xref: /freebsd/sys/kern/sys_pipe.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1996 John S. Dyson
5  * Copyright (c) 2012 Giovanni Trematerra
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Absolutely no warranty of function or purpose is made by the author
18  *    John S. Dyson.
19  * 4. Modifications may be freely made to this file if the above conditions
20  *    are met.
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, the sending process pins the underlying pages in
36  * memory, and the receiving process copies directly from these pinned pages
37  * in the sending process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.
50  *
51  * In order to limit the resource use of pipes, two sysctls exist:
52  *
53  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54  * address space available to us in pipe_map. This value is normally
55  * autotuned, but may also be loader tuned.
56  *
57  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58  * memory in use by pipes.
59  *
60  * Based on how large pipekva is relative to maxpipekva, the following
61  * will happen:
62  *
63  * 0% - 50%:
64  *     New pipes are given 16K of memory backing, pipes may dynamically
65  *     grow to as large as 64K where needed.
66  * 50% - 75%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes may NOT grow.
69  * 75% - 100%:
70  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
71  *     existing pipes will be shrunk down to 4K whenever possible.
72  *
73  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
74  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75  * resize which MUST occur for reverse-direction pipes when they are
76  * first used.
77  *
78  * Additional information about the current state of pipes may be obtained
79  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80  * and kern.ipc.piperesizefail.
81  *
82  * Locking rules:  There are two locks present here:  A mutex, used via
83  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
84  * the flag, as mutexes can not persist over uiomove.  The mutex
85  * exists only to guard access to the flag, and is not in itself a
86  * locking mechanism.  Also note that there is only a single mutex for
87  * both directions of a pipe.
88  *
89  * As pipelock() may have to sleep before it can acquire the flag, it
90  * is important to reread all data after a call to pipelock(); everything
91  * in the structure may have changed.
92  */
93 
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD$");
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122 
123 #include <security/mac/mac_framework.h>
124 
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134 
135 /*
136  * Use this define if you want to disable *fancy* VM things.  Expect an
137  * approx 30% decrease in transfer rate.  This could be useful for
138  * NetBSD or OpenBSD.
139  */
140 /* #define PIPE_NODIRECT */
141 
142 #define PIPE_PEER(pipe)	\
143 	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144 
145 /*
146  * interfaces to the outside world
147  */
148 static fo_rdwr_t	pipe_read;
149 static fo_rdwr_t	pipe_write;
150 static fo_truncate_t	pipe_truncate;
151 static fo_ioctl_t	pipe_ioctl;
152 static fo_poll_t	pipe_poll;
153 static fo_kqfilter_t	pipe_kqfilter;
154 static fo_stat_t	pipe_stat;
155 static fo_close_t	pipe_close;
156 static fo_chmod_t	pipe_chmod;
157 static fo_chown_t	pipe_chown;
158 static fo_fill_kinfo_t	pipe_fill_kinfo;
159 
160 struct fileops pipeops = {
161 	.fo_read = pipe_read,
162 	.fo_write = pipe_write,
163 	.fo_truncate = pipe_truncate,
164 	.fo_ioctl = pipe_ioctl,
165 	.fo_poll = pipe_poll,
166 	.fo_kqfilter = pipe_kqfilter,
167 	.fo_stat = pipe_stat,
168 	.fo_close = pipe_close,
169 	.fo_chmod = pipe_chmod,
170 	.fo_chown = pipe_chown,
171 	.fo_sendfile = invfo_sendfile,
172 	.fo_fill_kinfo = pipe_fill_kinfo,
173 	.fo_flags = DFLAG_PASSABLE
174 };
175 
176 static void	filt_pipedetach(struct knote *kn);
177 static void	filt_pipedetach_notsup(struct knote *kn);
178 static int	filt_pipenotsup(struct knote *kn, long hint);
179 static int	filt_piperead(struct knote *kn, long hint);
180 static int	filt_pipewrite(struct knote *kn, long hint);
181 
182 static struct filterops pipe_nfiltops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_pipedetach_notsup,
185 	.f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_pipedetach,
190 	.f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_pipedetach,
195 	.f_event = filt_pipewrite
196 };
197 
198 /*
199  * Default pipe buffer size(s), this can be kind-of large now because pipe
200  * space is pageable.  The pipe code will try to maintain locality of
201  * reference for performance reasons, so small amounts of outstanding I/O
202  * will not wipe the cache.
203  */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206 
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212 
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 	   &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216 	   &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220 	  &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222 	  &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224 	  &piperesizeallowed, 0, "Pipe resizing allowed");
225 
226 static void pipeinit(void *dummy __unused);
227 static void pipeclose(struct pipe *cpipe);
228 static void pipe_free_kmem(struct pipe *cpipe);
229 static void pipe_create(struct pipe *pipe, int backing);
230 static void pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231 static __inline int pipelock(struct pipe *cpipe, int catch);
232 static __inline void pipeunlock(struct pipe *cpipe);
233 #ifndef PIPE_NODIRECT
234 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
235 static void pipe_destroy_write_buffer(struct pipe *wpipe);
236 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
237 static void pipe_clone_write_buffer(struct pipe *wpipe);
238 #endif
239 static int pipespace(struct pipe *cpipe, int size);
240 static int pipespace_new(struct pipe *cpipe, int size);
241 
242 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
243 static int	pipe_zone_init(void *mem, int size, int flags);
244 static void	pipe_zone_fini(void *mem, int size);
245 
246 static uma_zone_t pipe_zone;
247 static struct unrhdr *pipeino_unr;
248 static dev_t pipedev_ino;
249 
250 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
251 
252 static void
253 pipeinit(void *dummy __unused)
254 {
255 
256 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
257 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
258 	    UMA_ALIGN_PTR, 0);
259 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
260 	pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
261 	KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
262 	pipedev_ino = devfs_alloc_cdp_inode();
263 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
264 }
265 
266 static int
267 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
268 {
269 	struct pipepair *pp;
270 	struct pipe *rpipe, *wpipe;
271 
272 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
273 
274 	pp = (struct pipepair *)mem;
275 
276 	/*
277 	 * We zero both pipe endpoints to make sure all the kmem pointers
278 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
279 	 * endpoints with the same time.
280 	 */
281 	rpipe = &pp->pp_rpipe;
282 	bzero(rpipe, sizeof(*rpipe));
283 	vfs_timestamp(&rpipe->pipe_ctime);
284 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
285 
286 	wpipe = &pp->pp_wpipe;
287 	bzero(wpipe, sizeof(*wpipe));
288 	wpipe->pipe_ctime = rpipe->pipe_ctime;
289 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
290 
291 	rpipe->pipe_peer = wpipe;
292 	rpipe->pipe_pair = pp;
293 	wpipe->pipe_peer = rpipe;
294 	wpipe->pipe_pair = pp;
295 
296 	/*
297 	 * Mark both endpoints as present; they will later get free'd
298 	 * one at a time.  When both are free'd, then the whole pair
299 	 * is released.
300 	 */
301 	rpipe->pipe_present = PIPE_ACTIVE;
302 	wpipe->pipe_present = PIPE_ACTIVE;
303 
304 	/*
305 	 * Eventually, the MAC Framework may initialize the label
306 	 * in ctor or init, but for now we do it elswhere to avoid
307 	 * blocking in ctor or init.
308 	 */
309 	pp->pp_label = NULL;
310 
311 	return (0);
312 }
313 
314 static int
315 pipe_zone_init(void *mem, int size, int flags)
316 {
317 	struct pipepair *pp;
318 
319 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
320 
321 	pp = (struct pipepair *)mem;
322 
323 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
324 	return (0);
325 }
326 
327 static void
328 pipe_zone_fini(void *mem, int size)
329 {
330 	struct pipepair *pp;
331 
332 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
333 
334 	pp = (struct pipepair *)mem;
335 
336 	mtx_destroy(&pp->pp_mtx);
337 }
338 
339 static void
340 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
341 {
342 	struct pipepair *pp;
343 	struct pipe *rpipe, *wpipe;
344 
345 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
346 #ifdef MAC
347 	/*
348 	 * The MAC label is shared between the connected endpoints.  As a
349 	 * result mac_pipe_init() and mac_pipe_create() are called once
350 	 * for the pair, and not on the endpoints.
351 	 */
352 	mac_pipe_init(pp);
353 	mac_pipe_create(td->td_ucred, pp);
354 #endif
355 	rpipe = &pp->pp_rpipe;
356 	wpipe = &pp->pp_wpipe;
357 
358 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
359 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
360 
361 	/* Only the forward direction pipe is backed by default */
362 	pipe_create(rpipe, 1);
363 	pipe_create(wpipe, 0);
364 
365 	rpipe->pipe_state |= PIPE_DIRECTOK;
366 	wpipe->pipe_state |= PIPE_DIRECTOK;
367 }
368 
369 void
370 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
371 {
372 	struct pipepair *pp;
373 
374 	pipe_paircreate(td, &pp);
375 	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
376 	*ppipe = &pp->pp_rpipe;
377 }
378 
379 void
380 pipe_dtor(struct pipe *dpipe)
381 {
382 	struct pipe *peer;
383 	ino_t ino;
384 
385 	ino = dpipe->pipe_ino;
386 	peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
387 	funsetown(&dpipe->pipe_sigio);
388 	pipeclose(dpipe);
389 	if (peer != NULL) {
390 		funsetown(&peer->pipe_sigio);
391 		pipeclose(peer);
392 	}
393 	if (ino != 0 && ino != (ino_t)-1)
394 		free_unr(pipeino_unr, ino);
395 }
396 
397 /*
398  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
399  * the zone pick up the pieces via pipeclose().
400  */
401 int
402 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
403     struct filecaps *fcaps2)
404 {
405 	struct file *rf, *wf;
406 	struct pipe *rpipe, *wpipe;
407 	struct pipepair *pp;
408 	int fd, fflags, error;
409 
410 	pipe_paircreate(td, &pp);
411 	rpipe = &pp->pp_rpipe;
412 	wpipe = &pp->pp_wpipe;
413 	error = falloc_caps(td, &rf, &fd, flags, fcaps1);
414 	if (error) {
415 		pipeclose(rpipe);
416 		pipeclose(wpipe);
417 		return (error);
418 	}
419 	/* An extra reference on `rf' has been held for us by falloc_caps(). */
420 	fildes[0] = fd;
421 
422 	fflags = FREAD | FWRITE;
423 	if ((flags & O_NONBLOCK) != 0)
424 		fflags |= FNONBLOCK;
425 
426 	/*
427 	 * Warning: once we've gotten past allocation of the fd for the
428 	 * read-side, we can only drop the read side via fdrop() in order
429 	 * to avoid races against processes which manage to dup() the read
430 	 * side while we are blocked trying to allocate the write side.
431 	 */
432 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
433 	error = falloc_caps(td, &wf, &fd, flags, fcaps2);
434 	if (error) {
435 		fdclose(td, rf, fildes[0]);
436 		fdrop(rf, td);
437 		/* rpipe has been closed by fdrop(). */
438 		pipeclose(wpipe);
439 		return (error);
440 	}
441 	/* An extra reference on `wf' has been held for us by falloc_caps(). */
442 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
443 	fdrop(wf, td);
444 	fildes[1] = fd;
445 	fdrop(rf, td);
446 
447 	return (0);
448 }
449 
450 #ifdef COMPAT_FREEBSD10
451 /* ARGSUSED */
452 int
453 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
454 {
455 	int error;
456 	int fildes[2];
457 
458 	error = kern_pipe(td, fildes, 0, NULL, NULL);
459 	if (error)
460 		return (error);
461 
462 	td->td_retval[0] = fildes[0];
463 	td->td_retval[1] = fildes[1];
464 
465 	return (0);
466 }
467 #endif
468 
469 int
470 sys_pipe2(struct thread *td, struct pipe2_args *uap)
471 {
472 	int error, fildes[2];
473 
474 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
475 		return (EINVAL);
476 	error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
477 	if (error)
478 		return (error);
479 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
480 	if (error) {
481 		(void)kern_close(td, fildes[0]);
482 		(void)kern_close(td, fildes[1]);
483 	}
484 	return (error);
485 }
486 
487 /*
488  * Allocate kva for pipe circular buffer, the space is pageable
489  * This routine will 'realloc' the size of a pipe safely, if it fails
490  * it will retain the old buffer.
491  * If it fails it will return ENOMEM.
492  */
493 static int
494 pipespace_new(struct pipe *cpipe, int size)
495 {
496 	caddr_t buffer;
497 	int error, cnt, firstseg;
498 	static int curfail = 0;
499 	static struct timeval lastfail;
500 
501 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
502 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
503 		("pipespace: resize of direct writes not allowed"));
504 retry:
505 	cnt = cpipe->pipe_buffer.cnt;
506 	if (cnt > size)
507 		size = cnt;
508 
509 	size = round_page(size);
510 	buffer = (caddr_t) vm_map_min(pipe_map);
511 
512 	error = vm_map_find(pipe_map, NULL, 0,
513 		(vm_offset_t *) &buffer, size, 0, VMFS_ANY_SPACE,
514 		VM_PROT_ALL, VM_PROT_ALL, 0);
515 	if (error != KERN_SUCCESS) {
516 		if ((cpipe->pipe_buffer.buffer == NULL) &&
517 			(size > SMALL_PIPE_SIZE)) {
518 			size = SMALL_PIPE_SIZE;
519 			pipefragretry++;
520 			goto retry;
521 		}
522 		if (cpipe->pipe_buffer.buffer == NULL) {
523 			pipeallocfail++;
524 			if (ppsratecheck(&lastfail, &curfail, 1))
525 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
526 		} else {
527 			piperesizefail++;
528 		}
529 		return (ENOMEM);
530 	}
531 
532 	/* copy data, then free old resources if we're resizing */
533 	if (cnt > 0) {
534 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
535 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
536 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
537 				buffer, firstseg);
538 			if ((cnt - firstseg) > 0)
539 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
540 					cpipe->pipe_buffer.in);
541 		} else {
542 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
543 				buffer, cnt);
544 		}
545 	}
546 	pipe_free_kmem(cpipe);
547 	cpipe->pipe_buffer.buffer = buffer;
548 	cpipe->pipe_buffer.size = size;
549 	cpipe->pipe_buffer.in = cnt;
550 	cpipe->pipe_buffer.out = 0;
551 	cpipe->pipe_buffer.cnt = cnt;
552 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
553 	return (0);
554 }
555 
556 /*
557  * Wrapper for pipespace_new() that performs locking assertions.
558  */
559 static int
560 pipespace(struct pipe *cpipe, int size)
561 {
562 
563 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
564 		("Unlocked pipe passed to pipespace"));
565 	return (pipespace_new(cpipe, size));
566 }
567 
568 /*
569  * lock a pipe for I/O, blocking other access
570  */
571 static __inline int
572 pipelock(struct pipe *cpipe, int catch)
573 {
574 	int error;
575 
576 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
577 	while (cpipe->pipe_state & PIPE_LOCKFL) {
578 		cpipe->pipe_state |= PIPE_LWANT;
579 		error = msleep(cpipe, PIPE_MTX(cpipe),
580 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
581 		    "pipelk", 0);
582 		if (error != 0)
583 			return (error);
584 	}
585 	cpipe->pipe_state |= PIPE_LOCKFL;
586 	return (0);
587 }
588 
589 /*
590  * unlock a pipe I/O lock
591  */
592 static __inline void
593 pipeunlock(struct pipe *cpipe)
594 {
595 
596 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
597 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
598 		("Unlocked pipe passed to pipeunlock"));
599 	cpipe->pipe_state &= ~PIPE_LOCKFL;
600 	if (cpipe->pipe_state & PIPE_LWANT) {
601 		cpipe->pipe_state &= ~PIPE_LWANT;
602 		wakeup(cpipe);
603 	}
604 }
605 
606 void
607 pipeselwakeup(struct pipe *cpipe)
608 {
609 
610 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
611 	if (cpipe->pipe_state & PIPE_SEL) {
612 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
613 		if (!SEL_WAITING(&cpipe->pipe_sel))
614 			cpipe->pipe_state &= ~PIPE_SEL;
615 	}
616 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
617 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
618 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
619 }
620 
621 /*
622  * Initialize and allocate VM and memory for pipe.  The structure
623  * will start out zero'd from the ctor, so we just manage the kmem.
624  */
625 static void
626 pipe_create(struct pipe *pipe, int backing)
627 {
628 
629 	if (backing) {
630 		/*
631 		 * Note that these functions can fail if pipe map is exhausted
632 		 * (as a result of too many pipes created), but we ignore the
633 		 * error as it is not fatal and could be provoked by
634 		 * unprivileged users. The only consequence is worse performance
635 		 * with given pipe.
636 		 */
637 		if (amountpipekva > maxpipekva / 2)
638 			(void)pipespace_new(pipe, SMALL_PIPE_SIZE);
639 		else
640 			(void)pipespace_new(pipe, PIPE_SIZE);
641 	}
642 
643 	pipe->pipe_ino = -1;
644 }
645 
646 /* ARGSUSED */
647 static int
648 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
649     int flags, struct thread *td)
650 {
651 	struct pipe *rpipe;
652 	int error;
653 	int nread = 0;
654 	int size;
655 
656 	rpipe = fp->f_data;
657 	PIPE_LOCK(rpipe);
658 	++rpipe->pipe_busy;
659 	error = pipelock(rpipe, 1);
660 	if (error)
661 		goto unlocked_error;
662 
663 #ifdef MAC
664 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
665 	if (error)
666 		goto locked_error;
667 #endif
668 	if (amountpipekva > (3 * maxpipekva) / 4) {
669 		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
670 			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
671 			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
672 			(piperesizeallowed == 1)) {
673 			PIPE_UNLOCK(rpipe);
674 			pipespace(rpipe, SMALL_PIPE_SIZE);
675 			PIPE_LOCK(rpipe);
676 		}
677 	}
678 
679 	while (uio->uio_resid) {
680 		/*
681 		 * normal pipe buffer receive
682 		 */
683 		if (rpipe->pipe_buffer.cnt > 0) {
684 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
685 			if (size > rpipe->pipe_buffer.cnt)
686 				size = rpipe->pipe_buffer.cnt;
687 			if (size > uio->uio_resid)
688 				size = uio->uio_resid;
689 
690 			PIPE_UNLOCK(rpipe);
691 			error = uiomove(
692 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
693 			    size, uio);
694 			PIPE_LOCK(rpipe);
695 			if (error)
696 				break;
697 
698 			rpipe->pipe_buffer.out += size;
699 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
700 				rpipe->pipe_buffer.out = 0;
701 
702 			rpipe->pipe_buffer.cnt -= size;
703 
704 			/*
705 			 * If there is no more to read in the pipe, reset
706 			 * its pointers to the beginning.  This improves
707 			 * cache hit stats.
708 			 */
709 			if (rpipe->pipe_buffer.cnt == 0) {
710 				rpipe->pipe_buffer.in = 0;
711 				rpipe->pipe_buffer.out = 0;
712 			}
713 			nread += size;
714 #ifndef PIPE_NODIRECT
715 		/*
716 		 * Direct copy, bypassing a kernel buffer.
717 		 */
718 		} else if ((size = rpipe->pipe_map.cnt) &&
719 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
720 			if (size > uio->uio_resid)
721 				size = (u_int) uio->uio_resid;
722 
723 			PIPE_UNLOCK(rpipe);
724 			error = uiomove_fromphys(rpipe->pipe_map.ms,
725 			    rpipe->pipe_map.pos, size, uio);
726 			PIPE_LOCK(rpipe);
727 			if (error)
728 				break;
729 			nread += size;
730 			rpipe->pipe_map.pos += size;
731 			rpipe->pipe_map.cnt -= size;
732 			if (rpipe->pipe_map.cnt == 0) {
733 				rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
734 				wakeup(rpipe);
735 			}
736 #endif
737 		} else {
738 			/*
739 			 * detect EOF condition
740 			 * read returns 0 on EOF, no need to set error
741 			 */
742 			if (rpipe->pipe_state & PIPE_EOF)
743 				break;
744 
745 			/*
746 			 * If the "write-side" has been blocked, wake it up now.
747 			 */
748 			if (rpipe->pipe_state & PIPE_WANTW) {
749 				rpipe->pipe_state &= ~PIPE_WANTW;
750 				wakeup(rpipe);
751 			}
752 
753 			/*
754 			 * Break if some data was read.
755 			 */
756 			if (nread > 0)
757 				break;
758 
759 			/*
760 			 * Unlock the pipe buffer for our remaining processing.
761 			 * We will either break out with an error or we will
762 			 * sleep and relock to loop.
763 			 */
764 			pipeunlock(rpipe);
765 
766 			/*
767 			 * Handle non-blocking mode operation or
768 			 * wait for more data.
769 			 */
770 			if (fp->f_flag & FNONBLOCK) {
771 				error = EAGAIN;
772 			} else {
773 				rpipe->pipe_state |= PIPE_WANTR;
774 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
775 				    PRIBIO | PCATCH,
776 				    "piperd", 0)) == 0)
777 					error = pipelock(rpipe, 1);
778 			}
779 			if (error)
780 				goto unlocked_error;
781 		}
782 	}
783 #ifdef MAC
784 locked_error:
785 #endif
786 	pipeunlock(rpipe);
787 
788 	/* XXX: should probably do this before getting any locks. */
789 	if (error == 0)
790 		vfs_timestamp(&rpipe->pipe_atime);
791 unlocked_error:
792 	--rpipe->pipe_busy;
793 
794 	/*
795 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
796 	 */
797 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
798 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
799 		wakeup(rpipe);
800 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
801 		/*
802 		 * Handle write blocking hysteresis.
803 		 */
804 		if (rpipe->pipe_state & PIPE_WANTW) {
805 			rpipe->pipe_state &= ~PIPE_WANTW;
806 			wakeup(rpipe);
807 		}
808 	}
809 
810 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
811 		pipeselwakeup(rpipe);
812 
813 	PIPE_UNLOCK(rpipe);
814 	return (error);
815 }
816 
817 #ifndef PIPE_NODIRECT
818 /*
819  * Map the sending processes' buffer into kernel space and wire it.
820  * This is similar to a physical write operation.
821  */
822 static int
823 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
824 {
825 	u_int size;
826 	int i;
827 
828 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
829 	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
830 		("Clone attempt on non-direct write pipe!"));
831 
832 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
833                 size = wpipe->pipe_buffer.size;
834 	else
835                 size = uio->uio_iov->iov_len;
836 
837 	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
838 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
839 	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
840 		return (EFAULT);
841 
842 /*
843  * set up the control block
844  */
845 	wpipe->pipe_map.npages = i;
846 	wpipe->pipe_map.pos =
847 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
848 	wpipe->pipe_map.cnt = size;
849 
850 /*
851  * and update the uio data
852  */
853 
854 	uio->uio_iov->iov_len -= size;
855 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
856 	if (uio->uio_iov->iov_len == 0)
857 		uio->uio_iov++;
858 	uio->uio_resid -= size;
859 	uio->uio_offset += size;
860 	return (0);
861 }
862 
863 /*
864  * unmap and unwire the process buffer
865  */
866 static void
867 pipe_destroy_write_buffer(struct pipe *wpipe)
868 {
869 
870 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
871 	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
872 	wpipe->pipe_map.npages = 0;
873 }
874 
875 /*
876  * In the case of a signal, the writing process might go away.  This
877  * code copies the data into the circular buffer so that the source
878  * pages can be freed without loss of data.
879  */
880 static void
881 pipe_clone_write_buffer(struct pipe *wpipe)
882 {
883 	struct uio uio;
884 	struct iovec iov;
885 	int size;
886 	int pos;
887 
888 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
889 	size = wpipe->pipe_map.cnt;
890 	pos = wpipe->pipe_map.pos;
891 
892 	wpipe->pipe_buffer.in = size;
893 	wpipe->pipe_buffer.out = 0;
894 	wpipe->pipe_buffer.cnt = size;
895 	wpipe->pipe_state &= ~PIPE_DIRECTW;
896 
897 	PIPE_UNLOCK(wpipe);
898 	iov.iov_base = wpipe->pipe_buffer.buffer;
899 	iov.iov_len = size;
900 	uio.uio_iov = &iov;
901 	uio.uio_iovcnt = 1;
902 	uio.uio_offset = 0;
903 	uio.uio_resid = size;
904 	uio.uio_segflg = UIO_SYSSPACE;
905 	uio.uio_rw = UIO_READ;
906 	uio.uio_td = curthread;
907 	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
908 	PIPE_LOCK(wpipe);
909 	pipe_destroy_write_buffer(wpipe);
910 }
911 
912 /*
913  * This implements the pipe buffer write mechanism.  Note that only
914  * a direct write OR a normal pipe write can be pending at any given time.
915  * If there are any characters in the pipe buffer, the direct write will
916  * be deferred until the receiving process grabs all of the bytes from
917  * the pipe buffer.  Then the direct mapping write is set-up.
918  */
919 static int
920 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
921 {
922 	int error;
923 
924 retry:
925 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
926 	error = pipelock(wpipe, 1);
927 	if (error != 0)
928 		goto error1;
929 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
930 		error = EPIPE;
931 		pipeunlock(wpipe);
932 		goto error1;
933 	}
934 	while (wpipe->pipe_state & PIPE_DIRECTW) {
935 		if (wpipe->pipe_state & PIPE_WANTR) {
936 			wpipe->pipe_state &= ~PIPE_WANTR;
937 			wakeup(wpipe);
938 		}
939 		pipeselwakeup(wpipe);
940 		wpipe->pipe_state |= PIPE_WANTW;
941 		pipeunlock(wpipe);
942 		error = msleep(wpipe, PIPE_MTX(wpipe),
943 		    PRIBIO | PCATCH, "pipdww", 0);
944 		if (error)
945 			goto error1;
946 		else
947 			goto retry;
948 	}
949 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
950 	if (wpipe->pipe_buffer.cnt > 0) {
951 		if (wpipe->pipe_state & PIPE_WANTR) {
952 			wpipe->pipe_state &= ~PIPE_WANTR;
953 			wakeup(wpipe);
954 		}
955 		pipeselwakeup(wpipe);
956 		wpipe->pipe_state |= PIPE_WANTW;
957 		pipeunlock(wpipe);
958 		error = msleep(wpipe, PIPE_MTX(wpipe),
959 		    PRIBIO | PCATCH, "pipdwc", 0);
960 		if (error)
961 			goto error1;
962 		else
963 			goto retry;
964 	}
965 
966 	wpipe->pipe_state |= PIPE_DIRECTW;
967 
968 	PIPE_UNLOCK(wpipe);
969 	error = pipe_build_write_buffer(wpipe, uio);
970 	PIPE_LOCK(wpipe);
971 	if (error) {
972 		wpipe->pipe_state &= ~PIPE_DIRECTW;
973 		pipeunlock(wpipe);
974 		goto error1;
975 	}
976 
977 	error = 0;
978 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
979 		if (wpipe->pipe_state & PIPE_EOF) {
980 			pipe_destroy_write_buffer(wpipe);
981 			pipeselwakeup(wpipe);
982 			pipeunlock(wpipe);
983 			error = EPIPE;
984 			goto error1;
985 		}
986 		if (wpipe->pipe_state & PIPE_WANTR) {
987 			wpipe->pipe_state &= ~PIPE_WANTR;
988 			wakeup(wpipe);
989 		}
990 		pipeselwakeup(wpipe);
991 		wpipe->pipe_state |= PIPE_WANTW;
992 		pipeunlock(wpipe);
993 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
994 		    "pipdwt", 0);
995 		pipelock(wpipe, 0);
996 	}
997 
998 	if (wpipe->pipe_state & PIPE_EOF)
999 		error = EPIPE;
1000 	if (wpipe->pipe_state & PIPE_DIRECTW) {
1001 		/*
1002 		 * this bit of trickery substitutes a kernel buffer for
1003 		 * the process that might be going away.
1004 		 */
1005 		pipe_clone_write_buffer(wpipe);
1006 	} else {
1007 		pipe_destroy_write_buffer(wpipe);
1008 	}
1009 	pipeunlock(wpipe);
1010 	return (error);
1011 
1012 error1:
1013 	wakeup(wpipe);
1014 	return (error);
1015 }
1016 #endif
1017 
1018 static int
1019 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1020     int flags, struct thread *td)
1021 {
1022 	int error = 0;
1023 	int desiredsize;
1024 	ssize_t orig_resid;
1025 	struct pipe *wpipe, *rpipe;
1026 
1027 	rpipe = fp->f_data;
1028 	wpipe = PIPE_PEER(rpipe);
1029 	PIPE_LOCK(rpipe);
1030 	error = pipelock(wpipe, 1);
1031 	if (error) {
1032 		PIPE_UNLOCK(rpipe);
1033 		return (error);
1034 	}
1035 	/*
1036 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1037 	 */
1038 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1039 	    (wpipe->pipe_state & PIPE_EOF)) {
1040 		pipeunlock(wpipe);
1041 		PIPE_UNLOCK(rpipe);
1042 		return (EPIPE);
1043 	}
1044 #ifdef MAC
1045 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1046 	if (error) {
1047 		pipeunlock(wpipe);
1048 		PIPE_UNLOCK(rpipe);
1049 		return (error);
1050 	}
1051 #endif
1052 	++wpipe->pipe_busy;
1053 
1054 	/* Choose a larger size if it's advantageous */
1055 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1056 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1057 		if (piperesizeallowed != 1)
1058 			break;
1059 		if (amountpipekva > maxpipekva / 2)
1060 			break;
1061 		if (desiredsize == BIG_PIPE_SIZE)
1062 			break;
1063 		desiredsize = desiredsize * 2;
1064 	}
1065 
1066 	/* Choose a smaller size if we're in a OOM situation */
1067 	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1068 		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1069 		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1070 		(piperesizeallowed == 1))
1071 		desiredsize = SMALL_PIPE_SIZE;
1072 
1073 	/* Resize if the above determined that a new size was necessary */
1074 	if ((desiredsize != wpipe->pipe_buffer.size) &&
1075 		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1076 		PIPE_UNLOCK(wpipe);
1077 		pipespace(wpipe, desiredsize);
1078 		PIPE_LOCK(wpipe);
1079 	}
1080 	if (wpipe->pipe_buffer.size == 0) {
1081 		/*
1082 		 * This can only happen for reverse direction use of pipes
1083 		 * in a complete OOM situation.
1084 		 */
1085 		error = ENOMEM;
1086 		--wpipe->pipe_busy;
1087 		pipeunlock(wpipe);
1088 		PIPE_UNLOCK(wpipe);
1089 		return (error);
1090 	}
1091 
1092 	pipeunlock(wpipe);
1093 
1094 	orig_resid = uio->uio_resid;
1095 
1096 	while (uio->uio_resid) {
1097 		int space;
1098 
1099 		pipelock(wpipe, 0);
1100 		if (wpipe->pipe_state & PIPE_EOF) {
1101 			pipeunlock(wpipe);
1102 			error = EPIPE;
1103 			break;
1104 		}
1105 #ifndef PIPE_NODIRECT
1106 		/*
1107 		 * If the transfer is large, we can gain performance if
1108 		 * we do process-to-process copies directly.
1109 		 * If the write is non-blocking, we don't use the
1110 		 * direct write mechanism.
1111 		 *
1112 		 * The direct write mechanism will detect the reader going
1113 		 * away on us.
1114 		 */
1115 		if (uio->uio_segflg == UIO_USERSPACE &&
1116 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1117 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1118 		    (fp->f_flag & FNONBLOCK) == 0) {
1119 			pipeunlock(wpipe);
1120 			error = pipe_direct_write(wpipe, uio);
1121 			if (error)
1122 				break;
1123 			continue;
1124 		}
1125 #endif
1126 
1127 		/*
1128 		 * Pipe buffered writes cannot be coincidental with
1129 		 * direct writes.  We wait until the currently executing
1130 		 * direct write is completed before we start filling the
1131 		 * pipe buffer.  We break out if a signal occurs or the
1132 		 * reader goes away.
1133 		 */
1134 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1135 			if (wpipe->pipe_state & PIPE_WANTR) {
1136 				wpipe->pipe_state &= ~PIPE_WANTR;
1137 				wakeup(wpipe);
1138 			}
1139 			pipeselwakeup(wpipe);
1140 			wpipe->pipe_state |= PIPE_WANTW;
1141 			pipeunlock(wpipe);
1142 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1143 			    "pipbww", 0);
1144 			if (error)
1145 				break;
1146 			else
1147 				continue;
1148 		}
1149 
1150 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1151 
1152 		/* Writes of size <= PIPE_BUF must be atomic. */
1153 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1154 			space = 0;
1155 
1156 		if (space > 0) {
1157 			int size;	/* Transfer size */
1158 			int segsize;	/* first segment to transfer */
1159 
1160 			/*
1161 			 * Transfer size is minimum of uio transfer
1162 			 * and free space in pipe buffer.
1163 			 */
1164 			if (space > uio->uio_resid)
1165 				size = uio->uio_resid;
1166 			else
1167 				size = space;
1168 			/*
1169 			 * First segment to transfer is minimum of
1170 			 * transfer size and contiguous space in
1171 			 * pipe buffer.  If first segment to transfer
1172 			 * is less than the transfer size, we've got
1173 			 * a wraparound in the buffer.
1174 			 */
1175 			segsize = wpipe->pipe_buffer.size -
1176 				wpipe->pipe_buffer.in;
1177 			if (segsize > size)
1178 				segsize = size;
1179 
1180 			/* Transfer first segment */
1181 
1182 			PIPE_UNLOCK(rpipe);
1183 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1184 					segsize, uio);
1185 			PIPE_LOCK(rpipe);
1186 
1187 			if (error == 0 && segsize < size) {
1188 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1189 					wpipe->pipe_buffer.size,
1190 					("Pipe buffer wraparound disappeared"));
1191 				/*
1192 				 * Transfer remaining part now, to
1193 				 * support atomic writes.  Wraparound
1194 				 * happened.
1195 				 */
1196 
1197 				PIPE_UNLOCK(rpipe);
1198 				error = uiomove(
1199 				    &wpipe->pipe_buffer.buffer[0],
1200 				    size - segsize, uio);
1201 				PIPE_LOCK(rpipe);
1202 			}
1203 			if (error == 0) {
1204 				wpipe->pipe_buffer.in += size;
1205 				if (wpipe->pipe_buffer.in >=
1206 				    wpipe->pipe_buffer.size) {
1207 					KASSERT(wpipe->pipe_buffer.in ==
1208 						size - segsize +
1209 						wpipe->pipe_buffer.size,
1210 						("Expected wraparound bad"));
1211 					wpipe->pipe_buffer.in = size - segsize;
1212 				}
1213 
1214 				wpipe->pipe_buffer.cnt += size;
1215 				KASSERT(wpipe->pipe_buffer.cnt <=
1216 					wpipe->pipe_buffer.size,
1217 					("Pipe buffer overflow"));
1218 			}
1219 			pipeunlock(wpipe);
1220 			if (error != 0)
1221 				break;
1222 		} else {
1223 			/*
1224 			 * If the "read-side" has been blocked, wake it up now.
1225 			 */
1226 			if (wpipe->pipe_state & PIPE_WANTR) {
1227 				wpipe->pipe_state &= ~PIPE_WANTR;
1228 				wakeup(wpipe);
1229 			}
1230 
1231 			/*
1232 			 * don't block on non-blocking I/O
1233 			 */
1234 			if (fp->f_flag & FNONBLOCK) {
1235 				error = EAGAIN;
1236 				pipeunlock(wpipe);
1237 				break;
1238 			}
1239 
1240 			/*
1241 			 * We have no more space and have something to offer,
1242 			 * wake up select/poll.
1243 			 */
1244 			pipeselwakeup(wpipe);
1245 
1246 			wpipe->pipe_state |= PIPE_WANTW;
1247 			pipeunlock(wpipe);
1248 			error = msleep(wpipe, PIPE_MTX(rpipe),
1249 			    PRIBIO | PCATCH, "pipewr", 0);
1250 			if (error != 0)
1251 				break;
1252 		}
1253 	}
1254 
1255 	pipelock(wpipe, 0);
1256 	--wpipe->pipe_busy;
1257 
1258 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1259 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1260 		wakeup(wpipe);
1261 	} else if (wpipe->pipe_buffer.cnt > 0) {
1262 		/*
1263 		 * If we have put any characters in the buffer, we wake up
1264 		 * the reader.
1265 		 */
1266 		if (wpipe->pipe_state & PIPE_WANTR) {
1267 			wpipe->pipe_state &= ~PIPE_WANTR;
1268 			wakeup(wpipe);
1269 		}
1270 	}
1271 
1272 	/*
1273 	 * Don't return EPIPE if any byte was written.
1274 	 * EINTR and other interrupts are handled by generic I/O layer.
1275 	 * Do not pretend that I/O succeeded for obvious user error
1276 	 * like EFAULT.
1277 	 */
1278 	if (uio->uio_resid != orig_resid && error == EPIPE)
1279 		error = 0;
1280 
1281 	if (error == 0)
1282 		vfs_timestamp(&wpipe->pipe_mtime);
1283 
1284 	/*
1285 	 * We have something to offer,
1286 	 * wake up select/poll.
1287 	 */
1288 	if (wpipe->pipe_buffer.cnt)
1289 		pipeselwakeup(wpipe);
1290 
1291 	pipeunlock(wpipe);
1292 	PIPE_UNLOCK(rpipe);
1293 	return (error);
1294 }
1295 
1296 /* ARGSUSED */
1297 static int
1298 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1299     struct thread *td)
1300 {
1301 	struct pipe *cpipe;
1302 	int error;
1303 
1304 	cpipe = fp->f_data;
1305 	if (cpipe->pipe_state & PIPE_NAMED)
1306 		error = vnops.fo_truncate(fp, length, active_cred, td);
1307 	else
1308 		error = invfo_truncate(fp, length, active_cred, td);
1309 	return (error);
1310 }
1311 
1312 /*
1313  * we implement a very minimal set of ioctls for compatibility with sockets.
1314  */
1315 static int
1316 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1317     struct thread *td)
1318 {
1319 	struct pipe *mpipe = fp->f_data;
1320 	int error;
1321 
1322 	PIPE_LOCK(mpipe);
1323 
1324 #ifdef MAC
1325 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1326 	if (error) {
1327 		PIPE_UNLOCK(mpipe);
1328 		return (error);
1329 	}
1330 #endif
1331 
1332 	error = 0;
1333 	switch (cmd) {
1334 
1335 	case FIONBIO:
1336 		break;
1337 
1338 	case FIOASYNC:
1339 		if (*(int *)data) {
1340 			mpipe->pipe_state |= PIPE_ASYNC;
1341 		} else {
1342 			mpipe->pipe_state &= ~PIPE_ASYNC;
1343 		}
1344 		break;
1345 
1346 	case FIONREAD:
1347 		if (!(fp->f_flag & FREAD)) {
1348 			*(int *)data = 0;
1349 			PIPE_UNLOCK(mpipe);
1350 			return (0);
1351 		}
1352 		if (mpipe->pipe_state & PIPE_DIRECTW)
1353 			*(int *)data = mpipe->pipe_map.cnt;
1354 		else
1355 			*(int *)data = mpipe->pipe_buffer.cnt;
1356 		break;
1357 
1358 	case FIOSETOWN:
1359 		PIPE_UNLOCK(mpipe);
1360 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1361 		goto out_unlocked;
1362 
1363 	case FIOGETOWN:
1364 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1365 		break;
1366 
1367 	/* This is deprecated, FIOSETOWN should be used instead. */
1368 	case TIOCSPGRP:
1369 		PIPE_UNLOCK(mpipe);
1370 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1371 		goto out_unlocked;
1372 
1373 	/* This is deprecated, FIOGETOWN should be used instead. */
1374 	case TIOCGPGRP:
1375 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1376 		break;
1377 
1378 	default:
1379 		error = ENOTTY;
1380 		break;
1381 	}
1382 	PIPE_UNLOCK(mpipe);
1383 out_unlocked:
1384 	return (error);
1385 }
1386 
1387 static int
1388 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1389     struct thread *td)
1390 {
1391 	struct pipe *rpipe;
1392 	struct pipe *wpipe;
1393 	int levents, revents;
1394 #ifdef MAC
1395 	int error;
1396 #endif
1397 
1398 	revents = 0;
1399 	rpipe = fp->f_data;
1400 	wpipe = PIPE_PEER(rpipe);
1401 	PIPE_LOCK(rpipe);
1402 #ifdef MAC
1403 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1404 	if (error)
1405 		goto locked_error;
1406 #endif
1407 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1408 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1409 		    (rpipe->pipe_buffer.cnt > 0))
1410 			revents |= events & (POLLIN | POLLRDNORM);
1411 
1412 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1413 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1414 		    (wpipe->pipe_state & PIPE_EOF) ||
1415 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1416 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1417 			 wpipe->pipe_buffer.size == 0)))
1418 			revents |= events & (POLLOUT | POLLWRNORM);
1419 
1420 	levents = events &
1421 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1422 	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1423 	    fp->f_seqcount == rpipe->pipe_wgen)
1424 		events |= POLLINIGNEOF;
1425 
1426 	if ((events & POLLINIGNEOF) == 0) {
1427 		if (rpipe->pipe_state & PIPE_EOF) {
1428 			revents |= (events & (POLLIN | POLLRDNORM));
1429 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1430 			    (wpipe->pipe_state & PIPE_EOF))
1431 				revents |= POLLHUP;
1432 		}
1433 	}
1434 
1435 	if (revents == 0) {
1436 		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1437 			selrecord(td, &rpipe->pipe_sel);
1438 			if (SEL_WAITING(&rpipe->pipe_sel))
1439 				rpipe->pipe_state |= PIPE_SEL;
1440 		}
1441 
1442 		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1443 			selrecord(td, &wpipe->pipe_sel);
1444 			if (SEL_WAITING(&wpipe->pipe_sel))
1445 				wpipe->pipe_state |= PIPE_SEL;
1446 		}
1447 	}
1448 #ifdef MAC
1449 locked_error:
1450 #endif
1451 	PIPE_UNLOCK(rpipe);
1452 
1453 	return (revents);
1454 }
1455 
1456 /*
1457  * We shouldn't need locks here as we're doing a read and this should
1458  * be a natural race.
1459  */
1460 static int
1461 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred,
1462     struct thread *td)
1463 {
1464 	struct pipe *pipe;
1465 	int new_unr;
1466 #ifdef MAC
1467 	int error;
1468 #endif
1469 
1470 	pipe = fp->f_data;
1471 	PIPE_LOCK(pipe);
1472 #ifdef MAC
1473 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1474 	if (error) {
1475 		PIPE_UNLOCK(pipe);
1476 		return (error);
1477 	}
1478 #endif
1479 
1480 	/* For named pipes ask the underlying filesystem. */
1481 	if (pipe->pipe_state & PIPE_NAMED) {
1482 		PIPE_UNLOCK(pipe);
1483 		return (vnops.fo_stat(fp, ub, active_cred, td));
1484 	}
1485 
1486 	/*
1487 	 * Lazily allocate an inode number for the pipe.  Most pipe
1488 	 * users do not call fstat(2) on the pipe, which means that
1489 	 * postponing the inode allocation until it is must be
1490 	 * returned to userland is useful.  If alloc_unr failed,
1491 	 * assign st_ino zero instead of returning an error.
1492 	 * Special pipe_ino values:
1493 	 *  -1 - not yet initialized;
1494 	 *  0  - alloc_unr failed, return 0 as st_ino forever.
1495 	 */
1496 	if (pipe->pipe_ino == (ino_t)-1) {
1497 		new_unr = alloc_unr(pipeino_unr);
1498 		if (new_unr != -1)
1499 			pipe->pipe_ino = new_unr;
1500 		else
1501 			pipe->pipe_ino = 0;
1502 	}
1503 	PIPE_UNLOCK(pipe);
1504 
1505 	bzero(ub, sizeof(*ub));
1506 	ub->st_mode = S_IFIFO;
1507 	ub->st_blksize = PAGE_SIZE;
1508 	if (pipe->pipe_state & PIPE_DIRECTW)
1509 		ub->st_size = pipe->pipe_map.cnt;
1510 	else
1511 		ub->st_size = pipe->pipe_buffer.cnt;
1512 	ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1513 	ub->st_atim = pipe->pipe_atime;
1514 	ub->st_mtim = pipe->pipe_mtime;
1515 	ub->st_ctim = pipe->pipe_ctime;
1516 	ub->st_uid = fp->f_cred->cr_uid;
1517 	ub->st_gid = fp->f_cred->cr_gid;
1518 	ub->st_dev = pipedev_ino;
1519 	ub->st_ino = pipe->pipe_ino;
1520 	/*
1521 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1522 	 */
1523 	return (0);
1524 }
1525 
1526 /* ARGSUSED */
1527 static int
1528 pipe_close(struct file *fp, struct thread *td)
1529 {
1530 
1531 	if (fp->f_vnode != NULL)
1532 		return vnops.fo_close(fp, td);
1533 	fp->f_ops = &badfileops;
1534 	pipe_dtor(fp->f_data);
1535 	fp->f_data = NULL;
1536 	return (0);
1537 }
1538 
1539 static int
1540 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1541 {
1542 	struct pipe *cpipe;
1543 	int error;
1544 
1545 	cpipe = fp->f_data;
1546 	if (cpipe->pipe_state & PIPE_NAMED)
1547 		error = vn_chmod(fp, mode, active_cred, td);
1548 	else
1549 		error = invfo_chmod(fp, mode, active_cred, td);
1550 	return (error);
1551 }
1552 
1553 static int
1554 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1555     struct thread *td)
1556 {
1557 	struct pipe *cpipe;
1558 	int error;
1559 
1560 	cpipe = fp->f_data;
1561 	if (cpipe->pipe_state & PIPE_NAMED)
1562 		error = vn_chown(fp, uid, gid, active_cred, td);
1563 	else
1564 		error = invfo_chown(fp, uid, gid, active_cred, td);
1565 	return (error);
1566 }
1567 
1568 static int
1569 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1570 {
1571 	struct pipe *pi;
1572 
1573 	if (fp->f_type == DTYPE_FIFO)
1574 		return (vn_fill_kinfo(fp, kif, fdp));
1575 	kif->kf_type = KF_TYPE_PIPE;
1576 	pi = fp->f_data;
1577 	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1578 	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1579 	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1580 	return (0);
1581 }
1582 
1583 static void
1584 pipe_free_kmem(struct pipe *cpipe)
1585 {
1586 
1587 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1588 	    ("pipe_free_kmem: pipe mutex locked"));
1589 
1590 	if (cpipe->pipe_buffer.buffer != NULL) {
1591 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1592 		vm_map_remove(pipe_map,
1593 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1594 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1595 		cpipe->pipe_buffer.buffer = NULL;
1596 	}
1597 #ifndef PIPE_NODIRECT
1598 	{
1599 		cpipe->pipe_map.cnt = 0;
1600 		cpipe->pipe_map.pos = 0;
1601 		cpipe->pipe_map.npages = 0;
1602 	}
1603 #endif
1604 }
1605 
1606 /*
1607  * shutdown the pipe
1608  */
1609 static void
1610 pipeclose(struct pipe *cpipe)
1611 {
1612 	struct pipepair *pp;
1613 	struct pipe *ppipe;
1614 
1615 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1616 
1617 	PIPE_LOCK(cpipe);
1618 	pipelock(cpipe, 0);
1619 	pp = cpipe->pipe_pair;
1620 
1621 	pipeselwakeup(cpipe);
1622 
1623 	/*
1624 	 * If the other side is blocked, wake it up saying that
1625 	 * we want to close it down.
1626 	 */
1627 	cpipe->pipe_state |= PIPE_EOF;
1628 	while (cpipe->pipe_busy) {
1629 		wakeup(cpipe);
1630 		cpipe->pipe_state |= PIPE_WANT;
1631 		pipeunlock(cpipe);
1632 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1633 		pipelock(cpipe, 0);
1634 	}
1635 
1636 
1637 	/*
1638 	 * Disconnect from peer, if any.
1639 	 */
1640 	ppipe = cpipe->pipe_peer;
1641 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1642 		pipeselwakeup(ppipe);
1643 
1644 		ppipe->pipe_state |= PIPE_EOF;
1645 		wakeup(ppipe);
1646 		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1647 	}
1648 
1649 	/*
1650 	 * Mark this endpoint as free.  Release kmem resources.  We
1651 	 * don't mark this endpoint as unused until we've finished
1652 	 * doing that, or the pipe might disappear out from under
1653 	 * us.
1654 	 */
1655 	PIPE_UNLOCK(cpipe);
1656 	pipe_free_kmem(cpipe);
1657 	PIPE_LOCK(cpipe);
1658 	cpipe->pipe_present = PIPE_CLOSING;
1659 	pipeunlock(cpipe);
1660 
1661 	/*
1662 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1663 	 * PIPE_FINALIZED, that allows other end to free the
1664 	 * pipe_pair, only after the knotes are completely dismantled.
1665 	 */
1666 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1667 	cpipe->pipe_present = PIPE_FINALIZED;
1668 	seldrain(&cpipe->pipe_sel);
1669 	knlist_destroy(&cpipe->pipe_sel.si_note);
1670 
1671 	/*
1672 	 * If both endpoints are now closed, release the memory for the
1673 	 * pipe pair.  If not, unlock.
1674 	 */
1675 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1676 		PIPE_UNLOCK(cpipe);
1677 #ifdef MAC
1678 		mac_pipe_destroy(pp);
1679 #endif
1680 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1681 	} else
1682 		PIPE_UNLOCK(cpipe);
1683 }
1684 
1685 /*ARGSUSED*/
1686 static int
1687 pipe_kqfilter(struct file *fp, struct knote *kn)
1688 {
1689 	struct pipe *cpipe;
1690 
1691 	/*
1692 	 * If a filter is requested that is not supported by this file
1693 	 * descriptor, don't return an error, but also don't ever generate an
1694 	 * event.
1695 	 */
1696 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1697 		kn->kn_fop = &pipe_nfiltops;
1698 		return (0);
1699 	}
1700 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1701 		kn->kn_fop = &pipe_nfiltops;
1702 		return (0);
1703 	}
1704 	cpipe = fp->f_data;
1705 	PIPE_LOCK(cpipe);
1706 	switch (kn->kn_filter) {
1707 	case EVFILT_READ:
1708 		kn->kn_fop = &pipe_rfiltops;
1709 		break;
1710 	case EVFILT_WRITE:
1711 		kn->kn_fop = &pipe_wfiltops;
1712 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1713 			/* other end of pipe has been closed */
1714 			PIPE_UNLOCK(cpipe);
1715 			return (EPIPE);
1716 		}
1717 		cpipe = PIPE_PEER(cpipe);
1718 		break;
1719 	default:
1720 		PIPE_UNLOCK(cpipe);
1721 		return (EINVAL);
1722 	}
1723 
1724 	kn->kn_hook = cpipe;
1725 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1726 	PIPE_UNLOCK(cpipe);
1727 	return (0);
1728 }
1729 
1730 static void
1731 filt_pipedetach(struct knote *kn)
1732 {
1733 	struct pipe *cpipe = kn->kn_hook;
1734 
1735 	PIPE_LOCK(cpipe);
1736 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1737 	PIPE_UNLOCK(cpipe);
1738 }
1739 
1740 /*ARGSUSED*/
1741 static int
1742 filt_piperead(struct knote *kn, long hint)
1743 {
1744 	struct pipe *rpipe = kn->kn_hook;
1745 	struct pipe *wpipe = rpipe->pipe_peer;
1746 	int ret;
1747 
1748 	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1749 	kn->kn_data = rpipe->pipe_buffer.cnt;
1750 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1751 		kn->kn_data = rpipe->pipe_map.cnt;
1752 
1753 	if ((rpipe->pipe_state & PIPE_EOF) ||
1754 	    wpipe->pipe_present != PIPE_ACTIVE ||
1755 	    (wpipe->pipe_state & PIPE_EOF)) {
1756 		kn->kn_flags |= EV_EOF;
1757 		return (1);
1758 	}
1759 	ret = kn->kn_data > 0;
1760 	return ret;
1761 }
1762 
1763 /*ARGSUSED*/
1764 static int
1765 filt_pipewrite(struct knote *kn, long hint)
1766 {
1767 	struct pipe *wpipe;
1768 
1769 	wpipe = kn->kn_hook;
1770 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1771 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1772 	    (wpipe->pipe_state & PIPE_EOF)) {
1773 		kn->kn_data = 0;
1774 		kn->kn_flags |= EV_EOF;
1775 		return (1);
1776 	}
1777 	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1778 	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1779 	if (wpipe->pipe_state & PIPE_DIRECTW)
1780 		kn->kn_data = 0;
1781 
1782 	return (kn->kn_data >= PIPE_BUF);
1783 }
1784 
1785 static void
1786 filt_pipedetach_notsup(struct knote *kn)
1787 {
1788 
1789 }
1790 
1791 static int
1792 filt_pipenotsup(struct knote *kn, long hint)
1793 {
1794 
1795 	return (0);
1796 }
1797