1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1996 John S. Dyson 5 * Copyright (c) 2012 Giovanni Trematerra 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice immediately at the beginning of the file, without modification, 13 * this list of conditions, and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Absolutely no warranty of function or purpose is made by the author 18 * John S. Dyson. 19 * 4. Modifications may be freely made to this file if the above conditions 20 * are met. 21 */ 22 23 /* 24 * This file contains a high-performance replacement for the socket-based 25 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 26 * all features of sockets, but does do everything that pipes normally 27 * do. 28 */ 29 30 /* 31 * This code has two modes of operation, a small write mode and a large 32 * write mode. The small write mode acts like conventional pipes with 33 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 34 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 35 * and PIPE_SIZE in size, the sending process pins the underlying pages in 36 * memory, and the receiving process copies directly from these pinned pages 37 * in the sending process. 38 * 39 * If the sending process receives a signal, it is possible that it will 40 * go away, and certainly its address space can change, because control 41 * is returned back to the user-mode side. In that case, the pipe code 42 * arranges to copy the buffer supplied by the user process, to a pageable 43 * kernel buffer, and the receiving process will grab the data from the 44 * pageable kernel buffer. Since signals don't happen all that often, 45 * the copy operation is normally eliminated. 46 * 47 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 48 * happen for small transfers so that the system will not spend all of 49 * its time context switching. 50 * 51 * In order to limit the resource use of pipes, two sysctls exist: 52 * 53 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 54 * address space available to us in pipe_map. This value is normally 55 * autotuned, but may also be loader tuned. 56 * 57 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 58 * memory in use by pipes. 59 * 60 * Based on how large pipekva is relative to maxpipekva, the following 61 * will happen: 62 * 63 * 0% - 50%: 64 * New pipes are given 16K of memory backing, pipes may dynamically 65 * grow to as large as 64K where needed. 66 * 50% - 75%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes may NOT grow. 69 * 75% - 100%: 70 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 71 * existing pipes will be shrunk down to 4K whenever possible. 72 * 73 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 74 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 75 * resize which MUST occur for reverse-direction pipes when they are 76 * first used. 77 * 78 * Additional information about the current state of pipes may be obtained 79 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 80 * and kern.ipc.piperesizefail. 81 * 82 * Locking rules: There are two locks present here: A mutex, used via 83 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 84 * the flag, as mutexes can not persist over uiomove. The mutex 85 * exists only to guard access to the flag, and is not in itself a 86 * locking mechanism. Also note that there is only a single mutex for 87 * both directions of a pipe. 88 * 89 * As pipelock() may have to sleep before it can acquire the flag, it 90 * is important to reread all data after a call to pipelock(); everything 91 * in the structure may have changed. 92 */ 93 94 #include <sys/cdefs.h> 95 __FBSDID("$FreeBSD$"); 96 97 #include <sys/param.h> 98 #include <sys/systm.h> 99 #include <sys/conf.h> 100 #include <sys/fcntl.h> 101 #include <sys/file.h> 102 #include <sys/filedesc.h> 103 #include <sys/filio.h> 104 #include <sys/kernel.h> 105 #include <sys/lock.h> 106 #include <sys/mutex.h> 107 #include <sys/ttycom.h> 108 #include <sys/stat.h> 109 #include <sys/malloc.h> 110 #include <sys/poll.h> 111 #include <sys/selinfo.h> 112 #include <sys/signalvar.h> 113 #include <sys/syscallsubr.h> 114 #include <sys/sysctl.h> 115 #include <sys/sysproto.h> 116 #include <sys/pipe.h> 117 #include <sys/proc.h> 118 #include <sys/vnode.h> 119 #include <sys/uio.h> 120 #include <sys/user.h> 121 #include <sys/event.h> 122 123 #include <security/mac/mac_framework.h> 124 125 #include <vm/vm.h> 126 #include <vm/vm_param.h> 127 #include <vm/vm_object.h> 128 #include <vm/vm_kern.h> 129 #include <vm/vm_extern.h> 130 #include <vm/pmap.h> 131 #include <vm/vm_map.h> 132 #include <vm/vm_page.h> 133 #include <vm/uma.h> 134 135 /* 136 * Use this define if you want to disable *fancy* VM things. Expect an 137 * approx 30% decrease in transfer rate. This could be useful for 138 * NetBSD or OpenBSD. 139 */ 140 /* #define PIPE_NODIRECT */ 141 142 #define PIPE_PEER(pipe) \ 143 (((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer)) 144 145 /* 146 * interfaces to the outside world 147 */ 148 static fo_rdwr_t pipe_read; 149 static fo_rdwr_t pipe_write; 150 static fo_truncate_t pipe_truncate; 151 static fo_ioctl_t pipe_ioctl; 152 static fo_poll_t pipe_poll; 153 static fo_kqfilter_t pipe_kqfilter; 154 static fo_stat_t pipe_stat; 155 static fo_close_t pipe_close; 156 static fo_chmod_t pipe_chmod; 157 static fo_chown_t pipe_chown; 158 static fo_fill_kinfo_t pipe_fill_kinfo; 159 160 struct fileops pipeops = { 161 .fo_read = pipe_read, 162 .fo_write = pipe_write, 163 .fo_truncate = pipe_truncate, 164 .fo_ioctl = pipe_ioctl, 165 .fo_poll = pipe_poll, 166 .fo_kqfilter = pipe_kqfilter, 167 .fo_stat = pipe_stat, 168 .fo_close = pipe_close, 169 .fo_chmod = pipe_chmod, 170 .fo_chown = pipe_chown, 171 .fo_sendfile = invfo_sendfile, 172 .fo_fill_kinfo = pipe_fill_kinfo, 173 .fo_flags = DFLAG_PASSABLE 174 }; 175 176 static void filt_pipedetach(struct knote *kn); 177 static void filt_pipedetach_notsup(struct knote *kn); 178 static int filt_pipenotsup(struct knote *kn, long hint); 179 static int filt_piperead(struct knote *kn, long hint); 180 static int filt_pipewrite(struct knote *kn, long hint); 181 182 static struct filterops pipe_nfiltops = { 183 .f_isfd = 1, 184 .f_detach = filt_pipedetach_notsup, 185 .f_event = filt_pipenotsup 186 }; 187 static struct filterops pipe_rfiltops = { 188 .f_isfd = 1, 189 .f_detach = filt_pipedetach, 190 .f_event = filt_piperead 191 }; 192 static struct filterops pipe_wfiltops = { 193 .f_isfd = 1, 194 .f_detach = filt_pipedetach, 195 .f_event = filt_pipewrite 196 }; 197 198 /* 199 * Default pipe buffer size(s), this can be kind-of large now because pipe 200 * space is pageable. The pipe code will try to maintain locality of 201 * reference for performance reasons, so small amounts of outstanding I/O 202 * will not wipe the cache. 203 */ 204 #define MINPIPESIZE (PIPE_SIZE/3) 205 #define MAXPIPESIZE (2*PIPE_SIZE/3) 206 207 static long amountpipekva; 208 static int pipefragretry; 209 static int pipeallocfail; 210 static int piperesizefail; 211 static int piperesizeallowed = 1; 212 213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 214 &maxpipekva, 0, "Pipe KVA limit"); 215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 216 &amountpipekva, 0, "Pipe KVA usage"); 217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 218 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 220 &pipeallocfail, 0, "Pipe allocation failures"); 221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 222 &piperesizefail, 0, "Pipe resize failures"); 223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 224 &piperesizeallowed, 0, "Pipe resizing allowed"); 225 226 static void pipeinit(void *dummy __unused); 227 static void pipeclose(struct pipe *cpipe); 228 static void pipe_free_kmem(struct pipe *cpipe); 229 static void pipe_create(struct pipe *pipe, int backing); 230 static void pipe_paircreate(struct thread *td, struct pipepair **p_pp); 231 static __inline int pipelock(struct pipe *cpipe, int catch); 232 static __inline void pipeunlock(struct pipe *cpipe); 233 #ifndef PIPE_NODIRECT 234 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 235 static void pipe_destroy_write_buffer(struct pipe *wpipe); 236 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 237 static void pipe_clone_write_buffer(struct pipe *wpipe); 238 #endif 239 static int pipespace(struct pipe *cpipe, int size); 240 static int pipespace_new(struct pipe *cpipe, int size); 241 242 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 243 static int pipe_zone_init(void *mem, int size, int flags); 244 static void pipe_zone_fini(void *mem, int size); 245 246 static uma_zone_t pipe_zone; 247 static struct unrhdr64 pipeino_unr; 248 static dev_t pipedev_ino; 249 250 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 251 252 static void 253 pipeinit(void *dummy __unused) 254 { 255 256 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair), 257 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini, 258 UMA_ALIGN_PTR, 0); 259 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 260 new_unrhdr64(&pipeino_unr, 1); 261 pipedev_ino = devfs_alloc_cdp_inode(); 262 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized")); 263 } 264 265 static int 266 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 267 { 268 struct pipepair *pp; 269 struct pipe *rpipe, *wpipe; 270 271 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 272 273 pp = (struct pipepair *)mem; 274 275 /* 276 * We zero both pipe endpoints to make sure all the kmem pointers 277 * are NULL, flag fields are zero'd, etc. We timestamp both 278 * endpoints with the same time. 279 */ 280 rpipe = &pp->pp_rpipe; 281 bzero(rpipe, sizeof(*rpipe)); 282 vfs_timestamp(&rpipe->pipe_ctime); 283 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 284 285 wpipe = &pp->pp_wpipe; 286 bzero(wpipe, sizeof(*wpipe)); 287 wpipe->pipe_ctime = rpipe->pipe_ctime; 288 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 289 290 rpipe->pipe_peer = wpipe; 291 rpipe->pipe_pair = pp; 292 wpipe->pipe_peer = rpipe; 293 wpipe->pipe_pair = pp; 294 295 /* 296 * Mark both endpoints as present; they will later get free'd 297 * one at a time. When both are free'd, then the whole pair 298 * is released. 299 */ 300 rpipe->pipe_present = PIPE_ACTIVE; 301 wpipe->pipe_present = PIPE_ACTIVE; 302 303 /* 304 * Eventually, the MAC Framework may initialize the label 305 * in ctor or init, but for now we do it elswhere to avoid 306 * blocking in ctor or init. 307 */ 308 pp->pp_label = NULL; 309 310 return (0); 311 } 312 313 static int 314 pipe_zone_init(void *mem, int size, int flags) 315 { 316 struct pipepair *pp; 317 318 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 319 320 pp = (struct pipepair *)mem; 321 322 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW); 323 return (0); 324 } 325 326 static void 327 pipe_zone_fini(void *mem, int size) 328 { 329 struct pipepair *pp; 330 331 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 332 333 pp = (struct pipepair *)mem; 334 335 mtx_destroy(&pp->pp_mtx); 336 } 337 338 static void 339 pipe_paircreate(struct thread *td, struct pipepair **p_pp) 340 { 341 struct pipepair *pp; 342 struct pipe *rpipe, *wpipe; 343 344 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK); 345 #ifdef MAC 346 /* 347 * The MAC label is shared between the connected endpoints. As a 348 * result mac_pipe_init() and mac_pipe_create() are called once 349 * for the pair, and not on the endpoints. 350 */ 351 mac_pipe_init(pp); 352 mac_pipe_create(td->td_ucred, pp); 353 #endif 354 rpipe = &pp->pp_rpipe; 355 wpipe = &pp->pp_wpipe; 356 357 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe)); 358 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe)); 359 360 /* Only the forward direction pipe is backed by default */ 361 pipe_create(rpipe, 1); 362 pipe_create(wpipe, 0); 363 364 rpipe->pipe_state |= PIPE_DIRECTOK; 365 wpipe->pipe_state |= PIPE_DIRECTOK; 366 } 367 368 void 369 pipe_named_ctor(struct pipe **ppipe, struct thread *td) 370 { 371 struct pipepair *pp; 372 373 pipe_paircreate(td, &pp); 374 pp->pp_rpipe.pipe_state |= PIPE_NAMED; 375 *ppipe = &pp->pp_rpipe; 376 } 377 378 void 379 pipe_dtor(struct pipe *dpipe) 380 { 381 struct pipe *peer; 382 383 peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL; 384 funsetown(&dpipe->pipe_sigio); 385 pipeclose(dpipe); 386 if (peer != NULL) { 387 funsetown(&peer->pipe_sigio); 388 pipeclose(peer); 389 } 390 } 391 392 /* 393 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let 394 * the zone pick up the pieces via pipeclose(). 395 */ 396 int 397 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1, 398 struct filecaps *fcaps2) 399 { 400 struct file *rf, *wf; 401 struct pipe *rpipe, *wpipe; 402 struct pipepair *pp; 403 int fd, fflags, error; 404 405 pipe_paircreate(td, &pp); 406 rpipe = &pp->pp_rpipe; 407 wpipe = &pp->pp_wpipe; 408 error = falloc_caps(td, &rf, &fd, flags, fcaps1); 409 if (error) { 410 pipeclose(rpipe); 411 pipeclose(wpipe); 412 return (error); 413 } 414 /* An extra reference on `rf' has been held for us by falloc_caps(). */ 415 fildes[0] = fd; 416 417 fflags = FREAD | FWRITE; 418 if ((flags & O_NONBLOCK) != 0) 419 fflags |= FNONBLOCK; 420 421 /* 422 * Warning: once we've gotten past allocation of the fd for the 423 * read-side, we can only drop the read side via fdrop() in order 424 * to avoid races against processes which manage to dup() the read 425 * side while we are blocked trying to allocate the write side. 426 */ 427 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops); 428 error = falloc_caps(td, &wf, &fd, flags, fcaps2); 429 if (error) { 430 fdclose(td, rf, fildes[0]); 431 fdrop(rf, td); 432 /* rpipe has been closed by fdrop(). */ 433 pipeclose(wpipe); 434 return (error); 435 } 436 /* An extra reference on `wf' has been held for us by falloc_caps(). */ 437 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops); 438 fdrop(wf, td); 439 fildes[1] = fd; 440 fdrop(rf, td); 441 442 return (0); 443 } 444 445 #ifdef COMPAT_FREEBSD10 446 /* ARGSUSED */ 447 int 448 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused) 449 { 450 int error; 451 int fildes[2]; 452 453 error = kern_pipe(td, fildes, 0, NULL, NULL); 454 if (error) 455 return (error); 456 457 td->td_retval[0] = fildes[0]; 458 td->td_retval[1] = fildes[1]; 459 460 return (0); 461 } 462 #endif 463 464 int 465 sys_pipe2(struct thread *td, struct pipe2_args *uap) 466 { 467 int error, fildes[2]; 468 469 if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK)) 470 return (EINVAL); 471 error = kern_pipe(td, fildes, uap->flags, NULL, NULL); 472 if (error) 473 return (error); 474 error = copyout(fildes, uap->fildes, 2 * sizeof(int)); 475 if (error) { 476 (void)kern_close(td, fildes[0]); 477 (void)kern_close(td, fildes[1]); 478 } 479 return (error); 480 } 481 482 /* 483 * Allocate kva for pipe circular buffer, the space is pageable 484 * This routine will 'realloc' the size of a pipe safely, if it fails 485 * it will retain the old buffer. 486 * If it fails it will return ENOMEM. 487 */ 488 static int 489 pipespace_new(struct pipe *cpipe, int size) 490 { 491 caddr_t buffer; 492 int error, cnt, firstseg; 493 static int curfail = 0; 494 static struct timeval lastfail; 495 496 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 497 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 498 ("pipespace: resize of direct writes not allowed")); 499 retry: 500 cnt = cpipe->pipe_buffer.cnt; 501 if (cnt > size) 502 size = cnt; 503 504 size = round_page(size); 505 buffer = (caddr_t) vm_map_min(pipe_map); 506 507 error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0, 508 VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0); 509 if (error != KERN_SUCCESS) { 510 if ((cpipe->pipe_buffer.buffer == NULL) && 511 (size > SMALL_PIPE_SIZE)) { 512 size = SMALL_PIPE_SIZE; 513 pipefragretry++; 514 goto retry; 515 } 516 if (cpipe->pipe_buffer.buffer == NULL) { 517 pipeallocfail++; 518 if (ppsratecheck(&lastfail, &curfail, 1)) 519 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 520 } else { 521 piperesizefail++; 522 } 523 return (ENOMEM); 524 } 525 526 /* copy data, then free old resources if we're resizing */ 527 if (cnt > 0) { 528 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 529 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 530 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 531 buffer, firstseg); 532 if ((cnt - firstseg) > 0) 533 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 534 cpipe->pipe_buffer.in); 535 } else { 536 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 537 buffer, cnt); 538 } 539 } 540 pipe_free_kmem(cpipe); 541 cpipe->pipe_buffer.buffer = buffer; 542 cpipe->pipe_buffer.size = size; 543 cpipe->pipe_buffer.in = cnt; 544 cpipe->pipe_buffer.out = 0; 545 cpipe->pipe_buffer.cnt = cnt; 546 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size); 547 return (0); 548 } 549 550 /* 551 * Wrapper for pipespace_new() that performs locking assertions. 552 */ 553 static int 554 pipespace(struct pipe *cpipe, int size) 555 { 556 557 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 558 ("Unlocked pipe passed to pipespace")); 559 return (pipespace_new(cpipe, size)); 560 } 561 562 /* 563 * lock a pipe for I/O, blocking other access 564 */ 565 static __inline int 566 pipelock(struct pipe *cpipe, int catch) 567 { 568 int error; 569 570 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 571 while (cpipe->pipe_state & PIPE_LOCKFL) { 572 cpipe->pipe_state |= PIPE_LWANT; 573 error = msleep(cpipe, PIPE_MTX(cpipe), 574 catch ? (PRIBIO | PCATCH) : PRIBIO, 575 "pipelk", 0); 576 if (error != 0) 577 return (error); 578 } 579 cpipe->pipe_state |= PIPE_LOCKFL; 580 return (0); 581 } 582 583 /* 584 * unlock a pipe I/O lock 585 */ 586 static __inline void 587 pipeunlock(struct pipe *cpipe) 588 { 589 590 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 591 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 592 ("Unlocked pipe passed to pipeunlock")); 593 cpipe->pipe_state &= ~PIPE_LOCKFL; 594 if (cpipe->pipe_state & PIPE_LWANT) { 595 cpipe->pipe_state &= ~PIPE_LWANT; 596 wakeup(cpipe); 597 } 598 } 599 600 void 601 pipeselwakeup(struct pipe *cpipe) 602 { 603 604 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 605 if (cpipe->pipe_state & PIPE_SEL) { 606 selwakeuppri(&cpipe->pipe_sel, PSOCK); 607 if (!SEL_WAITING(&cpipe->pipe_sel)) 608 cpipe->pipe_state &= ~PIPE_SEL; 609 } 610 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 611 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 612 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 613 } 614 615 /* 616 * Initialize and allocate VM and memory for pipe. The structure 617 * will start out zero'd from the ctor, so we just manage the kmem. 618 */ 619 static void 620 pipe_create(struct pipe *pipe, int backing) 621 { 622 623 if (backing) { 624 /* 625 * Note that these functions can fail if pipe map is exhausted 626 * (as a result of too many pipes created), but we ignore the 627 * error as it is not fatal and could be provoked by 628 * unprivileged users. The only consequence is worse performance 629 * with given pipe. 630 */ 631 if (amountpipekva > maxpipekva / 2) 632 (void)pipespace_new(pipe, SMALL_PIPE_SIZE); 633 else 634 (void)pipespace_new(pipe, PIPE_SIZE); 635 } 636 637 pipe->pipe_ino = alloc_unr64(&pipeino_unr); 638 } 639 640 /* ARGSUSED */ 641 static int 642 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred, 643 int flags, struct thread *td) 644 { 645 struct pipe *rpipe; 646 int error; 647 int nread = 0; 648 int size; 649 650 rpipe = fp->f_data; 651 PIPE_LOCK(rpipe); 652 ++rpipe->pipe_busy; 653 error = pipelock(rpipe, 1); 654 if (error) 655 goto unlocked_error; 656 657 #ifdef MAC 658 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair); 659 if (error) 660 goto locked_error; 661 #endif 662 if (amountpipekva > (3 * maxpipekva) / 4) { 663 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 664 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 665 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 666 (piperesizeallowed == 1)) { 667 PIPE_UNLOCK(rpipe); 668 pipespace(rpipe, SMALL_PIPE_SIZE); 669 PIPE_LOCK(rpipe); 670 } 671 } 672 673 while (uio->uio_resid) { 674 /* 675 * normal pipe buffer receive 676 */ 677 if (rpipe->pipe_buffer.cnt > 0) { 678 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 679 if (size > rpipe->pipe_buffer.cnt) 680 size = rpipe->pipe_buffer.cnt; 681 if (size > uio->uio_resid) 682 size = uio->uio_resid; 683 684 PIPE_UNLOCK(rpipe); 685 error = uiomove( 686 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 687 size, uio); 688 PIPE_LOCK(rpipe); 689 if (error) 690 break; 691 692 rpipe->pipe_buffer.out += size; 693 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 694 rpipe->pipe_buffer.out = 0; 695 696 rpipe->pipe_buffer.cnt -= size; 697 698 /* 699 * If there is no more to read in the pipe, reset 700 * its pointers to the beginning. This improves 701 * cache hit stats. 702 */ 703 if (rpipe->pipe_buffer.cnt == 0) { 704 rpipe->pipe_buffer.in = 0; 705 rpipe->pipe_buffer.out = 0; 706 } 707 nread += size; 708 #ifndef PIPE_NODIRECT 709 /* 710 * Direct copy, bypassing a kernel buffer. 711 */ 712 } else if ((size = rpipe->pipe_map.cnt) && 713 (rpipe->pipe_state & PIPE_DIRECTW)) { 714 if (size > uio->uio_resid) 715 size = (u_int) uio->uio_resid; 716 717 PIPE_UNLOCK(rpipe); 718 error = uiomove_fromphys(rpipe->pipe_map.ms, 719 rpipe->pipe_map.pos, size, uio); 720 PIPE_LOCK(rpipe); 721 if (error) 722 break; 723 nread += size; 724 rpipe->pipe_map.pos += size; 725 rpipe->pipe_map.cnt -= size; 726 if (rpipe->pipe_map.cnt == 0) { 727 rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW); 728 wakeup(rpipe); 729 } 730 #endif 731 } else { 732 /* 733 * detect EOF condition 734 * read returns 0 on EOF, no need to set error 735 */ 736 if (rpipe->pipe_state & PIPE_EOF) 737 break; 738 739 /* 740 * If the "write-side" has been blocked, wake it up now. 741 */ 742 if (rpipe->pipe_state & PIPE_WANTW) { 743 rpipe->pipe_state &= ~PIPE_WANTW; 744 wakeup(rpipe); 745 } 746 747 /* 748 * Break if some data was read. 749 */ 750 if (nread > 0) 751 break; 752 753 /* 754 * Unlock the pipe buffer for our remaining processing. 755 * We will either break out with an error or we will 756 * sleep and relock to loop. 757 */ 758 pipeunlock(rpipe); 759 760 /* 761 * Handle non-blocking mode operation or 762 * wait for more data. 763 */ 764 if (fp->f_flag & FNONBLOCK) { 765 error = EAGAIN; 766 } else { 767 rpipe->pipe_state |= PIPE_WANTR; 768 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 769 PRIBIO | PCATCH, 770 "piperd", 0)) == 0) 771 error = pipelock(rpipe, 1); 772 } 773 if (error) 774 goto unlocked_error; 775 } 776 } 777 #ifdef MAC 778 locked_error: 779 #endif 780 pipeunlock(rpipe); 781 782 /* XXX: should probably do this before getting any locks. */ 783 if (error == 0) 784 vfs_timestamp(&rpipe->pipe_atime); 785 unlocked_error: 786 --rpipe->pipe_busy; 787 788 /* 789 * PIPE_WANT processing only makes sense if pipe_busy is 0. 790 */ 791 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 792 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 793 wakeup(rpipe); 794 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 795 /* 796 * Handle write blocking hysteresis. 797 */ 798 if (rpipe->pipe_state & PIPE_WANTW) { 799 rpipe->pipe_state &= ~PIPE_WANTW; 800 wakeup(rpipe); 801 } 802 } 803 804 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 805 pipeselwakeup(rpipe); 806 807 PIPE_UNLOCK(rpipe); 808 return (error); 809 } 810 811 #ifndef PIPE_NODIRECT 812 /* 813 * Map the sending processes' buffer into kernel space and wire it. 814 * This is similar to a physical write operation. 815 */ 816 static int 817 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio) 818 { 819 u_int size; 820 int i; 821 822 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 823 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 824 ("Clone attempt on non-direct write pipe!")); 825 826 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size) 827 size = wpipe->pipe_buffer.size; 828 else 829 size = uio->uio_iov->iov_len; 830 831 if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 832 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ, 833 wpipe->pipe_map.ms, PIPENPAGES)) < 0) 834 return (EFAULT); 835 836 /* 837 * set up the control block 838 */ 839 wpipe->pipe_map.npages = i; 840 wpipe->pipe_map.pos = 841 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 842 wpipe->pipe_map.cnt = size; 843 844 /* 845 * and update the uio data 846 */ 847 848 uio->uio_iov->iov_len -= size; 849 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 850 if (uio->uio_iov->iov_len == 0) 851 uio->uio_iov++; 852 uio->uio_resid -= size; 853 uio->uio_offset += size; 854 return (0); 855 } 856 857 /* 858 * unmap and unwire the process buffer 859 */ 860 static void 861 pipe_destroy_write_buffer(struct pipe *wpipe) 862 { 863 864 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 865 vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages); 866 wpipe->pipe_map.npages = 0; 867 } 868 869 /* 870 * In the case of a signal, the writing process might go away. This 871 * code copies the data into the circular buffer so that the source 872 * pages can be freed without loss of data. 873 */ 874 static void 875 pipe_clone_write_buffer(struct pipe *wpipe) 876 { 877 struct uio uio; 878 struct iovec iov; 879 int size; 880 int pos; 881 882 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 883 size = wpipe->pipe_map.cnt; 884 pos = wpipe->pipe_map.pos; 885 886 wpipe->pipe_buffer.in = size; 887 wpipe->pipe_buffer.out = 0; 888 wpipe->pipe_buffer.cnt = size; 889 wpipe->pipe_state &= ~PIPE_DIRECTW; 890 891 PIPE_UNLOCK(wpipe); 892 iov.iov_base = wpipe->pipe_buffer.buffer; 893 iov.iov_len = size; 894 uio.uio_iov = &iov; 895 uio.uio_iovcnt = 1; 896 uio.uio_offset = 0; 897 uio.uio_resid = size; 898 uio.uio_segflg = UIO_SYSSPACE; 899 uio.uio_rw = UIO_READ; 900 uio.uio_td = curthread; 901 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 902 PIPE_LOCK(wpipe); 903 pipe_destroy_write_buffer(wpipe); 904 } 905 906 /* 907 * This implements the pipe buffer write mechanism. Note that only 908 * a direct write OR a normal pipe write can be pending at any given time. 909 * If there are any characters in the pipe buffer, the direct write will 910 * be deferred until the receiving process grabs all of the bytes from 911 * the pipe buffer. Then the direct mapping write is set-up. 912 */ 913 static int 914 pipe_direct_write(struct pipe *wpipe, struct uio *uio) 915 { 916 int error; 917 918 retry: 919 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 920 error = pipelock(wpipe, 1); 921 if (error != 0) 922 goto error1; 923 if ((wpipe->pipe_state & PIPE_EOF) != 0) { 924 error = EPIPE; 925 pipeunlock(wpipe); 926 goto error1; 927 } 928 while (wpipe->pipe_state & PIPE_DIRECTW) { 929 if (wpipe->pipe_state & PIPE_WANTR) { 930 wpipe->pipe_state &= ~PIPE_WANTR; 931 wakeup(wpipe); 932 } 933 pipeselwakeup(wpipe); 934 wpipe->pipe_state |= PIPE_WANTW; 935 pipeunlock(wpipe); 936 error = msleep(wpipe, PIPE_MTX(wpipe), 937 PRIBIO | PCATCH, "pipdww", 0); 938 if (error) 939 goto error1; 940 else 941 goto retry; 942 } 943 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 944 if (wpipe->pipe_buffer.cnt > 0) { 945 if (wpipe->pipe_state & PIPE_WANTR) { 946 wpipe->pipe_state &= ~PIPE_WANTR; 947 wakeup(wpipe); 948 } 949 pipeselwakeup(wpipe); 950 wpipe->pipe_state |= PIPE_WANTW; 951 pipeunlock(wpipe); 952 error = msleep(wpipe, PIPE_MTX(wpipe), 953 PRIBIO | PCATCH, "pipdwc", 0); 954 if (error) 955 goto error1; 956 else 957 goto retry; 958 } 959 960 wpipe->pipe_state |= PIPE_DIRECTW; 961 962 PIPE_UNLOCK(wpipe); 963 error = pipe_build_write_buffer(wpipe, uio); 964 PIPE_LOCK(wpipe); 965 if (error) { 966 wpipe->pipe_state &= ~PIPE_DIRECTW; 967 pipeunlock(wpipe); 968 goto error1; 969 } 970 971 error = 0; 972 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 973 if (wpipe->pipe_state & PIPE_EOF) { 974 pipe_destroy_write_buffer(wpipe); 975 pipeselwakeup(wpipe); 976 pipeunlock(wpipe); 977 error = EPIPE; 978 goto error1; 979 } 980 if (wpipe->pipe_state & PIPE_WANTR) { 981 wpipe->pipe_state &= ~PIPE_WANTR; 982 wakeup(wpipe); 983 } 984 pipeselwakeup(wpipe); 985 wpipe->pipe_state |= PIPE_WANTW; 986 pipeunlock(wpipe); 987 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 988 "pipdwt", 0); 989 pipelock(wpipe, 0); 990 } 991 992 if (wpipe->pipe_state & PIPE_EOF) 993 error = EPIPE; 994 if (wpipe->pipe_state & PIPE_DIRECTW) { 995 /* 996 * this bit of trickery substitutes a kernel buffer for 997 * the process that might be going away. 998 */ 999 pipe_clone_write_buffer(wpipe); 1000 } else { 1001 pipe_destroy_write_buffer(wpipe); 1002 } 1003 pipeunlock(wpipe); 1004 return (error); 1005 1006 error1: 1007 wakeup(wpipe); 1008 return (error); 1009 } 1010 #endif 1011 1012 static int 1013 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred, 1014 int flags, struct thread *td) 1015 { 1016 int error = 0; 1017 int desiredsize; 1018 ssize_t orig_resid; 1019 struct pipe *wpipe, *rpipe; 1020 1021 rpipe = fp->f_data; 1022 wpipe = PIPE_PEER(rpipe); 1023 PIPE_LOCK(rpipe); 1024 error = pipelock(wpipe, 1); 1025 if (error) { 1026 PIPE_UNLOCK(rpipe); 1027 return (error); 1028 } 1029 /* 1030 * detect loss of pipe read side, issue SIGPIPE if lost. 1031 */ 1032 if (wpipe->pipe_present != PIPE_ACTIVE || 1033 (wpipe->pipe_state & PIPE_EOF)) { 1034 pipeunlock(wpipe); 1035 PIPE_UNLOCK(rpipe); 1036 return (EPIPE); 1037 } 1038 #ifdef MAC 1039 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair); 1040 if (error) { 1041 pipeunlock(wpipe); 1042 PIPE_UNLOCK(rpipe); 1043 return (error); 1044 } 1045 #endif 1046 ++wpipe->pipe_busy; 1047 1048 /* Choose a larger size if it's advantageous */ 1049 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1050 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1051 if (piperesizeallowed != 1) 1052 break; 1053 if (amountpipekva > maxpipekva / 2) 1054 break; 1055 if (desiredsize == BIG_PIPE_SIZE) 1056 break; 1057 desiredsize = desiredsize * 2; 1058 } 1059 1060 /* Choose a smaller size if we're in a OOM situation */ 1061 if ((amountpipekva > (3 * maxpipekva) / 4) && 1062 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 1063 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1064 (piperesizeallowed == 1)) 1065 desiredsize = SMALL_PIPE_SIZE; 1066 1067 /* Resize if the above determined that a new size was necessary */ 1068 if ((desiredsize != wpipe->pipe_buffer.size) && 1069 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1070 PIPE_UNLOCK(wpipe); 1071 pipespace(wpipe, desiredsize); 1072 PIPE_LOCK(wpipe); 1073 } 1074 if (wpipe->pipe_buffer.size == 0) { 1075 /* 1076 * This can only happen for reverse direction use of pipes 1077 * in a complete OOM situation. 1078 */ 1079 error = ENOMEM; 1080 --wpipe->pipe_busy; 1081 pipeunlock(wpipe); 1082 PIPE_UNLOCK(wpipe); 1083 return (error); 1084 } 1085 1086 pipeunlock(wpipe); 1087 1088 orig_resid = uio->uio_resid; 1089 1090 while (uio->uio_resid) { 1091 int space; 1092 1093 pipelock(wpipe, 0); 1094 if (wpipe->pipe_state & PIPE_EOF) { 1095 pipeunlock(wpipe); 1096 error = EPIPE; 1097 break; 1098 } 1099 #ifndef PIPE_NODIRECT 1100 /* 1101 * If the transfer is large, we can gain performance if 1102 * we do process-to-process copies directly. 1103 * If the write is non-blocking, we don't use the 1104 * direct write mechanism. 1105 * 1106 * The direct write mechanism will detect the reader going 1107 * away on us. 1108 */ 1109 if (uio->uio_segflg == UIO_USERSPACE && 1110 uio->uio_iov->iov_len >= PIPE_MINDIRECT && 1111 wpipe->pipe_buffer.size >= PIPE_MINDIRECT && 1112 (fp->f_flag & FNONBLOCK) == 0) { 1113 pipeunlock(wpipe); 1114 error = pipe_direct_write(wpipe, uio); 1115 if (error) 1116 break; 1117 continue; 1118 } 1119 #endif 1120 1121 /* 1122 * Pipe buffered writes cannot be coincidental with 1123 * direct writes. We wait until the currently executing 1124 * direct write is completed before we start filling the 1125 * pipe buffer. We break out if a signal occurs or the 1126 * reader goes away. 1127 */ 1128 if (wpipe->pipe_state & PIPE_DIRECTW) { 1129 if (wpipe->pipe_state & PIPE_WANTR) { 1130 wpipe->pipe_state &= ~PIPE_WANTR; 1131 wakeup(wpipe); 1132 } 1133 pipeselwakeup(wpipe); 1134 wpipe->pipe_state |= PIPE_WANTW; 1135 pipeunlock(wpipe); 1136 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1137 "pipbww", 0); 1138 if (error) 1139 break; 1140 else 1141 continue; 1142 } 1143 1144 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1145 1146 /* Writes of size <= PIPE_BUF must be atomic. */ 1147 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1148 space = 0; 1149 1150 if (space > 0) { 1151 int size; /* Transfer size */ 1152 int segsize; /* first segment to transfer */ 1153 1154 /* 1155 * Transfer size is minimum of uio transfer 1156 * and free space in pipe buffer. 1157 */ 1158 if (space > uio->uio_resid) 1159 size = uio->uio_resid; 1160 else 1161 size = space; 1162 /* 1163 * First segment to transfer is minimum of 1164 * transfer size and contiguous space in 1165 * pipe buffer. If first segment to transfer 1166 * is less than the transfer size, we've got 1167 * a wraparound in the buffer. 1168 */ 1169 segsize = wpipe->pipe_buffer.size - 1170 wpipe->pipe_buffer.in; 1171 if (segsize > size) 1172 segsize = size; 1173 1174 /* Transfer first segment */ 1175 1176 PIPE_UNLOCK(rpipe); 1177 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1178 segsize, uio); 1179 PIPE_LOCK(rpipe); 1180 1181 if (error == 0 && segsize < size) { 1182 KASSERT(wpipe->pipe_buffer.in + segsize == 1183 wpipe->pipe_buffer.size, 1184 ("Pipe buffer wraparound disappeared")); 1185 /* 1186 * Transfer remaining part now, to 1187 * support atomic writes. Wraparound 1188 * happened. 1189 */ 1190 1191 PIPE_UNLOCK(rpipe); 1192 error = uiomove( 1193 &wpipe->pipe_buffer.buffer[0], 1194 size - segsize, uio); 1195 PIPE_LOCK(rpipe); 1196 } 1197 if (error == 0) { 1198 wpipe->pipe_buffer.in += size; 1199 if (wpipe->pipe_buffer.in >= 1200 wpipe->pipe_buffer.size) { 1201 KASSERT(wpipe->pipe_buffer.in == 1202 size - segsize + 1203 wpipe->pipe_buffer.size, 1204 ("Expected wraparound bad")); 1205 wpipe->pipe_buffer.in = size - segsize; 1206 } 1207 1208 wpipe->pipe_buffer.cnt += size; 1209 KASSERT(wpipe->pipe_buffer.cnt <= 1210 wpipe->pipe_buffer.size, 1211 ("Pipe buffer overflow")); 1212 } 1213 pipeunlock(wpipe); 1214 if (error != 0) 1215 break; 1216 } else { 1217 /* 1218 * If the "read-side" has been blocked, wake it up now. 1219 */ 1220 if (wpipe->pipe_state & PIPE_WANTR) { 1221 wpipe->pipe_state &= ~PIPE_WANTR; 1222 wakeup(wpipe); 1223 } 1224 1225 /* 1226 * don't block on non-blocking I/O 1227 */ 1228 if (fp->f_flag & FNONBLOCK) { 1229 error = EAGAIN; 1230 pipeunlock(wpipe); 1231 break; 1232 } 1233 1234 /* 1235 * We have no more space and have something to offer, 1236 * wake up select/poll. 1237 */ 1238 pipeselwakeup(wpipe); 1239 1240 wpipe->pipe_state |= PIPE_WANTW; 1241 pipeunlock(wpipe); 1242 error = msleep(wpipe, PIPE_MTX(rpipe), 1243 PRIBIO | PCATCH, "pipewr", 0); 1244 if (error != 0) 1245 break; 1246 } 1247 } 1248 1249 pipelock(wpipe, 0); 1250 --wpipe->pipe_busy; 1251 1252 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1253 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1254 wakeup(wpipe); 1255 } else if (wpipe->pipe_buffer.cnt > 0) { 1256 /* 1257 * If we have put any characters in the buffer, we wake up 1258 * the reader. 1259 */ 1260 if (wpipe->pipe_state & PIPE_WANTR) { 1261 wpipe->pipe_state &= ~PIPE_WANTR; 1262 wakeup(wpipe); 1263 } 1264 } 1265 1266 /* 1267 * Don't return EPIPE if any byte was written. 1268 * EINTR and other interrupts are handled by generic I/O layer. 1269 * Do not pretend that I/O succeeded for obvious user error 1270 * like EFAULT. 1271 */ 1272 if (uio->uio_resid != orig_resid && error == EPIPE) 1273 error = 0; 1274 1275 if (error == 0) 1276 vfs_timestamp(&wpipe->pipe_mtime); 1277 1278 /* 1279 * We have something to offer, 1280 * wake up select/poll. 1281 */ 1282 if (wpipe->pipe_buffer.cnt) 1283 pipeselwakeup(wpipe); 1284 1285 pipeunlock(wpipe); 1286 PIPE_UNLOCK(rpipe); 1287 return (error); 1288 } 1289 1290 /* ARGSUSED */ 1291 static int 1292 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1293 struct thread *td) 1294 { 1295 struct pipe *cpipe; 1296 int error; 1297 1298 cpipe = fp->f_data; 1299 if (cpipe->pipe_state & PIPE_NAMED) 1300 error = vnops.fo_truncate(fp, length, active_cred, td); 1301 else 1302 error = invfo_truncate(fp, length, active_cred, td); 1303 return (error); 1304 } 1305 1306 /* 1307 * we implement a very minimal set of ioctls for compatibility with sockets. 1308 */ 1309 static int 1310 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred, 1311 struct thread *td) 1312 { 1313 struct pipe *mpipe = fp->f_data; 1314 int error; 1315 1316 PIPE_LOCK(mpipe); 1317 1318 #ifdef MAC 1319 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1320 if (error) { 1321 PIPE_UNLOCK(mpipe); 1322 return (error); 1323 } 1324 #endif 1325 1326 error = 0; 1327 switch (cmd) { 1328 1329 case FIONBIO: 1330 break; 1331 1332 case FIOASYNC: 1333 if (*(int *)data) { 1334 mpipe->pipe_state |= PIPE_ASYNC; 1335 } else { 1336 mpipe->pipe_state &= ~PIPE_ASYNC; 1337 } 1338 break; 1339 1340 case FIONREAD: 1341 if (!(fp->f_flag & FREAD)) { 1342 *(int *)data = 0; 1343 PIPE_UNLOCK(mpipe); 1344 return (0); 1345 } 1346 if (mpipe->pipe_state & PIPE_DIRECTW) 1347 *(int *)data = mpipe->pipe_map.cnt; 1348 else 1349 *(int *)data = mpipe->pipe_buffer.cnt; 1350 break; 1351 1352 case FIOSETOWN: 1353 PIPE_UNLOCK(mpipe); 1354 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1355 goto out_unlocked; 1356 1357 case FIOGETOWN: 1358 *(int *)data = fgetown(&mpipe->pipe_sigio); 1359 break; 1360 1361 /* This is deprecated, FIOSETOWN should be used instead. */ 1362 case TIOCSPGRP: 1363 PIPE_UNLOCK(mpipe); 1364 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1365 goto out_unlocked; 1366 1367 /* This is deprecated, FIOGETOWN should be used instead. */ 1368 case TIOCGPGRP: 1369 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1370 break; 1371 1372 default: 1373 error = ENOTTY; 1374 break; 1375 } 1376 PIPE_UNLOCK(mpipe); 1377 out_unlocked: 1378 return (error); 1379 } 1380 1381 static int 1382 pipe_poll(struct file *fp, int events, struct ucred *active_cred, 1383 struct thread *td) 1384 { 1385 struct pipe *rpipe; 1386 struct pipe *wpipe; 1387 int levents, revents; 1388 #ifdef MAC 1389 int error; 1390 #endif 1391 1392 revents = 0; 1393 rpipe = fp->f_data; 1394 wpipe = PIPE_PEER(rpipe); 1395 PIPE_LOCK(rpipe); 1396 #ifdef MAC 1397 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair); 1398 if (error) 1399 goto locked_error; 1400 #endif 1401 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) 1402 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1403 (rpipe->pipe_buffer.cnt > 0)) 1404 revents |= events & (POLLIN | POLLRDNORM); 1405 1406 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) 1407 if (wpipe->pipe_present != PIPE_ACTIVE || 1408 (wpipe->pipe_state & PIPE_EOF) || 1409 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1410 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF || 1411 wpipe->pipe_buffer.size == 0))) 1412 revents |= events & (POLLOUT | POLLWRNORM); 1413 1414 levents = events & 1415 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND); 1416 if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents && 1417 fp->f_seqcount == rpipe->pipe_wgen) 1418 events |= POLLINIGNEOF; 1419 1420 if ((events & POLLINIGNEOF) == 0) { 1421 if (rpipe->pipe_state & PIPE_EOF) { 1422 revents |= (events & (POLLIN | POLLRDNORM)); 1423 if (wpipe->pipe_present != PIPE_ACTIVE || 1424 (wpipe->pipe_state & PIPE_EOF)) 1425 revents |= POLLHUP; 1426 } 1427 } 1428 1429 if (revents == 0) { 1430 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) { 1431 selrecord(td, &rpipe->pipe_sel); 1432 if (SEL_WAITING(&rpipe->pipe_sel)) 1433 rpipe->pipe_state |= PIPE_SEL; 1434 } 1435 1436 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) { 1437 selrecord(td, &wpipe->pipe_sel); 1438 if (SEL_WAITING(&wpipe->pipe_sel)) 1439 wpipe->pipe_state |= PIPE_SEL; 1440 } 1441 } 1442 #ifdef MAC 1443 locked_error: 1444 #endif 1445 PIPE_UNLOCK(rpipe); 1446 1447 return (revents); 1448 } 1449 1450 /* 1451 * We shouldn't need locks here as we're doing a read and this should 1452 * be a natural race. 1453 */ 1454 static int 1455 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred, 1456 struct thread *td) 1457 { 1458 struct pipe *pipe; 1459 #ifdef MAC 1460 int error; 1461 #endif 1462 1463 pipe = fp->f_data; 1464 PIPE_LOCK(pipe); 1465 #ifdef MAC 1466 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair); 1467 if (error) { 1468 PIPE_UNLOCK(pipe); 1469 return (error); 1470 } 1471 #endif 1472 1473 /* For named pipes ask the underlying filesystem. */ 1474 if (pipe->pipe_state & PIPE_NAMED) { 1475 PIPE_UNLOCK(pipe); 1476 return (vnops.fo_stat(fp, ub, active_cred, td)); 1477 } 1478 1479 PIPE_UNLOCK(pipe); 1480 1481 bzero(ub, sizeof(*ub)); 1482 ub->st_mode = S_IFIFO; 1483 ub->st_blksize = PAGE_SIZE; 1484 if (pipe->pipe_state & PIPE_DIRECTW) 1485 ub->st_size = pipe->pipe_map.cnt; 1486 else 1487 ub->st_size = pipe->pipe_buffer.cnt; 1488 ub->st_blocks = howmany(ub->st_size, ub->st_blksize); 1489 ub->st_atim = pipe->pipe_atime; 1490 ub->st_mtim = pipe->pipe_mtime; 1491 ub->st_ctim = pipe->pipe_ctime; 1492 ub->st_uid = fp->f_cred->cr_uid; 1493 ub->st_gid = fp->f_cred->cr_gid; 1494 ub->st_dev = pipedev_ino; 1495 ub->st_ino = pipe->pipe_ino; 1496 /* 1497 * Left as 0: st_nlink, st_rdev, st_flags, st_gen. 1498 */ 1499 return (0); 1500 } 1501 1502 /* ARGSUSED */ 1503 static int 1504 pipe_close(struct file *fp, struct thread *td) 1505 { 1506 1507 if (fp->f_vnode != NULL) 1508 return vnops.fo_close(fp, td); 1509 fp->f_ops = &badfileops; 1510 pipe_dtor(fp->f_data); 1511 fp->f_data = NULL; 1512 return (0); 1513 } 1514 1515 static int 1516 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td) 1517 { 1518 struct pipe *cpipe; 1519 int error; 1520 1521 cpipe = fp->f_data; 1522 if (cpipe->pipe_state & PIPE_NAMED) 1523 error = vn_chmod(fp, mode, active_cred, td); 1524 else 1525 error = invfo_chmod(fp, mode, active_cred, td); 1526 return (error); 1527 } 1528 1529 static int 1530 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 1531 struct thread *td) 1532 { 1533 struct pipe *cpipe; 1534 int error; 1535 1536 cpipe = fp->f_data; 1537 if (cpipe->pipe_state & PIPE_NAMED) 1538 error = vn_chown(fp, uid, gid, active_cred, td); 1539 else 1540 error = invfo_chown(fp, uid, gid, active_cred, td); 1541 return (error); 1542 } 1543 1544 static int 1545 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) 1546 { 1547 struct pipe *pi; 1548 1549 if (fp->f_type == DTYPE_FIFO) 1550 return (vn_fill_kinfo(fp, kif, fdp)); 1551 kif->kf_type = KF_TYPE_PIPE; 1552 pi = fp->f_data; 1553 kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi; 1554 kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer; 1555 kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt; 1556 return (0); 1557 } 1558 1559 static void 1560 pipe_free_kmem(struct pipe *cpipe) 1561 { 1562 1563 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1564 ("pipe_free_kmem: pipe mutex locked")); 1565 1566 if (cpipe->pipe_buffer.buffer != NULL) { 1567 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size); 1568 vm_map_remove(pipe_map, 1569 (vm_offset_t)cpipe->pipe_buffer.buffer, 1570 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1571 cpipe->pipe_buffer.buffer = NULL; 1572 } 1573 #ifndef PIPE_NODIRECT 1574 { 1575 cpipe->pipe_map.cnt = 0; 1576 cpipe->pipe_map.pos = 0; 1577 cpipe->pipe_map.npages = 0; 1578 } 1579 #endif 1580 } 1581 1582 /* 1583 * shutdown the pipe 1584 */ 1585 static void 1586 pipeclose(struct pipe *cpipe) 1587 { 1588 struct pipepair *pp; 1589 struct pipe *ppipe; 1590 1591 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1592 1593 PIPE_LOCK(cpipe); 1594 pipelock(cpipe, 0); 1595 pp = cpipe->pipe_pair; 1596 1597 pipeselwakeup(cpipe); 1598 1599 /* 1600 * If the other side is blocked, wake it up saying that 1601 * we want to close it down. 1602 */ 1603 cpipe->pipe_state |= PIPE_EOF; 1604 while (cpipe->pipe_busy) { 1605 wakeup(cpipe); 1606 cpipe->pipe_state |= PIPE_WANT; 1607 pipeunlock(cpipe); 1608 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1609 pipelock(cpipe, 0); 1610 } 1611 1612 1613 /* 1614 * Disconnect from peer, if any. 1615 */ 1616 ppipe = cpipe->pipe_peer; 1617 if (ppipe->pipe_present == PIPE_ACTIVE) { 1618 pipeselwakeup(ppipe); 1619 1620 ppipe->pipe_state |= PIPE_EOF; 1621 wakeup(ppipe); 1622 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1623 } 1624 1625 /* 1626 * Mark this endpoint as free. Release kmem resources. We 1627 * don't mark this endpoint as unused until we've finished 1628 * doing that, or the pipe might disappear out from under 1629 * us. 1630 */ 1631 PIPE_UNLOCK(cpipe); 1632 pipe_free_kmem(cpipe); 1633 PIPE_LOCK(cpipe); 1634 cpipe->pipe_present = PIPE_CLOSING; 1635 pipeunlock(cpipe); 1636 1637 /* 1638 * knlist_clear() may sleep dropping the PIPE_MTX. Set the 1639 * PIPE_FINALIZED, that allows other end to free the 1640 * pipe_pair, only after the knotes are completely dismantled. 1641 */ 1642 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1643 cpipe->pipe_present = PIPE_FINALIZED; 1644 seldrain(&cpipe->pipe_sel); 1645 knlist_destroy(&cpipe->pipe_sel.si_note); 1646 1647 /* 1648 * If both endpoints are now closed, release the memory for the 1649 * pipe pair. If not, unlock. 1650 */ 1651 if (ppipe->pipe_present == PIPE_FINALIZED) { 1652 PIPE_UNLOCK(cpipe); 1653 #ifdef MAC 1654 mac_pipe_destroy(pp); 1655 #endif 1656 uma_zfree(pipe_zone, cpipe->pipe_pair); 1657 } else 1658 PIPE_UNLOCK(cpipe); 1659 } 1660 1661 /*ARGSUSED*/ 1662 static int 1663 pipe_kqfilter(struct file *fp, struct knote *kn) 1664 { 1665 struct pipe *cpipe; 1666 1667 /* 1668 * If a filter is requested that is not supported by this file 1669 * descriptor, don't return an error, but also don't ever generate an 1670 * event. 1671 */ 1672 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) { 1673 kn->kn_fop = &pipe_nfiltops; 1674 return (0); 1675 } 1676 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) { 1677 kn->kn_fop = &pipe_nfiltops; 1678 return (0); 1679 } 1680 cpipe = fp->f_data; 1681 PIPE_LOCK(cpipe); 1682 switch (kn->kn_filter) { 1683 case EVFILT_READ: 1684 kn->kn_fop = &pipe_rfiltops; 1685 break; 1686 case EVFILT_WRITE: 1687 kn->kn_fop = &pipe_wfiltops; 1688 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) { 1689 /* other end of pipe has been closed */ 1690 PIPE_UNLOCK(cpipe); 1691 return (EPIPE); 1692 } 1693 cpipe = PIPE_PEER(cpipe); 1694 break; 1695 default: 1696 PIPE_UNLOCK(cpipe); 1697 return (EINVAL); 1698 } 1699 1700 kn->kn_hook = cpipe; 1701 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1702 PIPE_UNLOCK(cpipe); 1703 return (0); 1704 } 1705 1706 static void 1707 filt_pipedetach(struct knote *kn) 1708 { 1709 struct pipe *cpipe = kn->kn_hook; 1710 1711 PIPE_LOCK(cpipe); 1712 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1713 PIPE_UNLOCK(cpipe); 1714 } 1715 1716 /*ARGSUSED*/ 1717 static int 1718 filt_piperead(struct knote *kn, long hint) 1719 { 1720 struct pipe *rpipe = kn->kn_hook; 1721 struct pipe *wpipe = rpipe->pipe_peer; 1722 int ret; 1723 1724 PIPE_LOCK_ASSERT(rpipe, MA_OWNED); 1725 kn->kn_data = rpipe->pipe_buffer.cnt; 1726 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1727 kn->kn_data = rpipe->pipe_map.cnt; 1728 1729 if ((rpipe->pipe_state & PIPE_EOF) || 1730 wpipe->pipe_present != PIPE_ACTIVE || 1731 (wpipe->pipe_state & PIPE_EOF)) { 1732 kn->kn_flags |= EV_EOF; 1733 return (1); 1734 } 1735 ret = kn->kn_data > 0; 1736 return ret; 1737 } 1738 1739 /*ARGSUSED*/ 1740 static int 1741 filt_pipewrite(struct knote *kn, long hint) 1742 { 1743 struct pipe *wpipe; 1744 1745 wpipe = kn->kn_hook; 1746 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 1747 if (wpipe->pipe_present != PIPE_ACTIVE || 1748 (wpipe->pipe_state & PIPE_EOF)) { 1749 kn->kn_data = 0; 1750 kn->kn_flags |= EV_EOF; 1751 return (1); 1752 } 1753 kn->kn_data = (wpipe->pipe_buffer.size > 0) ? 1754 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF; 1755 if (wpipe->pipe_state & PIPE_DIRECTW) 1756 kn->kn_data = 0; 1757 1758 return (kn->kn_data >= PIPE_BUF); 1759 } 1760 1761 static void 1762 filt_pipedetach_notsup(struct knote *kn) 1763 { 1764 1765 } 1766 1767 static int 1768 filt_pipenotsup(struct knote *kn, long hint) 1769 { 1770 1771 return (0); 1772 } 1773