xref: /freebsd/sys/kern/sys_pipe.c (revision b78ee15e9f04ae15c3e1200df974473167524d17)
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * Copyright (c) 2012 Giovanni Trematerra
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice immediately at the beginning of the file, without modification,
11  *    this list of conditions, and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Absolutely no warranty of function or purpose is made by the author
16  *    John S. Dyson.
17  * 4. Modifications may be freely made to this file if the above conditions
18  *    are met.
19  */
20 
21 /*
22  * This file contains a high-performance replacement for the socket-based
23  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
24  * all features of sockets, but does do everything that pipes normally
25  * do.
26  */
27 
28 /*
29  * This code has two modes of operation, a small write mode and a large
30  * write mode.  The small write mode acts like conventional pipes with
31  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
32  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
33  * and PIPE_SIZE in size, the sending process pins the underlying pages in
34  * memory, and the receiving process copies directly from these pinned pages
35  * in the sending process.
36  *
37  * If the sending process receives a signal, it is possible that it will
38  * go away, and certainly its address space can change, because control
39  * is returned back to the user-mode side.  In that case, the pipe code
40  * arranges to copy the buffer supplied by the user process, to a pageable
41  * kernel buffer, and the receiving process will grab the data from the
42  * pageable kernel buffer.  Since signals don't happen all that often,
43  * the copy operation is normally eliminated.
44  *
45  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46  * happen for small transfers so that the system will not spend all of
47  * its time context switching.
48  *
49  * In order to limit the resource use of pipes, two sysctls exist:
50  *
51  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52  * address space available to us in pipe_map. This value is normally
53  * autotuned, but may also be loader tuned.
54  *
55  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56  * memory in use by pipes.
57  *
58  * Based on how large pipekva is relative to maxpipekva, the following
59  * will happen:
60  *
61  * 0% - 50%:
62  *     New pipes are given 16K of memory backing, pipes may dynamically
63  *     grow to as large as 64K where needed.
64  * 50% - 75%:
65  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
66  *     existing pipes may NOT grow.
67  * 75% - 100%:
68  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
69  *     existing pipes will be shrunk down to 4K whenever possible.
70  *
71  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
72  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73  * resize which MUST occur for reverse-direction pipes when they are
74  * first used.
75  *
76  * Additional information about the current state of pipes may be obtained
77  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78  * and kern.ipc.piperesizefail.
79  *
80  * Locking rules:  There are two locks present here:  A mutex, used via
81  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
82  * the flag, as mutexes can not persist over uiomove.  The mutex
83  * exists only to guard access to the flag, and is not in itself a
84  * locking mechanism.  Also note that there is only a single mutex for
85  * both directions of a pipe.
86  *
87  * As pipelock() may have to sleep before it can acquire the flag, it
88  * is important to reread all data after a call to pipelock(); everything
89  * in the structure may have changed.
90  */
91 
92 #include <sys/cdefs.h>
93 __FBSDID("$FreeBSD$");
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/conf.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mutex.h>
105 #include <sys/ttycom.h>
106 #include <sys/stat.h>
107 #include <sys/malloc.h>
108 #include <sys/poll.h>
109 #include <sys/selinfo.h>
110 #include <sys/signalvar.h>
111 #include <sys/syscallsubr.h>
112 #include <sys/sysctl.h>
113 #include <sys/sysproto.h>
114 #include <sys/pipe.h>
115 #include <sys/proc.h>
116 #include <sys/vnode.h>
117 #include <sys/uio.h>
118 #include <sys/user.h>
119 #include <sys/event.h>
120 
121 #include <security/mac/mac_framework.h>
122 
123 #include <vm/vm.h>
124 #include <vm/vm_param.h>
125 #include <vm/vm_object.h>
126 #include <vm/vm_kern.h>
127 #include <vm/vm_extern.h>
128 #include <vm/pmap.h>
129 #include <vm/vm_map.h>
130 #include <vm/vm_page.h>
131 #include <vm/uma.h>
132 
133 /*
134  * Use this define if you want to disable *fancy* VM things.  Expect an
135  * approx 30% decrease in transfer rate.  This could be useful for
136  * NetBSD or OpenBSD.
137  */
138 /* #define PIPE_NODIRECT */
139 
140 #define PIPE_PEER(pipe)	\
141 	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
142 
143 /*
144  * interfaces to the outside world
145  */
146 static fo_rdwr_t	pipe_read;
147 static fo_rdwr_t	pipe_write;
148 static fo_truncate_t	pipe_truncate;
149 static fo_ioctl_t	pipe_ioctl;
150 static fo_poll_t	pipe_poll;
151 static fo_kqfilter_t	pipe_kqfilter;
152 static fo_stat_t	pipe_stat;
153 static fo_close_t	pipe_close;
154 static fo_chmod_t	pipe_chmod;
155 static fo_chown_t	pipe_chown;
156 static fo_fill_kinfo_t	pipe_fill_kinfo;
157 
158 struct fileops pipeops = {
159 	.fo_read = pipe_read,
160 	.fo_write = pipe_write,
161 	.fo_truncate = pipe_truncate,
162 	.fo_ioctl = pipe_ioctl,
163 	.fo_poll = pipe_poll,
164 	.fo_kqfilter = pipe_kqfilter,
165 	.fo_stat = pipe_stat,
166 	.fo_close = pipe_close,
167 	.fo_chmod = pipe_chmod,
168 	.fo_chown = pipe_chown,
169 	.fo_sendfile = invfo_sendfile,
170 	.fo_fill_kinfo = pipe_fill_kinfo,
171 	.fo_flags = DFLAG_PASSABLE
172 };
173 
174 static void	filt_pipedetach(struct knote *kn);
175 static void	filt_pipedetach_notsup(struct knote *kn);
176 static int	filt_pipenotsup(struct knote *kn, long hint);
177 static int	filt_piperead(struct knote *kn, long hint);
178 static int	filt_pipewrite(struct knote *kn, long hint);
179 
180 static struct filterops pipe_nfiltops = {
181 	.f_isfd = 1,
182 	.f_detach = filt_pipedetach_notsup,
183 	.f_event = filt_pipenotsup
184 };
185 static struct filterops pipe_rfiltops = {
186 	.f_isfd = 1,
187 	.f_detach = filt_pipedetach,
188 	.f_event = filt_piperead
189 };
190 static struct filterops pipe_wfiltops = {
191 	.f_isfd = 1,
192 	.f_detach = filt_pipedetach,
193 	.f_event = filt_pipewrite
194 };
195 
196 /*
197  * Default pipe buffer size(s), this can be kind-of large now because pipe
198  * space is pageable.  The pipe code will try to maintain locality of
199  * reference for performance reasons, so small amounts of outstanding I/O
200  * will not wipe the cache.
201  */
202 #define MINPIPESIZE (PIPE_SIZE/3)
203 #define MAXPIPESIZE (2*PIPE_SIZE/3)
204 
205 static long amountpipekva;
206 static int pipefragretry;
207 static int pipeallocfail;
208 static int piperesizefail;
209 static int piperesizeallowed = 1;
210 
211 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
212 	   &maxpipekva, 0, "Pipe KVA limit");
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
214 	   &amountpipekva, 0, "Pipe KVA usage");
215 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
216 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
218 	  &pipeallocfail, 0, "Pipe allocation failures");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
220 	  &piperesizefail, 0, "Pipe resize failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
222 	  &piperesizeallowed, 0, "Pipe resizing allowed");
223 
224 static void pipeinit(void *dummy __unused);
225 static void pipeclose(struct pipe *cpipe);
226 static void pipe_free_kmem(struct pipe *cpipe);
227 static void pipe_create(struct pipe *pipe, int backing);
228 static void pipe_paircreate(struct thread *td, struct pipepair **p_pp);
229 static __inline int pipelock(struct pipe *cpipe, int catch);
230 static __inline void pipeunlock(struct pipe *cpipe);
231 #ifndef PIPE_NODIRECT
232 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
233 static void pipe_destroy_write_buffer(struct pipe *wpipe);
234 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
235 static void pipe_clone_write_buffer(struct pipe *wpipe);
236 #endif
237 static int pipespace(struct pipe *cpipe, int size);
238 static int pipespace_new(struct pipe *cpipe, int size);
239 
240 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
241 static int	pipe_zone_init(void *mem, int size, int flags);
242 static void	pipe_zone_fini(void *mem, int size);
243 
244 static uma_zone_t pipe_zone;
245 static struct unrhdr *pipeino_unr;
246 static dev_t pipedev_ino;
247 
248 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
249 
250 static void
251 pipeinit(void *dummy __unused)
252 {
253 
254 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
255 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
256 	    UMA_ALIGN_PTR, 0);
257 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
258 	pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
259 	KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
260 	pipedev_ino = devfs_alloc_cdp_inode();
261 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
262 }
263 
264 static int
265 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
266 {
267 	struct pipepair *pp;
268 	struct pipe *rpipe, *wpipe;
269 
270 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
271 
272 	pp = (struct pipepair *)mem;
273 
274 	/*
275 	 * We zero both pipe endpoints to make sure all the kmem pointers
276 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
277 	 * endpoints with the same time.
278 	 */
279 	rpipe = &pp->pp_rpipe;
280 	bzero(rpipe, sizeof(*rpipe));
281 	vfs_timestamp(&rpipe->pipe_ctime);
282 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
283 
284 	wpipe = &pp->pp_wpipe;
285 	bzero(wpipe, sizeof(*wpipe));
286 	wpipe->pipe_ctime = rpipe->pipe_ctime;
287 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
288 
289 	rpipe->pipe_peer = wpipe;
290 	rpipe->pipe_pair = pp;
291 	wpipe->pipe_peer = rpipe;
292 	wpipe->pipe_pair = pp;
293 
294 	/*
295 	 * Mark both endpoints as present; they will later get free'd
296 	 * one at a time.  When both are free'd, then the whole pair
297 	 * is released.
298 	 */
299 	rpipe->pipe_present = PIPE_ACTIVE;
300 	wpipe->pipe_present = PIPE_ACTIVE;
301 
302 	/*
303 	 * Eventually, the MAC Framework may initialize the label
304 	 * in ctor or init, but for now we do it elswhere to avoid
305 	 * blocking in ctor or init.
306 	 */
307 	pp->pp_label = NULL;
308 
309 	return (0);
310 }
311 
312 static int
313 pipe_zone_init(void *mem, int size, int flags)
314 {
315 	struct pipepair *pp;
316 
317 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
318 
319 	pp = (struct pipepair *)mem;
320 
321 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
322 	return (0);
323 }
324 
325 static void
326 pipe_zone_fini(void *mem, int size)
327 {
328 	struct pipepair *pp;
329 
330 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
331 
332 	pp = (struct pipepair *)mem;
333 
334 	mtx_destroy(&pp->pp_mtx);
335 }
336 
337 static void
338 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
339 {
340 	struct pipepair *pp;
341 	struct pipe *rpipe, *wpipe;
342 
343 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
344 #ifdef MAC
345 	/*
346 	 * The MAC label is shared between the connected endpoints.  As a
347 	 * result mac_pipe_init() and mac_pipe_create() are called once
348 	 * for the pair, and not on the endpoints.
349 	 */
350 	mac_pipe_init(pp);
351 	mac_pipe_create(td->td_ucred, pp);
352 #endif
353 	rpipe = &pp->pp_rpipe;
354 	wpipe = &pp->pp_wpipe;
355 
356 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
357 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
358 
359 	/* Only the forward direction pipe is backed by default */
360 	pipe_create(rpipe, 1);
361 	pipe_create(wpipe, 0);
362 
363 	rpipe->pipe_state |= PIPE_DIRECTOK;
364 	wpipe->pipe_state |= PIPE_DIRECTOK;
365 }
366 
367 void
368 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
369 {
370 	struct pipepair *pp;
371 
372 	pipe_paircreate(td, &pp);
373 	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
374 	*ppipe = &pp->pp_rpipe;
375 }
376 
377 void
378 pipe_dtor(struct pipe *dpipe)
379 {
380 	struct pipe *peer;
381 	ino_t ino;
382 
383 	ino = dpipe->pipe_ino;
384 	peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
385 	funsetown(&dpipe->pipe_sigio);
386 	pipeclose(dpipe);
387 	if (peer != NULL) {
388 		funsetown(&peer->pipe_sigio);
389 		pipeclose(peer);
390 	}
391 	if (ino != 0 && ino != (ino_t)-1)
392 		free_unr(pipeino_unr, ino);
393 }
394 
395 /*
396  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
397  * the zone pick up the pieces via pipeclose().
398  */
399 int
400 kern_pipe(struct thread *td, int fildes[2])
401 {
402 
403 	return (kern_pipe2(td, fildes, 0));
404 }
405 
406 int
407 kern_pipe2(struct thread *td, int fildes[2], int flags)
408 {
409 	struct file *rf, *wf;
410 	struct pipe *rpipe, *wpipe;
411 	struct pipepair *pp;
412 	int fd, fflags, error;
413 
414 	pipe_paircreate(td, &pp);
415 	rpipe = &pp->pp_rpipe;
416 	wpipe = &pp->pp_wpipe;
417 	error = falloc(td, &rf, &fd, flags);
418 	if (error) {
419 		pipeclose(rpipe);
420 		pipeclose(wpipe);
421 		return (error);
422 	}
423 	/* An extra reference on `rf' has been held for us by falloc(). */
424 	fildes[0] = fd;
425 
426 	fflags = FREAD | FWRITE;
427 	if ((flags & O_NONBLOCK) != 0)
428 		fflags |= FNONBLOCK;
429 
430 	/*
431 	 * Warning: once we've gotten past allocation of the fd for the
432 	 * read-side, we can only drop the read side via fdrop() in order
433 	 * to avoid races against processes which manage to dup() the read
434 	 * side while we are blocked trying to allocate the write side.
435 	 */
436 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
437 	error = falloc(td, &wf, &fd, flags);
438 	if (error) {
439 		fdclose(td, rf, fildes[0]);
440 		fdrop(rf, td);
441 		/* rpipe has been closed by fdrop(). */
442 		pipeclose(wpipe);
443 		return (error);
444 	}
445 	/* An extra reference on `wf' has been held for us by falloc(). */
446 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
447 	fdrop(wf, td);
448 	fildes[1] = fd;
449 	fdrop(rf, td);
450 
451 	return (0);
452 }
453 
454 /* ARGSUSED */
455 int
456 sys_pipe(struct thread *td, struct pipe_args *uap)
457 {
458 	int error;
459 	int fildes[2];
460 
461 	error = kern_pipe(td, fildes);
462 	if (error)
463 		return (error);
464 
465 	td->td_retval[0] = fildes[0];
466 	td->td_retval[1] = fildes[1];
467 
468 	return (0);
469 }
470 
471 int
472 sys_pipe2(struct thread *td, struct pipe2_args *uap)
473 {
474 	int error, fildes[2];
475 
476 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
477 		return (EINVAL);
478 	error = kern_pipe2(td, fildes, uap->flags);
479 	if (error)
480 		return (error);
481 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
482 	if (error) {
483 		(void)kern_close(td, fildes[0]);
484 		(void)kern_close(td, fildes[1]);
485 	}
486 	return (error);
487 }
488 
489 /*
490  * Allocate kva for pipe circular buffer, the space is pageable
491  * This routine will 'realloc' the size of a pipe safely, if it fails
492  * it will retain the old buffer.
493  * If it fails it will return ENOMEM.
494  */
495 static int
496 pipespace_new(cpipe, size)
497 	struct pipe *cpipe;
498 	int size;
499 {
500 	caddr_t buffer;
501 	int error, cnt, firstseg;
502 	static int curfail = 0;
503 	static struct timeval lastfail;
504 
505 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
506 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
507 		("pipespace: resize of direct writes not allowed"));
508 retry:
509 	cnt = cpipe->pipe_buffer.cnt;
510 	if (cnt > size)
511 		size = cnt;
512 
513 	size = round_page(size);
514 	buffer = (caddr_t) vm_map_min(pipe_map);
515 
516 	error = vm_map_find(pipe_map, NULL, 0,
517 		(vm_offset_t *) &buffer, size, 0, VMFS_ANY_SPACE,
518 		VM_PROT_ALL, VM_PROT_ALL, 0);
519 	if (error != KERN_SUCCESS) {
520 		if ((cpipe->pipe_buffer.buffer == NULL) &&
521 			(size > SMALL_PIPE_SIZE)) {
522 			size = SMALL_PIPE_SIZE;
523 			pipefragretry++;
524 			goto retry;
525 		}
526 		if (cpipe->pipe_buffer.buffer == NULL) {
527 			pipeallocfail++;
528 			if (ppsratecheck(&lastfail, &curfail, 1))
529 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
530 		} else {
531 			piperesizefail++;
532 		}
533 		return (ENOMEM);
534 	}
535 
536 	/* copy data, then free old resources if we're resizing */
537 	if (cnt > 0) {
538 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
539 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
540 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
541 				buffer, firstseg);
542 			if ((cnt - firstseg) > 0)
543 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
544 					cpipe->pipe_buffer.in);
545 		} else {
546 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
547 				buffer, cnt);
548 		}
549 	}
550 	pipe_free_kmem(cpipe);
551 	cpipe->pipe_buffer.buffer = buffer;
552 	cpipe->pipe_buffer.size = size;
553 	cpipe->pipe_buffer.in = cnt;
554 	cpipe->pipe_buffer.out = 0;
555 	cpipe->pipe_buffer.cnt = cnt;
556 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
557 	return (0);
558 }
559 
560 /*
561  * Wrapper for pipespace_new() that performs locking assertions.
562  */
563 static int
564 pipespace(cpipe, size)
565 	struct pipe *cpipe;
566 	int size;
567 {
568 
569 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
570 		("Unlocked pipe passed to pipespace"));
571 	return (pipespace_new(cpipe, size));
572 }
573 
574 /*
575  * lock a pipe for I/O, blocking other access
576  */
577 static __inline int
578 pipelock(cpipe, catch)
579 	struct pipe *cpipe;
580 	int catch;
581 {
582 	int error;
583 
584 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
585 	while (cpipe->pipe_state & PIPE_LOCKFL) {
586 		cpipe->pipe_state |= PIPE_LWANT;
587 		error = msleep(cpipe, PIPE_MTX(cpipe),
588 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
589 		    "pipelk", 0);
590 		if (error != 0)
591 			return (error);
592 	}
593 	cpipe->pipe_state |= PIPE_LOCKFL;
594 	return (0);
595 }
596 
597 /*
598  * unlock a pipe I/O lock
599  */
600 static __inline void
601 pipeunlock(cpipe)
602 	struct pipe *cpipe;
603 {
604 
605 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
606 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
607 		("Unlocked pipe passed to pipeunlock"));
608 	cpipe->pipe_state &= ~PIPE_LOCKFL;
609 	if (cpipe->pipe_state & PIPE_LWANT) {
610 		cpipe->pipe_state &= ~PIPE_LWANT;
611 		wakeup(cpipe);
612 	}
613 }
614 
615 void
616 pipeselwakeup(cpipe)
617 	struct pipe *cpipe;
618 {
619 
620 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
621 	if (cpipe->pipe_state & PIPE_SEL) {
622 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
623 		if (!SEL_WAITING(&cpipe->pipe_sel))
624 			cpipe->pipe_state &= ~PIPE_SEL;
625 	}
626 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
627 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
628 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
629 }
630 
631 /*
632  * Initialize and allocate VM and memory for pipe.  The structure
633  * will start out zero'd from the ctor, so we just manage the kmem.
634  */
635 static void
636 pipe_create(pipe, backing)
637 	struct pipe *pipe;
638 	int backing;
639 {
640 
641 	if (backing) {
642 		/*
643 		 * Note that these functions can fail if pipe map is exhausted
644 		 * (as a result of too many pipes created), but we ignore the
645 		 * error as it is not fatal and could be provoked by
646 		 * unprivileged users. The only consequence is worse performance
647 		 * with given pipe.
648 		 */
649 		if (amountpipekva > maxpipekva / 2)
650 			(void)pipespace_new(pipe, SMALL_PIPE_SIZE);
651 		else
652 			(void)pipespace_new(pipe, PIPE_SIZE);
653 	}
654 
655 	pipe->pipe_ino = -1;
656 }
657 
658 /* ARGSUSED */
659 static int
660 pipe_read(fp, uio, active_cred, flags, td)
661 	struct file *fp;
662 	struct uio *uio;
663 	struct ucred *active_cred;
664 	struct thread *td;
665 	int flags;
666 {
667 	struct pipe *rpipe;
668 	int error;
669 	int nread = 0;
670 	int size;
671 
672 	rpipe = fp->f_data;
673 	PIPE_LOCK(rpipe);
674 	++rpipe->pipe_busy;
675 	error = pipelock(rpipe, 1);
676 	if (error)
677 		goto unlocked_error;
678 
679 #ifdef MAC
680 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
681 	if (error)
682 		goto locked_error;
683 #endif
684 	if (amountpipekva > (3 * maxpipekva) / 4) {
685 		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
686 			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
687 			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
688 			(piperesizeallowed == 1)) {
689 			PIPE_UNLOCK(rpipe);
690 			pipespace(rpipe, SMALL_PIPE_SIZE);
691 			PIPE_LOCK(rpipe);
692 		}
693 	}
694 
695 	while (uio->uio_resid) {
696 		/*
697 		 * normal pipe buffer receive
698 		 */
699 		if (rpipe->pipe_buffer.cnt > 0) {
700 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
701 			if (size > rpipe->pipe_buffer.cnt)
702 				size = rpipe->pipe_buffer.cnt;
703 			if (size > uio->uio_resid)
704 				size = uio->uio_resid;
705 
706 			PIPE_UNLOCK(rpipe);
707 			error = uiomove(
708 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
709 			    size, uio);
710 			PIPE_LOCK(rpipe);
711 			if (error)
712 				break;
713 
714 			rpipe->pipe_buffer.out += size;
715 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
716 				rpipe->pipe_buffer.out = 0;
717 
718 			rpipe->pipe_buffer.cnt -= size;
719 
720 			/*
721 			 * If there is no more to read in the pipe, reset
722 			 * its pointers to the beginning.  This improves
723 			 * cache hit stats.
724 			 */
725 			if (rpipe->pipe_buffer.cnt == 0) {
726 				rpipe->pipe_buffer.in = 0;
727 				rpipe->pipe_buffer.out = 0;
728 			}
729 			nread += size;
730 #ifndef PIPE_NODIRECT
731 		/*
732 		 * Direct copy, bypassing a kernel buffer.
733 		 */
734 		} else if ((size = rpipe->pipe_map.cnt) &&
735 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
736 			if (size > uio->uio_resid)
737 				size = (u_int) uio->uio_resid;
738 
739 			PIPE_UNLOCK(rpipe);
740 			error = uiomove_fromphys(rpipe->pipe_map.ms,
741 			    rpipe->pipe_map.pos, size, uio);
742 			PIPE_LOCK(rpipe);
743 			if (error)
744 				break;
745 			nread += size;
746 			rpipe->pipe_map.pos += size;
747 			rpipe->pipe_map.cnt -= size;
748 			if (rpipe->pipe_map.cnt == 0) {
749 				rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
750 				wakeup(rpipe);
751 			}
752 #endif
753 		} else {
754 			/*
755 			 * detect EOF condition
756 			 * read returns 0 on EOF, no need to set error
757 			 */
758 			if (rpipe->pipe_state & PIPE_EOF)
759 				break;
760 
761 			/*
762 			 * If the "write-side" has been blocked, wake it up now.
763 			 */
764 			if (rpipe->pipe_state & PIPE_WANTW) {
765 				rpipe->pipe_state &= ~PIPE_WANTW;
766 				wakeup(rpipe);
767 			}
768 
769 			/*
770 			 * Break if some data was read.
771 			 */
772 			if (nread > 0)
773 				break;
774 
775 			/*
776 			 * Unlock the pipe buffer for our remaining processing.
777 			 * We will either break out with an error or we will
778 			 * sleep and relock to loop.
779 			 */
780 			pipeunlock(rpipe);
781 
782 			/*
783 			 * Handle non-blocking mode operation or
784 			 * wait for more data.
785 			 */
786 			if (fp->f_flag & FNONBLOCK) {
787 				error = EAGAIN;
788 			} else {
789 				rpipe->pipe_state |= PIPE_WANTR;
790 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
791 				    PRIBIO | PCATCH,
792 				    "piperd", 0)) == 0)
793 					error = pipelock(rpipe, 1);
794 			}
795 			if (error)
796 				goto unlocked_error;
797 		}
798 	}
799 #ifdef MAC
800 locked_error:
801 #endif
802 	pipeunlock(rpipe);
803 
804 	/* XXX: should probably do this before getting any locks. */
805 	if (error == 0)
806 		vfs_timestamp(&rpipe->pipe_atime);
807 unlocked_error:
808 	--rpipe->pipe_busy;
809 
810 	/*
811 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
812 	 */
813 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
814 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
815 		wakeup(rpipe);
816 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
817 		/*
818 		 * Handle write blocking hysteresis.
819 		 */
820 		if (rpipe->pipe_state & PIPE_WANTW) {
821 			rpipe->pipe_state &= ~PIPE_WANTW;
822 			wakeup(rpipe);
823 		}
824 	}
825 
826 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
827 		pipeselwakeup(rpipe);
828 
829 	PIPE_UNLOCK(rpipe);
830 	return (error);
831 }
832 
833 #ifndef PIPE_NODIRECT
834 /*
835  * Map the sending processes' buffer into kernel space and wire it.
836  * This is similar to a physical write operation.
837  */
838 static int
839 pipe_build_write_buffer(wpipe, uio)
840 	struct pipe *wpipe;
841 	struct uio *uio;
842 {
843 	u_int size;
844 	int i;
845 
846 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
847 	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
848 		("Clone attempt on non-direct write pipe!"));
849 
850 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
851                 size = wpipe->pipe_buffer.size;
852 	else
853                 size = uio->uio_iov->iov_len;
854 
855 	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
856 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
857 	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
858 		return (EFAULT);
859 
860 /*
861  * set up the control block
862  */
863 	wpipe->pipe_map.npages = i;
864 	wpipe->pipe_map.pos =
865 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
866 	wpipe->pipe_map.cnt = size;
867 
868 /*
869  * and update the uio data
870  */
871 
872 	uio->uio_iov->iov_len -= size;
873 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
874 	if (uio->uio_iov->iov_len == 0)
875 		uio->uio_iov++;
876 	uio->uio_resid -= size;
877 	uio->uio_offset += size;
878 	return (0);
879 }
880 
881 /*
882  * unmap and unwire the process buffer
883  */
884 static void
885 pipe_destroy_write_buffer(wpipe)
886 	struct pipe *wpipe;
887 {
888 
889 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
890 	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
891 	wpipe->pipe_map.npages = 0;
892 }
893 
894 /*
895  * In the case of a signal, the writing process might go away.  This
896  * code copies the data into the circular buffer so that the source
897  * pages can be freed without loss of data.
898  */
899 static void
900 pipe_clone_write_buffer(wpipe)
901 	struct pipe *wpipe;
902 {
903 	struct uio uio;
904 	struct iovec iov;
905 	int size;
906 	int pos;
907 
908 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
909 	size = wpipe->pipe_map.cnt;
910 	pos = wpipe->pipe_map.pos;
911 
912 	wpipe->pipe_buffer.in = size;
913 	wpipe->pipe_buffer.out = 0;
914 	wpipe->pipe_buffer.cnt = size;
915 	wpipe->pipe_state &= ~PIPE_DIRECTW;
916 
917 	PIPE_UNLOCK(wpipe);
918 	iov.iov_base = wpipe->pipe_buffer.buffer;
919 	iov.iov_len = size;
920 	uio.uio_iov = &iov;
921 	uio.uio_iovcnt = 1;
922 	uio.uio_offset = 0;
923 	uio.uio_resid = size;
924 	uio.uio_segflg = UIO_SYSSPACE;
925 	uio.uio_rw = UIO_READ;
926 	uio.uio_td = curthread;
927 	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
928 	PIPE_LOCK(wpipe);
929 	pipe_destroy_write_buffer(wpipe);
930 }
931 
932 /*
933  * This implements the pipe buffer write mechanism.  Note that only
934  * a direct write OR a normal pipe write can be pending at any given time.
935  * If there are any characters in the pipe buffer, the direct write will
936  * be deferred until the receiving process grabs all of the bytes from
937  * the pipe buffer.  Then the direct mapping write is set-up.
938  */
939 static int
940 pipe_direct_write(wpipe, uio)
941 	struct pipe *wpipe;
942 	struct uio *uio;
943 {
944 	int error;
945 
946 retry:
947 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
948 	error = pipelock(wpipe, 1);
949 	if (wpipe->pipe_state & PIPE_EOF)
950 		error = EPIPE;
951 	if (error) {
952 		pipeunlock(wpipe);
953 		goto error1;
954 	}
955 	while (wpipe->pipe_state & PIPE_DIRECTW) {
956 		if (wpipe->pipe_state & PIPE_WANTR) {
957 			wpipe->pipe_state &= ~PIPE_WANTR;
958 			wakeup(wpipe);
959 		}
960 		pipeselwakeup(wpipe);
961 		wpipe->pipe_state |= PIPE_WANTW;
962 		pipeunlock(wpipe);
963 		error = msleep(wpipe, PIPE_MTX(wpipe),
964 		    PRIBIO | PCATCH, "pipdww", 0);
965 		if (error)
966 			goto error1;
967 		else
968 			goto retry;
969 	}
970 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
971 	if (wpipe->pipe_buffer.cnt > 0) {
972 		if (wpipe->pipe_state & PIPE_WANTR) {
973 			wpipe->pipe_state &= ~PIPE_WANTR;
974 			wakeup(wpipe);
975 		}
976 		pipeselwakeup(wpipe);
977 		wpipe->pipe_state |= PIPE_WANTW;
978 		pipeunlock(wpipe);
979 		error = msleep(wpipe, PIPE_MTX(wpipe),
980 		    PRIBIO | PCATCH, "pipdwc", 0);
981 		if (error)
982 			goto error1;
983 		else
984 			goto retry;
985 	}
986 
987 	wpipe->pipe_state |= PIPE_DIRECTW;
988 
989 	PIPE_UNLOCK(wpipe);
990 	error = pipe_build_write_buffer(wpipe, uio);
991 	PIPE_LOCK(wpipe);
992 	if (error) {
993 		wpipe->pipe_state &= ~PIPE_DIRECTW;
994 		pipeunlock(wpipe);
995 		goto error1;
996 	}
997 
998 	error = 0;
999 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
1000 		if (wpipe->pipe_state & PIPE_EOF) {
1001 			pipe_destroy_write_buffer(wpipe);
1002 			pipeselwakeup(wpipe);
1003 			pipeunlock(wpipe);
1004 			error = EPIPE;
1005 			goto error1;
1006 		}
1007 		if (wpipe->pipe_state & PIPE_WANTR) {
1008 			wpipe->pipe_state &= ~PIPE_WANTR;
1009 			wakeup(wpipe);
1010 		}
1011 		pipeselwakeup(wpipe);
1012 		wpipe->pipe_state |= PIPE_WANTW;
1013 		pipeunlock(wpipe);
1014 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1015 		    "pipdwt", 0);
1016 		pipelock(wpipe, 0);
1017 	}
1018 
1019 	if (wpipe->pipe_state & PIPE_EOF)
1020 		error = EPIPE;
1021 	if (wpipe->pipe_state & PIPE_DIRECTW) {
1022 		/*
1023 		 * this bit of trickery substitutes a kernel buffer for
1024 		 * the process that might be going away.
1025 		 */
1026 		pipe_clone_write_buffer(wpipe);
1027 	} else {
1028 		pipe_destroy_write_buffer(wpipe);
1029 	}
1030 	pipeunlock(wpipe);
1031 	return (error);
1032 
1033 error1:
1034 	wakeup(wpipe);
1035 	return (error);
1036 }
1037 #endif
1038 
1039 static int
1040 pipe_write(fp, uio, active_cred, flags, td)
1041 	struct file *fp;
1042 	struct uio *uio;
1043 	struct ucred *active_cred;
1044 	struct thread *td;
1045 	int flags;
1046 {
1047 	int error = 0;
1048 	int desiredsize;
1049 	ssize_t orig_resid;
1050 	struct pipe *wpipe, *rpipe;
1051 
1052 	rpipe = fp->f_data;
1053 	wpipe = PIPE_PEER(rpipe);
1054 	PIPE_LOCK(rpipe);
1055 	error = pipelock(wpipe, 1);
1056 	if (error) {
1057 		PIPE_UNLOCK(rpipe);
1058 		return (error);
1059 	}
1060 	/*
1061 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1062 	 */
1063 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1064 	    (wpipe->pipe_state & PIPE_EOF)) {
1065 		pipeunlock(wpipe);
1066 		PIPE_UNLOCK(rpipe);
1067 		return (EPIPE);
1068 	}
1069 #ifdef MAC
1070 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1071 	if (error) {
1072 		pipeunlock(wpipe);
1073 		PIPE_UNLOCK(rpipe);
1074 		return (error);
1075 	}
1076 #endif
1077 	++wpipe->pipe_busy;
1078 
1079 	/* Choose a larger size if it's advantageous */
1080 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1081 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1082 		if (piperesizeallowed != 1)
1083 			break;
1084 		if (amountpipekva > maxpipekva / 2)
1085 			break;
1086 		if (desiredsize == BIG_PIPE_SIZE)
1087 			break;
1088 		desiredsize = desiredsize * 2;
1089 	}
1090 
1091 	/* Choose a smaller size if we're in a OOM situation */
1092 	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1093 		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1094 		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1095 		(piperesizeallowed == 1))
1096 		desiredsize = SMALL_PIPE_SIZE;
1097 
1098 	/* Resize if the above determined that a new size was necessary */
1099 	if ((desiredsize != wpipe->pipe_buffer.size) &&
1100 		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1101 		PIPE_UNLOCK(wpipe);
1102 		pipespace(wpipe, desiredsize);
1103 		PIPE_LOCK(wpipe);
1104 	}
1105 	if (wpipe->pipe_buffer.size == 0) {
1106 		/*
1107 		 * This can only happen for reverse direction use of pipes
1108 		 * in a complete OOM situation.
1109 		 */
1110 		error = ENOMEM;
1111 		--wpipe->pipe_busy;
1112 		pipeunlock(wpipe);
1113 		PIPE_UNLOCK(wpipe);
1114 		return (error);
1115 	}
1116 
1117 	pipeunlock(wpipe);
1118 
1119 	orig_resid = uio->uio_resid;
1120 
1121 	while (uio->uio_resid) {
1122 		int space;
1123 
1124 		pipelock(wpipe, 0);
1125 		if (wpipe->pipe_state & PIPE_EOF) {
1126 			pipeunlock(wpipe);
1127 			error = EPIPE;
1128 			break;
1129 		}
1130 #ifndef PIPE_NODIRECT
1131 		/*
1132 		 * If the transfer is large, we can gain performance if
1133 		 * we do process-to-process copies directly.
1134 		 * If the write is non-blocking, we don't use the
1135 		 * direct write mechanism.
1136 		 *
1137 		 * The direct write mechanism will detect the reader going
1138 		 * away on us.
1139 		 */
1140 		if (uio->uio_segflg == UIO_USERSPACE &&
1141 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1142 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1143 		    (fp->f_flag & FNONBLOCK) == 0) {
1144 			pipeunlock(wpipe);
1145 			error = pipe_direct_write(wpipe, uio);
1146 			if (error)
1147 				break;
1148 			continue;
1149 		}
1150 #endif
1151 
1152 		/*
1153 		 * Pipe buffered writes cannot be coincidental with
1154 		 * direct writes.  We wait until the currently executing
1155 		 * direct write is completed before we start filling the
1156 		 * pipe buffer.  We break out if a signal occurs or the
1157 		 * reader goes away.
1158 		 */
1159 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1160 			if (wpipe->pipe_state & PIPE_WANTR) {
1161 				wpipe->pipe_state &= ~PIPE_WANTR;
1162 				wakeup(wpipe);
1163 			}
1164 			pipeselwakeup(wpipe);
1165 			wpipe->pipe_state |= PIPE_WANTW;
1166 			pipeunlock(wpipe);
1167 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1168 			    "pipbww", 0);
1169 			if (error)
1170 				break;
1171 			else
1172 				continue;
1173 		}
1174 
1175 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1176 
1177 		/* Writes of size <= PIPE_BUF must be atomic. */
1178 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1179 			space = 0;
1180 
1181 		if (space > 0) {
1182 			int size;	/* Transfer size */
1183 			int segsize;	/* first segment to transfer */
1184 
1185 			/*
1186 			 * Transfer size is minimum of uio transfer
1187 			 * and free space in pipe buffer.
1188 			 */
1189 			if (space > uio->uio_resid)
1190 				size = uio->uio_resid;
1191 			else
1192 				size = space;
1193 			/*
1194 			 * First segment to transfer is minimum of
1195 			 * transfer size and contiguous space in
1196 			 * pipe buffer.  If first segment to transfer
1197 			 * is less than the transfer size, we've got
1198 			 * a wraparound in the buffer.
1199 			 */
1200 			segsize = wpipe->pipe_buffer.size -
1201 				wpipe->pipe_buffer.in;
1202 			if (segsize > size)
1203 				segsize = size;
1204 
1205 			/* Transfer first segment */
1206 
1207 			PIPE_UNLOCK(rpipe);
1208 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1209 					segsize, uio);
1210 			PIPE_LOCK(rpipe);
1211 
1212 			if (error == 0 && segsize < size) {
1213 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1214 					wpipe->pipe_buffer.size,
1215 					("Pipe buffer wraparound disappeared"));
1216 				/*
1217 				 * Transfer remaining part now, to
1218 				 * support atomic writes.  Wraparound
1219 				 * happened.
1220 				 */
1221 
1222 				PIPE_UNLOCK(rpipe);
1223 				error = uiomove(
1224 				    &wpipe->pipe_buffer.buffer[0],
1225 				    size - segsize, uio);
1226 				PIPE_LOCK(rpipe);
1227 			}
1228 			if (error == 0) {
1229 				wpipe->pipe_buffer.in += size;
1230 				if (wpipe->pipe_buffer.in >=
1231 				    wpipe->pipe_buffer.size) {
1232 					KASSERT(wpipe->pipe_buffer.in ==
1233 						size - segsize +
1234 						wpipe->pipe_buffer.size,
1235 						("Expected wraparound bad"));
1236 					wpipe->pipe_buffer.in = size - segsize;
1237 				}
1238 
1239 				wpipe->pipe_buffer.cnt += size;
1240 				KASSERT(wpipe->pipe_buffer.cnt <=
1241 					wpipe->pipe_buffer.size,
1242 					("Pipe buffer overflow"));
1243 			}
1244 			pipeunlock(wpipe);
1245 			if (error != 0)
1246 				break;
1247 		} else {
1248 			/*
1249 			 * If the "read-side" has been blocked, wake it up now.
1250 			 */
1251 			if (wpipe->pipe_state & PIPE_WANTR) {
1252 				wpipe->pipe_state &= ~PIPE_WANTR;
1253 				wakeup(wpipe);
1254 			}
1255 
1256 			/*
1257 			 * don't block on non-blocking I/O
1258 			 */
1259 			if (fp->f_flag & FNONBLOCK) {
1260 				error = EAGAIN;
1261 				pipeunlock(wpipe);
1262 				break;
1263 			}
1264 
1265 			/*
1266 			 * We have no more space and have something to offer,
1267 			 * wake up select/poll.
1268 			 */
1269 			pipeselwakeup(wpipe);
1270 
1271 			wpipe->pipe_state |= PIPE_WANTW;
1272 			pipeunlock(wpipe);
1273 			error = msleep(wpipe, PIPE_MTX(rpipe),
1274 			    PRIBIO | PCATCH, "pipewr", 0);
1275 			if (error != 0)
1276 				break;
1277 		}
1278 	}
1279 
1280 	pipelock(wpipe, 0);
1281 	--wpipe->pipe_busy;
1282 
1283 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1284 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1285 		wakeup(wpipe);
1286 	} else if (wpipe->pipe_buffer.cnt > 0) {
1287 		/*
1288 		 * If we have put any characters in the buffer, we wake up
1289 		 * the reader.
1290 		 */
1291 		if (wpipe->pipe_state & PIPE_WANTR) {
1292 			wpipe->pipe_state &= ~PIPE_WANTR;
1293 			wakeup(wpipe);
1294 		}
1295 	}
1296 
1297 	/*
1298 	 * Don't return EPIPE if any byte was written.
1299 	 * EINTR and other interrupts are handled by generic I/O layer.
1300 	 * Do not pretend that I/O succeeded for obvious user error
1301 	 * like EFAULT.
1302 	 */
1303 	if (uio->uio_resid != orig_resid && error == EPIPE)
1304 		error = 0;
1305 
1306 	if (error == 0)
1307 		vfs_timestamp(&wpipe->pipe_mtime);
1308 
1309 	/*
1310 	 * We have something to offer,
1311 	 * wake up select/poll.
1312 	 */
1313 	if (wpipe->pipe_buffer.cnt)
1314 		pipeselwakeup(wpipe);
1315 
1316 	pipeunlock(wpipe);
1317 	PIPE_UNLOCK(rpipe);
1318 	return (error);
1319 }
1320 
1321 /* ARGSUSED */
1322 static int
1323 pipe_truncate(fp, length, active_cred, td)
1324 	struct file *fp;
1325 	off_t length;
1326 	struct ucred *active_cred;
1327 	struct thread *td;
1328 {
1329 	struct pipe *cpipe;
1330 	int error;
1331 
1332 	cpipe = fp->f_data;
1333 	if (cpipe->pipe_state & PIPE_NAMED)
1334 		error = vnops.fo_truncate(fp, length, active_cred, td);
1335 	else
1336 		error = invfo_truncate(fp, length, active_cred, td);
1337 	return (error);
1338 }
1339 
1340 /*
1341  * we implement a very minimal set of ioctls for compatibility with sockets.
1342  */
1343 static int
1344 pipe_ioctl(fp, cmd, data, active_cred, td)
1345 	struct file *fp;
1346 	u_long cmd;
1347 	void *data;
1348 	struct ucred *active_cred;
1349 	struct thread *td;
1350 {
1351 	struct pipe *mpipe = fp->f_data;
1352 	int error;
1353 
1354 	PIPE_LOCK(mpipe);
1355 
1356 #ifdef MAC
1357 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1358 	if (error) {
1359 		PIPE_UNLOCK(mpipe);
1360 		return (error);
1361 	}
1362 #endif
1363 
1364 	error = 0;
1365 	switch (cmd) {
1366 
1367 	case FIONBIO:
1368 		break;
1369 
1370 	case FIOASYNC:
1371 		if (*(int *)data) {
1372 			mpipe->pipe_state |= PIPE_ASYNC;
1373 		} else {
1374 			mpipe->pipe_state &= ~PIPE_ASYNC;
1375 		}
1376 		break;
1377 
1378 	case FIONREAD:
1379 		if (!(fp->f_flag & FREAD)) {
1380 			*(int *)data = 0;
1381 			PIPE_UNLOCK(mpipe);
1382 			return (0);
1383 		}
1384 		if (mpipe->pipe_state & PIPE_DIRECTW)
1385 			*(int *)data = mpipe->pipe_map.cnt;
1386 		else
1387 			*(int *)data = mpipe->pipe_buffer.cnt;
1388 		break;
1389 
1390 	case FIOSETOWN:
1391 		PIPE_UNLOCK(mpipe);
1392 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1393 		goto out_unlocked;
1394 
1395 	case FIOGETOWN:
1396 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1397 		break;
1398 
1399 	/* This is deprecated, FIOSETOWN should be used instead. */
1400 	case TIOCSPGRP:
1401 		PIPE_UNLOCK(mpipe);
1402 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1403 		goto out_unlocked;
1404 
1405 	/* This is deprecated, FIOGETOWN should be used instead. */
1406 	case TIOCGPGRP:
1407 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1408 		break;
1409 
1410 	default:
1411 		error = ENOTTY;
1412 		break;
1413 	}
1414 	PIPE_UNLOCK(mpipe);
1415 out_unlocked:
1416 	return (error);
1417 }
1418 
1419 static int
1420 pipe_poll(fp, events, active_cred, td)
1421 	struct file *fp;
1422 	int events;
1423 	struct ucred *active_cred;
1424 	struct thread *td;
1425 {
1426 	struct pipe *rpipe;
1427 	struct pipe *wpipe;
1428 	int levents, revents;
1429 #ifdef MAC
1430 	int error;
1431 #endif
1432 
1433 	revents = 0;
1434 	rpipe = fp->f_data;
1435 	wpipe = PIPE_PEER(rpipe);
1436 	PIPE_LOCK(rpipe);
1437 #ifdef MAC
1438 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1439 	if (error)
1440 		goto locked_error;
1441 #endif
1442 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1443 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1444 		    (rpipe->pipe_buffer.cnt > 0))
1445 			revents |= events & (POLLIN | POLLRDNORM);
1446 
1447 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1448 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1449 		    (wpipe->pipe_state & PIPE_EOF) ||
1450 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1451 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1452 			 wpipe->pipe_buffer.size == 0)))
1453 			revents |= events & (POLLOUT | POLLWRNORM);
1454 
1455 	levents = events &
1456 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1457 	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1458 	    fp->f_seqcount == rpipe->pipe_wgen)
1459 		events |= POLLINIGNEOF;
1460 
1461 	if ((events & POLLINIGNEOF) == 0) {
1462 		if (rpipe->pipe_state & PIPE_EOF) {
1463 			revents |= (events & (POLLIN | POLLRDNORM));
1464 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1465 			    (wpipe->pipe_state & PIPE_EOF))
1466 				revents |= POLLHUP;
1467 		}
1468 	}
1469 
1470 	if (revents == 0) {
1471 		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1472 			selrecord(td, &rpipe->pipe_sel);
1473 			if (SEL_WAITING(&rpipe->pipe_sel))
1474 				rpipe->pipe_state |= PIPE_SEL;
1475 		}
1476 
1477 		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1478 			selrecord(td, &wpipe->pipe_sel);
1479 			if (SEL_WAITING(&wpipe->pipe_sel))
1480 				wpipe->pipe_state |= PIPE_SEL;
1481 		}
1482 	}
1483 #ifdef MAC
1484 locked_error:
1485 #endif
1486 	PIPE_UNLOCK(rpipe);
1487 
1488 	return (revents);
1489 }
1490 
1491 /*
1492  * We shouldn't need locks here as we're doing a read and this should
1493  * be a natural race.
1494  */
1495 static int
1496 pipe_stat(fp, ub, active_cred, td)
1497 	struct file *fp;
1498 	struct stat *ub;
1499 	struct ucred *active_cred;
1500 	struct thread *td;
1501 {
1502 	struct pipe *pipe;
1503 	int new_unr;
1504 #ifdef MAC
1505 	int error;
1506 #endif
1507 
1508 	pipe = fp->f_data;
1509 	PIPE_LOCK(pipe);
1510 #ifdef MAC
1511 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1512 	if (error) {
1513 		PIPE_UNLOCK(pipe);
1514 		return (error);
1515 	}
1516 #endif
1517 
1518 	/* For named pipes ask the underlying filesystem. */
1519 	if (pipe->pipe_state & PIPE_NAMED) {
1520 		PIPE_UNLOCK(pipe);
1521 		return (vnops.fo_stat(fp, ub, active_cred, td));
1522 	}
1523 
1524 	/*
1525 	 * Lazily allocate an inode number for the pipe.  Most pipe
1526 	 * users do not call fstat(2) on the pipe, which means that
1527 	 * postponing the inode allocation until it is must be
1528 	 * returned to userland is useful.  If alloc_unr failed,
1529 	 * assign st_ino zero instead of returning an error.
1530 	 * Special pipe_ino values:
1531 	 *  -1 - not yet initialized;
1532 	 *  0  - alloc_unr failed, return 0 as st_ino forever.
1533 	 */
1534 	if (pipe->pipe_ino == (ino_t)-1) {
1535 		new_unr = alloc_unr(pipeino_unr);
1536 		if (new_unr != -1)
1537 			pipe->pipe_ino = new_unr;
1538 		else
1539 			pipe->pipe_ino = 0;
1540 	}
1541 	PIPE_UNLOCK(pipe);
1542 
1543 	bzero(ub, sizeof(*ub));
1544 	ub->st_mode = S_IFIFO;
1545 	ub->st_blksize = PAGE_SIZE;
1546 	if (pipe->pipe_state & PIPE_DIRECTW)
1547 		ub->st_size = pipe->pipe_map.cnt;
1548 	else
1549 		ub->st_size = pipe->pipe_buffer.cnt;
1550 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1551 	ub->st_atim = pipe->pipe_atime;
1552 	ub->st_mtim = pipe->pipe_mtime;
1553 	ub->st_ctim = pipe->pipe_ctime;
1554 	ub->st_uid = fp->f_cred->cr_uid;
1555 	ub->st_gid = fp->f_cred->cr_gid;
1556 	ub->st_dev = pipedev_ino;
1557 	ub->st_ino = pipe->pipe_ino;
1558 	/*
1559 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1560 	 */
1561 	return (0);
1562 }
1563 
1564 /* ARGSUSED */
1565 static int
1566 pipe_close(fp, td)
1567 	struct file *fp;
1568 	struct thread *td;
1569 {
1570 
1571 	if (fp->f_vnode != NULL)
1572 		return vnops.fo_close(fp, td);
1573 	fp->f_ops = &badfileops;
1574 	pipe_dtor(fp->f_data);
1575 	fp->f_data = NULL;
1576 	return (0);
1577 }
1578 
1579 static int
1580 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1581 {
1582 	struct pipe *cpipe;
1583 	int error;
1584 
1585 	cpipe = fp->f_data;
1586 	if (cpipe->pipe_state & PIPE_NAMED)
1587 		error = vn_chmod(fp, mode, active_cred, td);
1588 	else
1589 		error = invfo_chmod(fp, mode, active_cred, td);
1590 	return (error);
1591 }
1592 
1593 static int
1594 pipe_chown(fp, uid, gid, active_cred, td)
1595 	struct file *fp;
1596 	uid_t uid;
1597 	gid_t gid;
1598 	struct ucred *active_cred;
1599 	struct thread *td;
1600 {
1601 	struct pipe *cpipe;
1602 	int error;
1603 
1604 	cpipe = fp->f_data;
1605 	if (cpipe->pipe_state & PIPE_NAMED)
1606 		error = vn_chown(fp, uid, gid, active_cred, td);
1607 	else
1608 		error = invfo_chown(fp, uid, gid, active_cred, td);
1609 	return (error);
1610 }
1611 
1612 static int
1613 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1614 {
1615 	struct pipe *pi;
1616 
1617 	if (fp->f_type == DTYPE_FIFO)
1618 		return (vn_fill_kinfo(fp, kif, fdp));
1619 	kif->kf_type = KF_TYPE_PIPE;
1620 	pi = fp->f_data;
1621 	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1622 	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1623 	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1624 	return (0);
1625 }
1626 
1627 static void
1628 pipe_free_kmem(cpipe)
1629 	struct pipe *cpipe;
1630 {
1631 
1632 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1633 	    ("pipe_free_kmem: pipe mutex locked"));
1634 
1635 	if (cpipe->pipe_buffer.buffer != NULL) {
1636 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1637 		vm_map_remove(pipe_map,
1638 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1639 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1640 		cpipe->pipe_buffer.buffer = NULL;
1641 	}
1642 #ifndef PIPE_NODIRECT
1643 	{
1644 		cpipe->pipe_map.cnt = 0;
1645 		cpipe->pipe_map.pos = 0;
1646 		cpipe->pipe_map.npages = 0;
1647 	}
1648 #endif
1649 }
1650 
1651 /*
1652  * shutdown the pipe
1653  */
1654 static void
1655 pipeclose(cpipe)
1656 	struct pipe *cpipe;
1657 {
1658 	struct pipepair *pp;
1659 	struct pipe *ppipe;
1660 
1661 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1662 
1663 	PIPE_LOCK(cpipe);
1664 	pipelock(cpipe, 0);
1665 	pp = cpipe->pipe_pair;
1666 
1667 	pipeselwakeup(cpipe);
1668 
1669 	/*
1670 	 * If the other side is blocked, wake it up saying that
1671 	 * we want to close it down.
1672 	 */
1673 	cpipe->pipe_state |= PIPE_EOF;
1674 	while (cpipe->pipe_busy) {
1675 		wakeup(cpipe);
1676 		cpipe->pipe_state |= PIPE_WANT;
1677 		pipeunlock(cpipe);
1678 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1679 		pipelock(cpipe, 0);
1680 	}
1681 
1682 
1683 	/*
1684 	 * Disconnect from peer, if any.
1685 	 */
1686 	ppipe = cpipe->pipe_peer;
1687 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1688 		pipeselwakeup(ppipe);
1689 
1690 		ppipe->pipe_state |= PIPE_EOF;
1691 		wakeup(ppipe);
1692 		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1693 	}
1694 
1695 	/*
1696 	 * Mark this endpoint as free.  Release kmem resources.  We
1697 	 * don't mark this endpoint as unused until we've finished
1698 	 * doing that, or the pipe might disappear out from under
1699 	 * us.
1700 	 */
1701 	PIPE_UNLOCK(cpipe);
1702 	pipe_free_kmem(cpipe);
1703 	PIPE_LOCK(cpipe);
1704 	cpipe->pipe_present = PIPE_CLOSING;
1705 	pipeunlock(cpipe);
1706 
1707 	/*
1708 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1709 	 * PIPE_FINALIZED, that allows other end to free the
1710 	 * pipe_pair, only after the knotes are completely dismantled.
1711 	 */
1712 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1713 	cpipe->pipe_present = PIPE_FINALIZED;
1714 	seldrain(&cpipe->pipe_sel);
1715 	knlist_destroy(&cpipe->pipe_sel.si_note);
1716 
1717 	/*
1718 	 * If both endpoints are now closed, release the memory for the
1719 	 * pipe pair.  If not, unlock.
1720 	 */
1721 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1722 		PIPE_UNLOCK(cpipe);
1723 #ifdef MAC
1724 		mac_pipe_destroy(pp);
1725 #endif
1726 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1727 	} else
1728 		PIPE_UNLOCK(cpipe);
1729 }
1730 
1731 /*ARGSUSED*/
1732 static int
1733 pipe_kqfilter(struct file *fp, struct knote *kn)
1734 {
1735 	struct pipe *cpipe;
1736 
1737 	/*
1738 	 * If a filter is requested that is not supported by this file
1739 	 * descriptor, don't return an error, but also don't ever generate an
1740 	 * event.
1741 	 */
1742 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1743 		kn->kn_fop = &pipe_nfiltops;
1744 		return (0);
1745 	}
1746 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1747 		kn->kn_fop = &pipe_nfiltops;
1748 		return (0);
1749 	}
1750 	cpipe = fp->f_data;
1751 	PIPE_LOCK(cpipe);
1752 	switch (kn->kn_filter) {
1753 	case EVFILT_READ:
1754 		kn->kn_fop = &pipe_rfiltops;
1755 		break;
1756 	case EVFILT_WRITE:
1757 		kn->kn_fop = &pipe_wfiltops;
1758 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1759 			/* other end of pipe has been closed */
1760 			PIPE_UNLOCK(cpipe);
1761 			return (EPIPE);
1762 		}
1763 		cpipe = PIPE_PEER(cpipe);
1764 		break;
1765 	default:
1766 		PIPE_UNLOCK(cpipe);
1767 		return (EINVAL);
1768 	}
1769 
1770 	kn->kn_hook = cpipe;
1771 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1772 	PIPE_UNLOCK(cpipe);
1773 	return (0);
1774 }
1775 
1776 static void
1777 filt_pipedetach(struct knote *kn)
1778 {
1779 	struct pipe *cpipe = kn->kn_hook;
1780 
1781 	PIPE_LOCK(cpipe);
1782 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1783 	PIPE_UNLOCK(cpipe);
1784 }
1785 
1786 /*ARGSUSED*/
1787 static int
1788 filt_piperead(struct knote *kn, long hint)
1789 {
1790 	struct pipe *rpipe = kn->kn_hook;
1791 	struct pipe *wpipe = rpipe->pipe_peer;
1792 	int ret;
1793 
1794 	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1795 	kn->kn_data = rpipe->pipe_buffer.cnt;
1796 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1797 		kn->kn_data = rpipe->pipe_map.cnt;
1798 
1799 	if ((rpipe->pipe_state & PIPE_EOF) ||
1800 	    wpipe->pipe_present != PIPE_ACTIVE ||
1801 	    (wpipe->pipe_state & PIPE_EOF)) {
1802 		kn->kn_flags |= EV_EOF;
1803 		return (1);
1804 	}
1805 	ret = kn->kn_data > 0;
1806 	return ret;
1807 }
1808 
1809 /*ARGSUSED*/
1810 static int
1811 filt_pipewrite(struct knote *kn, long hint)
1812 {
1813 	struct pipe *wpipe;
1814 
1815 	wpipe = kn->kn_hook;
1816 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1817 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1818 	    (wpipe->pipe_state & PIPE_EOF)) {
1819 		kn->kn_data = 0;
1820 		kn->kn_flags |= EV_EOF;
1821 		return (1);
1822 	}
1823 	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1824 	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1825 	if (wpipe->pipe_state & PIPE_DIRECTW)
1826 		kn->kn_data = 0;
1827 
1828 	return (kn->kn_data >= PIPE_BUF);
1829 }
1830 
1831 static void
1832 filt_pipedetach_notsup(struct knote *kn)
1833 {
1834 
1835 }
1836 
1837 static int
1838 filt_pipenotsup(struct knote *kn, long hint)
1839 {
1840 
1841 	return (0);
1842 }
1843