1 /*- 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 */ 19 20 /* 21 * This file contains a high-performance replacement for the socket-based 22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 23 * all features of sockets, but does do everything that pipes normally 24 * do. 25 */ 26 27 /* 28 * This code has two modes of operation, a small write mode and a large 29 * write mode. The small write mode acts like conventional pipes with 30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and 33 * the receiving process can copy it directly from the pages in the sending 34 * process. 35 * 36 * If the sending process receives a signal, it is possible that it will 37 * go away, and certainly its address space can change, because control 38 * is returned back to the user-mode side. In that case, the pipe code 39 * arranges to copy the buffer supplied by the user process, to a pageable 40 * kernel buffer, and the receiving process will grab the data from the 41 * pageable kernel buffer. Since signals don't happen all that often, 42 * the copy operation is normally eliminated. 43 * 44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 45 * happen for small transfers so that the system will not spend all of 46 * its time context switching. 47 * 48 * In order to limit the resource use of pipes, two sysctls exist: 49 * 50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 51 * address space available to us in pipe_map. This value is normally 52 * autotuned, but may also be loader tuned. 53 * 54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 55 * memory in use by pipes. 56 * 57 * Based on how large pipekva is relative to maxpipekva, the following 58 * will happen: 59 * 60 * 0% - 50%: 61 * New pipes are given 16K of memory backing, pipes may dynamically 62 * grow to as large as 64K where needed. 63 * 50% - 75%: 64 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 65 * existing pipes may NOT grow. 66 * 75% - 100%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes will be shrunk down to 4K whenever possible. 69 * 70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 72 * resize which MUST occur for reverse-direction pipes when they are 73 * first used. 74 * 75 * Additional information about the current state of pipes may be obtained 76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 77 * and kern.ipc.piperesizefail. 78 * 79 * Locking rules: There are two locks present here: A mutex, used via 80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 81 * the flag, as mutexes can not persist over uiomove. The mutex 82 * exists only to guard access to the flag, and is not in itself a 83 * locking mechanism. Also note that there is only a single mutex for 84 * both directions of a pipe. 85 * 86 * As pipelock() may have to sleep before it can acquire the flag, it 87 * is important to reread all data after a call to pipelock(); everything 88 * in the structure may have changed. 89 */ 90 91 #include <sys/cdefs.h> 92 __FBSDID("$FreeBSD$"); 93 94 #include <sys/param.h> 95 #include <sys/systm.h> 96 #include <sys/fcntl.h> 97 #include <sys/file.h> 98 #include <sys/filedesc.h> 99 #include <sys/filio.h> 100 #include <sys/kernel.h> 101 #include <sys/lock.h> 102 #include <sys/mutex.h> 103 #include <sys/ttycom.h> 104 #include <sys/stat.h> 105 #include <sys/malloc.h> 106 #include <sys/poll.h> 107 #include <sys/selinfo.h> 108 #include <sys/signalvar.h> 109 #include <sys/syscallsubr.h> 110 #include <sys/sysctl.h> 111 #include <sys/sysproto.h> 112 #include <sys/pipe.h> 113 #include <sys/proc.h> 114 #include <sys/vnode.h> 115 #include <sys/uio.h> 116 #include <sys/event.h> 117 118 #include <security/mac/mac_framework.h> 119 120 #include <vm/vm.h> 121 #include <vm/vm_param.h> 122 #include <vm/vm_object.h> 123 #include <vm/vm_kern.h> 124 #include <vm/vm_extern.h> 125 #include <vm/pmap.h> 126 #include <vm/vm_map.h> 127 #include <vm/vm_page.h> 128 #include <vm/uma.h> 129 130 /* 131 * Use this define if you want to disable *fancy* VM things. Expect an 132 * approx 30% decrease in transfer rate. This could be useful for 133 * NetBSD or OpenBSD. 134 */ 135 /* #define PIPE_NODIRECT */ 136 137 /* 138 * interfaces to the outside world 139 */ 140 static fo_rdwr_t pipe_read; 141 static fo_rdwr_t pipe_write; 142 static fo_truncate_t pipe_truncate; 143 static fo_ioctl_t pipe_ioctl; 144 static fo_poll_t pipe_poll; 145 static fo_kqfilter_t pipe_kqfilter; 146 static fo_stat_t pipe_stat; 147 static fo_close_t pipe_close; 148 149 static struct fileops pipeops = { 150 .fo_read = pipe_read, 151 .fo_write = pipe_write, 152 .fo_truncate = pipe_truncate, 153 .fo_ioctl = pipe_ioctl, 154 .fo_poll = pipe_poll, 155 .fo_kqfilter = pipe_kqfilter, 156 .fo_stat = pipe_stat, 157 .fo_close = pipe_close, 158 .fo_flags = DFLAG_PASSABLE 159 }; 160 161 static void filt_pipedetach(struct knote *kn); 162 static int filt_piperead(struct knote *kn, long hint); 163 static int filt_pipewrite(struct knote *kn, long hint); 164 165 static struct filterops pipe_rfiltops = { 166 .f_isfd = 1, 167 .f_detach = filt_pipedetach, 168 .f_event = filt_piperead 169 }; 170 static struct filterops pipe_wfiltops = { 171 .f_isfd = 1, 172 .f_detach = filt_pipedetach, 173 .f_event = filt_pipewrite 174 }; 175 176 /* 177 * Default pipe buffer size(s), this can be kind-of large now because pipe 178 * space is pageable. The pipe code will try to maintain locality of 179 * reference for performance reasons, so small amounts of outstanding I/O 180 * will not wipe the cache. 181 */ 182 #define MINPIPESIZE (PIPE_SIZE/3) 183 #define MAXPIPESIZE (2*PIPE_SIZE/3) 184 185 static long amountpipekva; 186 static int pipefragretry; 187 static int pipeallocfail; 188 static int piperesizefail; 189 static int piperesizeallowed = 1; 190 191 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, 192 &maxpipekva, 0, "Pipe KVA limit"); 193 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 194 &amountpipekva, 0, "Pipe KVA usage"); 195 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 196 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 197 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 198 &pipeallocfail, 0, "Pipe allocation failures"); 199 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 200 &piperesizefail, 0, "Pipe resize failures"); 201 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 202 &piperesizeallowed, 0, "Pipe resizing allowed"); 203 204 static void pipeinit(void *dummy __unused); 205 static void pipeclose(struct pipe *cpipe); 206 static void pipe_free_kmem(struct pipe *cpipe); 207 static int pipe_create(struct pipe *pipe, int backing); 208 static __inline int pipelock(struct pipe *cpipe, int catch); 209 static __inline void pipeunlock(struct pipe *cpipe); 210 static __inline void pipeselwakeup(struct pipe *cpipe); 211 #ifndef PIPE_NODIRECT 212 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 213 static void pipe_destroy_write_buffer(struct pipe *wpipe); 214 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 215 static void pipe_clone_write_buffer(struct pipe *wpipe); 216 #endif 217 static int pipespace(struct pipe *cpipe, int size); 218 static int pipespace_new(struct pipe *cpipe, int size); 219 220 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 221 static int pipe_zone_init(void *mem, int size, int flags); 222 static void pipe_zone_fini(void *mem, int size); 223 224 static uma_zone_t pipe_zone; 225 226 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 227 228 static void 229 pipeinit(void *dummy __unused) 230 { 231 232 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair), 233 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini, 234 UMA_ALIGN_PTR, 0); 235 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 236 } 237 238 static int 239 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 240 { 241 struct pipepair *pp; 242 struct pipe *rpipe, *wpipe; 243 244 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 245 246 pp = (struct pipepair *)mem; 247 248 /* 249 * We zero both pipe endpoints to make sure all the kmem pointers 250 * are NULL, flag fields are zero'd, etc. We timestamp both 251 * endpoints with the same time. 252 */ 253 rpipe = &pp->pp_rpipe; 254 bzero(rpipe, sizeof(*rpipe)); 255 vfs_timestamp(&rpipe->pipe_ctime); 256 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 257 258 wpipe = &pp->pp_wpipe; 259 bzero(wpipe, sizeof(*wpipe)); 260 wpipe->pipe_ctime = rpipe->pipe_ctime; 261 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 262 263 rpipe->pipe_peer = wpipe; 264 rpipe->pipe_pair = pp; 265 wpipe->pipe_peer = rpipe; 266 wpipe->pipe_pair = pp; 267 268 /* 269 * Mark both endpoints as present; they will later get free'd 270 * one at a time. When both are free'd, then the whole pair 271 * is released. 272 */ 273 rpipe->pipe_present = PIPE_ACTIVE; 274 wpipe->pipe_present = PIPE_ACTIVE; 275 276 /* 277 * Eventually, the MAC Framework may initialize the label 278 * in ctor or init, but for now we do it elswhere to avoid 279 * blocking in ctor or init. 280 */ 281 pp->pp_label = NULL; 282 283 return (0); 284 } 285 286 static int 287 pipe_zone_init(void *mem, int size, int flags) 288 { 289 struct pipepair *pp; 290 291 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 292 293 pp = (struct pipepair *)mem; 294 295 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 296 return (0); 297 } 298 299 static void 300 pipe_zone_fini(void *mem, int size) 301 { 302 struct pipepair *pp; 303 304 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 305 306 pp = (struct pipepair *)mem; 307 308 mtx_destroy(&pp->pp_mtx); 309 } 310 311 /* 312 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let 313 * the zone pick up the pieces via pipeclose(). 314 */ 315 int 316 kern_pipe(struct thread *td, int fildes[2]) 317 { 318 struct filedesc *fdp = td->td_proc->p_fd; 319 struct file *rf, *wf; 320 struct pipepair *pp; 321 struct pipe *rpipe, *wpipe; 322 int fd, error; 323 324 pp = uma_zalloc(pipe_zone, M_WAITOK); 325 #ifdef MAC 326 /* 327 * The MAC label is shared between the connected endpoints. As a 328 * result mac_pipe_init() and mac_pipe_create() are called once 329 * for the pair, and not on the endpoints. 330 */ 331 mac_pipe_init(pp); 332 mac_pipe_create(td->td_ucred, pp); 333 #endif 334 rpipe = &pp->pp_rpipe; 335 wpipe = &pp->pp_wpipe; 336 337 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe)); 338 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe)); 339 340 /* Only the forward direction pipe is backed by default */ 341 if ((error = pipe_create(rpipe, 1)) != 0 || 342 (error = pipe_create(wpipe, 0)) != 0) { 343 pipeclose(rpipe); 344 pipeclose(wpipe); 345 return (error); 346 } 347 348 rpipe->pipe_state |= PIPE_DIRECTOK; 349 wpipe->pipe_state |= PIPE_DIRECTOK; 350 351 error = falloc(td, &rf, &fd); 352 if (error) { 353 pipeclose(rpipe); 354 pipeclose(wpipe); 355 return (error); 356 } 357 /* An extra reference on `rf' has been held for us by falloc(). */ 358 fildes[0] = fd; 359 360 /* 361 * Warning: once we've gotten past allocation of the fd for the 362 * read-side, we can only drop the read side via fdrop() in order 363 * to avoid races against processes which manage to dup() the read 364 * side while we are blocked trying to allocate the write side. 365 */ 366 finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops); 367 error = falloc(td, &wf, &fd); 368 if (error) { 369 fdclose(fdp, rf, fildes[0], td); 370 fdrop(rf, td); 371 /* rpipe has been closed by fdrop(). */ 372 pipeclose(wpipe); 373 return (error); 374 } 375 /* An extra reference on `wf' has been held for us by falloc(). */ 376 finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops); 377 fdrop(wf, td); 378 fildes[1] = fd; 379 fdrop(rf, td); 380 381 return (0); 382 } 383 384 /* ARGSUSED */ 385 int 386 pipe(struct thread *td, struct pipe_args *uap) 387 { 388 int error; 389 int fildes[2]; 390 391 error = kern_pipe(td, fildes); 392 if (error) 393 return (error); 394 395 td->td_retval[0] = fildes[0]; 396 td->td_retval[1] = fildes[1]; 397 398 return (0); 399 } 400 401 /* 402 * Allocate kva for pipe circular buffer, the space is pageable 403 * This routine will 'realloc' the size of a pipe safely, if it fails 404 * it will retain the old buffer. 405 * If it fails it will return ENOMEM. 406 */ 407 static int 408 pipespace_new(cpipe, size) 409 struct pipe *cpipe; 410 int size; 411 { 412 caddr_t buffer; 413 int error, cnt, firstseg; 414 static int curfail = 0; 415 static struct timeval lastfail; 416 417 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 418 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 419 ("pipespace: resize of direct writes not allowed")); 420 retry: 421 cnt = cpipe->pipe_buffer.cnt; 422 if (cnt > size) 423 size = cnt; 424 425 size = round_page(size); 426 buffer = (caddr_t) vm_map_min(pipe_map); 427 428 error = vm_map_find(pipe_map, NULL, 0, 429 (vm_offset_t *) &buffer, size, 1, 430 VM_PROT_ALL, VM_PROT_ALL, 0); 431 if (error != KERN_SUCCESS) { 432 if ((cpipe->pipe_buffer.buffer == NULL) && 433 (size > SMALL_PIPE_SIZE)) { 434 size = SMALL_PIPE_SIZE; 435 pipefragretry++; 436 goto retry; 437 } 438 if (cpipe->pipe_buffer.buffer == NULL) { 439 pipeallocfail++; 440 if (ppsratecheck(&lastfail, &curfail, 1)) 441 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 442 } else { 443 piperesizefail++; 444 } 445 return (ENOMEM); 446 } 447 448 /* copy data, then free old resources if we're resizing */ 449 if (cnt > 0) { 450 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 451 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 452 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 453 buffer, firstseg); 454 if ((cnt - firstseg) > 0) 455 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 456 cpipe->pipe_buffer.in); 457 } else { 458 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 459 buffer, cnt); 460 } 461 } 462 pipe_free_kmem(cpipe); 463 cpipe->pipe_buffer.buffer = buffer; 464 cpipe->pipe_buffer.size = size; 465 cpipe->pipe_buffer.in = cnt; 466 cpipe->pipe_buffer.out = 0; 467 cpipe->pipe_buffer.cnt = cnt; 468 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size); 469 return (0); 470 } 471 472 /* 473 * Wrapper for pipespace_new() that performs locking assertions. 474 */ 475 static int 476 pipespace(cpipe, size) 477 struct pipe *cpipe; 478 int size; 479 { 480 481 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 482 ("Unlocked pipe passed to pipespace")); 483 return (pipespace_new(cpipe, size)); 484 } 485 486 /* 487 * lock a pipe for I/O, blocking other access 488 */ 489 static __inline int 490 pipelock(cpipe, catch) 491 struct pipe *cpipe; 492 int catch; 493 { 494 int error; 495 496 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 497 while (cpipe->pipe_state & PIPE_LOCKFL) { 498 cpipe->pipe_state |= PIPE_LWANT; 499 error = msleep(cpipe, PIPE_MTX(cpipe), 500 catch ? (PRIBIO | PCATCH) : PRIBIO, 501 "pipelk", 0); 502 if (error != 0) 503 return (error); 504 } 505 cpipe->pipe_state |= PIPE_LOCKFL; 506 return (0); 507 } 508 509 /* 510 * unlock a pipe I/O lock 511 */ 512 static __inline void 513 pipeunlock(cpipe) 514 struct pipe *cpipe; 515 { 516 517 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 518 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 519 ("Unlocked pipe passed to pipeunlock")); 520 cpipe->pipe_state &= ~PIPE_LOCKFL; 521 if (cpipe->pipe_state & PIPE_LWANT) { 522 cpipe->pipe_state &= ~PIPE_LWANT; 523 wakeup(cpipe); 524 } 525 } 526 527 static __inline void 528 pipeselwakeup(cpipe) 529 struct pipe *cpipe; 530 { 531 532 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 533 if (cpipe->pipe_state & PIPE_SEL) { 534 selwakeuppri(&cpipe->pipe_sel, PSOCK); 535 if (!SEL_WAITING(&cpipe->pipe_sel)) 536 cpipe->pipe_state &= ~PIPE_SEL; 537 } 538 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 539 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 540 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 541 } 542 543 /* 544 * Initialize and allocate VM and memory for pipe. The structure 545 * will start out zero'd from the ctor, so we just manage the kmem. 546 */ 547 static int 548 pipe_create(pipe, backing) 549 struct pipe *pipe; 550 int backing; 551 { 552 int error; 553 554 if (backing) { 555 if (amountpipekva > maxpipekva / 2) 556 error = pipespace_new(pipe, SMALL_PIPE_SIZE); 557 else 558 error = pipespace_new(pipe, PIPE_SIZE); 559 } else { 560 /* If we're not backing this pipe, no need to do anything. */ 561 error = 0; 562 } 563 return (error); 564 } 565 566 /* ARGSUSED */ 567 static int 568 pipe_read(fp, uio, active_cred, flags, td) 569 struct file *fp; 570 struct uio *uio; 571 struct ucred *active_cred; 572 struct thread *td; 573 int flags; 574 { 575 struct pipe *rpipe = fp->f_data; 576 int error; 577 int nread = 0; 578 u_int size; 579 580 PIPE_LOCK(rpipe); 581 ++rpipe->pipe_busy; 582 error = pipelock(rpipe, 1); 583 if (error) 584 goto unlocked_error; 585 586 #ifdef MAC 587 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair); 588 if (error) 589 goto locked_error; 590 #endif 591 if (amountpipekva > (3 * maxpipekva) / 4) { 592 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 593 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 594 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 595 (piperesizeallowed == 1)) { 596 PIPE_UNLOCK(rpipe); 597 pipespace(rpipe, SMALL_PIPE_SIZE); 598 PIPE_LOCK(rpipe); 599 } 600 } 601 602 while (uio->uio_resid) { 603 /* 604 * normal pipe buffer receive 605 */ 606 if (rpipe->pipe_buffer.cnt > 0) { 607 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 608 if (size > rpipe->pipe_buffer.cnt) 609 size = rpipe->pipe_buffer.cnt; 610 if (size > (u_int) uio->uio_resid) 611 size = (u_int) uio->uio_resid; 612 613 PIPE_UNLOCK(rpipe); 614 error = uiomove( 615 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 616 size, uio); 617 PIPE_LOCK(rpipe); 618 if (error) 619 break; 620 621 rpipe->pipe_buffer.out += size; 622 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 623 rpipe->pipe_buffer.out = 0; 624 625 rpipe->pipe_buffer.cnt -= size; 626 627 /* 628 * If there is no more to read in the pipe, reset 629 * its pointers to the beginning. This improves 630 * cache hit stats. 631 */ 632 if (rpipe->pipe_buffer.cnt == 0) { 633 rpipe->pipe_buffer.in = 0; 634 rpipe->pipe_buffer.out = 0; 635 } 636 nread += size; 637 #ifndef PIPE_NODIRECT 638 /* 639 * Direct copy, bypassing a kernel buffer. 640 */ 641 } else if ((size = rpipe->pipe_map.cnt) && 642 (rpipe->pipe_state & PIPE_DIRECTW)) { 643 if (size > (u_int) uio->uio_resid) 644 size = (u_int) uio->uio_resid; 645 646 PIPE_UNLOCK(rpipe); 647 error = uiomove_fromphys(rpipe->pipe_map.ms, 648 rpipe->pipe_map.pos, size, uio); 649 PIPE_LOCK(rpipe); 650 if (error) 651 break; 652 nread += size; 653 rpipe->pipe_map.pos += size; 654 rpipe->pipe_map.cnt -= size; 655 if (rpipe->pipe_map.cnt == 0) { 656 rpipe->pipe_state &= ~PIPE_DIRECTW; 657 wakeup(rpipe); 658 } 659 #endif 660 } else { 661 /* 662 * detect EOF condition 663 * read returns 0 on EOF, no need to set error 664 */ 665 if (rpipe->pipe_state & PIPE_EOF) 666 break; 667 668 /* 669 * If the "write-side" has been blocked, wake it up now. 670 */ 671 if (rpipe->pipe_state & PIPE_WANTW) { 672 rpipe->pipe_state &= ~PIPE_WANTW; 673 wakeup(rpipe); 674 } 675 676 /* 677 * Break if some data was read. 678 */ 679 if (nread > 0) 680 break; 681 682 /* 683 * Unlock the pipe buffer for our remaining processing. 684 * We will either break out with an error or we will 685 * sleep and relock to loop. 686 */ 687 pipeunlock(rpipe); 688 689 /* 690 * Handle non-blocking mode operation or 691 * wait for more data. 692 */ 693 if (fp->f_flag & FNONBLOCK) { 694 error = EAGAIN; 695 } else { 696 rpipe->pipe_state |= PIPE_WANTR; 697 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 698 PRIBIO | PCATCH, 699 "piperd", 0)) == 0) 700 error = pipelock(rpipe, 1); 701 } 702 if (error) 703 goto unlocked_error; 704 } 705 } 706 #ifdef MAC 707 locked_error: 708 #endif 709 pipeunlock(rpipe); 710 711 /* XXX: should probably do this before getting any locks. */ 712 if (error == 0) 713 vfs_timestamp(&rpipe->pipe_atime); 714 unlocked_error: 715 --rpipe->pipe_busy; 716 717 /* 718 * PIPE_WANT processing only makes sense if pipe_busy is 0. 719 */ 720 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 721 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 722 wakeup(rpipe); 723 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 724 /* 725 * Handle write blocking hysteresis. 726 */ 727 if (rpipe->pipe_state & PIPE_WANTW) { 728 rpipe->pipe_state &= ~PIPE_WANTW; 729 wakeup(rpipe); 730 } 731 } 732 733 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 734 pipeselwakeup(rpipe); 735 736 PIPE_UNLOCK(rpipe); 737 return (error); 738 } 739 740 #ifndef PIPE_NODIRECT 741 /* 742 * Map the sending processes' buffer into kernel space and wire it. 743 * This is similar to a physical write operation. 744 */ 745 static int 746 pipe_build_write_buffer(wpipe, uio) 747 struct pipe *wpipe; 748 struct uio *uio; 749 { 750 pmap_t pmap; 751 u_int size; 752 int i, j; 753 vm_offset_t addr, endaddr; 754 755 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 756 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 757 ("Clone attempt on non-direct write pipe!")); 758 759 size = (u_int) uio->uio_iov->iov_len; 760 if (size > wpipe->pipe_buffer.size) 761 size = wpipe->pipe_buffer.size; 762 763 pmap = vmspace_pmap(curproc->p_vmspace); 764 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size); 765 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base); 766 if (endaddr < addr) 767 return (EFAULT); 768 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) { 769 /* 770 * vm_fault_quick() can sleep. 771 */ 772 race: 773 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) { 774 for (j = 0; j < i; j++) { 775 vm_page_lock(wpipe->pipe_map.ms[j]); 776 vm_page_unhold(wpipe->pipe_map.ms[j]); 777 vm_page_unlock(wpipe->pipe_map.ms[j]); 778 } 779 return (EFAULT); 780 } 781 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr, 782 VM_PROT_READ); 783 if (wpipe->pipe_map.ms[i] == NULL) 784 goto race; 785 } 786 787 /* 788 * set up the control block 789 */ 790 wpipe->pipe_map.npages = i; 791 wpipe->pipe_map.pos = 792 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 793 wpipe->pipe_map.cnt = size; 794 795 /* 796 * and update the uio data 797 */ 798 799 uio->uio_iov->iov_len -= size; 800 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 801 if (uio->uio_iov->iov_len == 0) 802 uio->uio_iov++; 803 uio->uio_resid -= size; 804 uio->uio_offset += size; 805 return (0); 806 } 807 808 /* 809 * unmap and unwire the process buffer 810 */ 811 static void 812 pipe_destroy_write_buffer(wpipe) 813 struct pipe *wpipe; 814 { 815 int i; 816 817 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 818 for (i = 0; i < wpipe->pipe_map.npages; i++) { 819 vm_page_lock(wpipe->pipe_map.ms[i]); 820 vm_page_unhold(wpipe->pipe_map.ms[i]); 821 vm_page_unlock(wpipe->pipe_map.ms[i]); 822 } 823 wpipe->pipe_map.npages = 0; 824 } 825 826 /* 827 * In the case of a signal, the writing process might go away. This 828 * code copies the data into the circular buffer so that the source 829 * pages can be freed without loss of data. 830 */ 831 static void 832 pipe_clone_write_buffer(wpipe) 833 struct pipe *wpipe; 834 { 835 struct uio uio; 836 struct iovec iov; 837 int size; 838 int pos; 839 840 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 841 size = wpipe->pipe_map.cnt; 842 pos = wpipe->pipe_map.pos; 843 844 wpipe->pipe_buffer.in = size; 845 wpipe->pipe_buffer.out = 0; 846 wpipe->pipe_buffer.cnt = size; 847 wpipe->pipe_state &= ~PIPE_DIRECTW; 848 849 PIPE_UNLOCK(wpipe); 850 iov.iov_base = wpipe->pipe_buffer.buffer; 851 iov.iov_len = size; 852 uio.uio_iov = &iov; 853 uio.uio_iovcnt = 1; 854 uio.uio_offset = 0; 855 uio.uio_resid = size; 856 uio.uio_segflg = UIO_SYSSPACE; 857 uio.uio_rw = UIO_READ; 858 uio.uio_td = curthread; 859 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 860 PIPE_LOCK(wpipe); 861 pipe_destroy_write_buffer(wpipe); 862 } 863 864 /* 865 * This implements the pipe buffer write mechanism. Note that only 866 * a direct write OR a normal pipe write can be pending at any given time. 867 * If there are any characters in the pipe buffer, the direct write will 868 * be deferred until the receiving process grabs all of the bytes from 869 * the pipe buffer. Then the direct mapping write is set-up. 870 */ 871 static int 872 pipe_direct_write(wpipe, uio) 873 struct pipe *wpipe; 874 struct uio *uio; 875 { 876 int error; 877 878 retry: 879 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 880 error = pipelock(wpipe, 1); 881 if (wpipe->pipe_state & PIPE_EOF) 882 error = EPIPE; 883 if (error) { 884 pipeunlock(wpipe); 885 goto error1; 886 } 887 while (wpipe->pipe_state & PIPE_DIRECTW) { 888 if (wpipe->pipe_state & PIPE_WANTR) { 889 wpipe->pipe_state &= ~PIPE_WANTR; 890 wakeup(wpipe); 891 } 892 pipeselwakeup(wpipe); 893 wpipe->pipe_state |= PIPE_WANTW; 894 pipeunlock(wpipe); 895 error = msleep(wpipe, PIPE_MTX(wpipe), 896 PRIBIO | PCATCH, "pipdww", 0); 897 if (error) 898 goto error1; 899 else 900 goto retry; 901 } 902 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 903 if (wpipe->pipe_buffer.cnt > 0) { 904 if (wpipe->pipe_state & PIPE_WANTR) { 905 wpipe->pipe_state &= ~PIPE_WANTR; 906 wakeup(wpipe); 907 } 908 pipeselwakeup(wpipe); 909 wpipe->pipe_state |= PIPE_WANTW; 910 pipeunlock(wpipe); 911 error = msleep(wpipe, PIPE_MTX(wpipe), 912 PRIBIO | PCATCH, "pipdwc", 0); 913 if (error) 914 goto error1; 915 else 916 goto retry; 917 } 918 919 wpipe->pipe_state |= PIPE_DIRECTW; 920 921 PIPE_UNLOCK(wpipe); 922 error = pipe_build_write_buffer(wpipe, uio); 923 PIPE_LOCK(wpipe); 924 if (error) { 925 wpipe->pipe_state &= ~PIPE_DIRECTW; 926 pipeunlock(wpipe); 927 goto error1; 928 } 929 930 error = 0; 931 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 932 if (wpipe->pipe_state & PIPE_EOF) { 933 pipe_destroy_write_buffer(wpipe); 934 pipeselwakeup(wpipe); 935 pipeunlock(wpipe); 936 error = EPIPE; 937 goto error1; 938 } 939 if (wpipe->pipe_state & PIPE_WANTR) { 940 wpipe->pipe_state &= ~PIPE_WANTR; 941 wakeup(wpipe); 942 } 943 pipeselwakeup(wpipe); 944 pipeunlock(wpipe); 945 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 946 "pipdwt", 0); 947 pipelock(wpipe, 0); 948 } 949 950 if (wpipe->pipe_state & PIPE_EOF) 951 error = EPIPE; 952 if (wpipe->pipe_state & PIPE_DIRECTW) { 953 /* 954 * this bit of trickery substitutes a kernel buffer for 955 * the process that might be going away. 956 */ 957 pipe_clone_write_buffer(wpipe); 958 } else { 959 pipe_destroy_write_buffer(wpipe); 960 } 961 pipeunlock(wpipe); 962 return (error); 963 964 error1: 965 wakeup(wpipe); 966 return (error); 967 } 968 #endif 969 970 static int 971 pipe_write(fp, uio, active_cred, flags, td) 972 struct file *fp; 973 struct uio *uio; 974 struct ucred *active_cred; 975 struct thread *td; 976 int flags; 977 { 978 int error = 0; 979 int desiredsize, orig_resid; 980 struct pipe *wpipe, *rpipe; 981 982 rpipe = fp->f_data; 983 wpipe = rpipe->pipe_peer; 984 985 PIPE_LOCK(rpipe); 986 error = pipelock(wpipe, 1); 987 if (error) { 988 PIPE_UNLOCK(rpipe); 989 return (error); 990 } 991 /* 992 * detect loss of pipe read side, issue SIGPIPE if lost. 993 */ 994 if (wpipe->pipe_present != PIPE_ACTIVE || 995 (wpipe->pipe_state & PIPE_EOF)) { 996 pipeunlock(wpipe); 997 PIPE_UNLOCK(rpipe); 998 return (EPIPE); 999 } 1000 #ifdef MAC 1001 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair); 1002 if (error) { 1003 pipeunlock(wpipe); 1004 PIPE_UNLOCK(rpipe); 1005 return (error); 1006 } 1007 #endif 1008 ++wpipe->pipe_busy; 1009 1010 /* Choose a larger size if it's advantageous */ 1011 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1012 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1013 if (piperesizeallowed != 1) 1014 break; 1015 if (amountpipekva > maxpipekva / 2) 1016 break; 1017 if (desiredsize == BIG_PIPE_SIZE) 1018 break; 1019 desiredsize = desiredsize * 2; 1020 } 1021 1022 /* Choose a smaller size if we're in a OOM situation */ 1023 if ((amountpipekva > (3 * maxpipekva) / 4) && 1024 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 1025 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1026 (piperesizeallowed == 1)) 1027 desiredsize = SMALL_PIPE_SIZE; 1028 1029 /* Resize if the above determined that a new size was necessary */ 1030 if ((desiredsize != wpipe->pipe_buffer.size) && 1031 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1032 PIPE_UNLOCK(wpipe); 1033 pipespace(wpipe, desiredsize); 1034 PIPE_LOCK(wpipe); 1035 } 1036 if (wpipe->pipe_buffer.size == 0) { 1037 /* 1038 * This can only happen for reverse direction use of pipes 1039 * in a complete OOM situation. 1040 */ 1041 error = ENOMEM; 1042 --wpipe->pipe_busy; 1043 pipeunlock(wpipe); 1044 PIPE_UNLOCK(wpipe); 1045 return (error); 1046 } 1047 1048 pipeunlock(wpipe); 1049 1050 orig_resid = uio->uio_resid; 1051 1052 while (uio->uio_resid) { 1053 int space; 1054 1055 pipelock(wpipe, 0); 1056 if (wpipe->pipe_state & PIPE_EOF) { 1057 pipeunlock(wpipe); 1058 error = EPIPE; 1059 break; 1060 } 1061 #ifndef PIPE_NODIRECT 1062 /* 1063 * If the transfer is large, we can gain performance if 1064 * we do process-to-process copies directly. 1065 * If the write is non-blocking, we don't use the 1066 * direct write mechanism. 1067 * 1068 * The direct write mechanism will detect the reader going 1069 * away on us. 1070 */ 1071 if (uio->uio_segflg == UIO_USERSPACE && 1072 uio->uio_iov->iov_len >= PIPE_MINDIRECT && 1073 wpipe->pipe_buffer.size >= PIPE_MINDIRECT && 1074 (fp->f_flag & FNONBLOCK) == 0) { 1075 pipeunlock(wpipe); 1076 error = pipe_direct_write(wpipe, uio); 1077 if (error) 1078 break; 1079 continue; 1080 } 1081 #endif 1082 1083 /* 1084 * Pipe buffered writes cannot be coincidental with 1085 * direct writes. We wait until the currently executing 1086 * direct write is completed before we start filling the 1087 * pipe buffer. We break out if a signal occurs or the 1088 * reader goes away. 1089 */ 1090 if (wpipe->pipe_state & PIPE_DIRECTW) { 1091 if (wpipe->pipe_state & PIPE_WANTR) { 1092 wpipe->pipe_state &= ~PIPE_WANTR; 1093 wakeup(wpipe); 1094 } 1095 pipeselwakeup(wpipe); 1096 wpipe->pipe_state |= PIPE_WANTW; 1097 pipeunlock(wpipe); 1098 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1099 "pipbww", 0); 1100 if (error) 1101 break; 1102 else 1103 continue; 1104 } 1105 1106 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1107 1108 /* Writes of size <= PIPE_BUF must be atomic. */ 1109 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1110 space = 0; 1111 1112 if (space > 0) { 1113 int size; /* Transfer size */ 1114 int segsize; /* first segment to transfer */ 1115 1116 /* 1117 * Transfer size is minimum of uio transfer 1118 * and free space in pipe buffer. 1119 */ 1120 if (space > uio->uio_resid) 1121 size = uio->uio_resid; 1122 else 1123 size = space; 1124 /* 1125 * First segment to transfer is minimum of 1126 * transfer size and contiguous space in 1127 * pipe buffer. If first segment to transfer 1128 * is less than the transfer size, we've got 1129 * a wraparound in the buffer. 1130 */ 1131 segsize = wpipe->pipe_buffer.size - 1132 wpipe->pipe_buffer.in; 1133 if (segsize > size) 1134 segsize = size; 1135 1136 /* Transfer first segment */ 1137 1138 PIPE_UNLOCK(rpipe); 1139 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1140 segsize, uio); 1141 PIPE_LOCK(rpipe); 1142 1143 if (error == 0 && segsize < size) { 1144 KASSERT(wpipe->pipe_buffer.in + segsize == 1145 wpipe->pipe_buffer.size, 1146 ("Pipe buffer wraparound disappeared")); 1147 /* 1148 * Transfer remaining part now, to 1149 * support atomic writes. Wraparound 1150 * happened. 1151 */ 1152 1153 PIPE_UNLOCK(rpipe); 1154 error = uiomove( 1155 &wpipe->pipe_buffer.buffer[0], 1156 size - segsize, uio); 1157 PIPE_LOCK(rpipe); 1158 } 1159 if (error == 0) { 1160 wpipe->pipe_buffer.in += size; 1161 if (wpipe->pipe_buffer.in >= 1162 wpipe->pipe_buffer.size) { 1163 KASSERT(wpipe->pipe_buffer.in == 1164 size - segsize + 1165 wpipe->pipe_buffer.size, 1166 ("Expected wraparound bad")); 1167 wpipe->pipe_buffer.in = size - segsize; 1168 } 1169 1170 wpipe->pipe_buffer.cnt += size; 1171 KASSERT(wpipe->pipe_buffer.cnt <= 1172 wpipe->pipe_buffer.size, 1173 ("Pipe buffer overflow")); 1174 } 1175 pipeunlock(wpipe); 1176 if (error != 0) 1177 break; 1178 } else { 1179 /* 1180 * If the "read-side" has been blocked, wake it up now. 1181 */ 1182 if (wpipe->pipe_state & PIPE_WANTR) { 1183 wpipe->pipe_state &= ~PIPE_WANTR; 1184 wakeup(wpipe); 1185 } 1186 1187 /* 1188 * don't block on non-blocking I/O 1189 */ 1190 if (fp->f_flag & FNONBLOCK) { 1191 error = EAGAIN; 1192 pipeunlock(wpipe); 1193 break; 1194 } 1195 1196 /* 1197 * We have no more space and have something to offer, 1198 * wake up select/poll. 1199 */ 1200 pipeselwakeup(wpipe); 1201 1202 wpipe->pipe_state |= PIPE_WANTW; 1203 pipeunlock(wpipe); 1204 error = msleep(wpipe, PIPE_MTX(rpipe), 1205 PRIBIO | PCATCH, "pipewr", 0); 1206 if (error != 0) 1207 break; 1208 } 1209 } 1210 1211 pipelock(wpipe, 0); 1212 --wpipe->pipe_busy; 1213 1214 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1215 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1216 wakeup(wpipe); 1217 } else if (wpipe->pipe_buffer.cnt > 0) { 1218 /* 1219 * If we have put any characters in the buffer, we wake up 1220 * the reader. 1221 */ 1222 if (wpipe->pipe_state & PIPE_WANTR) { 1223 wpipe->pipe_state &= ~PIPE_WANTR; 1224 wakeup(wpipe); 1225 } 1226 } 1227 1228 /* 1229 * Don't return EPIPE if I/O was successful 1230 */ 1231 if ((wpipe->pipe_buffer.cnt == 0) && 1232 (uio->uio_resid == 0) && 1233 (error == EPIPE)) { 1234 error = 0; 1235 } 1236 1237 if (error == 0) 1238 vfs_timestamp(&wpipe->pipe_mtime); 1239 1240 /* 1241 * We have something to offer, 1242 * wake up select/poll. 1243 */ 1244 if (wpipe->pipe_buffer.cnt) 1245 pipeselwakeup(wpipe); 1246 1247 pipeunlock(wpipe); 1248 PIPE_UNLOCK(rpipe); 1249 return (error); 1250 } 1251 1252 /* ARGSUSED */ 1253 static int 1254 pipe_truncate(fp, length, active_cred, td) 1255 struct file *fp; 1256 off_t length; 1257 struct ucred *active_cred; 1258 struct thread *td; 1259 { 1260 1261 return (EINVAL); 1262 } 1263 1264 /* 1265 * we implement a very minimal set of ioctls for compatibility with sockets. 1266 */ 1267 static int 1268 pipe_ioctl(fp, cmd, data, active_cred, td) 1269 struct file *fp; 1270 u_long cmd; 1271 void *data; 1272 struct ucred *active_cred; 1273 struct thread *td; 1274 { 1275 struct pipe *mpipe = fp->f_data; 1276 int error; 1277 1278 PIPE_LOCK(mpipe); 1279 1280 #ifdef MAC 1281 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1282 if (error) { 1283 PIPE_UNLOCK(mpipe); 1284 return (error); 1285 } 1286 #endif 1287 1288 error = 0; 1289 switch (cmd) { 1290 1291 case FIONBIO: 1292 break; 1293 1294 case FIOASYNC: 1295 if (*(int *)data) { 1296 mpipe->pipe_state |= PIPE_ASYNC; 1297 } else { 1298 mpipe->pipe_state &= ~PIPE_ASYNC; 1299 } 1300 break; 1301 1302 case FIONREAD: 1303 if (mpipe->pipe_state & PIPE_DIRECTW) 1304 *(int *)data = mpipe->pipe_map.cnt; 1305 else 1306 *(int *)data = mpipe->pipe_buffer.cnt; 1307 break; 1308 1309 case FIOSETOWN: 1310 PIPE_UNLOCK(mpipe); 1311 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1312 goto out_unlocked; 1313 1314 case FIOGETOWN: 1315 *(int *)data = fgetown(&mpipe->pipe_sigio); 1316 break; 1317 1318 /* This is deprecated, FIOSETOWN should be used instead. */ 1319 case TIOCSPGRP: 1320 PIPE_UNLOCK(mpipe); 1321 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1322 goto out_unlocked; 1323 1324 /* This is deprecated, FIOGETOWN should be used instead. */ 1325 case TIOCGPGRP: 1326 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1327 break; 1328 1329 default: 1330 error = ENOTTY; 1331 break; 1332 } 1333 PIPE_UNLOCK(mpipe); 1334 out_unlocked: 1335 return (error); 1336 } 1337 1338 static int 1339 pipe_poll(fp, events, active_cred, td) 1340 struct file *fp; 1341 int events; 1342 struct ucred *active_cred; 1343 struct thread *td; 1344 { 1345 struct pipe *rpipe = fp->f_data; 1346 struct pipe *wpipe; 1347 int revents = 0; 1348 #ifdef MAC 1349 int error; 1350 #endif 1351 1352 wpipe = rpipe->pipe_peer; 1353 PIPE_LOCK(rpipe); 1354 #ifdef MAC 1355 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair); 1356 if (error) 1357 goto locked_error; 1358 #endif 1359 if (events & (POLLIN | POLLRDNORM)) 1360 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1361 (rpipe->pipe_buffer.cnt > 0)) 1362 revents |= events & (POLLIN | POLLRDNORM); 1363 1364 if (events & (POLLOUT | POLLWRNORM)) 1365 if (wpipe->pipe_present != PIPE_ACTIVE || 1366 (wpipe->pipe_state & PIPE_EOF) || 1367 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1368 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1369 revents |= events & (POLLOUT | POLLWRNORM); 1370 1371 if ((events & POLLINIGNEOF) == 0) { 1372 if (rpipe->pipe_state & PIPE_EOF) { 1373 revents |= (events & (POLLIN | POLLRDNORM)); 1374 if (wpipe->pipe_present != PIPE_ACTIVE || 1375 (wpipe->pipe_state & PIPE_EOF)) 1376 revents |= POLLHUP; 1377 } 1378 } 1379 1380 if (revents == 0) { 1381 if (events & (POLLIN | POLLRDNORM)) { 1382 selrecord(td, &rpipe->pipe_sel); 1383 if (SEL_WAITING(&rpipe->pipe_sel)) 1384 rpipe->pipe_state |= PIPE_SEL; 1385 } 1386 1387 if (events & (POLLOUT | POLLWRNORM)) { 1388 selrecord(td, &wpipe->pipe_sel); 1389 if (SEL_WAITING(&wpipe->pipe_sel)) 1390 wpipe->pipe_state |= PIPE_SEL; 1391 } 1392 } 1393 #ifdef MAC 1394 locked_error: 1395 #endif 1396 PIPE_UNLOCK(rpipe); 1397 1398 return (revents); 1399 } 1400 1401 /* 1402 * We shouldn't need locks here as we're doing a read and this should 1403 * be a natural race. 1404 */ 1405 static int 1406 pipe_stat(fp, ub, active_cred, td) 1407 struct file *fp; 1408 struct stat *ub; 1409 struct ucred *active_cred; 1410 struct thread *td; 1411 { 1412 struct pipe *pipe = fp->f_data; 1413 #ifdef MAC 1414 int error; 1415 1416 PIPE_LOCK(pipe); 1417 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair); 1418 PIPE_UNLOCK(pipe); 1419 if (error) 1420 return (error); 1421 #endif 1422 bzero(ub, sizeof(*ub)); 1423 ub->st_mode = S_IFIFO; 1424 ub->st_blksize = PAGE_SIZE; 1425 if (pipe->pipe_state & PIPE_DIRECTW) 1426 ub->st_size = pipe->pipe_map.cnt; 1427 else 1428 ub->st_size = pipe->pipe_buffer.cnt; 1429 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1430 ub->st_atim = pipe->pipe_atime; 1431 ub->st_mtim = pipe->pipe_mtime; 1432 ub->st_ctim = pipe->pipe_ctime; 1433 ub->st_uid = fp->f_cred->cr_uid; 1434 ub->st_gid = fp->f_cred->cr_gid; 1435 /* 1436 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1437 * XXX (st_dev, st_ino) should be unique. 1438 */ 1439 return (0); 1440 } 1441 1442 /* ARGSUSED */ 1443 static int 1444 pipe_close(fp, td) 1445 struct file *fp; 1446 struct thread *td; 1447 { 1448 struct pipe *cpipe = fp->f_data; 1449 1450 fp->f_ops = &badfileops; 1451 fp->f_data = NULL; 1452 funsetown(&cpipe->pipe_sigio); 1453 pipeclose(cpipe); 1454 return (0); 1455 } 1456 1457 static void 1458 pipe_free_kmem(cpipe) 1459 struct pipe *cpipe; 1460 { 1461 1462 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1463 ("pipe_free_kmem: pipe mutex locked")); 1464 1465 if (cpipe->pipe_buffer.buffer != NULL) { 1466 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size); 1467 vm_map_remove(pipe_map, 1468 (vm_offset_t)cpipe->pipe_buffer.buffer, 1469 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1470 cpipe->pipe_buffer.buffer = NULL; 1471 } 1472 #ifndef PIPE_NODIRECT 1473 { 1474 cpipe->pipe_map.cnt = 0; 1475 cpipe->pipe_map.pos = 0; 1476 cpipe->pipe_map.npages = 0; 1477 } 1478 #endif 1479 } 1480 1481 /* 1482 * shutdown the pipe 1483 */ 1484 static void 1485 pipeclose(cpipe) 1486 struct pipe *cpipe; 1487 { 1488 struct pipepair *pp; 1489 struct pipe *ppipe; 1490 1491 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1492 1493 PIPE_LOCK(cpipe); 1494 pipelock(cpipe, 0); 1495 pp = cpipe->pipe_pair; 1496 1497 pipeselwakeup(cpipe); 1498 1499 /* 1500 * If the other side is blocked, wake it up saying that 1501 * we want to close it down. 1502 */ 1503 cpipe->pipe_state |= PIPE_EOF; 1504 while (cpipe->pipe_busy) { 1505 wakeup(cpipe); 1506 cpipe->pipe_state |= PIPE_WANT; 1507 pipeunlock(cpipe); 1508 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1509 pipelock(cpipe, 0); 1510 } 1511 1512 1513 /* 1514 * Disconnect from peer, if any. 1515 */ 1516 ppipe = cpipe->pipe_peer; 1517 if (ppipe->pipe_present == PIPE_ACTIVE) { 1518 pipeselwakeup(ppipe); 1519 1520 ppipe->pipe_state |= PIPE_EOF; 1521 wakeup(ppipe); 1522 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1523 } 1524 1525 /* 1526 * Mark this endpoint as free. Release kmem resources. We 1527 * don't mark this endpoint as unused until we've finished 1528 * doing that, or the pipe might disappear out from under 1529 * us. 1530 */ 1531 PIPE_UNLOCK(cpipe); 1532 pipe_free_kmem(cpipe); 1533 PIPE_LOCK(cpipe); 1534 cpipe->pipe_present = PIPE_CLOSING; 1535 pipeunlock(cpipe); 1536 1537 /* 1538 * knlist_clear() may sleep dropping the PIPE_MTX. Set the 1539 * PIPE_FINALIZED, that allows other end to free the 1540 * pipe_pair, only after the knotes are completely dismantled. 1541 */ 1542 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1543 cpipe->pipe_present = PIPE_FINALIZED; 1544 knlist_destroy(&cpipe->pipe_sel.si_note); 1545 1546 /* 1547 * If both endpoints are now closed, release the memory for the 1548 * pipe pair. If not, unlock. 1549 */ 1550 if (ppipe->pipe_present == PIPE_FINALIZED) { 1551 PIPE_UNLOCK(cpipe); 1552 #ifdef MAC 1553 mac_pipe_destroy(pp); 1554 #endif 1555 uma_zfree(pipe_zone, cpipe->pipe_pair); 1556 } else 1557 PIPE_UNLOCK(cpipe); 1558 } 1559 1560 /*ARGSUSED*/ 1561 static int 1562 pipe_kqfilter(struct file *fp, struct knote *kn) 1563 { 1564 struct pipe *cpipe; 1565 1566 cpipe = kn->kn_fp->f_data; 1567 PIPE_LOCK(cpipe); 1568 switch (kn->kn_filter) { 1569 case EVFILT_READ: 1570 kn->kn_fop = &pipe_rfiltops; 1571 break; 1572 case EVFILT_WRITE: 1573 kn->kn_fop = &pipe_wfiltops; 1574 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) { 1575 /* other end of pipe has been closed */ 1576 PIPE_UNLOCK(cpipe); 1577 return (EPIPE); 1578 } 1579 cpipe = cpipe->pipe_peer; 1580 break; 1581 default: 1582 PIPE_UNLOCK(cpipe); 1583 return (EINVAL); 1584 } 1585 1586 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1587 PIPE_UNLOCK(cpipe); 1588 return (0); 1589 } 1590 1591 static void 1592 filt_pipedetach(struct knote *kn) 1593 { 1594 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; 1595 1596 PIPE_LOCK(cpipe); 1597 if (kn->kn_filter == EVFILT_WRITE) 1598 cpipe = cpipe->pipe_peer; 1599 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1600 PIPE_UNLOCK(cpipe); 1601 } 1602 1603 /*ARGSUSED*/ 1604 static int 1605 filt_piperead(struct knote *kn, long hint) 1606 { 1607 struct pipe *rpipe = kn->kn_fp->f_data; 1608 struct pipe *wpipe = rpipe->pipe_peer; 1609 int ret; 1610 1611 PIPE_LOCK(rpipe); 1612 kn->kn_data = rpipe->pipe_buffer.cnt; 1613 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1614 kn->kn_data = rpipe->pipe_map.cnt; 1615 1616 if ((rpipe->pipe_state & PIPE_EOF) || 1617 wpipe->pipe_present != PIPE_ACTIVE || 1618 (wpipe->pipe_state & PIPE_EOF)) { 1619 kn->kn_flags |= EV_EOF; 1620 PIPE_UNLOCK(rpipe); 1621 return (1); 1622 } 1623 ret = kn->kn_data > 0; 1624 PIPE_UNLOCK(rpipe); 1625 return ret; 1626 } 1627 1628 /*ARGSUSED*/ 1629 static int 1630 filt_pipewrite(struct knote *kn, long hint) 1631 { 1632 struct pipe *rpipe = kn->kn_fp->f_data; 1633 struct pipe *wpipe = rpipe->pipe_peer; 1634 1635 PIPE_LOCK(rpipe); 1636 if (wpipe->pipe_present != PIPE_ACTIVE || 1637 (wpipe->pipe_state & PIPE_EOF)) { 1638 kn->kn_data = 0; 1639 kn->kn_flags |= EV_EOF; 1640 PIPE_UNLOCK(rpipe); 1641 return (1); 1642 } 1643 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1644 if (wpipe->pipe_state & PIPE_DIRECTW) 1645 kn->kn_data = 0; 1646 1647 PIPE_UNLOCK(rpipe); 1648 return (kn->kn_data >= PIPE_BUF); 1649 } 1650