xref: /freebsd/sys/kern/sys_pipe.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD$
20  */
21 
22 /*
23  * This file contains a high-performance replacement for the socket-based
24  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
25  * all features of sockets, but does do everything that pipes normally
26  * do.
27  */
28 
29 /*
30  * This code has two modes of operation, a small write mode and a large
31  * write mode.  The small write mode acts like conventional pipes with
32  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
33  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
34  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
35  * the receiving process can copy it directly from the pages in the sending
36  * process.
37  *
38  * If the sending process receives a signal, it is possible that it will
39  * go away, and certainly its address space can change, because control
40  * is returned back to the user-mode side.  In that case, the pipe code
41  * arranges to copy the buffer supplied by the user process, to a pageable
42  * kernel buffer, and the receiving process will grab the data from the
43  * pageable kernel buffer.  Since signals don't happen all that often,
44  * the copy operation is normally eliminated.
45  *
46  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
47  * happen for small transfers so that the system will not spend all of
48  * its time context switching.  PIPE_SIZE is constrained by the
49  * amount of kernel virtual memory.
50  */
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/filedesc.h>
57 #include <sys/filio.h>
58 #include <sys/kernel.h>
59 #include <sys/lock.h>
60 #include <sys/mutex.h>
61 #include <sys/ttycom.h>
62 #include <sys/stat.h>
63 #include <sys/malloc.h>
64 #include <sys/poll.h>
65 #include <sys/selinfo.h>
66 #include <sys/signalvar.h>
67 #include <sys/sysproto.h>
68 #include <sys/pipe.h>
69 #include <sys/proc.h>
70 #include <sys/vnode.h>
71 #include <sys/uio.h>
72 #include <sys/event.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_param.h>
76 #include <vm/vm_object.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_extern.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_page.h>
82 #include <vm/uma.h>
83 
84 /*
85  * Use this define if you want to disable *fancy* VM things.  Expect an
86  * approx 30% decrease in transfer rate.  This could be useful for
87  * NetBSD or OpenBSD.
88  */
89 /* #define PIPE_NODIRECT */
90 
91 /*
92  * interfaces to the outside world
93  */
94 static int pipe_read(struct file *fp, struct uio *uio,
95 		struct ucred *cred, int flags, struct thread *td);
96 static int pipe_write(struct file *fp, struct uio *uio,
97 		struct ucred *cred, int flags, struct thread *td);
98 static int pipe_close(struct file *fp, struct thread *td);
99 static int pipe_poll(struct file *fp, int events, struct ucred *cred,
100 		struct thread *td);
101 static int pipe_kqfilter(struct file *fp, struct knote *kn);
102 static int pipe_stat(struct file *fp, struct stat *sb, struct thread *td);
103 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
104     struct thread *td);
105 
106 static struct fileops pipeops = {
107 	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
108 	pipe_stat, pipe_close
109 };
110 
111 static void	filt_pipedetach(struct knote *kn);
112 static int	filt_piperead(struct knote *kn, long hint);
113 static int	filt_pipewrite(struct knote *kn, long hint);
114 
115 static struct filterops pipe_rfiltops =
116 	{ 1, NULL, filt_pipedetach, filt_piperead };
117 static struct filterops pipe_wfiltops =
118 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
119 
120 #define PIPE_GET_GIANT(pipe)						\
121 	do {								\
122 		KASSERT(((pipe)->pipe_state & PIPE_LOCKFL) != 0,	\
123 		    ("%s:%d PIPE_GET_GIANT: line pipe not locked",	\
124 		     __FILE__, __LINE__));				\
125 		PIPE_UNLOCK(pipe);					\
126 		mtx_lock(&Giant);					\
127 	} while (0)
128 
129 #define PIPE_DROP_GIANT(pipe)						\
130 	do {								\
131 		mtx_unlock(&Giant);					\
132 		PIPE_LOCK(pipe);					\
133 	} while (0)
134 
135 /*
136  * Default pipe buffer size(s), this can be kind-of large now because pipe
137  * space is pageable.  The pipe code will try to maintain locality of
138  * reference for performance reasons, so small amounts of outstanding I/O
139  * will not wipe the cache.
140  */
141 #define MINPIPESIZE (PIPE_SIZE/3)
142 #define MAXPIPESIZE (2*PIPE_SIZE/3)
143 
144 /*
145  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
146  * is there so that on large systems, we don't exhaust it.
147  */
148 #define MAXPIPEKVA (8*1024*1024)
149 
150 /*
151  * Limit for direct transfers, we cannot, of course limit
152  * the amount of kva for pipes in general though.
153  */
154 #define LIMITPIPEKVA (16*1024*1024)
155 
156 /*
157  * Limit the number of "big" pipes
158  */
159 #define LIMITBIGPIPES	32
160 static int nbigpipe;
161 
162 static int amountpipekva;
163 
164 static void pipeinit(void *dummy __unused);
165 static void pipeclose(struct pipe *cpipe);
166 static void pipe_free_kmem(struct pipe *cpipe);
167 static int pipe_create(struct pipe **cpipep);
168 static __inline int pipelock(struct pipe *cpipe, int catch);
169 static __inline void pipeunlock(struct pipe *cpipe);
170 static __inline void pipeselwakeup(struct pipe *cpipe);
171 #ifndef PIPE_NODIRECT
172 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
173 static void pipe_destroy_write_buffer(struct pipe *wpipe);
174 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
175 static void pipe_clone_write_buffer(struct pipe *wpipe);
176 #endif
177 static int pipespace(struct pipe *cpipe, int size);
178 
179 static uma_zone_t pipe_zone;
180 
181 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
182 
183 static void
184 pipeinit(void *dummy __unused)
185 {
186 	pipe_zone = uma_zcreate("PIPE", sizeof(struct pipe), NULL,
187 	    NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
188 }
189 
190 /*
191  * The pipe system call for the DTYPE_PIPE type of pipes
192  */
193 
194 /* ARGSUSED */
195 int
196 pipe(td, uap)
197 	struct thread *td;
198 	struct pipe_args /* {
199 		int	dummy;
200 	} */ *uap;
201 {
202 	struct filedesc *fdp = td->td_proc->p_fd;
203 	struct file *rf, *wf;
204 	struct pipe *rpipe, *wpipe;
205 	struct mtx *pmtx;
206 	int fd, error;
207 
208 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
209 
210 	pmtx = malloc(sizeof(*pmtx), M_TEMP, M_WAITOK | M_ZERO);
211 
212 	rpipe = wpipe = NULL;
213 	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
214 		pipeclose(rpipe);
215 		pipeclose(wpipe);
216 		free(pmtx, M_TEMP);
217 		return (ENFILE);
218 	}
219 
220 	rpipe->pipe_state |= PIPE_DIRECTOK;
221 	wpipe->pipe_state |= PIPE_DIRECTOK;
222 
223 	error = falloc(td, &rf, &fd);
224 	if (error) {
225 		pipeclose(rpipe);
226 		pipeclose(wpipe);
227 		free(pmtx, M_TEMP);
228 		return (error);
229 	}
230 	fhold(rf);
231 	td->td_retval[0] = fd;
232 
233 	/*
234 	 * Warning: once we've gotten past allocation of the fd for the
235 	 * read-side, we can only drop the read side via fdrop() in order
236 	 * to avoid races against processes which manage to dup() the read
237 	 * side while we are blocked trying to allocate the write side.
238 	 */
239 	FILE_LOCK(rf);
240 	rf->f_flag = FREAD | FWRITE;
241 	rf->f_type = DTYPE_PIPE;
242 	rf->f_data = rpipe;
243 	rf->f_ops = &pipeops;
244 	FILE_UNLOCK(rf);
245 	error = falloc(td, &wf, &fd);
246 	if (error) {
247 		FILEDESC_LOCK(fdp);
248 		if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
249 			fdp->fd_ofiles[td->td_retval[0]] = NULL;
250 			FILEDESC_UNLOCK(fdp);
251 			fdrop(rf, td);
252 		} else
253 			FILEDESC_UNLOCK(fdp);
254 		fdrop(rf, td);
255 		/* rpipe has been closed by fdrop(). */
256 		pipeclose(wpipe);
257 		free(pmtx, M_TEMP);
258 		return (error);
259 	}
260 	FILE_LOCK(wf);
261 	wf->f_flag = FREAD | FWRITE;
262 	wf->f_type = DTYPE_PIPE;
263 	wf->f_data = wpipe;
264 	wf->f_ops = &pipeops;
265 	FILE_UNLOCK(wf);
266 	td->td_retval[1] = fd;
267 	rpipe->pipe_peer = wpipe;
268 	wpipe->pipe_peer = rpipe;
269 	mtx_init(pmtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
270 	rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
271 	fdrop(rf, td);
272 
273 	return (0);
274 }
275 
276 /*
277  * Allocate kva for pipe circular buffer, the space is pageable
278  * This routine will 'realloc' the size of a pipe safely, if it fails
279  * it will retain the old buffer.
280  * If it fails it will return ENOMEM.
281  */
282 static int
283 pipespace(cpipe, size)
284 	struct pipe *cpipe;
285 	int size;
286 {
287 	struct vm_object *object;
288 	caddr_t buffer;
289 	int npages, error;
290 
291 	GIANT_REQUIRED;
292 	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
293 	       ("pipespace: pipe mutex locked"));
294 
295 	npages = round_page(size)/PAGE_SIZE;
296 	/*
297 	 * Create an object, I don't like the idea of paging to/from
298 	 * kernel_object.
299 	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
300 	 */
301 	object = vm_object_allocate(OBJT_DEFAULT, npages);
302 	buffer = (caddr_t) vm_map_min(kernel_map);
303 
304 	/*
305 	 * Insert the object into the kernel map, and allocate kva for it.
306 	 * The map entry is, by default, pageable.
307 	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
308 	 */
309 	error = vm_map_find(kernel_map, object, 0,
310 		(vm_offset_t *) &buffer, size, 1,
311 		VM_PROT_ALL, VM_PROT_ALL, 0);
312 
313 	if (error != KERN_SUCCESS) {
314 		vm_object_deallocate(object);
315 		return (ENOMEM);
316 	}
317 
318 	/* free old resources if we're resizing */
319 	pipe_free_kmem(cpipe);
320 	cpipe->pipe_buffer.object = object;
321 	cpipe->pipe_buffer.buffer = buffer;
322 	cpipe->pipe_buffer.size = size;
323 	cpipe->pipe_buffer.in = 0;
324 	cpipe->pipe_buffer.out = 0;
325 	cpipe->pipe_buffer.cnt = 0;
326 	amountpipekva += cpipe->pipe_buffer.size;
327 	return (0);
328 }
329 
330 /*
331  * initialize and allocate VM and memory for pipe
332  */
333 static int
334 pipe_create(cpipep)
335 	struct pipe **cpipep;
336 {
337 	struct pipe *cpipe;
338 	int error;
339 
340 	*cpipep = uma_zalloc(pipe_zone, M_WAITOK);
341 	if (*cpipep == NULL)
342 		return (ENOMEM);
343 
344 	cpipe = *cpipep;
345 
346 	/* so pipespace()->pipe_free_kmem() doesn't follow junk pointer */
347 	cpipe->pipe_buffer.object = NULL;
348 #ifndef PIPE_NODIRECT
349 	cpipe->pipe_map.kva = NULL;
350 #endif
351 	/*
352 	 * protect so pipeclose() doesn't follow a junk pointer
353 	 * if pipespace() fails.
354 	 */
355 	bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel));
356 	cpipe->pipe_state = 0;
357 	cpipe->pipe_peer = NULL;
358 	cpipe->pipe_busy = 0;
359 
360 #ifndef PIPE_NODIRECT
361 	/*
362 	 * pipe data structure initializations to support direct pipe I/O
363 	 */
364 	cpipe->pipe_map.cnt = 0;
365 	cpipe->pipe_map.kva = 0;
366 	cpipe->pipe_map.pos = 0;
367 	cpipe->pipe_map.npages = 0;
368 	/* cpipe->pipe_map.ms[] = invalid */
369 #endif
370 
371 	cpipe->pipe_mtxp = NULL;	/* avoid pipespace assertion */
372 	error = pipespace(cpipe, PIPE_SIZE);
373 	if (error)
374 		return (error);
375 
376 	vfs_timestamp(&cpipe->pipe_ctime);
377 	cpipe->pipe_atime = cpipe->pipe_ctime;
378 	cpipe->pipe_mtime = cpipe->pipe_ctime;
379 
380 	return (0);
381 }
382 
383 
384 /*
385  * lock a pipe for I/O, blocking other access
386  */
387 static __inline int
388 pipelock(cpipe, catch)
389 	struct pipe *cpipe;
390 	int catch;
391 {
392 	int error;
393 
394 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
395 	while (cpipe->pipe_state & PIPE_LOCKFL) {
396 		cpipe->pipe_state |= PIPE_LWANT;
397 		error = msleep(cpipe, PIPE_MTX(cpipe),
398 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
399 		    "pipelk", 0);
400 		if (error != 0)
401 			return (error);
402 	}
403 	cpipe->pipe_state |= PIPE_LOCKFL;
404 	return (0);
405 }
406 
407 /*
408  * unlock a pipe I/O lock
409  */
410 static __inline void
411 pipeunlock(cpipe)
412 	struct pipe *cpipe;
413 {
414 
415 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
416 	cpipe->pipe_state &= ~PIPE_LOCKFL;
417 	if (cpipe->pipe_state & PIPE_LWANT) {
418 		cpipe->pipe_state &= ~PIPE_LWANT;
419 		wakeup(cpipe);
420 	}
421 }
422 
423 static __inline void
424 pipeselwakeup(cpipe)
425 	struct pipe *cpipe;
426 {
427 
428 	if (cpipe->pipe_state & PIPE_SEL) {
429 		cpipe->pipe_state &= ~PIPE_SEL;
430 		selwakeup(&cpipe->pipe_sel);
431 	}
432 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
433 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
434 	KNOTE(&cpipe->pipe_sel.si_note, 0);
435 }
436 
437 /* ARGSUSED */
438 static int
439 pipe_read(fp, uio, cred, flags, td)
440 	struct file *fp;
441 	struct uio *uio;
442 	struct ucred *cred;
443 	struct thread *td;
444 	int flags;
445 {
446 	struct pipe *rpipe = (struct pipe *) fp->f_data;
447 	int error;
448 	int nread = 0;
449 	u_int size;
450 
451 	PIPE_LOCK(rpipe);
452 	++rpipe->pipe_busy;
453 	error = pipelock(rpipe, 1);
454 	if (error)
455 		goto unlocked_error;
456 
457 	while (uio->uio_resid) {
458 		/*
459 		 * normal pipe buffer receive
460 		 */
461 		if (rpipe->pipe_buffer.cnt > 0) {
462 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
463 			if (size > rpipe->pipe_buffer.cnt)
464 				size = rpipe->pipe_buffer.cnt;
465 			if (size > (u_int) uio->uio_resid)
466 				size = (u_int) uio->uio_resid;
467 
468 			PIPE_UNLOCK(rpipe);
469 			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
470 					size, uio);
471 			PIPE_LOCK(rpipe);
472 			if (error)
473 				break;
474 
475 			rpipe->pipe_buffer.out += size;
476 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
477 				rpipe->pipe_buffer.out = 0;
478 
479 			rpipe->pipe_buffer.cnt -= size;
480 
481 			/*
482 			 * If there is no more to read in the pipe, reset
483 			 * its pointers to the beginning.  This improves
484 			 * cache hit stats.
485 			 */
486 			if (rpipe->pipe_buffer.cnt == 0) {
487 				rpipe->pipe_buffer.in = 0;
488 				rpipe->pipe_buffer.out = 0;
489 			}
490 			nread += size;
491 #ifndef PIPE_NODIRECT
492 		/*
493 		 * Direct copy, bypassing a kernel buffer.
494 		 */
495 		} else if ((size = rpipe->pipe_map.cnt) &&
496 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
497 			caddr_t	va;
498 			if (size > (u_int) uio->uio_resid)
499 				size = (u_int) uio->uio_resid;
500 
501 			va = (caddr_t) rpipe->pipe_map.kva +
502 			    rpipe->pipe_map.pos;
503 			PIPE_UNLOCK(rpipe);
504 			error = uiomove(va, size, uio);
505 			PIPE_LOCK(rpipe);
506 			if (error)
507 				break;
508 			nread += size;
509 			rpipe->pipe_map.pos += size;
510 			rpipe->pipe_map.cnt -= size;
511 			if (rpipe->pipe_map.cnt == 0) {
512 				rpipe->pipe_state &= ~PIPE_DIRECTW;
513 				wakeup(rpipe);
514 			}
515 #endif
516 		} else {
517 			/*
518 			 * detect EOF condition
519 			 * read returns 0 on EOF, no need to set error
520 			 */
521 			if (rpipe->pipe_state & PIPE_EOF)
522 				break;
523 
524 			/*
525 			 * If the "write-side" has been blocked, wake it up now.
526 			 */
527 			if (rpipe->pipe_state & PIPE_WANTW) {
528 				rpipe->pipe_state &= ~PIPE_WANTW;
529 				wakeup(rpipe);
530 			}
531 
532 			/*
533 			 * Break if some data was read.
534 			 */
535 			if (nread > 0)
536 				break;
537 
538 			/*
539 			 * Unlock the pipe buffer for our remaining processing.  We
540 			 * will either break out with an error or we will sleep and
541 			 * relock to loop.
542 			 */
543 			pipeunlock(rpipe);
544 
545 			/*
546 			 * Handle non-blocking mode operation or
547 			 * wait for more data.
548 			 */
549 			if (fp->f_flag & FNONBLOCK) {
550 				error = EAGAIN;
551 			} else {
552 				rpipe->pipe_state |= PIPE_WANTR;
553 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
554 				    PRIBIO | PCATCH,
555 				    "piperd", 0)) == 0)
556 					error = pipelock(rpipe, 1);
557 			}
558 			if (error)
559 				goto unlocked_error;
560 		}
561 	}
562 	pipeunlock(rpipe);
563 
564 	/* XXX: should probably do this before getting any locks. */
565 	if (error == 0)
566 		vfs_timestamp(&rpipe->pipe_atime);
567 unlocked_error:
568 	--rpipe->pipe_busy;
569 
570 	/*
571 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
572 	 */
573 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
574 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
575 		wakeup(rpipe);
576 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
577 		/*
578 		 * Handle write blocking hysteresis.
579 		 */
580 		if (rpipe->pipe_state & PIPE_WANTW) {
581 			rpipe->pipe_state &= ~PIPE_WANTW;
582 			wakeup(rpipe);
583 		}
584 	}
585 
586 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
587 		pipeselwakeup(rpipe);
588 
589 	PIPE_UNLOCK(rpipe);
590 	return (error);
591 }
592 
593 #ifndef PIPE_NODIRECT
594 /*
595  * Map the sending processes' buffer into kernel space and wire it.
596  * This is similar to a physical write operation.
597  */
598 static int
599 pipe_build_write_buffer(wpipe, uio)
600 	struct pipe *wpipe;
601 	struct uio *uio;
602 {
603 	u_int size;
604 	int i;
605 	vm_offset_t addr, endaddr, paddr;
606 
607 	GIANT_REQUIRED;
608 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
609 
610 	size = (u_int) uio->uio_iov->iov_len;
611 	if (size > wpipe->pipe_buffer.size)
612 		size = wpipe->pipe_buffer.size;
613 
614 	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
615 	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
616 	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
617 		vm_page_t m;
618 
619 		/*
620 		 * vm_fault_quick() can sleep.  Consequently,
621 		 * vm_page_lock_queue() and vm_page_unlock_queue()
622 		 * should not be performed outside of this loop.
623 		 */
624 		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
625 		    (paddr = pmap_extract(vmspace_pmap(curproc->p_vmspace),
626 		     addr)) == 0) {
627 			int j;
628 
629 			vm_page_lock_queues();
630 			for (j = 0; j < i; j++)
631 				vm_page_unwire(wpipe->pipe_map.ms[j], 1);
632 			vm_page_unlock_queues();
633 			return (EFAULT);
634 		}
635 
636 		m = PHYS_TO_VM_PAGE(paddr);
637 		vm_page_lock_queues();
638 		vm_page_wire(m);
639 		vm_page_unlock_queues();
640 		wpipe->pipe_map.ms[i] = m;
641 	}
642 
643 /*
644  * set up the control block
645  */
646 	wpipe->pipe_map.npages = i;
647 	wpipe->pipe_map.pos =
648 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
649 	wpipe->pipe_map.cnt = size;
650 
651 /*
652  * and map the buffer
653  */
654 	if (wpipe->pipe_map.kva == 0) {
655 		/*
656 		 * We need to allocate space for an extra page because the
657 		 * address range might (will) span pages at times.
658 		 */
659 		wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
660 			wpipe->pipe_buffer.size + PAGE_SIZE);
661 		amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
662 	}
663 	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
664 		wpipe->pipe_map.npages);
665 
666 /*
667  * and update the uio data
668  */
669 
670 	uio->uio_iov->iov_len -= size;
671 	uio->uio_iov->iov_base += size;
672 	if (uio->uio_iov->iov_len == 0)
673 		uio->uio_iov++;
674 	uio->uio_resid -= size;
675 	uio->uio_offset += size;
676 	return (0);
677 }
678 
679 /*
680  * unmap and unwire the process buffer
681  */
682 static void
683 pipe_destroy_write_buffer(wpipe)
684 	struct pipe *wpipe;
685 {
686 	int i;
687 
688 	GIANT_REQUIRED;
689 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
690 
691 	if (wpipe->pipe_map.kva) {
692 		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
693 
694 		if (amountpipekva > MAXPIPEKVA) {
695 			vm_offset_t kva = wpipe->pipe_map.kva;
696 			wpipe->pipe_map.kva = 0;
697 			kmem_free(kernel_map, kva,
698 				wpipe->pipe_buffer.size + PAGE_SIZE);
699 			amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
700 		}
701 	}
702 	vm_page_lock_queues();
703 	for (i = 0; i < wpipe->pipe_map.npages; i++)
704 		vm_page_unwire(wpipe->pipe_map.ms[i], 1);
705 	vm_page_unlock_queues();
706 	wpipe->pipe_map.npages = 0;
707 }
708 
709 /*
710  * In the case of a signal, the writing process might go away.  This
711  * code copies the data into the circular buffer so that the source
712  * pages can be freed without loss of data.
713  */
714 static void
715 pipe_clone_write_buffer(wpipe)
716 	struct pipe *wpipe;
717 {
718 	int size;
719 	int pos;
720 
721 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
722 	size = wpipe->pipe_map.cnt;
723 	pos = wpipe->pipe_map.pos;
724 
725 	wpipe->pipe_buffer.in = size;
726 	wpipe->pipe_buffer.out = 0;
727 	wpipe->pipe_buffer.cnt = size;
728 	wpipe->pipe_state &= ~PIPE_DIRECTW;
729 
730 	PIPE_GET_GIANT(wpipe);
731 	bcopy((caddr_t) wpipe->pipe_map.kva + pos,
732 	    wpipe->pipe_buffer.buffer, size);
733 	pipe_destroy_write_buffer(wpipe);
734 	PIPE_DROP_GIANT(wpipe);
735 }
736 
737 /*
738  * This implements the pipe buffer write mechanism.  Note that only
739  * a direct write OR a normal pipe write can be pending at any given time.
740  * If there are any characters in the pipe buffer, the direct write will
741  * be deferred until the receiving process grabs all of the bytes from
742  * the pipe buffer.  Then the direct mapping write is set-up.
743  */
744 static int
745 pipe_direct_write(wpipe, uio)
746 	struct pipe *wpipe;
747 	struct uio *uio;
748 {
749 	int error;
750 
751 retry:
752 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
753 	while (wpipe->pipe_state & PIPE_DIRECTW) {
754 		if (wpipe->pipe_state & PIPE_WANTR) {
755 			wpipe->pipe_state &= ~PIPE_WANTR;
756 			wakeup(wpipe);
757 		}
758 		wpipe->pipe_state |= PIPE_WANTW;
759 		error = msleep(wpipe, PIPE_MTX(wpipe),
760 		    PRIBIO | PCATCH, "pipdww", 0);
761 		if (error)
762 			goto error1;
763 		if (wpipe->pipe_state & PIPE_EOF) {
764 			error = EPIPE;
765 			goto error1;
766 		}
767 	}
768 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
769 	if (wpipe->pipe_buffer.cnt > 0) {
770 		if (wpipe->pipe_state & PIPE_WANTR) {
771 			wpipe->pipe_state &= ~PIPE_WANTR;
772 			wakeup(wpipe);
773 		}
774 
775 		wpipe->pipe_state |= PIPE_WANTW;
776 		error = msleep(wpipe, PIPE_MTX(wpipe),
777 		    PRIBIO | PCATCH, "pipdwc", 0);
778 		if (error)
779 			goto error1;
780 		if (wpipe->pipe_state & PIPE_EOF) {
781 			error = EPIPE;
782 			goto error1;
783 		}
784 		goto retry;
785 	}
786 
787 	wpipe->pipe_state |= PIPE_DIRECTW;
788 
789 	pipelock(wpipe, 0);
790 	PIPE_GET_GIANT(wpipe);
791 	error = pipe_build_write_buffer(wpipe, uio);
792 	PIPE_DROP_GIANT(wpipe);
793 	pipeunlock(wpipe);
794 	if (error) {
795 		wpipe->pipe_state &= ~PIPE_DIRECTW;
796 		goto error1;
797 	}
798 
799 	error = 0;
800 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
801 		if (wpipe->pipe_state & PIPE_EOF) {
802 			pipelock(wpipe, 0);
803 			PIPE_GET_GIANT(wpipe);
804 			pipe_destroy_write_buffer(wpipe);
805 			PIPE_DROP_GIANT(wpipe);
806 			pipeunlock(wpipe);
807 			pipeselwakeup(wpipe);
808 			error = EPIPE;
809 			goto error1;
810 		}
811 		if (wpipe->pipe_state & PIPE_WANTR) {
812 			wpipe->pipe_state &= ~PIPE_WANTR;
813 			wakeup(wpipe);
814 		}
815 		pipeselwakeup(wpipe);
816 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
817 		    "pipdwt", 0);
818 	}
819 
820 	pipelock(wpipe,0);
821 	if (wpipe->pipe_state & PIPE_DIRECTW) {
822 		/*
823 		 * this bit of trickery substitutes a kernel buffer for
824 		 * the process that might be going away.
825 		 */
826 		pipe_clone_write_buffer(wpipe);
827 	} else {
828 		PIPE_GET_GIANT(wpipe);
829 		pipe_destroy_write_buffer(wpipe);
830 		PIPE_DROP_GIANT(wpipe);
831 	}
832 	pipeunlock(wpipe);
833 	return (error);
834 
835 error1:
836 	wakeup(wpipe);
837 	return (error);
838 }
839 #endif
840 
841 static int
842 pipe_write(fp, uio, cred, flags, td)
843 	struct file *fp;
844 	struct uio *uio;
845 	struct ucred *cred;
846 	struct thread *td;
847 	int flags;
848 {
849 	int error = 0;
850 	int orig_resid;
851 	struct pipe *wpipe, *rpipe;
852 
853 	rpipe = (struct pipe *) fp->f_data;
854 	wpipe = rpipe->pipe_peer;
855 
856 	PIPE_LOCK(rpipe);
857 	/*
858 	 * detect loss of pipe read side, issue SIGPIPE if lost.
859 	 */
860 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
861 		PIPE_UNLOCK(rpipe);
862 		return (EPIPE);
863 	}
864 	++wpipe->pipe_busy;
865 
866 	/*
867 	 * If it is advantageous to resize the pipe buffer, do
868 	 * so.
869 	 */
870 	if ((uio->uio_resid > PIPE_SIZE) &&
871 		(nbigpipe < LIMITBIGPIPES) &&
872 		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
873 		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
874 		(wpipe->pipe_buffer.cnt == 0)) {
875 
876 		if ((error = pipelock(wpipe,1)) == 0) {
877 			PIPE_GET_GIANT(wpipe);
878 			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
879 				nbigpipe++;
880 			PIPE_DROP_GIANT(wpipe);
881 			pipeunlock(wpipe);
882 		}
883 	}
884 
885 	/*
886 	 * If an early error occured unbusy and return, waking up any pending
887 	 * readers.
888 	 */
889 	if (error) {
890 		--wpipe->pipe_busy;
891 		if ((wpipe->pipe_busy == 0) &&
892 		    (wpipe->pipe_state & PIPE_WANT)) {
893 			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
894 			wakeup(wpipe);
895 		}
896 		PIPE_UNLOCK(rpipe);
897 		return(error);
898 	}
899 
900 	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
901 
902 	orig_resid = uio->uio_resid;
903 
904 	while (uio->uio_resid) {
905 		int space;
906 
907 #ifndef PIPE_NODIRECT
908 		/*
909 		 * If the transfer is large, we can gain performance if
910 		 * we do process-to-process copies directly.
911 		 * If the write is non-blocking, we don't use the
912 		 * direct write mechanism.
913 		 *
914 		 * The direct write mechanism will detect the reader going
915 		 * away on us.
916 		 */
917 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
918 		    (fp->f_flag & FNONBLOCK) == 0 &&
919 			(wpipe->pipe_map.kva || (amountpipekva < LIMITPIPEKVA)) &&
920 			(uio->uio_iov->iov_len >= PIPE_MINDIRECT)) {
921 			error = pipe_direct_write( wpipe, uio);
922 			if (error)
923 				break;
924 			continue;
925 		}
926 #endif
927 
928 		/*
929 		 * Pipe buffered writes cannot be coincidental with
930 		 * direct writes.  We wait until the currently executing
931 		 * direct write is completed before we start filling the
932 		 * pipe buffer.  We break out if a signal occurs or the
933 		 * reader goes away.
934 		 */
935 	retrywrite:
936 		while (wpipe->pipe_state & PIPE_DIRECTW) {
937 			if (wpipe->pipe_state & PIPE_WANTR) {
938 				wpipe->pipe_state &= ~PIPE_WANTR;
939 				wakeup(wpipe);
940 			}
941 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
942 			    "pipbww", 0);
943 			if (wpipe->pipe_state & PIPE_EOF)
944 				break;
945 			if (error)
946 				break;
947 		}
948 		if (wpipe->pipe_state & PIPE_EOF) {
949 			error = EPIPE;
950 			break;
951 		}
952 
953 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
954 
955 		/* Writes of size <= PIPE_BUF must be atomic. */
956 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
957 			space = 0;
958 
959 		if (space > 0 && (wpipe->pipe_buffer.cnt < PIPE_SIZE)) {
960 			if ((error = pipelock(wpipe,1)) == 0) {
961 				int size;	/* Transfer size */
962 				int segsize;	/* first segment to transfer */
963 
964 				/*
965 				 * It is possible for a direct write to
966 				 * slip in on us... handle it here...
967 				 */
968 				if (wpipe->pipe_state & PIPE_DIRECTW) {
969 					pipeunlock(wpipe);
970 					goto retrywrite;
971 				}
972 				/*
973 				 * If a process blocked in uiomove, our
974 				 * value for space might be bad.
975 				 *
976 				 * XXX will we be ok if the reader has gone
977 				 * away here?
978 				 */
979 				if (space > wpipe->pipe_buffer.size -
980 				    wpipe->pipe_buffer.cnt) {
981 					pipeunlock(wpipe);
982 					goto retrywrite;
983 				}
984 
985 				/*
986 				 * Transfer size is minimum of uio transfer
987 				 * and free space in pipe buffer.
988 				 */
989 				if (space > uio->uio_resid)
990 					size = uio->uio_resid;
991 				else
992 					size = space;
993 				/*
994 				 * First segment to transfer is minimum of
995 				 * transfer size and contiguous space in
996 				 * pipe buffer.  If first segment to transfer
997 				 * is less than the transfer size, we've got
998 				 * a wraparound in the buffer.
999 				 */
1000 				segsize = wpipe->pipe_buffer.size -
1001 					wpipe->pipe_buffer.in;
1002 				if (segsize > size)
1003 					segsize = size;
1004 
1005 				/* Transfer first segment */
1006 
1007 				PIPE_UNLOCK(rpipe);
1008 				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1009 						segsize, uio);
1010 				PIPE_LOCK(rpipe);
1011 
1012 				if (error == 0 && segsize < size) {
1013 					/*
1014 					 * Transfer remaining part now, to
1015 					 * support atomic writes.  Wraparound
1016 					 * happened.
1017 					 */
1018 					if (wpipe->pipe_buffer.in + segsize !=
1019 					    wpipe->pipe_buffer.size)
1020 						panic("Expected pipe buffer wraparound disappeared");
1021 
1022 					PIPE_UNLOCK(rpipe);
1023 					error = uiomove(&wpipe->pipe_buffer.buffer[0],
1024 							size - segsize, uio);
1025 					PIPE_LOCK(rpipe);
1026 				}
1027 				if (error == 0) {
1028 					wpipe->pipe_buffer.in += size;
1029 					if (wpipe->pipe_buffer.in >=
1030 					    wpipe->pipe_buffer.size) {
1031 						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1032 							panic("Expected wraparound bad");
1033 						wpipe->pipe_buffer.in = size - segsize;
1034 					}
1035 
1036 					wpipe->pipe_buffer.cnt += size;
1037 					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1038 						panic("Pipe buffer overflow");
1039 
1040 				}
1041 				pipeunlock(wpipe);
1042 			}
1043 			if (error)
1044 				break;
1045 
1046 		} else {
1047 			/*
1048 			 * If the "read-side" has been blocked, wake it up now.
1049 			 */
1050 			if (wpipe->pipe_state & PIPE_WANTR) {
1051 				wpipe->pipe_state &= ~PIPE_WANTR;
1052 				wakeup(wpipe);
1053 			}
1054 
1055 			/*
1056 			 * don't block on non-blocking I/O
1057 			 */
1058 			if (fp->f_flag & FNONBLOCK) {
1059 				error = EAGAIN;
1060 				break;
1061 			}
1062 
1063 			/*
1064 			 * We have no more space and have something to offer,
1065 			 * wake up select/poll.
1066 			 */
1067 			pipeselwakeup(wpipe);
1068 
1069 			wpipe->pipe_state |= PIPE_WANTW;
1070 			error = msleep(wpipe, PIPE_MTX(rpipe),
1071 			    PRIBIO | PCATCH, "pipewr", 0);
1072 			if (error != 0)
1073 				break;
1074 			/*
1075 			 * If read side wants to go away, we just issue a signal
1076 			 * to ourselves.
1077 			 */
1078 			if (wpipe->pipe_state & PIPE_EOF) {
1079 				error = EPIPE;
1080 				break;
1081 			}
1082 		}
1083 	}
1084 
1085 	--wpipe->pipe_busy;
1086 
1087 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1088 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1089 		wakeup(wpipe);
1090 	} else if (wpipe->pipe_buffer.cnt > 0) {
1091 		/*
1092 		 * If we have put any characters in the buffer, we wake up
1093 		 * the reader.
1094 		 */
1095 		if (wpipe->pipe_state & PIPE_WANTR) {
1096 			wpipe->pipe_state &= ~PIPE_WANTR;
1097 			wakeup(wpipe);
1098 		}
1099 	}
1100 
1101 	/*
1102 	 * Don't return EPIPE if I/O was successful
1103 	 */
1104 	if ((wpipe->pipe_buffer.cnt == 0) &&
1105 	    (uio->uio_resid == 0) &&
1106 	    (error == EPIPE)) {
1107 		error = 0;
1108 	}
1109 
1110 	if (error == 0)
1111 		vfs_timestamp(&wpipe->pipe_mtime);
1112 
1113 	/*
1114 	 * We have something to offer,
1115 	 * wake up select/poll.
1116 	 */
1117 	if (wpipe->pipe_buffer.cnt)
1118 		pipeselwakeup(wpipe);
1119 
1120 	PIPE_UNLOCK(rpipe);
1121 	return (error);
1122 }
1123 
1124 /*
1125  * we implement a very minimal set of ioctls for compatibility with sockets.
1126  */
1127 int
1128 pipe_ioctl(fp, cmd, data, td)
1129 	struct file *fp;
1130 	u_long cmd;
1131 	void *data;
1132 	struct thread *td;
1133 {
1134 	struct pipe *mpipe = (struct pipe *)fp->f_data;
1135 
1136 	switch (cmd) {
1137 
1138 	case FIONBIO:
1139 		return (0);
1140 
1141 	case FIOASYNC:
1142 		PIPE_LOCK(mpipe);
1143 		if (*(int *)data) {
1144 			mpipe->pipe_state |= PIPE_ASYNC;
1145 		} else {
1146 			mpipe->pipe_state &= ~PIPE_ASYNC;
1147 		}
1148 		PIPE_UNLOCK(mpipe);
1149 		return (0);
1150 
1151 	case FIONREAD:
1152 		PIPE_LOCK(mpipe);
1153 		if (mpipe->pipe_state & PIPE_DIRECTW)
1154 			*(int *)data = mpipe->pipe_map.cnt;
1155 		else
1156 			*(int *)data = mpipe->pipe_buffer.cnt;
1157 		PIPE_UNLOCK(mpipe);
1158 		return (0);
1159 
1160 	case FIOSETOWN:
1161 		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1162 
1163 	case FIOGETOWN:
1164 		*(int *)data = fgetown(mpipe->pipe_sigio);
1165 		return (0);
1166 
1167 	/* This is deprecated, FIOSETOWN should be used instead. */
1168 	case TIOCSPGRP:
1169 		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1170 
1171 	/* This is deprecated, FIOGETOWN should be used instead. */
1172 	case TIOCGPGRP:
1173 		*(int *)data = -fgetown(mpipe->pipe_sigio);
1174 		return (0);
1175 
1176 	}
1177 	return (ENOTTY);
1178 }
1179 
1180 int
1181 pipe_poll(fp, events, cred, td)
1182 	struct file *fp;
1183 	int events;
1184 	struct ucred *cred;
1185 	struct thread *td;
1186 {
1187 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1188 	struct pipe *wpipe;
1189 	int revents = 0;
1190 
1191 	wpipe = rpipe->pipe_peer;
1192 	PIPE_LOCK(rpipe);
1193 	if (events & (POLLIN | POLLRDNORM))
1194 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1195 		    (rpipe->pipe_buffer.cnt > 0) ||
1196 		    (rpipe->pipe_state & PIPE_EOF))
1197 			revents |= events & (POLLIN | POLLRDNORM);
1198 
1199 	if (events & (POLLOUT | POLLWRNORM))
1200 		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1201 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1202 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1203 			revents |= events & (POLLOUT | POLLWRNORM);
1204 
1205 	if ((rpipe->pipe_state & PIPE_EOF) ||
1206 	    (wpipe == NULL) ||
1207 	    (wpipe->pipe_state & PIPE_EOF))
1208 		revents |= POLLHUP;
1209 
1210 	if (revents == 0) {
1211 		if (events & (POLLIN | POLLRDNORM)) {
1212 			selrecord(td, &rpipe->pipe_sel);
1213 			rpipe->pipe_state |= PIPE_SEL;
1214 		}
1215 
1216 		if (events & (POLLOUT | POLLWRNORM)) {
1217 			selrecord(td, &wpipe->pipe_sel);
1218 			wpipe->pipe_state |= PIPE_SEL;
1219 		}
1220 	}
1221 	PIPE_UNLOCK(rpipe);
1222 
1223 	return (revents);
1224 }
1225 
1226 /*
1227  * We shouldn't need locks here as we're doing a read and this should
1228  * be a natural race.
1229  */
1230 static int
1231 pipe_stat(fp, ub, td)
1232 	struct file *fp;
1233 	struct stat *ub;
1234 	struct thread *td;
1235 {
1236 	struct pipe *pipe = (struct pipe *)fp->f_data;
1237 
1238 	bzero(ub, sizeof(*ub));
1239 	ub->st_mode = S_IFIFO;
1240 	ub->st_blksize = pipe->pipe_buffer.size;
1241 	ub->st_size = pipe->pipe_buffer.cnt;
1242 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1243 	ub->st_atimespec = pipe->pipe_atime;
1244 	ub->st_mtimespec = pipe->pipe_mtime;
1245 	ub->st_ctimespec = pipe->pipe_ctime;
1246 	ub->st_uid = fp->f_cred->cr_uid;
1247 	ub->st_gid = fp->f_cred->cr_gid;
1248 	/*
1249 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1250 	 * XXX (st_dev, st_ino) should be unique.
1251 	 */
1252 	return (0);
1253 }
1254 
1255 /* ARGSUSED */
1256 static int
1257 pipe_close(fp, td)
1258 	struct file *fp;
1259 	struct thread *td;
1260 {
1261 	struct pipe *cpipe = (struct pipe *)fp->f_data;
1262 
1263 	fp->f_ops = &badfileops;
1264 	fp->f_data = NULL;
1265 	funsetown(&cpipe->pipe_sigio);
1266 	pipeclose(cpipe);
1267 	return (0);
1268 }
1269 
1270 static void
1271 pipe_free_kmem(cpipe)
1272 	struct pipe *cpipe;
1273 {
1274 
1275 	GIANT_REQUIRED;
1276 	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
1277 	       ("pipespace: pipe mutex locked"));
1278 
1279 	if (cpipe->pipe_buffer.buffer != NULL) {
1280 		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1281 			--nbigpipe;
1282 		amountpipekva -= cpipe->pipe_buffer.size;
1283 		kmem_free(kernel_map,
1284 			(vm_offset_t)cpipe->pipe_buffer.buffer,
1285 			cpipe->pipe_buffer.size);
1286 		cpipe->pipe_buffer.buffer = NULL;
1287 	}
1288 #ifndef PIPE_NODIRECT
1289 	if (cpipe->pipe_map.kva != NULL) {
1290 		amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
1291 		kmem_free(kernel_map,
1292 			cpipe->pipe_map.kva,
1293 			cpipe->pipe_buffer.size + PAGE_SIZE);
1294 		cpipe->pipe_map.cnt = 0;
1295 		cpipe->pipe_map.kva = 0;
1296 		cpipe->pipe_map.pos = 0;
1297 		cpipe->pipe_map.npages = 0;
1298 	}
1299 #endif
1300 }
1301 
1302 /*
1303  * shutdown the pipe
1304  */
1305 static void
1306 pipeclose(cpipe)
1307 	struct pipe *cpipe;
1308 {
1309 	struct pipe *ppipe;
1310 	int hadpeer;
1311 
1312 	if (cpipe == NULL)
1313 		return;
1314 
1315 	hadpeer = 0;
1316 
1317 	/* partially created pipes won't have a valid mutex. */
1318 	if (PIPE_MTX(cpipe) != NULL)
1319 		PIPE_LOCK(cpipe);
1320 
1321 	pipeselwakeup(cpipe);
1322 
1323 	/*
1324 	 * If the other side is blocked, wake it up saying that
1325 	 * we want to close it down.
1326 	 */
1327 	while (cpipe->pipe_busy) {
1328 		wakeup(cpipe);
1329 		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1330 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1331 	}
1332 
1333 	/*
1334 	 * Disconnect from peer
1335 	 */
1336 	if ((ppipe = cpipe->pipe_peer) != NULL) {
1337 		hadpeer++;
1338 		pipeselwakeup(ppipe);
1339 
1340 		ppipe->pipe_state |= PIPE_EOF;
1341 		wakeup(ppipe);
1342 		KNOTE(&ppipe->pipe_sel.si_note, 0);
1343 		ppipe->pipe_peer = NULL;
1344 	}
1345 	/*
1346 	 * free resources
1347 	 */
1348 	if (PIPE_MTX(cpipe) != NULL) {
1349 		PIPE_UNLOCK(cpipe);
1350 		if (!hadpeer) {
1351 			mtx_destroy(PIPE_MTX(cpipe));
1352 			free(PIPE_MTX(cpipe), M_TEMP);
1353 		}
1354 	}
1355 	mtx_lock(&Giant);
1356 	pipe_free_kmem(cpipe);
1357 	uma_zfree(pipe_zone, cpipe);
1358 	mtx_unlock(&Giant);
1359 }
1360 
1361 /*ARGSUSED*/
1362 static int
1363 pipe_kqfilter(struct file *fp, struct knote *kn)
1364 {
1365 	struct pipe *cpipe;
1366 
1367 	cpipe = (struct pipe *)kn->kn_fp->f_data;
1368 	switch (kn->kn_filter) {
1369 	case EVFILT_READ:
1370 		kn->kn_fop = &pipe_rfiltops;
1371 		break;
1372 	case EVFILT_WRITE:
1373 		kn->kn_fop = &pipe_wfiltops;
1374 		cpipe = cpipe->pipe_peer;
1375 		break;
1376 	default:
1377 		return (1);
1378 	}
1379 	kn->kn_hook = cpipe;
1380 
1381 	PIPE_LOCK(cpipe);
1382 	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1383 	PIPE_UNLOCK(cpipe);
1384 	return (0);
1385 }
1386 
1387 static void
1388 filt_pipedetach(struct knote *kn)
1389 {
1390 	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1391 
1392 	PIPE_LOCK(cpipe);
1393 	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1394 	PIPE_UNLOCK(cpipe);
1395 }
1396 
1397 /*ARGSUSED*/
1398 static int
1399 filt_piperead(struct knote *kn, long hint)
1400 {
1401 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1402 	struct pipe *wpipe = rpipe->pipe_peer;
1403 
1404 	PIPE_LOCK(rpipe);
1405 	kn->kn_data = rpipe->pipe_buffer.cnt;
1406 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1407 		kn->kn_data = rpipe->pipe_map.cnt;
1408 
1409 	if ((rpipe->pipe_state & PIPE_EOF) ||
1410 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1411 		kn->kn_flags |= EV_EOF;
1412 		PIPE_UNLOCK(rpipe);
1413 		return (1);
1414 	}
1415 	PIPE_UNLOCK(rpipe);
1416 	return (kn->kn_data > 0);
1417 }
1418 
1419 /*ARGSUSED*/
1420 static int
1421 filt_pipewrite(struct knote *kn, long hint)
1422 {
1423 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1424 	struct pipe *wpipe = rpipe->pipe_peer;
1425 
1426 	PIPE_LOCK(rpipe);
1427 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1428 		kn->kn_data = 0;
1429 		kn->kn_flags |= EV_EOF;
1430 		PIPE_UNLOCK(rpipe);
1431 		return (1);
1432 	}
1433 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1434 	if (wpipe->pipe_state & PIPE_DIRECTW)
1435 		kn->kn_data = 0;
1436 
1437 	PIPE_UNLOCK(rpipe);
1438 	return (kn->kn_data >= PIPE_BUF);
1439 }
1440