xref: /freebsd/sys/kern/sys_pipe.c (revision 9517e866259191fcd39434a97ad849a9b59b9b9f)
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  */
19 
20 /*
21  * This file contains a high-performance replacement for the socket-based
22  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23  * all features of sockets, but does do everything that pipes normally
24  * do.
25  */
26 
27 /*
28  * This code has two modes of operation, a small write mode and a large
29  * write mode.  The small write mode acts like conventional pipes with
30  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32  * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33  * the receiving process can copy it directly from the pages in the sending
34  * process.
35  *
36  * If the sending process receives a signal, it is possible that it will
37  * go away, and certainly its address space can change, because control
38  * is returned back to the user-mode side.  In that case, the pipe code
39  * arranges to copy the buffer supplied by the user process, to a pageable
40  * kernel buffer, and the receiving process will grab the data from the
41  * pageable kernel buffer.  Since signals don't happen all that often,
42  * the copy operation is normally eliminated.
43  *
44  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45  * happen for small transfers so that the system will not spend all of
46  * its time context switching.
47  *
48  * In order to limit the resource use of pipes, two sysctls exist:
49  *
50  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51  * address space available to us in pipe_map. This value is normally
52  * autotuned, but may also be loader tuned.
53  *
54  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55  * memory in use by pipes.
56  *
57  * Based on how large pipekva is relative to maxpipekva, the following
58  * will happen:
59  *
60  * 0% - 50%:
61  *     New pipes are given 16K of memory backing, pipes may dynamically
62  *     grow to as large as 64K where needed.
63  * 50% - 75%:
64  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
65  *     existing pipes may NOT grow.
66  * 75% - 100%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes will be shrunk down to 4K whenever possible.
69  *
70  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
71  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72  * resize which MUST occur for reverse-direction pipes when they are
73  * first used.
74  *
75  * Additional information about the current state of pipes may be obtained
76  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77  * and kern.ipc.piperesizefail.
78  *
79  * Locking rules:  There are two locks present here:  A mutex, used via
80  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
81  * the flag, as mutexes can not persist over uiomove.  The mutex
82  * exists only to guard access to the flag, and is not in itself a
83  * locking mechanism.  Also note that there is only a single mutex for
84  * both directions of a pipe.
85  *
86  * As pipelock() may have to sleep before it can acquire the flag, it
87  * is important to reread all data after a call to pipelock(); everything
88  * in the structure may have changed.
89  */
90 
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD$");
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/fcntl.h>
97 #include <sys/file.h>
98 #include <sys/filedesc.h>
99 #include <sys/filio.h>
100 #include <sys/kernel.h>
101 #include <sys/lock.h>
102 #include <sys/mutex.h>
103 #include <sys/ttycom.h>
104 #include <sys/stat.h>
105 #include <sys/malloc.h>
106 #include <sys/poll.h>
107 #include <sys/selinfo.h>
108 #include <sys/signalvar.h>
109 #include <sys/syscallsubr.h>
110 #include <sys/sysctl.h>
111 #include <sys/sysproto.h>
112 #include <sys/pipe.h>
113 #include <sys/proc.h>
114 #include <sys/vnode.h>
115 #include <sys/uio.h>
116 #include <sys/event.h>
117 
118 #include <security/mac/mac_framework.h>
119 
120 #include <vm/vm.h>
121 #include <vm/vm_param.h>
122 #include <vm/vm_object.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_extern.h>
125 #include <vm/pmap.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_page.h>
128 #include <vm/uma.h>
129 
130 /*
131  * Use this define if you want to disable *fancy* VM things.  Expect an
132  * approx 30% decrease in transfer rate.  This could be useful for
133  * NetBSD or OpenBSD.
134  */
135 /* #define PIPE_NODIRECT */
136 
137 /*
138  * interfaces to the outside world
139  */
140 static fo_rdwr_t	pipe_read;
141 static fo_rdwr_t	pipe_write;
142 static fo_truncate_t	pipe_truncate;
143 static fo_ioctl_t	pipe_ioctl;
144 static fo_poll_t	pipe_poll;
145 static fo_kqfilter_t	pipe_kqfilter;
146 static fo_stat_t	pipe_stat;
147 static fo_close_t	pipe_close;
148 
149 static struct fileops pipeops = {
150 	.fo_read = pipe_read,
151 	.fo_write = pipe_write,
152 	.fo_truncate = pipe_truncate,
153 	.fo_ioctl = pipe_ioctl,
154 	.fo_poll = pipe_poll,
155 	.fo_kqfilter = pipe_kqfilter,
156 	.fo_stat = pipe_stat,
157 	.fo_close = pipe_close,
158 	.fo_flags = DFLAG_PASSABLE
159 };
160 
161 static void	filt_pipedetach(struct knote *kn);
162 static int	filt_piperead(struct knote *kn, long hint);
163 static int	filt_pipewrite(struct knote *kn, long hint);
164 
165 static struct filterops pipe_rfiltops =
166 	{ 1, NULL, filt_pipedetach, filt_piperead };
167 static struct filterops pipe_wfiltops =
168 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
169 
170 /*
171  * Default pipe buffer size(s), this can be kind-of large now because pipe
172  * space is pageable.  The pipe code will try to maintain locality of
173  * reference for performance reasons, so small amounts of outstanding I/O
174  * will not wipe the cache.
175  */
176 #define MINPIPESIZE (PIPE_SIZE/3)
177 #define MAXPIPESIZE (2*PIPE_SIZE/3)
178 
179 static long amountpipekva;
180 static int pipefragretry;
181 static int pipeallocfail;
182 static int piperesizefail;
183 static int piperesizeallowed = 1;
184 
185 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
186 	   &maxpipekva, 0, "Pipe KVA limit");
187 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
188 	   &amountpipekva, 0, "Pipe KVA usage");
189 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
190 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
191 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
192 	  &pipeallocfail, 0, "Pipe allocation failures");
193 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
194 	  &piperesizefail, 0, "Pipe resize failures");
195 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
196 	  &piperesizeallowed, 0, "Pipe resizing allowed");
197 
198 static void pipeinit(void *dummy __unused);
199 static void pipeclose(struct pipe *cpipe);
200 static void pipe_free_kmem(struct pipe *cpipe);
201 static int pipe_create(struct pipe *pipe, int backing);
202 static __inline int pipelock(struct pipe *cpipe, int catch);
203 static __inline void pipeunlock(struct pipe *cpipe);
204 static __inline void pipeselwakeup(struct pipe *cpipe);
205 #ifndef PIPE_NODIRECT
206 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
207 static void pipe_destroy_write_buffer(struct pipe *wpipe);
208 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
209 static void pipe_clone_write_buffer(struct pipe *wpipe);
210 #endif
211 static int pipespace(struct pipe *cpipe, int size);
212 static int pipespace_new(struct pipe *cpipe, int size);
213 
214 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
215 static int	pipe_zone_init(void *mem, int size, int flags);
216 static void	pipe_zone_fini(void *mem, int size);
217 
218 static uma_zone_t pipe_zone;
219 
220 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
221 
222 static void
223 pipeinit(void *dummy __unused)
224 {
225 
226 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
227 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
228 	    UMA_ALIGN_PTR, 0);
229 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
230 }
231 
232 static int
233 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
234 {
235 	struct pipepair *pp;
236 	struct pipe *rpipe, *wpipe;
237 
238 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
239 
240 	pp = (struct pipepair *)mem;
241 
242 	/*
243 	 * We zero both pipe endpoints to make sure all the kmem pointers
244 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
245 	 * endpoints with the same time.
246 	 */
247 	rpipe = &pp->pp_rpipe;
248 	bzero(rpipe, sizeof(*rpipe));
249 	vfs_timestamp(&rpipe->pipe_ctime);
250 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
251 
252 	wpipe = &pp->pp_wpipe;
253 	bzero(wpipe, sizeof(*wpipe));
254 	wpipe->pipe_ctime = rpipe->pipe_ctime;
255 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
256 
257 	rpipe->pipe_peer = wpipe;
258 	rpipe->pipe_pair = pp;
259 	wpipe->pipe_peer = rpipe;
260 	wpipe->pipe_pair = pp;
261 
262 	/*
263 	 * Mark both endpoints as present; they will later get free'd
264 	 * one at a time.  When both are free'd, then the whole pair
265 	 * is released.
266 	 */
267 	rpipe->pipe_present = PIPE_ACTIVE;
268 	wpipe->pipe_present = PIPE_ACTIVE;
269 
270 	/*
271 	 * Eventually, the MAC Framework may initialize the label
272 	 * in ctor or init, but for now we do it elswhere to avoid
273 	 * blocking in ctor or init.
274 	 */
275 	pp->pp_label = NULL;
276 
277 	return (0);
278 }
279 
280 static int
281 pipe_zone_init(void *mem, int size, int flags)
282 {
283 	struct pipepair *pp;
284 
285 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
286 
287 	pp = (struct pipepair *)mem;
288 
289 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
290 	return (0);
291 }
292 
293 static void
294 pipe_zone_fini(void *mem, int size)
295 {
296 	struct pipepair *pp;
297 
298 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
299 
300 	pp = (struct pipepair *)mem;
301 
302 	mtx_destroy(&pp->pp_mtx);
303 }
304 
305 /*
306  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
307  * the zone pick up the pieces via pipeclose().
308  */
309 int
310 kern_pipe(struct thread *td, int fildes[2])
311 {
312 	struct filedesc *fdp = td->td_proc->p_fd;
313 	struct file *rf, *wf;
314 	struct pipepair *pp;
315 	struct pipe *rpipe, *wpipe;
316 	int fd, error;
317 
318 	pp = uma_zalloc(pipe_zone, M_WAITOK);
319 #ifdef MAC
320 	/*
321 	 * The MAC label is shared between the connected endpoints.  As a
322 	 * result mac_pipe_init() and mac_pipe_create() are called once
323 	 * for the pair, and not on the endpoints.
324 	 */
325 	mac_pipe_init(pp);
326 	mac_pipe_create(td->td_ucred, pp);
327 #endif
328 	rpipe = &pp->pp_rpipe;
329 	wpipe = &pp->pp_wpipe;
330 
331 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
332 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
333 
334 	/* Only the forward direction pipe is backed by default */
335 	if ((error = pipe_create(rpipe, 1)) != 0 ||
336 	    (error = pipe_create(wpipe, 0)) != 0) {
337 		pipeclose(rpipe);
338 		pipeclose(wpipe);
339 		return (error);
340 	}
341 
342 	rpipe->pipe_state |= PIPE_DIRECTOK;
343 	wpipe->pipe_state |= PIPE_DIRECTOK;
344 
345 	error = falloc(td, &rf, &fd);
346 	if (error) {
347 		pipeclose(rpipe);
348 		pipeclose(wpipe);
349 		return (error);
350 	}
351 	/* An extra reference on `rf' has been held for us by falloc(). */
352 	fildes[0] = fd;
353 
354 	/*
355 	 * Warning: once we've gotten past allocation of the fd for the
356 	 * read-side, we can only drop the read side via fdrop() in order
357 	 * to avoid races against processes which manage to dup() the read
358 	 * side while we are blocked trying to allocate the write side.
359 	 */
360 	finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops);
361 	error = falloc(td, &wf, &fd);
362 	if (error) {
363 		fdclose(fdp, rf, fildes[0], td);
364 		fdrop(rf, td);
365 		/* rpipe has been closed by fdrop(). */
366 		pipeclose(wpipe);
367 		return (error);
368 	}
369 	/* An extra reference on `wf' has been held for us by falloc(). */
370 	finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops);
371 	fdrop(wf, td);
372 	fildes[1] = fd;
373 	fdrop(rf, td);
374 
375 	return (0);
376 }
377 
378 /* ARGSUSED */
379 int
380 pipe(struct thread *td, struct pipe_args *uap)
381 {
382 	int error;
383 	int fildes[2];
384 
385 	error = kern_pipe(td, fildes);
386 	if (error)
387 		return (error);
388 
389 	td->td_retval[0] = fildes[0];
390 	td->td_retval[1] = fildes[1];
391 
392 	return (0);
393 }
394 
395 /*
396  * Allocate kva for pipe circular buffer, the space is pageable
397  * This routine will 'realloc' the size of a pipe safely, if it fails
398  * it will retain the old buffer.
399  * If it fails it will return ENOMEM.
400  */
401 static int
402 pipespace_new(cpipe, size)
403 	struct pipe *cpipe;
404 	int size;
405 {
406 	caddr_t buffer;
407 	int error, cnt, firstseg;
408 	static int curfail = 0;
409 	static struct timeval lastfail;
410 
411 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
412 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
413 		("pipespace: resize of direct writes not allowed"));
414 retry:
415 	cnt = cpipe->pipe_buffer.cnt;
416 	if (cnt > size)
417 		size = cnt;
418 
419 	size = round_page(size);
420 	buffer = (caddr_t) vm_map_min(pipe_map);
421 
422 	error = vm_map_find(pipe_map, NULL, 0,
423 		(vm_offset_t *) &buffer, size, 1,
424 		VM_PROT_ALL, VM_PROT_ALL, 0);
425 	if (error != KERN_SUCCESS) {
426 		if ((cpipe->pipe_buffer.buffer == NULL) &&
427 			(size > SMALL_PIPE_SIZE)) {
428 			size = SMALL_PIPE_SIZE;
429 			pipefragretry++;
430 			goto retry;
431 		}
432 		if (cpipe->pipe_buffer.buffer == NULL) {
433 			pipeallocfail++;
434 			if (ppsratecheck(&lastfail, &curfail, 1))
435 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
436 		} else {
437 			piperesizefail++;
438 		}
439 		return (ENOMEM);
440 	}
441 
442 	/* copy data, then free old resources if we're resizing */
443 	if (cnt > 0) {
444 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
445 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
446 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
447 				buffer, firstseg);
448 			if ((cnt - firstseg) > 0)
449 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
450 					cpipe->pipe_buffer.in);
451 		} else {
452 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
453 				buffer, cnt);
454 		}
455 	}
456 	pipe_free_kmem(cpipe);
457 	cpipe->pipe_buffer.buffer = buffer;
458 	cpipe->pipe_buffer.size = size;
459 	cpipe->pipe_buffer.in = cnt;
460 	cpipe->pipe_buffer.out = 0;
461 	cpipe->pipe_buffer.cnt = cnt;
462 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
463 	return (0);
464 }
465 
466 /*
467  * Wrapper for pipespace_new() that performs locking assertions.
468  */
469 static int
470 pipespace(cpipe, size)
471 	struct pipe *cpipe;
472 	int size;
473 {
474 
475 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
476 		("Unlocked pipe passed to pipespace"));
477 	return (pipespace_new(cpipe, size));
478 }
479 
480 /*
481  * lock a pipe for I/O, blocking other access
482  */
483 static __inline int
484 pipelock(cpipe, catch)
485 	struct pipe *cpipe;
486 	int catch;
487 {
488 	int error;
489 
490 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
491 	while (cpipe->pipe_state & PIPE_LOCKFL) {
492 		cpipe->pipe_state |= PIPE_LWANT;
493 		error = msleep(cpipe, PIPE_MTX(cpipe),
494 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
495 		    "pipelk", 0);
496 		if (error != 0)
497 			return (error);
498 	}
499 	cpipe->pipe_state |= PIPE_LOCKFL;
500 	return (0);
501 }
502 
503 /*
504  * unlock a pipe I/O lock
505  */
506 static __inline void
507 pipeunlock(cpipe)
508 	struct pipe *cpipe;
509 {
510 
511 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
512 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
513 		("Unlocked pipe passed to pipeunlock"));
514 	cpipe->pipe_state &= ~PIPE_LOCKFL;
515 	if (cpipe->pipe_state & PIPE_LWANT) {
516 		cpipe->pipe_state &= ~PIPE_LWANT;
517 		wakeup(cpipe);
518 	}
519 }
520 
521 static __inline void
522 pipeselwakeup(cpipe)
523 	struct pipe *cpipe;
524 {
525 
526 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
527 	if (cpipe->pipe_state & PIPE_SEL) {
528 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
529 		if (!SEL_WAITING(&cpipe->pipe_sel))
530 			cpipe->pipe_state &= ~PIPE_SEL;
531 	}
532 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
533 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
534 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
535 }
536 
537 /*
538  * Initialize and allocate VM and memory for pipe.  The structure
539  * will start out zero'd from the ctor, so we just manage the kmem.
540  */
541 static int
542 pipe_create(pipe, backing)
543 	struct pipe *pipe;
544 	int backing;
545 {
546 	int error;
547 
548 	if (backing) {
549 		if (amountpipekva > maxpipekva / 2)
550 			error = pipespace_new(pipe, SMALL_PIPE_SIZE);
551 		else
552 			error = pipespace_new(pipe, PIPE_SIZE);
553 	} else {
554 		/* If we're not backing this pipe, no need to do anything. */
555 		error = 0;
556 	}
557 	return (error);
558 }
559 
560 /* ARGSUSED */
561 static int
562 pipe_read(fp, uio, active_cred, flags, td)
563 	struct file *fp;
564 	struct uio *uio;
565 	struct ucred *active_cred;
566 	struct thread *td;
567 	int flags;
568 {
569 	struct pipe *rpipe = fp->f_data;
570 	int error;
571 	int nread = 0;
572 	u_int size;
573 
574 	PIPE_LOCK(rpipe);
575 	++rpipe->pipe_busy;
576 	error = pipelock(rpipe, 1);
577 	if (error)
578 		goto unlocked_error;
579 
580 #ifdef MAC
581 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
582 	if (error)
583 		goto locked_error;
584 #endif
585 	if (amountpipekva > (3 * maxpipekva) / 4) {
586 		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
587 			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
588 			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
589 			(piperesizeallowed == 1)) {
590 			PIPE_UNLOCK(rpipe);
591 			pipespace(rpipe, SMALL_PIPE_SIZE);
592 			PIPE_LOCK(rpipe);
593 		}
594 	}
595 
596 	while (uio->uio_resid) {
597 		/*
598 		 * normal pipe buffer receive
599 		 */
600 		if (rpipe->pipe_buffer.cnt > 0) {
601 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
602 			if (size > rpipe->pipe_buffer.cnt)
603 				size = rpipe->pipe_buffer.cnt;
604 			if (size > (u_int) uio->uio_resid)
605 				size = (u_int) uio->uio_resid;
606 
607 			PIPE_UNLOCK(rpipe);
608 			error = uiomove(
609 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
610 			    size, uio);
611 			PIPE_LOCK(rpipe);
612 			if (error)
613 				break;
614 
615 			rpipe->pipe_buffer.out += size;
616 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
617 				rpipe->pipe_buffer.out = 0;
618 
619 			rpipe->pipe_buffer.cnt -= size;
620 
621 			/*
622 			 * If there is no more to read in the pipe, reset
623 			 * its pointers to the beginning.  This improves
624 			 * cache hit stats.
625 			 */
626 			if (rpipe->pipe_buffer.cnt == 0) {
627 				rpipe->pipe_buffer.in = 0;
628 				rpipe->pipe_buffer.out = 0;
629 			}
630 			nread += size;
631 #ifndef PIPE_NODIRECT
632 		/*
633 		 * Direct copy, bypassing a kernel buffer.
634 		 */
635 		} else if ((size = rpipe->pipe_map.cnt) &&
636 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
637 			if (size > (u_int) uio->uio_resid)
638 				size = (u_int) uio->uio_resid;
639 
640 			PIPE_UNLOCK(rpipe);
641 			error = uiomove_fromphys(rpipe->pipe_map.ms,
642 			    rpipe->pipe_map.pos, size, uio);
643 			PIPE_LOCK(rpipe);
644 			if (error)
645 				break;
646 			nread += size;
647 			rpipe->pipe_map.pos += size;
648 			rpipe->pipe_map.cnt -= size;
649 			if (rpipe->pipe_map.cnt == 0) {
650 				rpipe->pipe_state &= ~PIPE_DIRECTW;
651 				wakeup(rpipe);
652 			}
653 #endif
654 		} else {
655 			/*
656 			 * detect EOF condition
657 			 * read returns 0 on EOF, no need to set error
658 			 */
659 			if (rpipe->pipe_state & PIPE_EOF)
660 				break;
661 
662 			/*
663 			 * If the "write-side" has been blocked, wake it up now.
664 			 */
665 			if (rpipe->pipe_state & PIPE_WANTW) {
666 				rpipe->pipe_state &= ~PIPE_WANTW;
667 				wakeup(rpipe);
668 			}
669 
670 			/*
671 			 * Break if some data was read.
672 			 */
673 			if (nread > 0)
674 				break;
675 
676 			/*
677 			 * Unlock the pipe buffer for our remaining processing.
678 			 * We will either break out with an error or we will
679 			 * sleep and relock to loop.
680 			 */
681 			pipeunlock(rpipe);
682 
683 			/*
684 			 * Handle non-blocking mode operation or
685 			 * wait for more data.
686 			 */
687 			if (fp->f_flag & FNONBLOCK) {
688 				error = EAGAIN;
689 			} else {
690 				rpipe->pipe_state |= PIPE_WANTR;
691 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
692 				    PRIBIO | PCATCH,
693 				    "piperd", 0)) == 0)
694 					error = pipelock(rpipe, 1);
695 			}
696 			if (error)
697 				goto unlocked_error;
698 		}
699 	}
700 #ifdef MAC
701 locked_error:
702 #endif
703 	pipeunlock(rpipe);
704 
705 	/* XXX: should probably do this before getting any locks. */
706 	if (error == 0)
707 		vfs_timestamp(&rpipe->pipe_atime);
708 unlocked_error:
709 	--rpipe->pipe_busy;
710 
711 	/*
712 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
713 	 */
714 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
715 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
716 		wakeup(rpipe);
717 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
718 		/*
719 		 * Handle write blocking hysteresis.
720 		 */
721 		if (rpipe->pipe_state & PIPE_WANTW) {
722 			rpipe->pipe_state &= ~PIPE_WANTW;
723 			wakeup(rpipe);
724 		}
725 	}
726 
727 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
728 		pipeselwakeup(rpipe);
729 
730 	PIPE_UNLOCK(rpipe);
731 	return (error);
732 }
733 
734 #ifndef PIPE_NODIRECT
735 /*
736  * Map the sending processes' buffer into kernel space and wire it.
737  * This is similar to a physical write operation.
738  */
739 static int
740 pipe_build_write_buffer(wpipe, uio)
741 	struct pipe *wpipe;
742 	struct uio *uio;
743 {
744 	pmap_t pmap;
745 	u_int size;
746 	int i, j;
747 	vm_offset_t addr, endaddr;
748 
749 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
750 	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
751 		("Clone attempt on non-direct write pipe!"));
752 
753 	size = (u_int) uio->uio_iov->iov_len;
754 	if (size > wpipe->pipe_buffer.size)
755 		size = wpipe->pipe_buffer.size;
756 
757 	pmap = vmspace_pmap(curproc->p_vmspace);
758 	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
759 	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
760 	if (endaddr < addr)
761 		return (EFAULT);
762 	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
763 		/*
764 		 * vm_fault_quick() can sleep.  Consequently,
765 		 * vm_page_lock_queue() and vm_page_unlock_queue()
766 		 * should not be performed outside of this loop.
767 		 */
768 	race:
769 		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
770 			vm_page_lock_queues();
771 			for (j = 0; j < i; j++)
772 				vm_page_unhold(wpipe->pipe_map.ms[j]);
773 			vm_page_unlock_queues();
774 			return (EFAULT);
775 		}
776 		wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
777 		    VM_PROT_READ);
778 		if (wpipe->pipe_map.ms[i] == NULL)
779 			goto race;
780 	}
781 
782 /*
783  * set up the control block
784  */
785 	wpipe->pipe_map.npages = i;
786 	wpipe->pipe_map.pos =
787 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
788 	wpipe->pipe_map.cnt = size;
789 
790 /*
791  * and update the uio data
792  */
793 
794 	uio->uio_iov->iov_len -= size;
795 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
796 	if (uio->uio_iov->iov_len == 0)
797 		uio->uio_iov++;
798 	uio->uio_resid -= size;
799 	uio->uio_offset += size;
800 	return (0);
801 }
802 
803 /*
804  * unmap and unwire the process buffer
805  */
806 static void
807 pipe_destroy_write_buffer(wpipe)
808 	struct pipe *wpipe;
809 {
810 	int i;
811 
812 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
813 	vm_page_lock_queues();
814 	for (i = 0; i < wpipe->pipe_map.npages; i++) {
815 		vm_page_unhold(wpipe->pipe_map.ms[i]);
816 	}
817 	vm_page_unlock_queues();
818 	wpipe->pipe_map.npages = 0;
819 }
820 
821 /*
822  * In the case of a signal, the writing process might go away.  This
823  * code copies the data into the circular buffer so that the source
824  * pages can be freed without loss of data.
825  */
826 static void
827 pipe_clone_write_buffer(wpipe)
828 	struct pipe *wpipe;
829 {
830 	struct uio uio;
831 	struct iovec iov;
832 	int size;
833 	int pos;
834 
835 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
836 	size = wpipe->pipe_map.cnt;
837 	pos = wpipe->pipe_map.pos;
838 
839 	wpipe->pipe_buffer.in = size;
840 	wpipe->pipe_buffer.out = 0;
841 	wpipe->pipe_buffer.cnt = size;
842 	wpipe->pipe_state &= ~PIPE_DIRECTW;
843 
844 	PIPE_UNLOCK(wpipe);
845 	iov.iov_base = wpipe->pipe_buffer.buffer;
846 	iov.iov_len = size;
847 	uio.uio_iov = &iov;
848 	uio.uio_iovcnt = 1;
849 	uio.uio_offset = 0;
850 	uio.uio_resid = size;
851 	uio.uio_segflg = UIO_SYSSPACE;
852 	uio.uio_rw = UIO_READ;
853 	uio.uio_td = curthread;
854 	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
855 	PIPE_LOCK(wpipe);
856 	pipe_destroy_write_buffer(wpipe);
857 }
858 
859 /*
860  * This implements the pipe buffer write mechanism.  Note that only
861  * a direct write OR a normal pipe write can be pending at any given time.
862  * If there are any characters in the pipe buffer, the direct write will
863  * be deferred until the receiving process grabs all of the bytes from
864  * the pipe buffer.  Then the direct mapping write is set-up.
865  */
866 static int
867 pipe_direct_write(wpipe, uio)
868 	struct pipe *wpipe;
869 	struct uio *uio;
870 {
871 	int error;
872 
873 retry:
874 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
875 	error = pipelock(wpipe, 1);
876 	if (wpipe->pipe_state & PIPE_EOF)
877 		error = EPIPE;
878 	if (error) {
879 		pipeunlock(wpipe);
880 		goto error1;
881 	}
882 	while (wpipe->pipe_state & PIPE_DIRECTW) {
883 		if (wpipe->pipe_state & PIPE_WANTR) {
884 			wpipe->pipe_state &= ~PIPE_WANTR;
885 			wakeup(wpipe);
886 		}
887 		pipeselwakeup(wpipe);
888 		wpipe->pipe_state |= PIPE_WANTW;
889 		pipeunlock(wpipe);
890 		error = msleep(wpipe, PIPE_MTX(wpipe),
891 		    PRIBIO | PCATCH, "pipdww", 0);
892 		if (error)
893 			goto error1;
894 		else
895 			goto retry;
896 	}
897 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
898 	if (wpipe->pipe_buffer.cnt > 0) {
899 		if (wpipe->pipe_state & PIPE_WANTR) {
900 			wpipe->pipe_state &= ~PIPE_WANTR;
901 			wakeup(wpipe);
902 		}
903 		pipeselwakeup(wpipe);
904 		wpipe->pipe_state |= PIPE_WANTW;
905 		pipeunlock(wpipe);
906 		error = msleep(wpipe, PIPE_MTX(wpipe),
907 		    PRIBIO | PCATCH, "pipdwc", 0);
908 		if (error)
909 			goto error1;
910 		else
911 			goto retry;
912 	}
913 
914 	wpipe->pipe_state |= PIPE_DIRECTW;
915 
916 	PIPE_UNLOCK(wpipe);
917 	error = pipe_build_write_buffer(wpipe, uio);
918 	PIPE_LOCK(wpipe);
919 	if (error) {
920 		wpipe->pipe_state &= ~PIPE_DIRECTW;
921 		pipeunlock(wpipe);
922 		goto error1;
923 	}
924 
925 	error = 0;
926 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
927 		if (wpipe->pipe_state & PIPE_EOF) {
928 			pipe_destroy_write_buffer(wpipe);
929 			pipeselwakeup(wpipe);
930 			pipeunlock(wpipe);
931 			error = EPIPE;
932 			goto error1;
933 		}
934 		if (wpipe->pipe_state & PIPE_WANTR) {
935 			wpipe->pipe_state &= ~PIPE_WANTR;
936 			wakeup(wpipe);
937 		}
938 		pipeselwakeup(wpipe);
939 		pipeunlock(wpipe);
940 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
941 		    "pipdwt", 0);
942 		pipelock(wpipe, 0);
943 	}
944 
945 	if (wpipe->pipe_state & PIPE_EOF)
946 		error = EPIPE;
947 	if (wpipe->pipe_state & PIPE_DIRECTW) {
948 		/*
949 		 * this bit of trickery substitutes a kernel buffer for
950 		 * the process that might be going away.
951 		 */
952 		pipe_clone_write_buffer(wpipe);
953 	} else {
954 		pipe_destroy_write_buffer(wpipe);
955 	}
956 	pipeunlock(wpipe);
957 	return (error);
958 
959 error1:
960 	wakeup(wpipe);
961 	return (error);
962 }
963 #endif
964 
965 static int
966 pipe_write(fp, uio, active_cred, flags, td)
967 	struct file *fp;
968 	struct uio *uio;
969 	struct ucred *active_cred;
970 	struct thread *td;
971 	int flags;
972 {
973 	int error = 0;
974 	int desiredsize, orig_resid;
975 	struct pipe *wpipe, *rpipe;
976 
977 	rpipe = fp->f_data;
978 	wpipe = rpipe->pipe_peer;
979 
980 	PIPE_LOCK(rpipe);
981 	error = pipelock(wpipe, 1);
982 	if (error) {
983 		PIPE_UNLOCK(rpipe);
984 		return (error);
985 	}
986 	/*
987 	 * detect loss of pipe read side, issue SIGPIPE if lost.
988 	 */
989 	if (wpipe->pipe_present != PIPE_ACTIVE ||
990 	    (wpipe->pipe_state & PIPE_EOF)) {
991 		pipeunlock(wpipe);
992 		PIPE_UNLOCK(rpipe);
993 		return (EPIPE);
994 	}
995 #ifdef MAC
996 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
997 	if (error) {
998 		pipeunlock(wpipe);
999 		PIPE_UNLOCK(rpipe);
1000 		return (error);
1001 	}
1002 #endif
1003 	++wpipe->pipe_busy;
1004 
1005 	/* Choose a larger size if it's advantageous */
1006 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1007 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1008 		if (piperesizeallowed != 1)
1009 			break;
1010 		if (amountpipekva > maxpipekva / 2)
1011 			break;
1012 		if (desiredsize == BIG_PIPE_SIZE)
1013 			break;
1014 		desiredsize = desiredsize * 2;
1015 	}
1016 
1017 	/* Choose a smaller size if we're in a OOM situation */
1018 	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1019 		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1020 		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1021 		(piperesizeallowed == 1))
1022 		desiredsize = SMALL_PIPE_SIZE;
1023 
1024 	/* Resize if the above determined that a new size was necessary */
1025 	if ((desiredsize != wpipe->pipe_buffer.size) &&
1026 		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1027 		PIPE_UNLOCK(wpipe);
1028 		pipespace(wpipe, desiredsize);
1029 		PIPE_LOCK(wpipe);
1030 	}
1031 	if (wpipe->pipe_buffer.size == 0) {
1032 		/*
1033 		 * This can only happen for reverse direction use of pipes
1034 		 * in a complete OOM situation.
1035 		 */
1036 		error = ENOMEM;
1037 		--wpipe->pipe_busy;
1038 		pipeunlock(wpipe);
1039 		PIPE_UNLOCK(wpipe);
1040 		return (error);
1041 	}
1042 
1043 	pipeunlock(wpipe);
1044 
1045 	orig_resid = uio->uio_resid;
1046 
1047 	while (uio->uio_resid) {
1048 		int space;
1049 
1050 		pipelock(wpipe, 0);
1051 		if (wpipe->pipe_state & PIPE_EOF) {
1052 			pipeunlock(wpipe);
1053 			error = EPIPE;
1054 			break;
1055 		}
1056 #ifndef PIPE_NODIRECT
1057 		/*
1058 		 * If the transfer is large, we can gain performance if
1059 		 * we do process-to-process copies directly.
1060 		 * If the write is non-blocking, we don't use the
1061 		 * direct write mechanism.
1062 		 *
1063 		 * The direct write mechanism will detect the reader going
1064 		 * away on us.
1065 		 */
1066 		if (uio->uio_segflg == UIO_USERSPACE &&
1067 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1068 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1069 		    (fp->f_flag & FNONBLOCK) == 0) {
1070 			pipeunlock(wpipe);
1071 			error = pipe_direct_write(wpipe, uio);
1072 			if (error)
1073 				break;
1074 			continue;
1075 		}
1076 #endif
1077 
1078 		/*
1079 		 * Pipe buffered writes cannot be coincidental with
1080 		 * direct writes.  We wait until the currently executing
1081 		 * direct write is completed before we start filling the
1082 		 * pipe buffer.  We break out if a signal occurs or the
1083 		 * reader goes away.
1084 		 */
1085 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1086 			if (wpipe->pipe_state & PIPE_WANTR) {
1087 				wpipe->pipe_state &= ~PIPE_WANTR;
1088 				wakeup(wpipe);
1089 			}
1090 			pipeselwakeup(wpipe);
1091 			wpipe->pipe_state |= PIPE_WANTW;
1092 			pipeunlock(wpipe);
1093 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1094 			    "pipbww", 0);
1095 			if (error)
1096 				break;
1097 			else
1098 				continue;
1099 		}
1100 
1101 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1102 
1103 		/* Writes of size <= PIPE_BUF must be atomic. */
1104 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1105 			space = 0;
1106 
1107 		if (space > 0) {
1108 			int size;	/* Transfer size */
1109 			int segsize;	/* first segment to transfer */
1110 
1111 			/*
1112 			 * Transfer size is minimum of uio transfer
1113 			 * and free space in pipe buffer.
1114 			 */
1115 			if (space > uio->uio_resid)
1116 				size = uio->uio_resid;
1117 			else
1118 				size = space;
1119 			/*
1120 			 * First segment to transfer is minimum of
1121 			 * transfer size and contiguous space in
1122 			 * pipe buffer.  If first segment to transfer
1123 			 * is less than the transfer size, we've got
1124 			 * a wraparound in the buffer.
1125 			 */
1126 			segsize = wpipe->pipe_buffer.size -
1127 				wpipe->pipe_buffer.in;
1128 			if (segsize > size)
1129 				segsize = size;
1130 
1131 			/* Transfer first segment */
1132 
1133 			PIPE_UNLOCK(rpipe);
1134 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1135 					segsize, uio);
1136 			PIPE_LOCK(rpipe);
1137 
1138 			if (error == 0 && segsize < size) {
1139 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1140 					wpipe->pipe_buffer.size,
1141 					("Pipe buffer wraparound disappeared"));
1142 				/*
1143 				 * Transfer remaining part now, to
1144 				 * support atomic writes.  Wraparound
1145 				 * happened.
1146 				 */
1147 
1148 				PIPE_UNLOCK(rpipe);
1149 				error = uiomove(
1150 				    &wpipe->pipe_buffer.buffer[0],
1151 				    size - segsize, uio);
1152 				PIPE_LOCK(rpipe);
1153 			}
1154 			if (error == 0) {
1155 				wpipe->pipe_buffer.in += size;
1156 				if (wpipe->pipe_buffer.in >=
1157 				    wpipe->pipe_buffer.size) {
1158 					KASSERT(wpipe->pipe_buffer.in ==
1159 						size - segsize +
1160 						wpipe->pipe_buffer.size,
1161 						("Expected wraparound bad"));
1162 					wpipe->pipe_buffer.in = size - segsize;
1163 				}
1164 
1165 				wpipe->pipe_buffer.cnt += size;
1166 				KASSERT(wpipe->pipe_buffer.cnt <=
1167 					wpipe->pipe_buffer.size,
1168 					("Pipe buffer overflow"));
1169 			}
1170 			pipeunlock(wpipe);
1171 			if (error != 0)
1172 				break;
1173 		} else {
1174 			/*
1175 			 * If the "read-side" has been blocked, wake it up now.
1176 			 */
1177 			if (wpipe->pipe_state & PIPE_WANTR) {
1178 				wpipe->pipe_state &= ~PIPE_WANTR;
1179 				wakeup(wpipe);
1180 			}
1181 
1182 			/*
1183 			 * don't block on non-blocking I/O
1184 			 */
1185 			if (fp->f_flag & FNONBLOCK) {
1186 				error = EAGAIN;
1187 				pipeunlock(wpipe);
1188 				break;
1189 			}
1190 
1191 			/*
1192 			 * We have no more space and have something to offer,
1193 			 * wake up select/poll.
1194 			 */
1195 			pipeselwakeup(wpipe);
1196 
1197 			wpipe->pipe_state |= PIPE_WANTW;
1198 			pipeunlock(wpipe);
1199 			error = msleep(wpipe, PIPE_MTX(rpipe),
1200 			    PRIBIO | PCATCH, "pipewr", 0);
1201 			if (error != 0)
1202 				break;
1203 		}
1204 	}
1205 
1206 	pipelock(wpipe, 0);
1207 	--wpipe->pipe_busy;
1208 
1209 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1210 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1211 		wakeup(wpipe);
1212 	} else if (wpipe->pipe_buffer.cnt > 0) {
1213 		/*
1214 		 * If we have put any characters in the buffer, we wake up
1215 		 * the reader.
1216 		 */
1217 		if (wpipe->pipe_state & PIPE_WANTR) {
1218 			wpipe->pipe_state &= ~PIPE_WANTR;
1219 			wakeup(wpipe);
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * Don't return EPIPE if I/O was successful
1225 	 */
1226 	if ((wpipe->pipe_buffer.cnt == 0) &&
1227 	    (uio->uio_resid == 0) &&
1228 	    (error == EPIPE)) {
1229 		error = 0;
1230 	}
1231 
1232 	if (error == 0)
1233 		vfs_timestamp(&wpipe->pipe_mtime);
1234 
1235 	/*
1236 	 * We have something to offer,
1237 	 * wake up select/poll.
1238 	 */
1239 	if (wpipe->pipe_buffer.cnt)
1240 		pipeselwakeup(wpipe);
1241 
1242 	pipeunlock(wpipe);
1243 	PIPE_UNLOCK(rpipe);
1244 	return (error);
1245 }
1246 
1247 /* ARGSUSED */
1248 static int
1249 pipe_truncate(fp, length, active_cred, td)
1250 	struct file *fp;
1251 	off_t length;
1252 	struct ucred *active_cred;
1253 	struct thread *td;
1254 {
1255 
1256 	return (EINVAL);
1257 }
1258 
1259 /*
1260  * we implement a very minimal set of ioctls for compatibility with sockets.
1261  */
1262 static int
1263 pipe_ioctl(fp, cmd, data, active_cred, td)
1264 	struct file *fp;
1265 	u_long cmd;
1266 	void *data;
1267 	struct ucred *active_cred;
1268 	struct thread *td;
1269 {
1270 	struct pipe *mpipe = fp->f_data;
1271 	int error;
1272 
1273 	PIPE_LOCK(mpipe);
1274 
1275 #ifdef MAC
1276 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1277 	if (error) {
1278 		PIPE_UNLOCK(mpipe);
1279 		return (error);
1280 	}
1281 #endif
1282 
1283 	error = 0;
1284 	switch (cmd) {
1285 
1286 	case FIONBIO:
1287 		break;
1288 
1289 	case FIOASYNC:
1290 		if (*(int *)data) {
1291 			mpipe->pipe_state |= PIPE_ASYNC;
1292 		} else {
1293 			mpipe->pipe_state &= ~PIPE_ASYNC;
1294 		}
1295 		break;
1296 
1297 	case FIONREAD:
1298 		if (mpipe->pipe_state & PIPE_DIRECTW)
1299 			*(int *)data = mpipe->pipe_map.cnt;
1300 		else
1301 			*(int *)data = mpipe->pipe_buffer.cnt;
1302 		break;
1303 
1304 	case FIOSETOWN:
1305 		PIPE_UNLOCK(mpipe);
1306 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1307 		goto out_unlocked;
1308 
1309 	case FIOGETOWN:
1310 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1311 		break;
1312 
1313 	/* This is deprecated, FIOSETOWN should be used instead. */
1314 	case TIOCSPGRP:
1315 		PIPE_UNLOCK(mpipe);
1316 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1317 		goto out_unlocked;
1318 
1319 	/* This is deprecated, FIOGETOWN should be used instead. */
1320 	case TIOCGPGRP:
1321 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1322 		break;
1323 
1324 	default:
1325 		error = ENOTTY;
1326 		break;
1327 	}
1328 	PIPE_UNLOCK(mpipe);
1329 out_unlocked:
1330 	return (error);
1331 }
1332 
1333 static int
1334 pipe_poll(fp, events, active_cred, td)
1335 	struct file *fp;
1336 	int events;
1337 	struct ucred *active_cred;
1338 	struct thread *td;
1339 {
1340 	struct pipe *rpipe = fp->f_data;
1341 	struct pipe *wpipe;
1342 	int revents = 0;
1343 #ifdef MAC
1344 	int error;
1345 #endif
1346 
1347 	wpipe = rpipe->pipe_peer;
1348 	PIPE_LOCK(rpipe);
1349 #ifdef MAC
1350 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1351 	if (error)
1352 		goto locked_error;
1353 #endif
1354 	if (events & (POLLIN | POLLRDNORM))
1355 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1356 		    (rpipe->pipe_buffer.cnt > 0))
1357 			revents |= events & (POLLIN | POLLRDNORM);
1358 
1359 	if (events & (POLLOUT | POLLWRNORM))
1360 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1361 		    (wpipe->pipe_state & PIPE_EOF) ||
1362 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1363 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1364 			revents |= events & (POLLOUT | POLLWRNORM);
1365 
1366 	if ((events & POLLINIGNEOF) == 0) {
1367 		if (rpipe->pipe_state & PIPE_EOF) {
1368 			revents |= (events & (POLLIN | POLLRDNORM));
1369 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1370 			    (wpipe->pipe_state & PIPE_EOF))
1371 				revents |= POLLHUP;
1372 		}
1373 	}
1374 
1375 	if (revents == 0) {
1376 		if (events & (POLLIN | POLLRDNORM)) {
1377 			selrecord(td, &rpipe->pipe_sel);
1378 			if (SEL_WAITING(&rpipe->pipe_sel))
1379 				rpipe->pipe_state |= PIPE_SEL;
1380 		}
1381 
1382 		if (events & (POLLOUT | POLLWRNORM)) {
1383 			selrecord(td, &wpipe->pipe_sel);
1384 			if (SEL_WAITING(&wpipe->pipe_sel))
1385 				wpipe->pipe_state |= PIPE_SEL;
1386 		}
1387 	}
1388 #ifdef MAC
1389 locked_error:
1390 #endif
1391 	PIPE_UNLOCK(rpipe);
1392 
1393 	return (revents);
1394 }
1395 
1396 /*
1397  * We shouldn't need locks here as we're doing a read and this should
1398  * be a natural race.
1399  */
1400 static int
1401 pipe_stat(fp, ub, active_cred, td)
1402 	struct file *fp;
1403 	struct stat *ub;
1404 	struct ucred *active_cred;
1405 	struct thread *td;
1406 {
1407 	struct pipe *pipe = fp->f_data;
1408 #ifdef MAC
1409 	int error;
1410 
1411 	PIPE_LOCK(pipe);
1412 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1413 	PIPE_UNLOCK(pipe);
1414 	if (error)
1415 		return (error);
1416 #endif
1417 	bzero(ub, sizeof(*ub));
1418 	ub->st_mode = S_IFIFO;
1419 	ub->st_blksize = PAGE_SIZE;
1420 	if (pipe->pipe_state & PIPE_DIRECTW)
1421 		ub->st_size = pipe->pipe_map.cnt;
1422 	else
1423 		ub->st_size = pipe->pipe_buffer.cnt;
1424 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1425 	ub->st_atimespec = pipe->pipe_atime;
1426 	ub->st_mtimespec = pipe->pipe_mtime;
1427 	ub->st_ctimespec = pipe->pipe_ctime;
1428 	ub->st_uid = fp->f_cred->cr_uid;
1429 	ub->st_gid = fp->f_cred->cr_gid;
1430 	/*
1431 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1432 	 * XXX (st_dev, st_ino) should be unique.
1433 	 */
1434 	return (0);
1435 }
1436 
1437 /* ARGSUSED */
1438 static int
1439 pipe_close(fp, td)
1440 	struct file *fp;
1441 	struct thread *td;
1442 {
1443 	struct pipe *cpipe = fp->f_data;
1444 
1445 	fp->f_ops = &badfileops;
1446 	fp->f_data = NULL;
1447 	funsetown(&cpipe->pipe_sigio);
1448 	pipeclose(cpipe);
1449 	return (0);
1450 }
1451 
1452 static void
1453 pipe_free_kmem(cpipe)
1454 	struct pipe *cpipe;
1455 {
1456 
1457 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1458 	    ("pipe_free_kmem: pipe mutex locked"));
1459 
1460 	if (cpipe->pipe_buffer.buffer != NULL) {
1461 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1462 		vm_map_remove(pipe_map,
1463 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1464 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1465 		cpipe->pipe_buffer.buffer = NULL;
1466 	}
1467 #ifndef PIPE_NODIRECT
1468 	{
1469 		cpipe->pipe_map.cnt = 0;
1470 		cpipe->pipe_map.pos = 0;
1471 		cpipe->pipe_map.npages = 0;
1472 	}
1473 #endif
1474 }
1475 
1476 /*
1477  * shutdown the pipe
1478  */
1479 static void
1480 pipeclose(cpipe)
1481 	struct pipe *cpipe;
1482 {
1483 	struct pipepair *pp;
1484 	struct pipe *ppipe;
1485 
1486 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1487 
1488 	PIPE_LOCK(cpipe);
1489 	pipelock(cpipe, 0);
1490 	pp = cpipe->pipe_pair;
1491 
1492 	pipeselwakeup(cpipe);
1493 
1494 	/*
1495 	 * If the other side is blocked, wake it up saying that
1496 	 * we want to close it down.
1497 	 */
1498 	cpipe->pipe_state |= PIPE_EOF;
1499 	while (cpipe->pipe_busy) {
1500 		wakeup(cpipe);
1501 		cpipe->pipe_state |= PIPE_WANT;
1502 		pipeunlock(cpipe);
1503 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1504 		pipelock(cpipe, 0);
1505 	}
1506 
1507 
1508 	/*
1509 	 * Disconnect from peer, if any.
1510 	 */
1511 	ppipe = cpipe->pipe_peer;
1512 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1513 		pipeselwakeup(ppipe);
1514 
1515 		ppipe->pipe_state |= PIPE_EOF;
1516 		wakeup(ppipe);
1517 		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1518 	}
1519 
1520 	/*
1521 	 * Mark this endpoint as free.  Release kmem resources.  We
1522 	 * don't mark this endpoint as unused until we've finished
1523 	 * doing that, or the pipe might disappear out from under
1524 	 * us.
1525 	 */
1526 	PIPE_UNLOCK(cpipe);
1527 	pipe_free_kmem(cpipe);
1528 	PIPE_LOCK(cpipe);
1529 	cpipe->pipe_present = PIPE_CLOSING;
1530 	pipeunlock(cpipe);
1531 
1532 	/*
1533 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1534 	 * PIPE_FINALIZED, that allows other end to free the
1535 	 * pipe_pair, only after the knotes are completely dismantled.
1536 	 */
1537 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1538 	cpipe->pipe_present = PIPE_FINALIZED;
1539 	knlist_destroy(&cpipe->pipe_sel.si_note);
1540 
1541 	/*
1542 	 * If both endpoints are now closed, release the memory for the
1543 	 * pipe pair.  If not, unlock.
1544 	 */
1545 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1546 		PIPE_UNLOCK(cpipe);
1547 #ifdef MAC
1548 		mac_pipe_destroy(pp);
1549 #endif
1550 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1551 	} else
1552 		PIPE_UNLOCK(cpipe);
1553 }
1554 
1555 /*ARGSUSED*/
1556 static int
1557 pipe_kqfilter(struct file *fp, struct knote *kn)
1558 {
1559 	struct pipe *cpipe;
1560 
1561 	cpipe = kn->kn_fp->f_data;
1562 	PIPE_LOCK(cpipe);
1563 	switch (kn->kn_filter) {
1564 	case EVFILT_READ:
1565 		kn->kn_fop = &pipe_rfiltops;
1566 		break;
1567 	case EVFILT_WRITE:
1568 		kn->kn_fop = &pipe_wfiltops;
1569 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1570 			/* other end of pipe has been closed */
1571 			PIPE_UNLOCK(cpipe);
1572 			return (EPIPE);
1573 		}
1574 		cpipe = cpipe->pipe_peer;
1575 		break;
1576 	default:
1577 		PIPE_UNLOCK(cpipe);
1578 		return (EINVAL);
1579 	}
1580 
1581 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1582 	PIPE_UNLOCK(cpipe);
1583 	return (0);
1584 }
1585 
1586 static void
1587 filt_pipedetach(struct knote *kn)
1588 {
1589 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1590 
1591 	PIPE_LOCK(cpipe);
1592 	if (kn->kn_filter == EVFILT_WRITE)
1593 		cpipe = cpipe->pipe_peer;
1594 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1595 	PIPE_UNLOCK(cpipe);
1596 }
1597 
1598 /*ARGSUSED*/
1599 static int
1600 filt_piperead(struct knote *kn, long hint)
1601 {
1602 	struct pipe *rpipe = kn->kn_fp->f_data;
1603 	struct pipe *wpipe = rpipe->pipe_peer;
1604 	int ret;
1605 
1606 	PIPE_LOCK(rpipe);
1607 	kn->kn_data = rpipe->pipe_buffer.cnt;
1608 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1609 		kn->kn_data = rpipe->pipe_map.cnt;
1610 
1611 	if ((rpipe->pipe_state & PIPE_EOF) ||
1612 	    wpipe->pipe_present != PIPE_ACTIVE ||
1613 	    (wpipe->pipe_state & PIPE_EOF)) {
1614 		kn->kn_flags |= EV_EOF;
1615 		PIPE_UNLOCK(rpipe);
1616 		return (1);
1617 	}
1618 	ret = kn->kn_data > 0;
1619 	PIPE_UNLOCK(rpipe);
1620 	return ret;
1621 }
1622 
1623 /*ARGSUSED*/
1624 static int
1625 filt_pipewrite(struct knote *kn, long hint)
1626 {
1627 	struct pipe *rpipe = kn->kn_fp->f_data;
1628 	struct pipe *wpipe = rpipe->pipe_peer;
1629 
1630 	PIPE_LOCK(rpipe);
1631 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1632 	    (wpipe->pipe_state & PIPE_EOF)) {
1633 		kn->kn_data = 0;
1634 		kn->kn_flags |= EV_EOF;
1635 		PIPE_UNLOCK(rpipe);
1636 		return (1);
1637 	}
1638 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1639 	if (wpipe->pipe_state & PIPE_DIRECTW)
1640 		kn->kn_data = 0;
1641 
1642 	PIPE_UNLOCK(rpipe);
1643 	return (kn->kn_data >= PIPE_BUF);
1644 }
1645