xref: /freebsd/sys/kern/sys_pipe.c (revision aebc96831f152a9da5f2c919103d571e80d3fade)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1996 John S. Dyson
5  * Copyright (c) 2012 Giovanni Trematerra
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Absolutely no warranty of function or purpose is made by the author
18  *    John S. Dyson.
19  * 4. Modifications may be freely made to this file if the above conditions
20  *    are met.
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, the sending process pins the underlying pages in
36  * memory, and the receiving process copies directly from these pinned pages
37  * in the sending process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.
50  *
51  * In order to limit the resource use of pipes, two sysctls exist:
52  *
53  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54  * address space available to us in pipe_map. This value is normally
55  * autotuned, but may also be loader tuned.
56  *
57  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58  * memory in use by pipes.
59  *
60  * Based on how large pipekva is relative to maxpipekva, the following
61  * will happen:
62  *
63  * 0% - 50%:
64  *     New pipes are given 16K of memory backing, pipes may dynamically
65  *     grow to as large as 64K where needed.
66  * 50% - 75%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes may NOT grow.
69  * 75% - 100%:
70  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
71  *     existing pipes will be shrunk down to 4K whenever possible.
72  *
73  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
74  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75  * resize which MUST occur for reverse-direction pipes when they are
76  * first used.
77  *
78  * Additional information about the current state of pipes may be obtained
79  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80  * and kern.ipc.piperesizefail.
81  *
82  * Locking rules:  There are two locks present here:  A mutex, used via
83  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
84  * the flag, as mutexes can not persist over uiomove.  The mutex
85  * exists only to guard access to the flag, and is not in itself a
86  * locking mechanism.  Also note that there is only a single mutex for
87  * both directions of a pipe.
88  *
89  * As pipelock() may have to sleep before it can acquire the flag, it
90  * is important to reread all data after a call to pipelock(); everything
91  * in the structure may have changed.
92  */
93 
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD$");
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122 
123 #include <security/mac/mac_framework.h>
124 
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134 
135 /*
136  * Use this define if you want to disable *fancy* VM things.  Expect an
137  * approx 30% decrease in transfer rate.  This could be useful for
138  * NetBSD or OpenBSD.
139  */
140 /* #define PIPE_NODIRECT */
141 
142 #define PIPE_PEER(pipe)	\
143 	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144 
145 /*
146  * interfaces to the outside world
147  */
148 static fo_rdwr_t	pipe_read;
149 static fo_rdwr_t	pipe_write;
150 static fo_truncate_t	pipe_truncate;
151 static fo_ioctl_t	pipe_ioctl;
152 static fo_poll_t	pipe_poll;
153 static fo_kqfilter_t	pipe_kqfilter;
154 static fo_stat_t	pipe_stat;
155 static fo_close_t	pipe_close;
156 static fo_chmod_t	pipe_chmod;
157 static fo_chown_t	pipe_chown;
158 static fo_fill_kinfo_t	pipe_fill_kinfo;
159 
160 struct fileops pipeops = {
161 	.fo_read = pipe_read,
162 	.fo_write = pipe_write,
163 	.fo_truncate = pipe_truncate,
164 	.fo_ioctl = pipe_ioctl,
165 	.fo_poll = pipe_poll,
166 	.fo_kqfilter = pipe_kqfilter,
167 	.fo_stat = pipe_stat,
168 	.fo_close = pipe_close,
169 	.fo_chmod = pipe_chmod,
170 	.fo_chown = pipe_chown,
171 	.fo_sendfile = invfo_sendfile,
172 	.fo_fill_kinfo = pipe_fill_kinfo,
173 	.fo_flags = DFLAG_PASSABLE
174 };
175 
176 static void	filt_pipedetach(struct knote *kn);
177 static void	filt_pipedetach_notsup(struct knote *kn);
178 static int	filt_pipenotsup(struct knote *kn, long hint);
179 static int	filt_piperead(struct knote *kn, long hint);
180 static int	filt_pipewrite(struct knote *kn, long hint);
181 
182 static struct filterops pipe_nfiltops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_pipedetach_notsup,
185 	.f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_pipedetach,
190 	.f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_pipedetach,
195 	.f_event = filt_pipewrite
196 };
197 
198 /*
199  * Default pipe buffer size(s), this can be kind-of large now because pipe
200  * space is pageable.  The pipe code will try to maintain locality of
201  * reference for performance reasons, so small amounts of outstanding I/O
202  * will not wipe the cache.
203  */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206 
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212 
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 	   &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216 	   &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220 	  &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222 	  &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224 	  &piperesizeallowed, 0, "Pipe resizing allowed");
225 
226 static void pipeinit(void *dummy __unused);
227 static void pipeclose(struct pipe *cpipe);
228 static void pipe_free_kmem(struct pipe *cpipe);
229 static int pipe_create(struct pipe *pipe, bool backing);
230 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231 static __inline int pipelock(struct pipe *cpipe, int catch);
232 static __inline void pipeunlock(struct pipe *cpipe);
233 static void pipe_timestamp(struct timespec *tsp);
234 #ifndef PIPE_NODIRECT
235 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
236 static void pipe_destroy_write_buffer(struct pipe *wpipe);
237 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
238 static void pipe_clone_write_buffer(struct pipe *wpipe);
239 #endif
240 static int pipespace(struct pipe *cpipe, int size);
241 static int pipespace_new(struct pipe *cpipe, int size);
242 
243 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
244 static int	pipe_zone_init(void *mem, int size, int flags);
245 static void	pipe_zone_fini(void *mem, int size);
246 
247 static uma_zone_t pipe_zone;
248 static struct unrhdr64 pipeino_unr;
249 static dev_t pipedev_ino;
250 
251 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
252 
253 static void
254 pipeinit(void *dummy __unused)
255 {
256 
257 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
258 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
259 	    UMA_ALIGN_PTR, 0);
260 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
261 	new_unrhdr64(&pipeino_unr, 1);
262 	pipedev_ino = devfs_alloc_cdp_inode();
263 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
264 }
265 
266 static int
267 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
268 {
269 	struct pipepair *pp;
270 	struct pipe *rpipe, *wpipe;
271 
272 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
273 
274 	pp = (struct pipepair *)mem;
275 
276 	/*
277 	 * We zero both pipe endpoints to make sure all the kmem pointers
278 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
279 	 * endpoints with the same time.
280 	 */
281 	rpipe = &pp->pp_rpipe;
282 	bzero(rpipe, sizeof(*rpipe));
283 	pipe_timestamp(&rpipe->pipe_ctime);
284 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
285 
286 	wpipe = &pp->pp_wpipe;
287 	bzero(wpipe, sizeof(*wpipe));
288 	wpipe->pipe_ctime = rpipe->pipe_ctime;
289 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
290 
291 	rpipe->pipe_peer = wpipe;
292 	rpipe->pipe_pair = pp;
293 	wpipe->pipe_peer = rpipe;
294 	wpipe->pipe_pair = pp;
295 
296 	/*
297 	 * Mark both endpoints as present; they will later get free'd
298 	 * one at a time.  When both are free'd, then the whole pair
299 	 * is released.
300 	 */
301 	rpipe->pipe_present = PIPE_ACTIVE;
302 	wpipe->pipe_present = PIPE_ACTIVE;
303 
304 	/*
305 	 * Eventually, the MAC Framework may initialize the label
306 	 * in ctor or init, but for now we do it elswhere to avoid
307 	 * blocking in ctor or init.
308 	 */
309 	pp->pp_label = NULL;
310 
311 	return (0);
312 }
313 
314 static int
315 pipe_zone_init(void *mem, int size, int flags)
316 {
317 	struct pipepair *pp;
318 
319 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
320 
321 	pp = (struct pipepair *)mem;
322 
323 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
324 	return (0);
325 }
326 
327 static void
328 pipe_zone_fini(void *mem, int size)
329 {
330 	struct pipepair *pp;
331 
332 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
333 
334 	pp = (struct pipepair *)mem;
335 
336 	mtx_destroy(&pp->pp_mtx);
337 }
338 
339 static int
340 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
341 {
342 	struct pipepair *pp;
343 	struct pipe *rpipe, *wpipe;
344 	int error;
345 
346 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
347 #ifdef MAC
348 	/*
349 	 * The MAC label is shared between the connected endpoints.  As a
350 	 * result mac_pipe_init() and mac_pipe_create() are called once
351 	 * for the pair, and not on the endpoints.
352 	 */
353 	mac_pipe_init(pp);
354 	mac_pipe_create(td->td_ucred, pp);
355 #endif
356 	rpipe = &pp->pp_rpipe;
357 	wpipe = &pp->pp_wpipe;
358 
359 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
360 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
361 
362 	/*
363 	 * Only the forward direction pipe is backed by big buffer by
364 	 * default.
365 	 */
366 	error = pipe_create(rpipe, true);
367 	if (error != 0)
368 		goto fail;
369 	error = pipe_create(wpipe, false);
370 	if (error != 0) {
371 		/*
372 		 * This cleanup leaves the pipe inode number for rpipe
373 		 * still allocated, but never used.  We do not free
374 		 * inode numbers for opened pipes, which is required
375 		 * for correctness because numbers must be unique.
376 		 * But also it avoids any memory use by the unr
377 		 * allocator, so stashing away the transient inode
378 		 * number is reasonable.
379 		 */
380 		pipe_free_kmem(rpipe);
381 		goto fail;
382 	}
383 
384 	rpipe->pipe_state |= PIPE_DIRECTOK;
385 	wpipe->pipe_state |= PIPE_DIRECTOK;
386 	return (0);
387 
388 fail:
389 	knlist_destroy(&rpipe->pipe_sel.si_note);
390 	knlist_destroy(&wpipe->pipe_sel.si_note);
391 #ifdef MAC
392 	mac_pipe_destroy(pp);
393 #endif
394 	return (error);
395 }
396 
397 int
398 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
399 {
400 	struct pipepair *pp;
401 	int error;
402 
403 	error = pipe_paircreate(td, &pp);
404 	if (error != 0)
405 		return (error);
406 	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
407 	*ppipe = &pp->pp_rpipe;
408 	return (0);
409 }
410 
411 void
412 pipe_dtor(struct pipe *dpipe)
413 {
414 	struct pipe *peer;
415 
416 	peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
417 	funsetown(&dpipe->pipe_sigio);
418 	pipeclose(dpipe);
419 	if (peer != NULL) {
420 		funsetown(&peer->pipe_sigio);
421 		pipeclose(peer);
422 	}
423 }
424 
425 /*
426  * Get a timestamp.
427  *
428  * This used to be vfs_timestamp but the higher precision is unnecessary and
429  * can very negatively affect performance in virtualized environments (e.g., on
430  * vms running on amd64 when using the rdtscp instruction).
431  */
432 static void
433 pipe_timestamp(struct timespec *tsp)
434 {
435 
436 	getnanotime(tsp);
437 }
438 
439 /*
440  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
441  * the zone pick up the pieces via pipeclose().
442  */
443 int
444 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
445     struct filecaps *fcaps2)
446 {
447 	struct file *rf, *wf;
448 	struct pipe *rpipe, *wpipe;
449 	struct pipepair *pp;
450 	int fd, fflags, error;
451 
452 	error = pipe_paircreate(td, &pp);
453 	if (error != 0)
454 		return (error);
455 	rpipe = &pp->pp_rpipe;
456 	wpipe = &pp->pp_wpipe;
457 	error = falloc_caps(td, &rf, &fd, flags, fcaps1);
458 	if (error) {
459 		pipeclose(rpipe);
460 		pipeclose(wpipe);
461 		return (error);
462 	}
463 	/* An extra reference on `rf' has been held for us by falloc_caps(). */
464 	fildes[0] = fd;
465 
466 	fflags = FREAD | FWRITE;
467 	if ((flags & O_NONBLOCK) != 0)
468 		fflags |= FNONBLOCK;
469 
470 	/*
471 	 * Warning: once we've gotten past allocation of the fd for the
472 	 * read-side, we can only drop the read side via fdrop() in order
473 	 * to avoid races against processes which manage to dup() the read
474 	 * side while we are blocked trying to allocate the write side.
475 	 */
476 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
477 	error = falloc_caps(td, &wf, &fd, flags, fcaps2);
478 	if (error) {
479 		fdclose(td, rf, fildes[0]);
480 		fdrop(rf, td);
481 		/* rpipe has been closed by fdrop(). */
482 		pipeclose(wpipe);
483 		return (error);
484 	}
485 	/* An extra reference on `wf' has been held for us by falloc_caps(). */
486 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
487 	fdrop(wf, td);
488 	fildes[1] = fd;
489 	fdrop(rf, td);
490 
491 	return (0);
492 }
493 
494 #ifdef COMPAT_FREEBSD10
495 /* ARGSUSED */
496 int
497 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
498 {
499 	int error;
500 	int fildes[2];
501 
502 	error = kern_pipe(td, fildes, 0, NULL, NULL);
503 	if (error)
504 		return (error);
505 
506 	td->td_retval[0] = fildes[0];
507 	td->td_retval[1] = fildes[1];
508 
509 	return (0);
510 }
511 #endif
512 
513 int
514 sys_pipe2(struct thread *td, struct pipe2_args *uap)
515 {
516 	int error, fildes[2];
517 
518 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
519 		return (EINVAL);
520 	error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
521 	if (error)
522 		return (error);
523 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
524 	if (error) {
525 		(void)kern_close(td, fildes[0]);
526 		(void)kern_close(td, fildes[1]);
527 	}
528 	return (error);
529 }
530 
531 /*
532  * Allocate kva for pipe circular buffer, the space is pageable
533  * This routine will 'realloc' the size of a pipe safely, if it fails
534  * it will retain the old buffer.
535  * If it fails it will return ENOMEM.
536  */
537 static int
538 pipespace_new(struct pipe *cpipe, int size)
539 {
540 	caddr_t buffer;
541 	int error, cnt, firstseg;
542 	static int curfail = 0;
543 	static struct timeval lastfail;
544 
545 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
546 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
547 		("pipespace: resize of direct writes not allowed"));
548 retry:
549 	cnt = cpipe->pipe_buffer.cnt;
550 	if (cnt > size)
551 		size = cnt;
552 
553 	size = round_page(size);
554 	buffer = (caddr_t) vm_map_min(pipe_map);
555 
556 	error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
557 	    VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
558 	if (error != KERN_SUCCESS) {
559 		if (cpipe->pipe_buffer.buffer == NULL &&
560 		    size > SMALL_PIPE_SIZE) {
561 			size = SMALL_PIPE_SIZE;
562 			pipefragretry++;
563 			goto retry;
564 		}
565 		if (cpipe->pipe_buffer.buffer == NULL) {
566 			pipeallocfail++;
567 			if (ppsratecheck(&lastfail, &curfail, 1))
568 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
569 		} else {
570 			piperesizefail++;
571 		}
572 		return (ENOMEM);
573 	}
574 
575 	/* copy data, then free old resources if we're resizing */
576 	if (cnt > 0) {
577 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
578 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
579 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
580 				buffer, firstseg);
581 			if ((cnt - firstseg) > 0)
582 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
583 					cpipe->pipe_buffer.in);
584 		} else {
585 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
586 				buffer, cnt);
587 		}
588 	}
589 	pipe_free_kmem(cpipe);
590 	cpipe->pipe_buffer.buffer = buffer;
591 	cpipe->pipe_buffer.size = size;
592 	cpipe->pipe_buffer.in = cnt;
593 	cpipe->pipe_buffer.out = 0;
594 	cpipe->pipe_buffer.cnt = cnt;
595 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
596 	return (0);
597 }
598 
599 /*
600  * Wrapper for pipespace_new() that performs locking assertions.
601  */
602 static int
603 pipespace(struct pipe *cpipe, int size)
604 {
605 
606 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
607 	    ("Unlocked pipe passed to pipespace"));
608 	return (pipespace_new(cpipe, size));
609 }
610 
611 /*
612  * lock a pipe for I/O, blocking other access
613  */
614 static __inline int
615 pipelock(struct pipe *cpipe, int catch)
616 {
617 	int error;
618 
619 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
620 	while (cpipe->pipe_state & PIPE_LOCKFL) {
621 		cpipe->pipe_state |= PIPE_LWANT;
622 		error = msleep(cpipe, PIPE_MTX(cpipe),
623 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
624 		    "pipelk", 0);
625 		if (error != 0)
626 			return (error);
627 	}
628 	cpipe->pipe_state |= PIPE_LOCKFL;
629 	return (0);
630 }
631 
632 /*
633  * unlock a pipe I/O lock
634  */
635 static __inline void
636 pipeunlock(struct pipe *cpipe)
637 {
638 
639 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
640 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
641 		("Unlocked pipe passed to pipeunlock"));
642 	cpipe->pipe_state &= ~PIPE_LOCKFL;
643 	if (cpipe->pipe_state & PIPE_LWANT) {
644 		cpipe->pipe_state &= ~PIPE_LWANT;
645 		wakeup(cpipe);
646 	}
647 }
648 
649 void
650 pipeselwakeup(struct pipe *cpipe)
651 {
652 
653 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
654 	if (cpipe->pipe_state & PIPE_SEL) {
655 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
656 		if (!SEL_WAITING(&cpipe->pipe_sel))
657 			cpipe->pipe_state &= ~PIPE_SEL;
658 	}
659 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
660 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
661 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
662 }
663 
664 /*
665  * Initialize and allocate VM and memory for pipe.  The structure
666  * will start out zero'd from the ctor, so we just manage the kmem.
667  */
668 static int
669 pipe_create(struct pipe *pipe, bool large_backing)
670 {
671 	int error;
672 
673 	error = pipespace_new(pipe, !large_backing || amountpipekva >
674 	    maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE);
675 	if (error == 0)
676 		pipe->pipe_ino = alloc_unr64(&pipeino_unr);
677 	return (error);
678 }
679 
680 /* ARGSUSED */
681 static int
682 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
683     int flags, struct thread *td)
684 {
685 	struct pipe *rpipe;
686 	int error;
687 	int nread = 0;
688 	int size;
689 
690 	rpipe = fp->f_data;
691 	PIPE_LOCK(rpipe);
692 	++rpipe->pipe_busy;
693 	error = pipelock(rpipe, 1);
694 	if (error)
695 		goto unlocked_error;
696 
697 #ifdef MAC
698 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
699 	if (error)
700 		goto locked_error;
701 #endif
702 	if (amountpipekva > (3 * maxpipekva) / 4) {
703 		if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 &&
704 		    rpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
705 		    rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
706 		    piperesizeallowed == 1) {
707 			PIPE_UNLOCK(rpipe);
708 			pipespace(rpipe, SMALL_PIPE_SIZE);
709 			PIPE_LOCK(rpipe);
710 		}
711 	}
712 
713 	while (uio->uio_resid) {
714 		/*
715 		 * normal pipe buffer receive
716 		 */
717 		if (rpipe->pipe_buffer.cnt > 0) {
718 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
719 			if (size > rpipe->pipe_buffer.cnt)
720 				size = rpipe->pipe_buffer.cnt;
721 			if (size > uio->uio_resid)
722 				size = uio->uio_resid;
723 
724 			PIPE_UNLOCK(rpipe);
725 			error = uiomove(
726 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
727 			    size, uio);
728 			PIPE_LOCK(rpipe);
729 			if (error)
730 				break;
731 
732 			rpipe->pipe_buffer.out += size;
733 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
734 				rpipe->pipe_buffer.out = 0;
735 
736 			rpipe->pipe_buffer.cnt -= size;
737 
738 			/*
739 			 * If there is no more to read in the pipe, reset
740 			 * its pointers to the beginning.  This improves
741 			 * cache hit stats.
742 			 */
743 			if (rpipe->pipe_buffer.cnt == 0) {
744 				rpipe->pipe_buffer.in = 0;
745 				rpipe->pipe_buffer.out = 0;
746 			}
747 			nread += size;
748 #ifndef PIPE_NODIRECT
749 		/*
750 		 * Direct copy, bypassing a kernel buffer.
751 		 */
752 		} else if ((size = rpipe->pipe_pages.cnt) != 0) {
753 			if (size > uio->uio_resid)
754 				size = (u_int) uio->uio_resid;
755 			PIPE_UNLOCK(rpipe);
756 			error = uiomove_fromphys(rpipe->pipe_pages.ms,
757 			    rpipe->pipe_pages.pos, size, uio);
758 			PIPE_LOCK(rpipe);
759 			if (error)
760 				break;
761 			nread += size;
762 			rpipe->pipe_pages.pos += size;
763 			rpipe->pipe_pages.cnt -= size;
764 			if (rpipe->pipe_pages.cnt == 0) {
765 				rpipe->pipe_state &= ~PIPE_WANTW;
766 				wakeup(rpipe);
767 			}
768 #endif
769 		} else {
770 			/*
771 			 * detect EOF condition
772 			 * read returns 0 on EOF, no need to set error
773 			 */
774 			if (rpipe->pipe_state & PIPE_EOF)
775 				break;
776 
777 			/*
778 			 * If the "write-side" has been blocked, wake it up now.
779 			 */
780 			if (rpipe->pipe_state & PIPE_WANTW) {
781 				rpipe->pipe_state &= ~PIPE_WANTW;
782 				wakeup(rpipe);
783 			}
784 
785 			/*
786 			 * Break if some data was read.
787 			 */
788 			if (nread > 0)
789 				break;
790 
791 			/*
792 			 * Unlock the pipe buffer for our remaining processing.
793 			 * We will either break out with an error or we will
794 			 * sleep and relock to loop.
795 			 */
796 			pipeunlock(rpipe);
797 
798 			/*
799 			 * Handle non-blocking mode operation or
800 			 * wait for more data.
801 			 */
802 			if (fp->f_flag & FNONBLOCK) {
803 				error = EAGAIN;
804 			} else {
805 				rpipe->pipe_state |= PIPE_WANTR;
806 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
807 				    PRIBIO | PCATCH,
808 				    "piperd", 0)) == 0)
809 					error = pipelock(rpipe, 1);
810 			}
811 			if (error)
812 				goto unlocked_error;
813 		}
814 	}
815 #ifdef MAC
816 locked_error:
817 #endif
818 	pipeunlock(rpipe);
819 
820 	/* XXX: should probably do this before getting any locks. */
821 	if (error == 0)
822 		pipe_timestamp(&rpipe->pipe_atime);
823 unlocked_error:
824 	--rpipe->pipe_busy;
825 
826 	/*
827 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
828 	 */
829 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
830 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
831 		wakeup(rpipe);
832 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
833 		/*
834 		 * Handle write blocking hysteresis.
835 		 */
836 		if (rpipe->pipe_state & PIPE_WANTW) {
837 			rpipe->pipe_state &= ~PIPE_WANTW;
838 			wakeup(rpipe);
839 		}
840 	}
841 
842 	/*
843 	 * Only wake up writers if there was actually something read.
844 	 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs.
845 	 */
846 	if (nread > 0 &&
847 	    rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
848 		pipeselwakeup(rpipe);
849 
850 	PIPE_UNLOCK(rpipe);
851 	return (error);
852 }
853 
854 #ifndef PIPE_NODIRECT
855 /*
856  * Map the sending processes' buffer into kernel space and wire it.
857  * This is similar to a physical write operation.
858  */
859 static int
860 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
861 {
862 	u_int size;
863 	int i;
864 
865 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
866 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
867 	    ("%s: PIPE_DIRECTW set on %p", __func__, wpipe));
868 	KASSERT(wpipe->pipe_pages.cnt == 0,
869 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
870 
871 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
872                 size = wpipe->pipe_buffer.size;
873 	else
874                 size = uio->uio_iov->iov_len;
875 
876 	wpipe->pipe_state |= PIPE_DIRECTW;
877 	PIPE_UNLOCK(wpipe);
878 	i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
879 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
880 	    wpipe->pipe_pages.ms, PIPENPAGES);
881 	PIPE_LOCK(wpipe);
882 	if (i < 0) {
883 		wpipe->pipe_state &= ~PIPE_DIRECTW;
884 		return (EFAULT);
885 	}
886 
887 	wpipe->pipe_pages.npages = i;
888 	wpipe->pipe_pages.pos =
889 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
890 	wpipe->pipe_pages.cnt = size;
891 
892 	uio->uio_iov->iov_len -= size;
893 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
894 	if (uio->uio_iov->iov_len == 0)
895 		uio->uio_iov++;
896 	uio->uio_resid -= size;
897 	uio->uio_offset += size;
898 	return (0);
899 }
900 
901 /*
902  * Unwire the process buffer.
903  */
904 static void
905 pipe_destroy_write_buffer(struct pipe *wpipe)
906 {
907 
908 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
909 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
910 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
911 	KASSERT(wpipe->pipe_pages.cnt == 0,
912 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
913 
914 	wpipe->pipe_state &= ~PIPE_DIRECTW;
915 	vm_page_unhold_pages(wpipe->pipe_pages.ms, wpipe->pipe_pages.npages);
916 	wpipe->pipe_pages.npages = 0;
917 }
918 
919 /*
920  * In the case of a signal, the writing process might go away.  This
921  * code copies the data into the circular buffer so that the source
922  * pages can be freed without loss of data.
923  */
924 static void
925 pipe_clone_write_buffer(struct pipe *wpipe)
926 {
927 	struct uio uio;
928 	struct iovec iov;
929 	int size;
930 	int pos;
931 
932 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
933 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
934 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
935 
936 	size = wpipe->pipe_pages.cnt;
937 	pos = wpipe->pipe_pages.pos;
938 	wpipe->pipe_pages.cnt = 0;
939 
940 	wpipe->pipe_buffer.in = size;
941 	wpipe->pipe_buffer.out = 0;
942 	wpipe->pipe_buffer.cnt = size;
943 
944 	PIPE_UNLOCK(wpipe);
945 	iov.iov_base = wpipe->pipe_buffer.buffer;
946 	iov.iov_len = size;
947 	uio.uio_iov = &iov;
948 	uio.uio_iovcnt = 1;
949 	uio.uio_offset = 0;
950 	uio.uio_resid = size;
951 	uio.uio_segflg = UIO_SYSSPACE;
952 	uio.uio_rw = UIO_READ;
953 	uio.uio_td = curthread;
954 	uiomove_fromphys(wpipe->pipe_pages.ms, pos, size, &uio);
955 	PIPE_LOCK(wpipe);
956 	pipe_destroy_write_buffer(wpipe);
957 }
958 
959 /*
960  * This implements the pipe buffer write mechanism.  Note that only
961  * a direct write OR a normal pipe write can be pending at any given time.
962  * If there are any characters in the pipe buffer, the direct write will
963  * be deferred until the receiving process grabs all of the bytes from
964  * the pipe buffer.  Then the direct mapping write is set-up.
965  */
966 static int
967 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
968 {
969 	int error;
970 
971 retry:
972 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
973 	error = pipelock(wpipe, 1);
974 	if (error != 0)
975 		goto error1;
976 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
977 		error = EPIPE;
978 		pipeunlock(wpipe);
979 		goto error1;
980 	}
981 	if (wpipe->pipe_state & PIPE_DIRECTW) {
982 		if (wpipe->pipe_state & PIPE_WANTR) {
983 			wpipe->pipe_state &= ~PIPE_WANTR;
984 			wakeup(wpipe);
985 		}
986 		pipeselwakeup(wpipe);
987 		wpipe->pipe_state |= PIPE_WANTW;
988 		pipeunlock(wpipe);
989 		error = msleep(wpipe, PIPE_MTX(wpipe),
990 		    PRIBIO | PCATCH, "pipdww", 0);
991 		if (error)
992 			goto error1;
993 		else
994 			goto retry;
995 	}
996 	if (wpipe->pipe_buffer.cnt > 0) {
997 		if (wpipe->pipe_state & PIPE_WANTR) {
998 			wpipe->pipe_state &= ~PIPE_WANTR;
999 			wakeup(wpipe);
1000 		}
1001 		pipeselwakeup(wpipe);
1002 		wpipe->pipe_state |= PIPE_WANTW;
1003 		pipeunlock(wpipe);
1004 		error = msleep(wpipe, PIPE_MTX(wpipe),
1005 		    PRIBIO | PCATCH, "pipdwc", 0);
1006 		if (error)
1007 			goto error1;
1008 		else
1009 			goto retry;
1010 	}
1011 
1012 	error = pipe_build_write_buffer(wpipe, uio);
1013 	if (error) {
1014 		pipeunlock(wpipe);
1015 		goto error1;
1016 	}
1017 
1018 	while (wpipe->pipe_pages.cnt != 0 &&
1019 	    (wpipe->pipe_state & PIPE_EOF) == 0) {
1020 		if (wpipe->pipe_state & PIPE_WANTR) {
1021 			wpipe->pipe_state &= ~PIPE_WANTR;
1022 			wakeup(wpipe);
1023 		}
1024 		pipeselwakeup(wpipe);
1025 		wpipe->pipe_state |= PIPE_WANTW;
1026 		pipeunlock(wpipe);
1027 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1028 		    "pipdwt", 0);
1029 		pipelock(wpipe, 0);
1030 		if (error != 0)
1031 			break;
1032 	}
1033 
1034 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1035 		wpipe->pipe_pages.cnt = 0;
1036 		pipe_destroy_write_buffer(wpipe);
1037 		pipeselwakeup(wpipe);
1038 		error = EPIPE;
1039 	} else if (error == EINTR || error == ERESTART) {
1040 		pipe_clone_write_buffer(wpipe);
1041 	} else {
1042 		pipe_destroy_write_buffer(wpipe);
1043 	}
1044 	pipeunlock(wpipe);
1045 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
1046 	    ("pipe %p leaked PIPE_DIRECTW", wpipe));
1047 	return (error);
1048 
1049 error1:
1050 	wakeup(wpipe);
1051 	return (error);
1052 }
1053 #endif
1054 
1055 static int
1056 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1057     int flags, struct thread *td)
1058 {
1059 	struct pipe *wpipe, *rpipe;
1060 	ssize_t orig_resid;
1061 	int desiredsize, error;
1062 
1063 	rpipe = fp->f_data;
1064 	wpipe = PIPE_PEER(rpipe);
1065 	PIPE_LOCK(rpipe);
1066 	error = pipelock(wpipe, 1);
1067 	if (error) {
1068 		PIPE_UNLOCK(rpipe);
1069 		return (error);
1070 	}
1071 	/*
1072 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1073 	 */
1074 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1075 	    (wpipe->pipe_state & PIPE_EOF)) {
1076 		pipeunlock(wpipe);
1077 		PIPE_UNLOCK(rpipe);
1078 		return (EPIPE);
1079 	}
1080 #ifdef MAC
1081 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1082 	if (error) {
1083 		pipeunlock(wpipe);
1084 		PIPE_UNLOCK(rpipe);
1085 		return (error);
1086 	}
1087 #endif
1088 	++wpipe->pipe_busy;
1089 
1090 	/* Choose a larger size if it's advantageous */
1091 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1092 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1093 		if (piperesizeallowed != 1)
1094 			break;
1095 		if (amountpipekva > maxpipekva / 2)
1096 			break;
1097 		if (desiredsize == BIG_PIPE_SIZE)
1098 			break;
1099 		desiredsize = desiredsize * 2;
1100 	}
1101 
1102 	/* Choose a smaller size if we're in a OOM situation */
1103 	if (amountpipekva > (3 * maxpipekva) / 4 &&
1104 	    wpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
1105 	    wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
1106 	    piperesizeallowed == 1)
1107 		desiredsize = SMALL_PIPE_SIZE;
1108 
1109 	/* Resize if the above determined that a new size was necessary */
1110 	if (desiredsize != wpipe->pipe_buffer.size &&
1111 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0) {
1112 		PIPE_UNLOCK(wpipe);
1113 		pipespace(wpipe, desiredsize);
1114 		PIPE_LOCK(wpipe);
1115 	}
1116 	MPASS(wpipe->pipe_buffer.size != 0);
1117 
1118 	pipeunlock(wpipe);
1119 
1120 	orig_resid = uio->uio_resid;
1121 
1122 	while (uio->uio_resid) {
1123 		int space;
1124 
1125 		pipelock(wpipe, 0);
1126 		if (wpipe->pipe_state & PIPE_EOF) {
1127 			pipeunlock(wpipe);
1128 			error = EPIPE;
1129 			break;
1130 		}
1131 #ifndef PIPE_NODIRECT
1132 		/*
1133 		 * If the transfer is large, we can gain performance if
1134 		 * we do process-to-process copies directly.
1135 		 * If the write is non-blocking, we don't use the
1136 		 * direct write mechanism.
1137 		 *
1138 		 * The direct write mechanism will detect the reader going
1139 		 * away on us.
1140 		 */
1141 		if (uio->uio_segflg == UIO_USERSPACE &&
1142 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1143 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1144 		    (fp->f_flag & FNONBLOCK) == 0) {
1145 			pipeunlock(wpipe);
1146 			error = pipe_direct_write(wpipe, uio);
1147 			if (error)
1148 				break;
1149 			continue;
1150 		}
1151 #endif
1152 
1153 		/*
1154 		 * Pipe buffered writes cannot be coincidental with
1155 		 * direct writes.  We wait until the currently executing
1156 		 * direct write is completed before we start filling the
1157 		 * pipe buffer.  We break out if a signal occurs or the
1158 		 * reader goes away.
1159 		 */
1160 		if (wpipe->pipe_pages.cnt != 0) {
1161 			if (wpipe->pipe_state & PIPE_WANTR) {
1162 				wpipe->pipe_state &= ~PIPE_WANTR;
1163 				wakeup(wpipe);
1164 			}
1165 			pipeselwakeup(wpipe);
1166 			wpipe->pipe_state |= PIPE_WANTW;
1167 			pipeunlock(wpipe);
1168 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1169 			    "pipbww", 0);
1170 			if (error)
1171 				break;
1172 			else
1173 				continue;
1174 		}
1175 
1176 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1177 
1178 		/* Writes of size <= PIPE_BUF must be atomic. */
1179 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1180 			space = 0;
1181 
1182 		if (space > 0) {
1183 			int size;	/* Transfer size */
1184 			int segsize;	/* first segment to transfer */
1185 
1186 			/*
1187 			 * Transfer size is minimum of uio transfer
1188 			 * and free space in pipe buffer.
1189 			 */
1190 			if (space > uio->uio_resid)
1191 				size = uio->uio_resid;
1192 			else
1193 				size = space;
1194 			/*
1195 			 * First segment to transfer is minimum of
1196 			 * transfer size and contiguous space in
1197 			 * pipe buffer.  If first segment to transfer
1198 			 * is less than the transfer size, we've got
1199 			 * a wraparound in the buffer.
1200 			 */
1201 			segsize = wpipe->pipe_buffer.size -
1202 				wpipe->pipe_buffer.in;
1203 			if (segsize > size)
1204 				segsize = size;
1205 
1206 			/* Transfer first segment */
1207 
1208 			PIPE_UNLOCK(rpipe);
1209 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1210 					segsize, uio);
1211 			PIPE_LOCK(rpipe);
1212 
1213 			if (error == 0 && segsize < size) {
1214 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1215 					wpipe->pipe_buffer.size,
1216 					("Pipe buffer wraparound disappeared"));
1217 				/*
1218 				 * Transfer remaining part now, to
1219 				 * support atomic writes.  Wraparound
1220 				 * happened.
1221 				 */
1222 
1223 				PIPE_UNLOCK(rpipe);
1224 				error = uiomove(
1225 				    &wpipe->pipe_buffer.buffer[0],
1226 				    size - segsize, uio);
1227 				PIPE_LOCK(rpipe);
1228 			}
1229 			if (error == 0) {
1230 				wpipe->pipe_buffer.in += size;
1231 				if (wpipe->pipe_buffer.in >=
1232 				    wpipe->pipe_buffer.size) {
1233 					KASSERT(wpipe->pipe_buffer.in ==
1234 						size - segsize +
1235 						wpipe->pipe_buffer.size,
1236 						("Expected wraparound bad"));
1237 					wpipe->pipe_buffer.in = size - segsize;
1238 				}
1239 
1240 				wpipe->pipe_buffer.cnt += size;
1241 				KASSERT(wpipe->pipe_buffer.cnt <=
1242 					wpipe->pipe_buffer.size,
1243 					("Pipe buffer overflow"));
1244 			}
1245 			pipeunlock(wpipe);
1246 			if (error != 0)
1247 				break;
1248 		} else {
1249 			/*
1250 			 * If the "read-side" has been blocked, wake it up now.
1251 			 */
1252 			if (wpipe->pipe_state & PIPE_WANTR) {
1253 				wpipe->pipe_state &= ~PIPE_WANTR;
1254 				wakeup(wpipe);
1255 			}
1256 
1257 			/*
1258 			 * don't block on non-blocking I/O
1259 			 */
1260 			if (fp->f_flag & FNONBLOCK) {
1261 				error = EAGAIN;
1262 				pipeunlock(wpipe);
1263 				break;
1264 			}
1265 
1266 			/*
1267 			 * We have no more space and have something to offer,
1268 			 * wake up select/poll.
1269 			 */
1270 			pipeselwakeup(wpipe);
1271 
1272 			wpipe->pipe_state |= PIPE_WANTW;
1273 			pipeunlock(wpipe);
1274 			error = msleep(wpipe, PIPE_MTX(rpipe),
1275 			    PRIBIO | PCATCH, "pipewr", 0);
1276 			if (error != 0)
1277 				break;
1278 		}
1279 	}
1280 
1281 	pipelock(wpipe, 0);
1282 	--wpipe->pipe_busy;
1283 
1284 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1285 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1286 		wakeup(wpipe);
1287 	} else if (wpipe->pipe_buffer.cnt > 0) {
1288 		/*
1289 		 * If we have put any characters in the buffer, we wake up
1290 		 * the reader.
1291 		 */
1292 		if (wpipe->pipe_state & PIPE_WANTR) {
1293 			wpipe->pipe_state &= ~PIPE_WANTR;
1294 			wakeup(wpipe);
1295 		}
1296 	}
1297 
1298 	/*
1299 	 * Don't return EPIPE if any byte was written.
1300 	 * EINTR and other interrupts are handled by generic I/O layer.
1301 	 * Do not pretend that I/O succeeded for obvious user error
1302 	 * like EFAULT.
1303 	 */
1304 	if (uio->uio_resid != orig_resid && error == EPIPE)
1305 		error = 0;
1306 
1307 	if (error == 0)
1308 		pipe_timestamp(&wpipe->pipe_mtime);
1309 
1310 	/*
1311 	 * We have something to offer,
1312 	 * wake up select/poll.
1313 	 */
1314 	if (wpipe->pipe_buffer.cnt)
1315 		pipeselwakeup(wpipe);
1316 
1317 	pipeunlock(wpipe);
1318 	PIPE_UNLOCK(rpipe);
1319 	return (error);
1320 }
1321 
1322 /* ARGSUSED */
1323 static int
1324 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1325     struct thread *td)
1326 {
1327 	struct pipe *cpipe;
1328 	int error;
1329 
1330 	cpipe = fp->f_data;
1331 	if (cpipe->pipe_state & PIPE_NAMED)
1332 		error = vnops.fo_truncate(fp, length, active_cred, td);
1333 	else
1334 		error = invfo_truncate(fp, length, active_cred, td);
1335 	return (error);
1336 }
1337 
1338 /*
1339  * we implement a very minimal set of ioctls for compatibility with sockets.
1340  */
1341 static int
1342 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1343     struct thread *td)
1344 {
1345 	struct pipe *mpipe = fp->f_data;
1346 	int error;
1347 
1348 	PIPE_LOCK(mpipe);
1349 
1350 #ifdef MAC
1351 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1352 	if (error) {
1353 		PIPE_UNLOCK(mpipe);
1354 		return (error);
1355 	}
1356 #endif
1357 
1358 	error = 0;
1359 	switch (cmd) {
1360 	case FIONBIO:
1361 		break;
1362 
1363 	case FIOASYNC:
1364 		if (*(int *)data) {
1365 			mpipe->pipe_state |= PIPE_ASYNC;
1366 		} else {
1367 			mpipe->pipe_state &= ~PIPE_ASYNC;
1368 		}
1369 		break;
1370 
1371 	case FIONREAD:
1372 		if (!(fp->f_flag & FREAD)) {
1373 			*(int *)data = 0;
1374 			PIPE_UNLOCK(mpipe);
1375 			return (0);
1376 		}
1377 		if (mpipe->pipe_pages.cnt != 0)
1378 			*(int *)data = mpipe->pipe_pages.cnt;
1379 		else
1380 			*(int *)data = mpipe->pipe_buffer.cnt;
1381 		break;
1382 
1383 	case FIOSETOWN:
1384 		PIPE_UNLOCK(mpipe);
1385 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1386 		goto out_unlocked;
1387 
1388 	case FIOGETOWN:
1389 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1390 		break;
1391 
1392 	/* This is deprecated, FIOSETOWN should be used instead. */
1393 	case TIOCSPGRP:
1394 		PIPE_UNLOCK(mpipe);
1395 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1396 		goto out_unlocked;
1397 
1398 	/* This is deprecated, FIOGETOWN should be used instead. */
1399 	case TIOCGPGRP:
1400 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1401 		break;
1402 
1403 	default:
1404 		error = ENOTTY;
1405 		break;
1406 	}
1407 	PIPE_UNLOCK(mpipe);
1408 out_unlocked:
1409 	return (error);
1410 }
1411 
1412 static int
1413 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1414     struct thread *td)
1415 {
1416 	struct pipe *rpipe;
1417 	struct pipe *wpipe;
1418 	int levents, revents;
1419 #ifdef MAC
1420 	int error;
1421 #endif
1422 
1423 	revents = 0;
1424 	rpipe = fp->f_data;
1425 	wpipe = PIPE_PEER(rpipe);
1426 	PIPE_LOCK(rpipe);
1427 #ifdef MAC
1428 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1429 	if (error)
1430 		goto locked_error;
1431 #endif
1432 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1433 		if (rpipe->pipe_pages.cnt > 0 || rpipe->pipe_buffer.cnt > 0)
1434 			revents |= events & (POLLIN | POLLRDNORM);
1435 
1436 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1437 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1438 		    (wpipe->pipe_state & PIPE_EOF) ||
1439 		    ((wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1440 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1441 			 wpipe->pipe_buffer.size == 0)))
1442 			revents |= events & (POLLOUT | POLLWRNORM);
1443 
1444 	levents = events &
1445 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1446 	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1447 	    fp->f_pipegen == rpipe->pipe_wgen)
1448 		events |= POLLINIGNEOF;
1449 
1450 	if ((events & POLLINIGNEOF) == 0) {
1451 		if (rpipe->pipe_state & PIPE_EOF) {
1452 			if (fp->f_flag & FREAD)
1453 				revents |= (events & (POLLIN | POLLRDNORM));
1454 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1455 			    (wpipe->pipe_state & PIPE_EOF))
1456 				revents |= POLLHUP;
1457 		}
1458 	}
1459 
1460 	if (revents == 0) {
1461 		/*
1462 		 * Add ourselves regardless of eventmask as we have to return
1463 		 * POLLHUP even if it was not asked for.
1464 		 */
1465 		if ((fp->f_flag & FREAD) != 0) {
1466 			selrecord(td, &rpipe->pipe_sel);
1467 			if (SEL_WAITING(&rpipe->pipe_sel))
1468 				rpipe->pipe_state |= PIPE_SEL;
1469 		}
1470 
1471 		if ((fp->f_flag & FWRITE) != 0) {
1472 			selrecord(td, &wpipe->pipe_sel);
1473 			if (SEL_WAITING(&wpipe->pipe_sel))
1474 				wpipe->pipe_state |= PIPE_SEL;
1475 		}
1476 	}
1477 #ifdef MAC
1478 locked_error:
1479 #endif
1480 	PIPE_UNLOCK(rpipe);
1481 
1482 	return (revents);
1483 }
1484 
1485 /*
1486  * We shouldn't need locks here as we're doing a read and this should
1487  * be a natural race.
1488  */
1489 static int
1490 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred,
1491     struct thread *td)
1492 {
1493 	struct pipe *pipe;
1494 #ifdef MAC
1495 	int error;
1496 #endif
1497 
1498 	pipe = fp->f_data;
1499 	PIPE_LOCK(pipe);
1500 #ifdef MAC
1501 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1502 	if (error) {
1503 		PIPE_UNLOCK(pipe);
1504 		return (error);
1505 	}
1506 #endif
1507 
1508 	/* For named pipes ask the underlying filesystem. */
1509 	if (pipe->pipe_state & PIPE_NAMED) {
1510 		PIPE_UNLOCK(pipe);
1511 		return (vnops.fo_stat(fp, ub, active_cred, td));
1512 	}
1513 
1514 	PIPE_UNLOCK(pipe);
1515 
1516 	bzero(ub, sizeof(*ub));
1517 	ub->st_mode = S_IFIFO;
1518 	ub->st_blksize = PAGE_SIZE;
1519 	if (pipe->pipe_pages.cnt != 0)
1520 		ub->st_size = pipe->pipe_pages.cnt;
1521 	else
1522 		ub->st_size = pipe->pipe_buffer.cnt;
1523 	ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1524 	ub->st_atim = pipe->pipe_atime;
1525 	ub->st_mtim = pipe->pipe_mtime;
1526 	ub->st_ctim = pipe->pipe_ctime;
1527 	ub->st_uid = fp->f_cred->cr_uid;
1528 	ub->st_gid = fp->f_cred->cr_gid;
1529 	ub->st_dev = pipedev_ino;
1530 	ub->st_ino = pipe->pipe_ino;
1531 	/*
1532 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1533 	 */
1534 	return (0);
1535 }
1536 
1537 /* ARGSUSED */
1538 static int
1539 pipe_close(struct file *fp, struct thread *td)
1540 {
1541 
1542 	if (fp->f_vnode != NULL)
1543 		return vnops.fo_close(fp, td);
1544 	fp->f_ops = &badfileops;
1545 	pipe_dtor(fp->f_data);
1546 	fp->f_data = NULL;
1547 	return (0);
1548 }
1549 
1550 static int
1551 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1552 {
1553 	struct pipe *cpipe;
1554 	int error;
1555 
1556 	cpipe = fp->f_data;
1557 	if (cpipe->pipe_state & PIPE_NAMED)
1558 		error = vn_chmod(fp, mode, active_cred, td);
1559 	else
1560 		error = invfo_chmod(fp, mode, active_cred, td);
1561 	return (error);
1562 }
1563 
1564 static int
1565 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1566     struct thread *td)
1567 {
1568 	struct pipe *cpipe;
1569 	int error;
1570 
1571 	cpipe = fp->f_data;
1572 	if (cpipe->pipe_state & PIPE_NAMED)
1573 		error = vn_chown(fp, uid, gid, active_cred, td);
1574 	else
1575 		error = invfo_chown(fp, uid, gid, active_cred, td);
1576 	return (error);
1577 }
1578 
1579 static int
1580 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1581 {
1582 	struct pipe *pi;
1583 
1584 	if (fp->f_type == DTYPE_FIFO)
1585 		return (vn_fill_kinfo(fp, kif, fdp));
1586 	kif->kf_type = KF_TYPE_PIPE;
1587 	pi = fp->f_data;
1588 	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1589 	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1590 	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1591 	return (0);
1592 }
1593 
1594 static void
1595 pipe_free_kmem(struct pipe *cpipe)
1596 {
1597 
1598 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1599 	    ("pipe_free_kmem: pipe mutex locked"));
1600 
1601 	if (cpipe->pipe_buffer.buffer != NULL) {
1602 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1603 		vm_map_remove(pipe_map,
1604 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1605 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1606 		cpipe->pipe_buffer.buffer = NULL;
1607 	}
1608 #ifndef PIPE_NODIRECT
1609 	{
1610 		cpipe->pipe_pages.cnt = 0;
1611 		cpipe->pipe_pages.pos = 0;
1612 		cpipe->pipe_pages.npages = 0;
1613 	}
1614 #endif
1615 }
1616 
1617 /*
1618  * shutdown the pipe
1619  */
1620 static void
1621 pipeclose(struct pipe *cpipe)
1622 {
1623 	struct pipepair *pp;
1624 	struct pipe *ppipe;
1625 
1626 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1627 
1628 	PIPE_LOCK(cpipe);
1629 	pipelock(cpipe, 0);
1630 	pp = cpipe->pipe_pair;
1631 
1632 	/*
1633 	 * If the other side is blocked, wake it up saying that
1634 	 * we want to close it down.
1635 	 */
1636 	cpipe->pipe_state |= PIPE_EOF;
1637 	while (cpipe->pipe_busy) {
1638 		wakeup(cpipe);
1639 		cpipe->pipe_state |= PIPE_WANT;
1640 		pipeunlock(cpipe);
1641 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1642 		pipelock(cpipe, 0);
1643 	}
1644 
1645 	pipeselwakeup(cpipe);
1646 
1647 	/*
1648 	 * Disconnect from peer, if any.
1649 	 */
1650 	ppipe = cpipe->pipe_peer;
1651 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1652 		ppipe->pipe_state |= PIPE_EOF;
1653 		wakeup(ppipe);
1654 		pipeselwakeup(ppipe);
1655 	}
1656 
1657 	/*
1658 	 * Mark this endpoint as free.  Release kmem resources.  We
1659 	 * don't mark this endpoint as unused until we've finished
1660 	 * doing that, or the pipe might disappear out from under
1661 	 * us.
1662 	 */
1663 	PIPE_UNLOCK(cpipe);
1664 	pipe_free_kmem(cpipe);
1665 	PIPE_LOCK(cpipe);
1666 	cpipe->pipe_present = PIPE_CLOSING;
1667 	pipeunlock(cpipe);
1668 
1669 	/*
1670 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1671 	 * PIPE_FINALIZED, that allows other end to free the
1672 	 * pipe_pair, only after the knotes are completely dismantled.
1673 	 */
1674 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1675 	cpipe->pipe_present = PIPE_FINALIZED;
1676 	seldrain(&cpipe->pipe_sel);
1677 	knlist_destroy(&cpipe->pipe_sel.si_note);
1678 
1679 	/*
1680 	 * If both endpoints are now closed, release the memory for the
1681 	 * pipe pair.  If not, unlock.
1682 	 */
1683 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1684 		PIPE_UNLOCK(cpipe);
1685 #ifdef MAC
1686 		mac_pipe_destroy(pp);
1687 #endif
1688 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1689 	} else
1690 		PIPE_UNLOCK(cpipe);
1691 }
1692 
1693 /*ARGSUSED*/
1694 static int
1695 pipe_kqfilter(struct file *fp, struct knote *kn)
1696 {
1697 	struct pipe *cpipe;
1698 
1699 	/*
1700 	 * If a filter is requested that is not supported by this file
1701 	 * descriptor, don't return an error, but also don't ever generate an
1702 	 * event.
1703 	 */
1704 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1705 		kn->kn_fop = &pipe_nfiltops;
1706 		return (0);
1707 	}
1708 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1709 		kn->kn_fop = &pipe_nfiltops;
1710 		return (0);
1711 	}
1712 	cpipe = fp->f_data;
1713 	PIPE_LOCK(cpipe);
1714 	switch (kn->kn_filter) {
1715 	case EVFILT_READ:
1716 		kn->kn_fop = &pipe_rfiltops;
1717 		break;
1718 	case EVFILT_WRITE:
1719 		kn->kn_fop = &pipe_wfiltops;
1720 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1721 			/* other end of pipe has been closed */
1722 			PIPE_UNLOCK(cpipe);
1723 			return (EPIPE);
1724 		}
1725 		cpipe = PIPE_PEER(cpipe);
1726 		break;
1727 	default:
1728 		PIPE_UNLOCK(cpipe);
1729 		return (EINVAL);
1730 	}
1731 
1732 	kn->kn_hook = cpipe;
1733 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1734 	PIPE_UNLOCK(cpipe);
1735 	return (0);
1736 }
1737 
1738 static void
1739 filt_pipedetach(struct knote *kn)
1740 {
1741 	struct pipe *cpipe = kn->kn_hook;
1742 
1743 	PIPE_LOCK(cpipe);
1744 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1745 	PIPE_UNLOCK(cpipe);
1746 }
1747 
1748 /*ARGSUSED*/
1749 static int
1750 filt_piperead(struct knote *kn, long hint)
1751 {
1752 	struct file *fp = kn->kn_fp;
1753 	struct pipe *rpipe = kn->kn_hook;
1754 
1755 	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1756 	kn->kn_data = rpipe->pipe_buffer.cnt;
1757 	if (kn->kn_data == 0)
1758 		kn->kn_data = rpipe->pipe_pages.cnt;
1759 
1760 	if ((rpipe->pipe_state & PIPE_EOF) != 0 &&
1761 	    ((rpipe->pipe_state & PIPE_NAMED) == 0 ||
1762 	    fp->f_pipegen != rpipe->pipe_wgen)) {
1763 		kn->kn_flags |= EV_EOF;
1764 		return (1);
1765 	}
1766 	kn->kn_flags &= ~EV_EOF;
1767 	return (kn->kn_data > 0);
1768 }
1769 
1770 /*ARGSUSED*/
1771 static int
1772 filt_pipewrite(struct knote *kn, long hint)
1773 {
1774 	struct pipe *wpipe = kn->kn_hook;
1775 
1776 	/*
1777 	 * If this end of the pipe is closed, the knote was removed from the
1778 	 * knlist and the list lock (i.e., the pipe lock) is therefore not held.
1779 	 */
1780 	if (wpipe->pipe_present == PIPE_ACTIVE ||
1781 	    (wpipe->pipe_state & PIPE_NAMED) != 0) {
1782 		PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1783 
1784 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1785 			kn->kn_data = 0;
1786 		} else if (wpipe->pipe_buffer.size > 0) {
1787 			kn->kn_data = wpipe->pipe_buffer.size -
1788 			    wpipe->pipe_buffer.cnt;
1789 		} else {
1790 			kn->kn_data = PIPE_BUF;
1791 		}
1792 	}
1793 
1794 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1795 	    (wpipe->pipe_state & PIPE_EOF)) {
1796 		kn->kn_flags |= EV_EOF;
1797 		return (1);
1798 	}
1799 	kn->kn_flags &= ~EV_EOF;
1800 	return (kn->kn_data >= PIPE_BUF);
1801 }
1802 
1803 static void
1804 filt_pipedetach_notsup(struct knote *kn)
1805 {
1806 
1807 }
1808 
1809 static int
1810 filt_pipenotsup(struct knote *kn, long hint)
1811 {
1812 
1813 	return (0);
1814 }
1815