventional pipes with
31  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
32  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
33  * and PIPE_SIZE in size, the sending process pins the underlying pages in
34  * memory, and the receiving process copies directly from these pinned pages
35  * in the sending process.
36  *
37  * If the sending process receives a signal, it is possible that it will
38  * go away, and certainly its address space can change, because control
39  * is returned back to the user-mode side.  In that case, the pipe code
40  * arranges to copy the buffer supplied by the user process, to a pageable
41  * kernel buffer, and the receiving process will grab the data from the
42  * pageable kernel buffer.  Since signals don't happen all that often,
43  * the copy operation is normally eliminated.
44  *
45  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46  * happen for small transfers so that the system will not spend all of
47  * its time context switching.
48  *
49  * In order to limit the resource use of pipes, two sysctls exist:
50  *
51  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52  * address space available to us in pipe_map. This value is normally
53  * autotuned, but may also be loader tuned.
54  *
55  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56  * memory in use by pipes.
57  *
58  * Based on how large pipekva is relative to maxpipekva, the following
59  * will happen:
60  *
61  * 0% - 50%:
62  *     New pipes are given 16K of memory backing, pipes may dynamically
63  *     grow to as large as 64K where needed.
64  * 50% - 75%:
65  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
66  *     existing pipes may NOT grow.
67  * 75% - 100%:
68  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
69  *     existing pipes will be shrunk down to 4K whenever possible.
70  *
71  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
72  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73  * resize which MUST occur for reverse-direction pipes when they are
74  * first used.
75  *
76  * Additional information about the current state of pipes may be obtained
77  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78  * and kern.ipc.piperesizefail.
79  *
80  * Locking rules:  There are two locks present here:  A mutex, used via
81  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
82  * the flag, as mutexes can not persist over uiomove.  The mutex
83  * exists only to guard access to the flag, and is not in itself a
84  * locking mechanism.  Also note that there is only a single mutex for
85  * both directions of a pipe.
86  *
87  * As pipelock() may have to sleep before it can acquire the flag, it
88  * is important to reread all data after a call to pipelock(); everything
89  * in the structure may have changed.
90  */
91 
92 #include <sys/cdefs.h>
93 __FBSDID("$FreeBSD$");
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/conf.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mutex.h>
105 #include <sys/ttycom.h>
106 #include <sys/stat.h>
107 #include <sys/malloc.h>
108 #include <sys/poll.h>
109 #include <sys/selinfo.h>
110 #include <sys/signalvar.h>
111 #include <sys/syscallsubr.h>
112 #include <sys/sysctl.h>
113 #include <sys/sysproto.h>
114 #include <sys/pipe.h>
115 #include <sys/proc.h>
116 #include <sys/vnode.h>
117 #include <sys/uio.h>
118 #include <sys/event.h>
119 
120 #include <security/mac/mac_framework.h>
121 
122 #include <vm/vm.h>
123 #include <vm/vm_param.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_kern.h>
126 #include <vm/vm_extern.h>
127 #include <vm/pmap.h>
128 #include <vm/vm_map.h>
129 #include <vm/vm_page.h>
130 #include <vm/uma.h>
131 
132 /*
133  * Use this define if you want to disable *fancy* VM things.  Expect an
134  * approx 30% decrease in transfer rate.  This could be useful for
135  * NetBSD or OpenBSD.
136  */
137 /* #define PIPE_NODIRECT */
138 
139 #define PIPE_PEER(pipe)	\
140 	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
141 
142 /*
143  * interfaces to the outside world
144  */
145 static fo_rdwr_t	pipe_read;
146 static fo_rdwr_t	pipe_write;
147 static fo_truncate_t	pipe_truncate;
148 static fo_ioctl_t	pipe_ioctl;
149 static fo_poll_t	pipe_poll;
150 static fo_kqfilter_t	pipe_kqfilter;
151 static fo_stat_t	pipe_stat;
152 static fo_close_t	pipe_close;
153 static fo_chmod_t	pipe_chmod;
154 static fo_chown_t	pipe_chown;
155 
156 struct fileops pipeops = {
157 	.fo_read = pipe_read,
158 	.fo_write = pipe_write,
159 	.fo_truncate = pipe_truncate,
160 	.fo_ioctl = pipe_ioctl,
161 	.fo_poll = pipe_poll,
162 	.fo_kqfilter = pipe_kqfilter,
163 	.fo_stat = pipe_stat,
164 	.fo_close = pipe_close,
165 	.fo_chmod = pipe_chmod,
166 	.fo_chown = pipe_chown,
167 	.fo_flags = DFLAG_PASSABLE
168 };
169 
170 static void	filt_pipedetach(struct knote *kn);
171 static void	filt_pipedetach_notsup(struct knote *kn);
172 static int	filt_pipenotsup(struct knote *kn, long hint);
173 static int	filt_piperead(struct knote *kn, long hint);
174 static int	filt_pipewrite(struct knote *kn, long hint);
175 
176 static struct filterops pipe_nfiltops = {
177 	.f_isfd = 1,
178 	.f_detach = filt_pipedetach_notsup,
179 	.f_event = filt_pipenotsup
180 };
181 static struct filterops pipe_rfiltops = {
182 	.f_isfd = 1,
183 	.f_detach = filt_pipedetach,
184 	.f_event = filt_piperead
185 };
186 static struct filterops pipe_wfiltops = {
187 	.f_isfd = 1,
188 	.f_detach = filt_pipedetach,
189 	.f_event = filt_pipewrite
190 };
191 
192 /*
193  * Default pipe buffer size(s), this can be kind-of large now because pipe
194  * space is pageable.  The pipe code will try to maintain locality of
195  * reference for performance reasons, so small amounts of outstanding I/O
196  * will not wipe the cache.
197  */
198 #define MINPIPESIZE (PIPE_SIZE/3)
199 #define MAXPIPESIZE (2*PIPE_SIZE/3)
200 
201 static long amountpipekva;
202 static int pipefragretry;
203 static int pipeallocfail;
204 static int piperesizefail;
205 static int piperesizeallowed = 1;
206 
207 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
208 	   &maxpipekva, 0, "Pipe KVA limit");
209 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
210 	   &amountpipekva, 0, "Pipe KVA usage");
211 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
212 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
213 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
214 	  &pipeallocfail, 0, "Pipe allocation failures");
215 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
216 	  &piperesizefail, 0, "Pipe resize failures");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
218 	  &piperesizeallowed, 0, "Pipe resizing allowed");
219 
220 static void pipeinit(void *dummy __unused);
221 static void pipeclose(struct pipe *cpipe);
222 static void pipe_free_kmem(struct pipe *cpipe);
223 static int pipe_create(struct pipe *pipe, int backing);
224 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
225 static __inline int pipelock(struct pipe *cpipe, int catch);
226 static __inline void pipeunlock(struct pipe *cpipe);
227 #ifndef PIPE_NODIRECT
228 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
229 static void pipe_destroy_write_buffer(struct pipe *wpipe);
230 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
231 static void pipe_clone_write_buffer(struct pipe *wpipe);
232 #endif
233 static int pipespace(struct pipe *cpipe, int size);
234 static int pipespace_new(struct pipe *cpipe, int size);
235 
236 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
237 static int	pipe_zone_init(void *mem, int size, int flags);
238 static void	pipe_zone_fini(void *mem, int size);
239 
240 static uma_zone_t pipe_zone;
241 static struct unrhdr *pipeino_unr;
242 static dev_t pipedev_ino;
243 
244 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
245 
246 static void
247 pipeinit(void *dummy __unused)
248 {
249 
250 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
251 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
252 	    UMA_ALIGN_PTR, 0);
253 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
254 	pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
255 	KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
256 	pipedev_ino = devfs_alloc_cdp_inode();
257 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
258 }
259 
260 static int
261 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
262 {
263 	struct pipepair *pp;
264 	struct pipe *rpipe, *wpipe;
265 
266 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
267 
268 	pp = (struct pipepair *)mem;
269 
270 	/*
271 	 * We zero both pipe endpoints to make sure all the kmem pointers
272 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
273 	 * endpoints with the same time.
274 	 */
275 	rpipe = &pp->pp_rpipe;
276 	bzero(rpipe, sizeof(*rpipe));
277 	vfs_timestamp(&rpipe->pipe_ctime);
278 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
279 
280 	wpipe = &pp->pp_wpipe;
281 	bzero(wpipe, sizeof(*wpipe));
282 	wpipe->pipe_ctime = rpipe->pipe_ctime;
283 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
284 
285 	rpipe->pipe_peer = wpipe;
286 	rpipe->pipe_pair = pp;
287 	wpipe->pipe_peer = rpipe;
288 	wpipe->pipe_pair = pp;
289 
290 	/*
291 	 * Mark both endpoints as present; they will later get free'd
292 	 * one at a time.  When both are free'd, then the whole pair
293 	 * is released.
294 	 */
295 	rpipe->pipe_present = PIPE_ACTIVE;
296 	wpipe->pipe_present = PIPE_ACTIVE;
297 
298 	/*
299 	 * Eventually, the MAC Framework may initialize the label
300 	 * in ctor or init, but for now we do it elswhere to avoid
301 	 * blocking in ctor or init.
302 	 */
303 	pp->pp_label = NULL;
304 
305 	return (0);
306 }
307 
308 static int
309 pipe_zone_init(void *mem, int size, int flags)
310 {
311 	struct pipepair *pp;
312 
313 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
314 
315 	pp = (struct pipepair *)mem;
316 
317 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
318 	return (0);
319 }
320 
321 static void
322 pipe_zone_fini(void *mem, int size)
323 {
324 	struct pipepair *pp;
325 
326 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
327 
328 	pp = (struct pipepair *)mem;
329 
330 	mtx_destroy(&pp->pp_mtx);
331 }
332 
333 static int
334 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
335 {
336 	struct pipepair *pp;
337 	struct pipe *rpipe, *wpipe;
338 	int error;
339 
340 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
341 #ifdef MAC
342 	/*
343 	 * The MAC label is shared between the connected endpoints.  As a
344 	 * result mac_pipe_init() and mac_pipe_create() are called once
345 	 * for the pair, and not on the endpoints.
346 	 */
347 	mac_pipe_init(pp);
348 	mac_pipe_create(td->td_ucred, pp);
349 #endif
350 	rpipe = &pp->pp_rpipe;
351 	wpipe = &pp->pp_wpipe;
352 
353 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
354 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
355 
356 	/* Only the forward direction pipe is backed by default */
357 	if ((error = pipe_create(rpipe, 1)) != 0 ||
358 	    (error = pipe_create(wpipe, 0)) != 0) {
359 		pipeclose(rpipe);
360 		pipeclose(wpipe);
361 		return (error);
362 	}
363 
364 	rpipe->pipe_state |= PIPE_DIRECTOK;
365 	wpipe->pipe_state |= PIPE_DIRECTOK;
366 	return (0);
367 }
368 
369 int
370 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
371 {
372 	struct pipepair *pp;
373 	int error;
374 
375 	error = pipe_paircreate(td, &pp);
376 	if (error != 0)
377 		return (error);
378 	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
379 	*ppipe = &pp->pp_rpipe;
380 	return (0);
381 }
382 
383 void
384 pipe_dtor(struct pipe *dpipe)
385 {
386 	ino_t ino;
387 
388 	ino = dpipe->pipe_ino;
389 	funsetown(&dpipe->pipe_sigio);
390 	pipeclose(dpipe);
391 	if (dpipe->pipe_state & PIPE_NAMED) {
392 		dpipe = dpipe->pipe_peer;
393 		funsetown(&dpipe->pipe_sigio);
394 		pipeclose(dpipe);
395 	}
396 	if (ino != 0 && ino != (ino_t)-1)
397 		free_unr(pipeino_unr, ino);
398 }
399 
400 /*
401  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
402  * the zone pick up the pieces via pipeclose().
403  */
404 int
405 kern_pipe(struct thread *td, int fildes[2])
406 {
407 
408 	return (kern_pipe2(td, fildes, 0));
409 }
410 
411 int
412 kern_pipe2(struct thread *td, int fildes[2], int flags)
413 {
414 	struct filedesc *fdp;
415 	struct file *rf, *wf;
416 	struct pipe *rpipe, *wpipe;
417 	struct pipepair *pp;
418 	int fd, fflags, error;
419 
420 	fdp = td->td_proc->p_fd;
421 	error = pipe_paircreate(td, &pp);
422 	if (error != 0)
423 		return (error);
424 	rpipe = &pp->pp_rpipe;
425 	wpipe = &pp->pp_wpipe;
426 	error = falloc(td, &rf, &fd, flags);
427 	if (error) {
428 		pipeclose(rpipe);
429 		pipeclose(wpipe);
430 		return (error);
431 	}
432 	/* An extra reference on `rf' has been held for us by falloc(). */
433 	fildes[0] = fd;
434 
435 	fflags = FREAD | FWRITE;
436 	if ((flags & O_NONBLOCK) != 0)
437 		fflags |= FNONBLOCK;
438 
439 	/*
440 	 * Warning: once we've gotten past allocation of the fd for the
441 	 * read-side, we can only drop the read side via fdrop() in order
442 	 * to avoid races against processes which manage to dup() the read
443 	 * side while we are blocked trying to allocate the write side.
444 	 */
445 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
446 	error = falloc(td, &wf, &fd, flags);
447 	if (error) {
448 		fdclose(fdp, rf, fildes[0], td);
449 		fdrop(rf, td);
450 		/* rpipe has been closed by fdrop(). */
451 		pipeclose(wpipe);
452 		return (error);
453 	}
454 	/* An extra reference on `wf' has been held for us by falloc(). */
455 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
456 	fdrop(wf, td);
457 	fildes[1] = fd;
458 	fdrop(rf, td);
459 
460 	return (0);
461 }
462 
463 /* ARGSUSED */
464 int
465 sys_pipe(struct thread *td, struct pipe_args *uap)
466 {
467 	int error;
468 	int fildes[2];
469 
470 	error = kern_pipe(td, fildes);
471 	if (error)
472 		return (error);
473 
474 	td->td_retval[0] = fildes[0];
475 	td->td_retval[1] = fildes[1];
476 
477 	return (0);
478 }
479 
480 /*
481  * Allocate kva for pipe circular buffer, the space is pageable
482  * This routine will 'realloc' the size of a pipe safely, if it fails
483  * it will retain the old buffer.
484  * If it fails it will return ENOMEM.
485  */
486 static int
487 pipespace_new(cpipe, size)
488 	struct pipe *cpipe;
489 	int size;
490 {
491 	caddr_t buffer;
492 	int error, cnt, firstseg;
493 	static int curfail = 0;
494 	static struct timeval lastfail;
495 
496 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
497 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
498 		("pipespace: resize of direct writes not allowed"));
499 retry:
500 	cnt = cpipe->pipe_buffer.cnt;
501 	if (cnt > size)
502 		size = cnt;
503 
504 	size = round_page(size);
505 	buffer = (caddr_t) vm_map_min(pipe_map);
506 
507 	error = vm_map_find(pipe_map, NULL, 0,
508 		(vm_offset_t *) &buffer, size, 1,
509 		VM_PROT_ALL, VM_PROT_ALL, 0);
510 	if (error != KERN_SUCCESS) {
511 		if ((cpipe->pipe_buffer.buffer == NULL) &&
512 			(size > SMALL_PIPE_SIZE)) {
513 			size = SMALL_PIPE_SIZE;
514 			pipefragretry++;
515 			goto retry;
516 		}
517 		if (cpipe->pipe_buffer.buffer == NULL) {
518 			pipeallocfail++;
519 			if (ppsratecheck(&lastfail, &curfail, 1))
520 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
521 		} else {
522 			piperesizefail++;
523 		}
524 		return (ENOMEM);
525 	}
526 
527 	/* copy data, then free old resources if we're resizing */
528 	if (cnt > 0) {
529 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
530 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
531 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
532 				buffer, firstseg);
533 			if ((cnt - firstseg) > 0)
534 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
535 					cpipe->pipe_buffer.in);
536 		} else {
537 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
538 				buffer, cnt);
539 		}
540 	}
541 	pipe_free_kmem(cpipe);
542 	cpipe->pipe_buffer.buffer = buffer;
543 	cpipe->pipe_buffer.size = size;
544 	cpipe->pipe_buffer.in = cnt;
545 	cpipe->pipe_buffer.out = 0;
546 	cpipe->pipe_buffer.cnt = cnt;
547 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
548 	return (0);
549 }
550 
551 /*
552  * Wrapper for pipespace_new() that performs locking assertions.
553  */
554 static int
555 pipespace(cpipe, size)
556 	struct pipe *cpipe;
557 	int size;
558 {
559 
560 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
561 		("Unlocked pipe passed to pipespace"));
562 	return (pipespace_new(cpipe, size));
563 }
564 
565 /*
566  * lock a pipe for I/O, blocking other access
567  */
568 static __inline int
569 pipelock(cpipe, catch)
570 	struct pipe *cpipe;
571 	int catch;
572 {
573 	int error;
574 
575 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
576 	while (cpipe->pipe_state & PIPE_LOCKFL) {
577 		cpipe->pipe_state |= PIPE_LWANT;
578 		error = msleep(cpipe, PIPE_MTX(cpipe),
579 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
580 		    "pipelk", 0);
581 		if (error != 0)
582 			return (error);
583 	}
584 	cpipe->pipe_state |= PIPE_LOCKFL;
585 	return (0);
586 }
587 
588 /*
589  * unlock a pipe I/O lock
590  */
591 static __inline void
592 pipeunlock(cpipe)
593 	struct pipe *cpipe;
594 {
595 
596 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
597 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
598 		("Unlocked pipe passed to pipeunlock"));
599 	cpipe->pipe_state &= ~PIPE_LOCKFL;
600 	if (cpipe->pipe_state & PIPE_LWANT) {
601 		cpipe->pipe_state &= ~PIPE_LWANT;
602 		wakeup(cpipe);
603 	}
604 }
605 
606 void
607 pipeselwakeup(cpipe)
608 	struct pipe *cpipe;
609 {
610 
611 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
612 	if (cpipe->pipe_state & PIPE_SEL) {
613 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
614 		if (!SEL_WAITING(&cpipe->pipe_sel))
615 			cpipe->pipe_state &= ~PIPE_SEL;
616 	}
617 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
618 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
619 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
620 }
621 
622 /*
623  * Initialize and allocate VM and memory for pipe.  The structure
624  * will start out zero'd from the ctor, so we just manage the kmem.
625  */
626 static int
627 pipe_create(pipe, backing)
628 	struct pipe *pipe;
629 	int backing;
630 {
631 	int error;
632 
633 	if (backing) {
634 		if (amountpipekva > maxpipekva / 2)
635 			error = pipespace_new(pipe, SMALL_PIPE_SIZE);
636 		else
637 			error = pipespace_new(pipe, PIPE_SIZE);
638 	} else {
639 		/* If we're not backing this pipe, no need to do anything. */
640 		error = 0;
641 	}
642 	pipe->pipe_ino = -1;
643 	return (error);
644 }
645 
646 /* ARGSUSED */
647 static int
648 pipe_read(fp, uio, active_cred, flags, td)
649 	struct file *fp;
650 	struct uio *uio;
651 	struct ucred *active_cred;
652 	struct thread *td;
653 	int flags;
654 {
655 	struct pipe *rpipe;
656 	int error;
657 	int nread = 0;
658 	int size;
659 
660 	rpipe = fp->f_data;
661 	PIPE_LOCK(rpipe);
662 	++rpipe->pipe_busy;
663 	error = pipelock(rpipe, 1);
664 	if (error)
665 		goto unlocked_error;
666 
667 #ifdef MAC
668 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
669 	if (error)
670 		goto locked_error;
671 #endif
672 	if (amountpipekva > (3 * maxpipekva) / 4) {
673 		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
674 			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
675 			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
676 			(piperesizeallowed == 1)) {
677 			PIPE_UNLOCK(rpipe);
678 			pipespace(rpipe, SMALL_PIPE_SIZE);
679 			PIPE_LOCK(rpipe);
680 		}
681 	}
682 
683 	while (uio->uio_resid) {
684 		/*
685 		 * normal pipe buffer receive
686 		 */
687 		if (rpipe->pipe_buffer.cnt > 0) {
688 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
689 			if (size > rpipe->pipe_buffer.cnt)
690 				size = rpipe->pipe_buffer.cnt;
691 			if (size > uio->uio_resid)
692 				size = uio->uio_resid;
693 
694 			PIPE_UNLOCK(rpipe);
695 			error = uiomove(
696 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
697 			    size, uio);
698 			PIPE_LOCK(rpipe);
699 			if (error)
700 				break;
701 
702 			rpipe->pipe_buffer.out += size;
703 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
704 				rpipe->pipe_buffer.out = 0;
705 
706 			rpipe->pipe_buffer.cnt -= size;
707 
708 			/*
709 			 * If there is no more to read in the pipe, reset
710 			 * its pointers to the beginning.  This improves
711 			 * cache hit stats.
712 			 */
713 			if (rpipe->pipe_buffer.cnt == 0) {
714 				rpipe->pipe_buffer.in = 0;
715 				rpipe->pipe_buffer.out = 0;
716 			}
717 			nread += size;
718 #ifndef PIPE_NODIRECT
719 		/*
720 		 * Direct copy, bypassing a kernel buffer.
721 		 */
722 		} else if ((size = rpipe->pipe_map.cnt) &&
723 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
724 			if (size > uio->uio_resid)
725 				size = (u_int) uio->uio_resid;
726 
727 			PIPE_UNLOCK(rpipe);
728 			error = uiomove_fromphys(rpipe->pipe_map.ms,
729 			    rpipe->pipe_map.pos, size, uio);
730 			PIPE_LOCK(rpipe);
731 			if (error)
732 				break;
733 			nread += size;
734 			rpipe->pipe_map.pos += size;
735 			rpipe->pipe_map.cnt -= size;
736 			if (rpipe->pipe_map.cnt == 0) {
737 				rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
738 				wakeup(rpipe);
739 			}
740 #endif
741 		} else {
742 			/*
743 			 * detect EOF condition
744 			 * read returns 0 on EOF, no need to set error
745 			 */
746 			if (rpipe->pipe_state & PIPE_EOF)
747 				break;
748 
749 			/*
750 			 * If the "write-side" has been blocked, wake it up now.
751 			 */
752 			if (rpipe->pipe_state & PIPE_WANTW) {
753 				rpipe->pipe_state &= ~PIPE_WANTW;
754 				wakeup(rpipe);
755 			}
756 
757 			/*
758 			 * Break if some data was read.
759 			 */
760 			if (nread > 0)
761 				break;
762 
763 			/*
764 			 * Unlock the pipe buffer for our remaining processing.
765 			 * We will either break out with an error or we will
766 			 * sleep and relock to loop.
767 			 */
768 			pipeunlock(rpipe);
769 
770 			/*
771 			 * Handle non-blocking mode operation or
772 			 * wait for more data.
773 			 */
774 			if (fp->f_flag & FNONBLOCK) {
775 				error = EAGAIN;
776 			} else {
777 				rpipe->pipe_state |= PIPE_WANTR;
778 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
779 				    PRIBIO | PCATCH,
780 				    "piperd", 0)) == 0)
781 					error = pipelock(rpipe, 1);
782 			}
783 			if (error)
784 				goto unlocked_error;
785 		}
786 	}
787 #ifdef MAC
788 locked_error:
789 #endif
790 	pipeunlock(rpipe);
791 
792 	/* XXX: should probably do this before getting any locks. */
793 	if (error == 0)
794 		vfs_timestamp(&rpipe->pipe_atime);
795 unlocked_error:
796 	--rpipe->pipe_busy;
797 
798 	/*
799 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
800 	 */
801 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
802 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
803 		wakeup(rpipe);
804 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
805 		/*
806 		 * Handle write blocking hysteresis.
807 		 */
808 		if (rpipe->pipe_state & PIPE_WANTW) {
809 			rpipe->pipe_state &= ~PIPE_WANTW;
810 			wakeup(rpipe);
811 		}
812 	}
813 
814 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
815 		pipeselwakeup(rpipe);
816 
817 	PIPE_UNLOCK(rpipe);
818 	return (error);
819 }
820 
821 #ifndef PIPE_NODIRECT
822 /*
823  * Map the sending processes' buffer into kernel space and wire it.
824  * This is similar to a physical write operation.
825  */
826 static int
827 pipe_build_write_buffer(wpipe, uio)
828 	struct pipe *wpipe;
829 	struct uio *uio;
830 {
831 	u_int size;
832 	int i;
833 
834 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
835 	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
836 		("Clone attempt on non-direct write pipe!"));
837 
838 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
839                 size = wpipe->pipe_buffer.size;
840 	else
841                 size = uio->uio_iov->iov_len;
842 
843 	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
844 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
845 	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
846 		return (EFAULT);
847 
848 /*
849  * set up the control block
850  */
851 	wpipe->pipe_map.npages = i;
852 	wpipe->pipe_map.pos =
853 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
854 	wpipe->pipe_map.cnt = size;
855 
856 /*
857  * and update the uio data
858  */
859 
860 	uio->uio_iov->iov_len -= size;
861 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
862 	if (uio->uio_iov->iov_len == 0)
863 		uio->uio_iov++;
864 	uio->uio_resid -= size;
865 	uio->uio_offset += size;
866 	return (0);
867 }
868 
869 /*
870  * unmap and unwire the process buffer
871  */
872 static void
873 pipe_destroy_write_buffer(wpipe)
874 	struct pipe *wpipe;
875 {
876 
877 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
878 	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
879 	wpipe->pipe_map.npages = 0;
880 }
881 
882 /*
883  * In the case of a signal, the writing process might go away.  This
884  * code copies the data into the circular buffer so that the source
885  * pages can be freed without loss of data.
886  */
887 static void
888 pipe_clone_write_buffer(wpipe)
889 	struct pipe *wpipe;
890 {
891 	struct uio uio;
892 	struct iovec iov;
893 	int size;
894 	int pos;
895 
896 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
897 	size = wpipe->pipe_map.cnt;
898 	pos = wpipe->pipe_map.pos;
899 
900 	wpipe->pipe_buffer.in = size;
901 	wpipe->pipe_buffer.out = 0;
902 	wpipe->pipe_buffer.cnt = size;
903 	wpipe->pipe_state &= ~PIPE_DIRECTW;
904 
905 	PIPE_UNLOCK(wpipe);
906 	iov.iov_base = wpipe->pipe_buffer.buffer;
907 	iov.iov_len = size;
908 	uio.uio_iov = &iov;
909 	uio.uio_iovcnt = 1;
910 	uio.uio_offset = 0;
911 	uio.uio_resid = size;
912 	uio.uio_segflg = UIO_SYSSPACE;
913 	uio.uio_rw = UIO_READ;
914 	uio.uio_td = curthread;
915 	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
916 	PIPE_LOCK(wpipe);
917 	pipe_destroy_write_buffer(wpipe);
918 }
919 
920 /*
921  * This implements the pipe buffer write mechanism.  Note that only
922  * a direct write OR a normal pipe write can be pending at any given time.
923  * If there are any characters in the pipe buffer, the direct write will
924  * be deferred until the receiving process grabs all of the bytes from
925  * the pipe buffer.  Then the direct mapping write is set-up.
926  */
927 static int
928 pipe_direct_write(wpipe, uio)
929 	struct pipe *wpipe;
930 	struct uio *uio;
931 {
932 	int error;
933 
934 retry:
935 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
936 	error = pipelock(wpipe, 1);
937 	if (wpipe->pipe_state & PIPE_EOF)
938 		error = EPIPE;
939 	if (error) {
940 		pipeunlock(wpipe);
941 		goto error1;
942 	}
943 	while (wpipe->pipe_state & PIPE_DIRECTW) {
944 		if (wpipe->pipe_state & PIPE_WANTR) {
945 			wpipe->pipe_state &= ~PIPE_WANTR;
946 			wakeup(wpipe);
947 		}
948 		pipeselwakeup(wpipe);
949 		wpipe->pipe_state |= PIPE_WANTW;
950 		pipeunlock(wpipe);
951 		error = msleep(wpipe, PIPE_MTX(wpipe),
952 		    PRIBIO | PCATCH, "pipdww", 0);
953 		if (error)
954 			goto error1;
955 		else
956 			goto retry;
957 	}
958 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
959 	if (wpipe->pipe_buffer.cnt > 0) {
960 		if (wpipe->pipe_state & PIPE_WANTR) {
961 			wpipe->pipe_state &= ~PIPE_WANTR;
962 			wakeup(wpipe);
963 		}
964 		pipeselwakeup(wpipe);
965 		wpipe->pipe_state |= PIPE_WANTW;
966 		pipeunlock(wpipe);
967 		error = msleep(wpipe, PIPE_MTX(wpipe),
968 		    PRIBIO | PCATCH, "pipdwc", 0);
969 		if (error)
970 			goto error1;
971 		else
972 			goto retry;
973 	}
974 
975 	wpipe->pipe_state |= PIPE_DIRECTW;
976 
977 	PIPE_UNLOCK(wpipe);
978 	error = pipe_build_write_buffer(wpipe, uio);
979 	PIPE_LOCK(wpipe);
980 	if (error) {
981 		wpipe->pipe_state &= ~PIPE_DIRECTW;
982 		pipeunlock(wpipe);
983 		goto error1;
984 	}
985 
986 	error = 0;
987 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
988 		if (wpipe->pipe_state & PIPE_EOF) {
989 			pipe_destroy_write_buffer(wpipe);
990 			pipeselwakeup(wpipe);
991 			pipeunlock(wpipe);
992 			error = EPIPE;
993 			goto error1;
994 		}
995 		if (wpipe->pipe_state & PIPE_WANTR) {
996 			wpipe->pipe_state &= ~PIPE_WANTR;
997 			wakeup(wpipe);
998 		}
999 		pipeselwakeup(wpipe);
1000 		wpipe->pipe_state |= PIPE_WANTW;
1001 		pipeunlock(wpipe);
1002 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1003 		    "pipdwt", 0);
1004 		pipelock(wpipe, 0);
1005 	}
1006 
1007 	if (wpipe->pipe_state & PIPE_EOF)
1008 		error = EPIPE;
1009 	if (wpipe->pipe_state & PIPE_DIRECTW) {
1010 		/*
1011 		 * this bit of trickery substitutes a kernel buffer for
1012 		 * the process that might be going away.
1013 		 */
1014 		pipe_clone_write_buffer(wpipe);
1015 	} else {
1016 		pipe_destroy_write_buffer(wpipe);
1017 	}
1018 	pipeunlock(wpipe);
1019 	return (error);
1020 
1021 error1:
1022 	wakeup(wpipe);
1023 	return (error);
1024 }
1025 #endif
1026 
1027 static int
1028 pipe_write(fp, uio, active_cred, flags, td)
1029 	struct file *fp;
1030 	struct uio *uio;
1031 	struct ucred *active_cred;
1032 	struct thread *td;
1033 	int flags;
1034 {
1035 	int error = 0;
1036 	int desiredsize;
1037 	ssize_t orig_resid;
1038 	struct pipe *wpipe, *rpipe;
1039 
1040 	rpipe = fp->f_data;
1041 	wpipe = PIPE_PEER(rpipe);
1042 	PIPE_LOCK(rpipe);
1043 	error = pipelock(wpipe, 1);
1044 	if (error) {
1045 		PIPE_UNLOCK(rpipe);
1046 		return (error);
1047 	}
1048 	/*
1049 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1050 	 */
1051 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1052 	    (wpipe->pipe_state & PIPE_EOF)) {
1053 		pipeunlock(wpipe);
1054 		PIPE_UNLOCK(rpipe);
1055 		return (EPIPE);
1056 	}
1057 #ifdef MAC
1058 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1059 	if (error) {
1060 		pipeunlock(wpipe);
1061 		PIPE_UNLOCK(rpipe);
1062 		return (error);
1063 	}
1064 #endif
1065 	++wpipe->pipe_busy;
1066 
1067 	/* Choose a larger size if it's advantageous */
1068 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1069 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1070 		if (piperesizeallowed != 1)
1071 			break;
1072 		if (amountpipekva > maxpipekva / 2)
1073 			break;
1074 		if (desiredsize == BIG_PIPE_SIZE)
1075 			break;
1076 		desiredsize = desiredsize * 2;
1077 	}
1078 
1079 	/* Choose a smaller size if we're in a OOM situation */
1080 	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1081 		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1082 		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1083 		(piperesizeallowed == 1))
1084 		desiredsize = SMALL_PIPE_SIZE;
1085 
1086 	/* Resize if the above determined that a new size was necessary */
1087 	if ((desiredsize != wpipe->pipe_buffer.size) &&
1088 		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1089 		PIPE_UNLOCK(wpipe);
1090 		pipespace(wpipe, desiredsize);
1091 		PIPE_LOCK(wpipe);
1092 	}
1093 	if (wpipe->pipe_buffer.size == 0) {
1094 		/*
1095 		 * This can only happen for reverse direction use of pipes
1096 		 * in a complete OOM situation.
1097 		 */
1098 		error = ENOMEM;
1099 		--wpipe->pipe_busy;
1100 		pipeunlock(wpipe);
1101 		PIPE_UNLOCK(wpipe);
1102 		return (error);
1103 	}
1104 
1105 	pipeunlock(wpipe);
1106 
1107 	orig_resid = uio->uio_resid;
1108 
1109 	while (uio->uio_resid) {
1110 		int space;
1111 
1112 		pipelock(wpipe, 0);
1113 		if (wpipe->pipe_state & PIPE_EOF) {
1114 			pipeunlock(wpipe);
1115 			error = EPIPE;
1116 			break;
1117 		}
1118 #ifndef PIPE_NODIRECT
1119 		/*
1120 		 * If the transfer is large, we can gain performance if
1121 		 * we do process-to-process copies directly.
1122 		 * If the write is non-blocking, we don't use the
1123 		 * direct write mechanism.
1124 		 *
1125 		 * The direct write mechanism will detect the reader going
1126 		 * away on us.
1127 		 */
1128 		if (uio->uio_segflg == UIO_USERSPACE &&
1129 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1130 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1131 		    (fp->f_flag & FNONBLOCK) == 0) {
1132 			pipeunlock(wpipe);
1133 			error = pipe_direct_write(wpipe, uio);
1134 			if (error)
1135 				break;
1136 			continue;
1137 		}
1138 #endif
1139 
1140 		/*
1141 		 * Pipe buffered writes cannot be coincidental with
1142 		 * direct writes.  We wait until the currently executing
1143 		 * direct write is completed before we start filling the
1144 		 * pipe buffer.  We break out if a signal occurs or the
1145 		 * reader goes away.
1146 		 */
1147 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1148 			if (wpipe->pipe_state & PIPE_WANTR) {
1149 				wpipe->pipe_state &= ~PIPE_WANTR;
1150 				wakeup(wpipe);
1151 			}
1152 			pipeselwakeup(wpipe);
1153 			wpipe->pipe_state |= PIPE_WANTW;
1154 			pipeunlock(wpipe);
1155 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1156 			    "pipbww", 0);
1157 			if (error)
1158 				break;
1159 			else
1160 				continue;
1161 		}
1162 
1163 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1164 
1165 		/* Writes of size <= PIPE_BUF must be atomic. */
1166 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1167 			space = 0;
1168 
1169 		if (space > 0) {
1170 			int size;	/* Transfer size */
1171 			int segsize;	/* first segment to transfer */
1172 
1173 			/*
1174 			 * Transfer size is minimum of uio transfer
1175 			 * and free space in pipe buffer.
1176 			 */
1177 			if (space > uio->uio_resid)
1178 				size = uio->uio_resid;
1179 			else
1180 				size = space;
1181 			/*
1182 			 * First segment to transfer is minimum of
1183 			 * transfer size and contiguous space in
1184 			 * pipe buffer.  If first segment to transfer
1185 			 * is less than the transfer size, we've got
1186 			 * a wraparound in the buffer.
1187 			 */
1188 			segsize = wpipe->pipe_buffer.size -
1189 				wpipe->pipe_buffer.in;
1190 			if (segsize > size)
1191 				segsize = size;
1192 
1193 			/* Transfer first segment */
1194 
1195 			PIPE_UNLOCK(rpipe);
1196 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1197 					segsize, uio);
1198 			PIPE_LOCK(rpipe);
1199 
1200 			if (error == 0 && segsize < size) {
1201 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1202 					wpipe->pipe_buffer.size,
1203 					("Pipe buffer wraparound disappeared"));
1204 				/*
1205 				 * Transfer remaining part now, to
1206 				 * support atomic writes.  Wraparound
1207 				 * happened.
1208 				 */
1209 
1210 				PIPE_UNLOCK(rpipe);
1211 				error = uiomove(
1212 				    &wpipe->pipe_buffer.buffer[0],
1213 				    size - segsize, uio);
1214 				PIPE_LOCK(rpipe);
1215 			}
1216 			if (error == 0) {
1217 				wpipe->pipe_buffer.in += size;
1218 				if (wpipe->pipe_buffer.in >=
1219 				    wpipe->pipe_buffer.size) {
1220 					KASSERT(wpipe->pipe_buffer.in ==
1221 						size - segsize +
1222 						wpipe->pipe_buffer.size,
1223 						("Expected wraparound bad"));
1224 					wpipe->pipe_buffer.in = size - segsize;
1225 				}
1226 
1227 				wpipe->pipe_buffer.cnt += size;
1228 				KASSERT(wpipe->pipe_buffer.cnt <=
1229 					wpipe->pipe_buffer.size,
1230 					("Pipe buffer overflow"));
1231 			}
1232 			pipeunlock(wpipe);
1233 			if (error != 0)
1234 				break;
1235 		} else {
1236 			/*
1237 			 * If the "read-side" has been blocked, wake it up now.
1238 			 */
1239 			if (wpipe->pipe_state & PIPE_WANTR) {
1240 				wpipe->pipe_state &= ~PIPE_WANTR;
1241 				wakeup(wpipe);
1242 			}
1243 
1244 			/*
1245 			 * don't block on non-blocking I/O
1246 			 */
1247 			if (fp->f_flag & FNONBLOCK) {
1248 				error = EAGAIN;
1249 				pipeunlock(wpipe);
1250 				break;
1251 			}
1252 
1253 			/*
1254 			 * We have no more space and have something to offer,
1255 			 * wake up select/poll.
1256 			 */
1257 			pipeselwakeup(wpipe);
1258 
1259 			wpipe->pipe_state |= PIPE_WANTW;
1260 			pipeunlock(wpipe);
1261 			error = msleep(wpipe, PIPE_MTX(rpipe),
1262 			    PRIBIO | PCATCH, "pipewr", 0);
1263 			if (error != 0)
1264 				break;
1265 		}
1266 	}
1267 
1268 	pipelock(wpipe, 0);
1269 	--wpipe->pipe_busy;
1270 
1271 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1272 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1273 		wakeup(wpipe);
1274 	} else if (wpipe->pipe_buffer.cnt > 0) {
1275 		/*
1276 		 * If we have put any characters in the buffer, we wake up
1277 		 * the reader.
1278 		 */
1279 		if (wpipe->pipe_state & PIPE_WANTR) {
1280 			wpipe->pipe_state &= ~PIPE_WANTR;
1281 			wakeup(wpipe);
1282 		}
1283 	}
1284 
1285 	/*
1286 	 * Don't return EPIPE if I/O was successful
1287 	 */
1288 	if ((wpipe->pipe_buffer.cnt == 0) &&
1289 	    (uio->uio_resid == 0) &&
1290 	    (error == EPIPE)) {
1291 		error = 0;
1292 	}
1293 
1294 	if (error == 0)
1295 		vfs_timestamp(&wpipe->pipe_mtime);
1296 
1297 	/*
1298 	 * We have something to offer,
1299 	 * wake up select/poll.
1300 	 */
1301 	if (wpipe->pipe_buffer.cnt)
1302 		pipeselwakeup(wpipe);
1303 
1304 	pipeunlock(wpipe);
1305 	PIPE_UNLOCK(rpipe);
1306 	return (error);
1307 }
1308 
1309 /* ARGSUSED */
1310 static int
1311 pipe_truncate(fp, length, active_cred, td)
1312 	struct file *fp;
1313 	off_t length;
1314 	struct ucred *active_cred;
1315 	struct thread *td;
1316 {
1317 
1318 	/* For named pipes call the vnode operation. */
1319 	if (fp->f_vnode != NULL)
1320 		return (vnops.fo_truncate(fp, length, active_cred, td));
1321 	return (EINVAL);
1322 }
1323 
1324 /*
1325  * we implement a very minimal set of ioctls for compatibility with sockets.
1326  */
1327 static int
1328 pipe_ioctl(fp, cmd, data, active_cred, td)
1329 	struct file *fp;
1330 	u_long cmd;
1331 	void *data;
1332 	struct ucred *active_cred;
1333 	struct thread *td;
1334 {
1335 	struct pipe *mpipe = fp->f_data;
1336 	int error;
1337 
1338 	PIPE_LOCK(mpipe);
1339 
1340 #ifdef MAC
1341 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1342 	if (error) {
1343 		PIPE_UNLOCK(mpipe);
1344 		return (error);
1345 	}
1346 #endif
1347 
1348 	error = 0;
1349 	switch (cmd) {
1350 
1351 	case FIONBIO:
1352 		break;
1353 
1354 	case FIOASYNC:
1355 		if (*(int *)data) {
1356 			mpipe->pipe_state |= PIPE_ASYNC;
1357 		} else {
1358 			mpipe->pipe_state &= ~PIPE_ASYNC;
1359 		}
1360 		break;
1361 
1362 	case FIONREAD:
1363 		if (!(fp->f_flag & FREAD)) {
1364 			*(int *)data = 0;
1365 			PIPE_UNLOCK(mpipe);
1366 			return (0);
1367 		}
1368 		if (mpipe->pipe_state & PIPE_DIRECTW)
1369 			*(int *)data = mpipe->pipe_map.cnt;
1370 		else
1371 			*(int *)data = mpipe->pipe_buffer.cnt;
1372 		break;
1373 
1374 	case FIOSETOWN:
1375 		PIPE_UNLOCK(mpipe);
1376 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1377 		goto out_unlocked;
1378 
1379 	case FIOGETOWN:
1380 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1381 		break;
1382 
1383 	/* This is deprecated, FIOSETOWN should be used instead. */
1384 	case TIOCSPGRP:
1385 		PIPE_UNLOCK(mpipe);
1386 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1387 		goto out_unlocked;
1388 
1389 	/* This is deprecated, FIOGETOWN should be used instead. */
1390 	case TIOCGPGRP:
1391 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1392 		break;
1393 
1394 	default:
1395 		error = ENOTTY;
1396 		break;
1397 	}
1398 	PIPE_UNLOCK(mpipe);
1399 out_unlocked:
1400 	return (error);
1401 }
1402 
1403 static int
1404 pipe_poll(fp, events, active_cred, td)
1405 	struct file *fp;
1406 	int events;
1407 	struct ucred *active_cred;
1408 	struct thread *td;
1409 {
1410 	struct pipe *rpipe;
1411 	struct pipe *wpipe;
1412 	int levents, revents;
1413 #ifdef MAC
1414 	int error;
1415 #endif
1416 
1417 	revents = 0;
1418 	rpipe = fp->f_data;
1419 	wpipe = PIPE_PEER(rpipe);
1420 	PIPE_LOCK(rpipe);
1421 #ifdef MAC
1422 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1423 	if (error)
1424 		goto locked_error;
1425 #endif
1426 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1427 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1428 		    (rpipe->pipe_buffer.cnt > 0))
1429 			revents |= events & (POLLIN | POLLRDNORM);
1430 
1431 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1432 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1433 		    (wpipe->pipe_state & PIPE_EOF) ||
1434 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1435 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1436 			 wpipe->pipe_buffer.size == 0)))
1437 			revents |= events & (POLLOUT | POLLWRNORM);
1438 
1439 	levents = events &
1440 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1441 	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1442 	    fp->f_seqcount == rpipe->pipe_wgen)
1443 		events |= POLLINIGNEOF;
1444 
1445 	if ((events & POLLINIGNEOF) == 0) {
1446 		if (rpipe->pipe_state & PIPE_EOF) {
1447 			revents |= (events & (POLLIN | POLLRDNORM));
1448 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1449 			    (wpipe->pipe_state & PIPE_EOF))
1450 				revents |= POLLHUP;
1451 		}
1452 	}
1453 
1454 	if (revents == 0) {
1455 		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1456 			selrecord(td, &rpipe->pipe_sel);
1457 			if (SEL_WAITING(&rpipe->pipe_sel))
1458 				rpipe->pipe_state |= PIPE_SEL;
1459 		}
1460 
1461 		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1462 			selrecord(td, &wpipe->pipe_sel);
1463 			if (SEL_WAITING(&wpipe->pipe_sel))
1464 				wpipe->pipe_state |= PIPE_SEL;
1465 		}
1466 	}
1467 #ifdef MAC
1468 locked_error:
1469 #endif
1470 	PIPE_UNLOCK(rpipe);
1471 
1472 	return (revents);
1473 }
1474 
1475 /*
1476  * We shouldn't need locks here as we're doing a read and this should
1477  * be a natural race.
1478  */
1479 static int
1480 pipe_stat(fp, ub, active_cred, td)
1481 	struct file *fp;
1482 	struct stat *ub;
1483 	struct ucred *active_cred;
1484 	struct thread *td;
1485 {
1486 	struct pipe *pipe;
1487 	int new_unr;
1488 #ifdef MAC
1489 	int error;
1490 #endif
1491 
1492 	pipe = fp->f_data;
1493 	PIPE_LOCK(pipe);
1494 #ifdef MAC
1495 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1496 	if (error) {
1497 		PIPE_UNLOCK(pipe);
1498 		return (error);
1499 	}
1500 #endif
1501 
1502 	/* For named pipes ask the underlying filesystem. */
1503 	if (pipe->pipe_state & PIPE_NAMED) {
1504 		PIPE_UNLOCK(pipe);
1505 		return (vnops.fo_stat(fp, ub, active_cred, td));
1506 	}
1507 
1508 	/*
1509 	 * Lazily allocate an inode number for the pipe.  Most pipe
1510 	 * users do not call fstat(2) on the pipe, which means that
1511 	 * postponing the inode allocation until it is must be
1512 	 * returned to userland is useful.  If alloc_unr failed,
1513 	 * assign st_ino zero instead of returning an error.
1514 	 * Special pipe_ino values:
1515 	 *  -1 - not yet initialized;
1516 	 *  0  - alloc_unr failed, return 0 as st_ino forever.
1517 	 */
1518 	if (pipe->pipe_ino == (ino_t)-1) {
1519 		new_unr = alloc_unr(pipeino_unr);
1520 		if (new_unr != -1)
1521 			pipe->pipe_ino = new_unr;
1522 		else
1523 			pipe->pipe_ino = 0;
1524 	}
1525 	PIPE_UNLOCK(pipe);
1526 
1527 	bzero(ub, sizeof(*ub));
1528 	ub->st_mode = S_IFIFO;
1529 	ub->st_blksize = PAGE_SIZE;
1530 	if (pipe->pipe_state & PIPE_DIRECTW)
1531 		ub->st_size = pipe->pipe_map.cnt;
1532 	else
1533 		ub->st_size = pipe->pipe_buffer.cnt;
1534 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1535 	ub->st_atim = pipe->pipe_atime;
1536 	ub->st_mtim = pipe->pipe_mtime;
1537 	ub->st_ctim = pipe->pipe_ctime;
1538 	ub->st_uid = fp->f_cred->cr_uid;
1539 	ub->st_gid = fp->f_cred->cr_gid;
1540 	ub->st_dev = pipedev_ino;
1541 	ub->st_ino = pipe->pipe_ino;
1542 	/*
1543 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1544 	 */
1545 	return (0);
1546 }
1547 
1548 /* ARGSUSED */
1549 static int
1550 pipe_close(fp, td)
1551 	struct file *fp;
1552 	struct thread *td;
1553 {
1554 
1555 	if (fp->f_vnode != NULL)
1556 		return vnops.fo_close(fp, td);
1557 	fp->f_ops = &badfileops;
1558 	pipe_dtor(fp->f_data);
1559 	fp->f_data = NULL;
1560 	return (0);
1561 }
1562 
1563 static int
1564 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1565 {
1566 	struct pipe *cpipe;
1567 	int error;
1568 
1569 	cpipe = fp->f_data;
1570 	if (cpipe->pipe_state & PIPE_NAMED)
1571 		error = vn_chmod(fp, mode, active_cred, td);
1572 	else
1573 		error = invfo_chmod(fp, mode, active_cred, td);
1574 	return (error);
1575 }
1576 
1577 static int
1578 pipe_chown(fp, uid, gid, active_cred, td)
1579 	struct file *fp;
1580 	uid_t uid;
1581 	gid_t gid;
1582 	struct ucred *active_cred;
1583 	struct thread *td;
1584 {
1585 	struct pipe *cpipe;
1586 	int error;
1587 
1588 	cpipe = fp->f_data;
1589 	if (cpipe->pipe_state & PIPE_NAMED)
1590 		error = vn_chown(fp, uid, gid, active_cred, td);
1591 	else
1592 		error = invfo_chown(fp, uid, gid, active_cred, td);
1593 	return (error);
1594 }
1595 
1596 static void
1597 pipe_free_kmem(cpipe)
1598 	struct pipe *cpipe;
1599 {
1600 
1601 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1602 	    ("pipe_free_kmem: pipe mutex locked"));
1603 
1604 	if (cpipe->pipe_buffer.buffer != NULL) {
1605 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1606 		vm_map_remove(pipe_map,
1607 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1608 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1609 		cpipe->pipe_buffer.buffer = NULL;
1610 	}
1611 #ifndef PIPE_NODIRECT
1612 	{
1613 		cpipe->pipe_map.cnt = 0;
1614 		cpipe->pipe_map.pos = 0;
1615 		cpipe->pipe_map.npages = 0;
1616 	}
1617 #endif
1618 }
1619 
1620 /*
1621  * shutdown the pipe
1622  */
1623 static void
1624 pipeclose(cpipe)
1625 	struct pipe *cpipe;
1626 {
1627 	struct pipepair *pp;
1628 	struct pipe *ppipe;
1629 
1630 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1631 
1632 	PIPE_LOCK(cpipe);
1633 	pipelock(cpipe, 0);
1634 	pp = cpipe->pipe_pair;
1635 
1636 	pipeselwakeup(cpipe);
1637 
1638 	/*
1639 	 * If the other side is blocked, wake it up saying that
1640 	 * we want to close it down.
1641 	 */
1642 	cpipe->pipe_state |= PIPE_EOF;
1643 	while (cpipe->pipe_busy) {
1644 		wakeup(cpipe);
1645 		cpipe->pipe_state |= PIPE_WANT;
1646 		pipeunlock(cpipe);
1647 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1648 		pipelock(cpipe, 0);
1649 	}
1650 
1651 
1652 	/*
1653 	 * Disconnect from peer, if any.
1654 	 */
1655 	ppipe = cpipe->pipe_peer;
1656 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1657 		pipeselwakeup(ppipe);
1658 
1659 		ppipe->pipe_state |= PIPE_EOF;
1660 		wakeup(ppipe);
1661 		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1662 	}
1663 
1664 	/*
1665 	 * Mark this endpoint as free.  Release kmem resources.  We
1666 	 * don't mark this endpoint as unused until we've finished
1667 	 * doing that, or the pipe might disappear out from under
1668 	 * us.
1669 	 */
1670 	PIPE_UNLOCK(cpipe);
1671 	pipe_free_kmem(cpipe);
1672 	PIPE_LOCK(cpipe);
1673 	cpipe->pipe_present = PIPE_CLOSING;
1674 	pipeunlock(cpipe);
1675 
1676 	/*
1677 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1678 	 * PIPE_FINALIZED, that allows other end to free the
1679 	 * pipe_pair, only after the knotes are completely dismantled.
1680 	 */
1681 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1682 	cpipe->pipe_present = PIPE_FINALIZED;
1683 	seldrain(&cpipe->pipe_sel);
1684 	knlist_destroy(&cpipe->pipe_sel.si_note);
1685 
1686 	/*
1687 	 * If both endpoints are now closed, release the memory for the
1688 	 * pipe pair.  If not, unlock.
1689 	 */
1690 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1691 		PIPE_UNLOCK(cpipe);
1692 #ifdef MAC
1693 		mac_pipe_destroy(pp);
1694 #endif
1695 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1696 	} else
1697 		PIPE_UNLOCK(cpipe);
1698 }
1699 
1700 /*ARGSUSED*/
1701 static int
1702 pipe_kqfilter(struct file *fp, struct knote *kn)
1703 {
1704 	struct pipe *cpipe;
1705 
1706 	/*
1707 	 * If a filter is requested that is not supported by this file
1708 	 * descriptor, don't return an error, but also don't ever generate an
1709 	 * event.
1710 	 */
1711 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1712 		kn->kn_fop = &pipe_nfiltops;
1713 		return (0);
1714 	}
1715 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1716 		kn->kn_fop = &pipe_nfiltops;
1717 		return (0);
1718 	}
1719 	cpipe = fp->f_data;
1720 	PIPE_LOCK(cpipe);
1721 	switch (kn->kn_filter) {
1722 	case EVFILT_READ:
1723 		kn->kn_fop = &pipe_rfiltops;
1724 		break;
1725 	case EVFILT_WRITE:
1726 		kn->kn_fop = &pipe_wfiltops;
1727 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1728 			/* other end of pipe has been closed */
1729 			PIPE_UNLOCK(cpipe);
1730 			return (EPIPE);
1731 		}
1732 		cpipe = PIPE_PEER(cpipe);
1733 		break;
1734 	default:
1735 		PIPE_UNLOCK(cpipe);
1736 		return (EINVAL);
1737 	}
1738 
1739 	kn->kn_hook = cpipe;
1740 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1741 	PIPE_UNLOCK(cpipe);
1742 	return (0);
1743 }
1744 
1745 static void
1746 filt_pipedetach(struct knote *kn)
1747 {
1748 	struct pipe *cpipe = kn->kn_hook;
1749 
1750 	PIPE_LOCK(cpipe);
1751 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1752 	PIPE_UNLOCK(cpipe);
1753 }
1754 
1755 /*ARGSUSED*/
1756 static int
1757 filt_piperead(struct knote *kn, long hint)
1758 {
1759 	struct pipe *rpipe = kn->kn_hook;
1760 	struct pipe *wpipe = rpipe->pipe_peer;
1761 	int ret;
1762 
1763 	PIPE_LOCK(rpipe);
1764 	kn->kn_data = rpipe->pipe_buffer.cnt;
1765 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1766 		kn->kn_data = rpipe->pipe_map.cnt;
1767 
1768 	if ((rpipe->pipe_state & PIPE_EOF) ||
1769 	    wpipe->pipe_present != PIPE_ACTIVE ||
1770 	    (wpipe->pipe_state & PIPE_EOF)) {
1771 		kn->kn_flags |= EV_EOF;
1772 		PIPE_UNLOCK(rpipe);
1773 		return (1);
1774 	}
1775 	ret = kn->kn_data > 0;
1776 	PIPE_UNLOCK(rpipe);
1777 	return ret;
1778 }
1779 
1780 /*ARGSUSED*/
1781 static int
1782 filt_pipewrite(struct knote *kn, long hint)
1783 {
1784 	struct pipe *wpipe;
1785 
1786 	wpipe = kn->kn_hook;
1787 	PIPE_LOCK(wpipe);
1788 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1789 	    (wpipe->pipe_state & PIPE_EOF)) {
1790 		kn->kn_data = 0;
1791 		kn->kn_flags |= EV_EOF;
1792 		PIPE_UNLOCK(wpipe);
1793 		return (1);
1794 	}
1795 	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1796 	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1797 	if (wpipe->pipe_state & PIPE_DIRECTW)
1798 		kn->kn_data = 0;
1799 
1800 	PIPE_UNLOCK(wpipe);
1801 	return (kn->kn_data >= PIPE_BUF);
1802 }
1803 
1804 static void
1805 filt_pipedetach_notsup(struct knote *kn)
1806 {
1807 
1808 }
1809 
1810 static int
1811 filt_pipenotsup(struct knote *kn, long hint)
1812 {
1813 
1814 	return (0);
1815 }
1816