xref: /freebsd/sys/kern/sys_pipe.c (revision 950a6087ec18cd22464b3297573f54a6d9223c99)
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * Copyright (c) 2012 Giovanni Trematerra
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice immediately at the beginning of the file, without modification,
11  *    this list of conditions, and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Absolutely no warranty of function or purpose is made by the author
16  *    John S. Dyson.
17  * 4. Modifications may be freely made to this file if the above conditions
18  *    are met.
19  */
20 
21 /*
22  * This file contains a high-performance replacement for the socket-based
23  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
24  * all features of sockets, but does do everything that pipes normally
25  * do.
26  */
27 
28 /*
29  * This code has two modes of operation, a small write mode and a large
30  * write mode.  The small write mode acts like conventional pipes with
31  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
32  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
33  * and PIPE_SIZE in size, the sending process pins the underlying pages in
34  * memory, and the receiving process copies directly from these pinned pages
35  * in the sending process.
36  *
37  * If the sending process receives a signal, it is possible that it will
38  * go away, and certainly its address space can change, because control
39  * is returned back to the user-mode side.  In that case, the pipe code
40  * arranges to copy the buffer supplied by the user process, to a pageable
41  * kernel buffer, and the receiving process will grab the data from the
42  * pageable kernel buffer.  Since signals don't happen all that often,
43  * the copy operation is normally eliminated.
44  *
45  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46  * happen for small transfers so that the system will not spend all of
47  * its time context switching.
48  *
49  * In order to limit the resource use of pipes, two sysctls exist:
50  *
51  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52  * address space available to us in pipe_map. This value is normally
53  * autotuned, but may also be loader tuned.
54  *
55  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56  * memory in use by pipes.
57  *
58  * Based on how large pipekva is relative to maxpipekva, the following
59  * will happen:
60  *
61  * 0% - 50%:
62  *     New pipes are given 16K of memory backing, pipes may dynamically
63  *     grow to as large as 64K where needed.
64  * 50% - 75%:
65  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
66  *     existing pipes may NOT grow.
67  * 75% - 100%:
68  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
69  *     existing pipes will be shrunk down to 4K whenever possible.
70  *
71  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
72  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73  * resize which MUST occur for reverse-direction pipes when they are
74  * first used.
75  *
76  * Additional information about the current state of pipes may be obtained
77  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78  * and kern.ipc.piperesizefail.
79  *
80  * Locking rules:  There are two locks present here:  A mutex, used via
81  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
82  * the flag, as mutexes can not persist over uiomove.  The mutex
83  * exists only to guard access to the flag, and is not in itself a
84  * locking mechanism.  Also note that there is only a single mutex for
85  * both directions of a pipe.
86  *
87  * As pipelock() may have to sleep before it can acquire the flag, it
88  * is important to reread all data after a call to pipelock(); everything
89  * in the structure may have changed.
90  */
91 
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/conf.h>
95 #include <sys/fcntl.h>
96 #include <sys/file.h>
97 #include <sys/filedesc.h>
98 #include <sys/filio.h>
99 #include <sys/kernel.h>
100 #include <sys/lock.h>
101 #include <sys/mutex.h>
102 #include <sys/ttycom.h>
103 #include <sys/stat.h>
104 #include <sys/malloc.h>
105 #include <sys/poll.h>
106 #include <sys/selinfo.h>
107 #include <sys/signalvar.h>
108 #include <sys/syscallsubr.h>
109 #include <sys/sysctl.h>
110 #include <sys/sysproto.h>
111 #include <sys/pipe.h>
112 #include <sys/proc.h>
113 #include <sys/vnode.h>
114 #include <sys/uio.h>
115 #include <sys/user.h>
116 #include <sys/event.h>
117 
118 #include <security/mac/mac_framework.h>
119 
120 #include <vm/vm.h>
121 #include <vm/vm_param.h>
122 #include <vm/vm_object.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_extern.h>
125 #include <vm/pmap.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_page.h>
128 #include <vm/uma.h>
129 
130 /*
131  * Use this define if you want to disable *fancy* VM things.  Expect an
132  * approx 30% decrease in transfer rate.  This could be useful for
133  * NetBSD or OpenBSD.
134  */
135 /* #define PIPE_NODIRECT */
136 
137 #define PIPE_PEER(pipe)	\
138 	(((pipe)->pipe_type & PIPE_TYPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
139 
140 /*
141  * interfaces to the outside world
142  */
143 static fo_rdwr_t	pipe_read;
144 static fo_rdwr_t	pipe_write;
145 static fo_truncate_t	pipe_truncate;
146 static fo_ioctl_t	pipe_ioctl;
147 static fo_poll_t	pipe_poll;
148 static fo_kqfilter_t	pipe_kqfilter;
149 static fo_stat_t	pipe_stat;
150 static fo_close_t	pipe_close;
151 static fo_chmod_t	pipe_chmod;
152 static fo_chown_t	pipe_chown;
153 static fo_fill_kinfo_t	pipe_fill_kinfo;
154 
155 struct fileops pipeops = {
156 	.fo_read = pipe_read,
157 	.fo_write = pipe_write,
158 	.fo_truncate = pipe_truncate,
159 	.fo_ioctl = pipe_ioctl,
160 	.fo_poll = pipe_poll,
161 	.fo_kqfilter = pipe_kqfilter,
162 	.fo_stat = pipe_stat,
163 	.fo_close = pipe_close,
164 	.fo_chmod = pipe_chmod,
165 	.fo_chown = pipe_chown,
166 	.fo_sendfile = invfo_sendfile,
167 	.fo_fill_kinfo = pipe_fill_kinfo,
168 	.fo_flags = DFLAG_PASSABLE
169 };
170 
171 static void	filt_pipedetach(struct knote *kn);
172 static void	filt_pipedetach_notsup(struct knote *kn);
173 static int	filt_pipenotsup(struct knote *kn, long hint);
174 static int	filt_piperead(struct knote *kn, long hint);
175 static int	filt_pipewrite(struct knote *kn, long hint);
176 
177 static struct filterops pipe_nfiltops = {
178 	.f_isfd = 1,
179 	.f_detach = filt_pipedetach_notsup,
180 	.f_event = filt_pipenotsup
181 };
182 static struct filterops pipe_rfiltops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_pipedetach,
185 	.f_event = filt_piperead
186 };
187 static struct filterops pipe_wfiltops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_pipedetach,
190 	.f_event = filt_pipewrite
191 };
192 
193 /*
194  * Default pipe buffer size(s), this can be kind-of large now because pipe
195  * space is pageable.  The pipe code will try to maintain locality of
196  * reference for performance reasons, so small amounts of outstanding I/O
197  * will not wipe the cache.
198  */
199 #define MINPIPESIZE (PIPE_SIZE/3)
200 #define MAXPIPESIZE (2*PIPE_SIZE/3)
201 
202 static long amountpipekva;
203 static int pipefragretry;
204 static int pipeallocfail;
205 static int piperesizefail;
206 static int piperesizeallowed = 1;
207 static long pipe_mindirect = PIPE_MINDIRECT;
208 
209 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
210 	   &maxpipekva, 0, "Pipe KVA limit");
211 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
212 	   &amountpipekva, 0, "Pipe KVA usage");
213 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
214 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
215 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
216 	  &pipeallocfail, 0, "Pipe allocation failures");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
218 	  &piperesizefail, 0, "Pipe resize failures");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
220 	  &piperesizeallowed, 0, "Pipe resizing allowed");
221 
222 static void pipeinit(void *dummy __unused);
223 static void pipeclose(struct pipe *cpipe);
224 static void pipe_free_kmem(struct pipe *cpipe);
225 static int pipe_create(struct pipe *pipe, bool backing);
226 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
227 static __inline int pipelock(struct pipe *cpipe, int catch);
228 static __inline void pipeunlock(struct pipe *cpipe);
229 static void pipe_timestamp(struct timespec *tsp);
230 #ifndef PIPE_NODIRECT
231 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
232 static void pipe_destroy_write_buffer(struct pipe *wpipe);
233 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
234 static void pipe_clone_write_buffer(struct pipe *wpipe);
235 #endif
236 static int pipespace(struct pipe *cpipe, int size);
237 static int pipespace_new(struct pipe *cpipe, int size);
238 
239 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
240 static int	pipe_zone_init(void *mem, int size, int flags);
241 static void	pipe_zone_fini(void *mem, int size);
242 
243 static uma_zone_t pipe_zone;
244 static struct unrhdr64 pipeino_unr;
245 static dev_t pipedev_ino;
246 
247 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
248 
249 static void
250 pipeinit(void *dummy __unused)
251 {
252 
253 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
254 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
255 	    UMA_ALIGN_PTR, 0);
256 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
257 	new_unrhdr64(&pipeino_unr, 1);
258 	pipedev_ino = devfs_alloc_cdp_inode();
259 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
260 }
261 
262 static int
263 sysctl_handle_pipe_mindirect(SYSCTL_HANDLER_ARGS)
264 {
265 	int error = 0;
266 	long tmp_pipe_mindirect = pipe_mindirect;
267 
268 	error = sysctl_handle_long(oidp, &tmp_pipe_mindirect, arg2, req);
269 	if (error != 0 || req->newptr == NULL)
270 		return (error);
271 
272 	/*
273 	 * Don't allow pipe_mindirect to be set so low that we violate
274 	 * atomicity requirements.
275 	 */
276 	if (tmp_pipe_mindirect <= PIPE_BUF)
277 		return (EINVAL);
278 	pipe_mindirect = tmp_pipe_mindirect;
279 	return (0);
280 }
281 SYSCTL_OID(_kern_ipc, OID_AUTO, pipe_mindirect, CTLTYPE_LONG | CTLFLAG_RW,
282     &pipe_mindirect, 0, sysctl_handle_pipe_mindirect, "L",
283     "Minimum write size triggering VM optimization");
284 
285 static int
286 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
287 {
288 	struct pipepair *pp;
289 	struct pipe *rpipe, *wpipe;
290 
291 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
292 
293 	pp = (struct pipepair *)mem;
294 
295 	/*
296 	 * We zero both pipe endpoints to make sure all the kmem pointers
297 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
298 	 * endpoints with the same time.
299 	 */
300 	rpipe = &pp->pp_rpipe;
301 	bzero(rpipe, sizeof(*rpipe));
302 	pipe_timestamp(&rpipe->pipe_ctime);
303 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
304 
305 	wpipe = &pp->pp_wpipe;
306 	bzero(wpipe, sizeof(*wpipe));
307 	wpipe->pipe_ctime = rpipe->pipe_ctime;
308 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
309 
310 	rpipe->pipe_peer = wpipe;
311 	rpipe->pipe_pair = pp;
312 	wpipe->pipe_peer = rpipe;
313 	wpipe->pipe_pair = pp;
314 
315 	/*
316 	 * Mark both endpoints as present; they will later get free'd
317 	 * one at a time.  When both are free'd, then the whole pair
318 	 * is released.
319 	 */
320 	rpipe->pipe_present = PIPE_ACTIVE;
321 	wpipe->pipe_present = PIPE_ACTIVE;
322 
323 	/*
324 	 * Eventually, the MAC Framework may initialize the label
325 	 * in ctor or init, but for now we do it elswhere to avoid
326 	 * blocking in ctor or init.
327 	 */
328 	pp->pp_label = NULL;
329 
330 	return (0);
331 }
332 
333 static int
334 pipe_zone_init(void *mem, int size, int flags)
335 {
336 	struct pipepair *pp;
337 
338 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
339 
340 	pp = (struct pipepair *)mem;
341 
342 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
343 	return (0);
344 }
345 
346 static void
347 pipe_zone_fini(void *mem, int size)
348 {
349 	struct pipepair *pp;
350 
351 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
352 
353 	pp = (struct pipepair *)mem;
354 
355 	mtx_destroy(&pp->pp_mtx);
356 }
357 
358 static int
359 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
360 {
361 	struct pipepair *pp;
362 	struct pipe *rpipe, *wpipe;
363 	int error;
364 
365 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
366 #ifdef MAC
367 	/*
368 	 * The MAC label is shared between the connected endpoints.  As a
369 	 * result mac_pipe_init() and mac_pipe_create() are called once
370 	 * for the pair, and not on the endpoints.
371 	 */
372 	mac_pipe_init(pp);
373 	mac_pipe_create(td->td_ucred, pp);
374 #endif
375 	rpipe = &pp->pp_rpipe;
376 	wpipe = &pp->pp_wpipe;
377 
378 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
379 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
380 
381 	/*
382 	 * Only the forward direction pipe is backed by big buffer by
383 	 * default.
384 	 */
385 	error = pipe_create(rpipe, true);
386 	if (error != 0)
387 		goto fail;
388 	error = pipe_create(wpipe, false);
389 	if (error != 0) {
390 		/*
391 		 * This cleanup leaves the pipe inode number for rpipe
392 		 * still allocated, but never used.  We do not free
393 		 * inode numbers for opened pipes, which is required
394 		 * for correctness because numbers must be unique.
395 		 * But also it avoids any memory use by the unr
396 		 * allocator, so stashing away the transient inode
397 		 * number is reasonable.
398 		 */
399 		pipe_free_kmem(rpipe);
400 		goto fail;
401 	}
402 
403 	rpipe->pipe_state |= PIPE_DIRECTOK;
404 	wpipe->pipe_state |= PIPE_DIRECTOK;
405 	return (0);
406 
407 fail:
408 	knlist_destroy(&rpipe->pipe_sel.si_note);
409 	knlist_destroy(&wpipe->pipe_sel.si_note);
410 #ifdef MAC
411 	mac_pipe_destroy(pp);
412 #endif
413 	uma_zfree(pipe_zone, pp);
414 	return (error);
415 }
416 
417 int
418 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
419 {
420 	struct pipepair *pp;
421 	int error;
422 
423 	error = pipe_paircreate(td, &pp);
424 	if (error != 0)
425 		return (error);
426 	pp->pp_rpipe.pipe_type |= PIPE_TYPE_NAMED;
427 	*ppipe = &pp->pp_rpipe;
428 	return (0);
429 }
430 
431 void
432 pipe_dtor(struct pipe *dpipe)
433 {
434 	struct pipe *peer;
435 
436 	peer = (dpipe->pipe_type & PIPE_TYPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
437 	funsetown(&dpipe->pipe_sigio);
438 	pipeclose(dpipe);
439 	if (peer != NULL) {
440 		funsetown(&peer->pipe_sigio);
441 		pipeclose(peer);
442 	}
443 }
444 
445 /*
446  * Get a timestamp.
447  *
448  * This used to be vfs_timestamp but the higher precision is unnecessary and
449  * can very negatively affect performance in virtualized environments (e.g., on
450  * vms running on amd64 when using the rdtscp instruction).
451  */
452 static void
453 pipe_timestamp(struct timespec *tsp)
454 {
455 
456 	getnanotime(tsp);
457 }
458 
459 /*
460  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
461  * the zone pick up the pieces via pipeclose().
462  */
463 int
464 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
465     struct filecaps *fcaps2)
466 {
467 	struct file *rf, *wf;
468 	struct pipe *rpipe, *wpipe;
469 	struct pipepair *pp;
470 	int fd, fflags, error;
471 
472 	error = pipe_paircreate(td, &pp);
473 	if (error != 0)
474 		return (error);
475 	rpipe = &pp->pp_rpipe;
476 	wpipe = &pp->pp_wpipe;
477 	error = falloc_caps(td, &rf, &fd, flags, fcaps1);
478 	if (error) {
479 		pipeclose(rpipe);
480 		pipeclose(wpipe);
481 		return (error);
482 	}
483 	/* An extra reference on `rf' has been held for us by falloc_caps(). */
484 	fildes[0] = fd;
485 
486 	fflags = FREAD | FWRITE;
487 	if ((flags & O_NONBLOCK) != 0)
488 		fflags |= FNONBLOCK;
489 
490 	/*
491 	 * Warning: once we've gotten past allocation of the fd for the
492 	 * read-side, we can only drop the read side via fdrop() in order
493 	 * to avoid races against processes which manage to dup() the read
494 	 * side while we are blocked trying to allocate the write side.
495 	 */
496 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
497 	error = falloc_caps(td, &wf, &fd, flags, fcaps2);
498 	if (error) {
499 		fdclose(td, rf, fildes[0]);
500 		fdrop(rf, td);
501 		/* rpipe has been closed by fdrop(). */
502 		pipeclose(wpipe);
503 		return (error);
504 	}
505 	/* An extra reference on `wf' has been held for us by falloc_caps(). */
506 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
507 	fdrop(wf, td);
508 	fildes[1] = fd;
509 	fdrop(rf, td);
510 
511 	return (0);
512 }
513 
514 #ifdef COMPAT_FREEBSD10
515 /* ARGSUSED */
516 int
517 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
518 {
519 	int error;
520 	int fildes[2];
521 
522 	error = kern_pipe(td, fildes, 0, NULL, NULL);
523 	if (error)
524 		return (error);
525 
526 	td->td_retval[0] = fildes[0];
527 	td->td_retval[1] = fildes[1];
528 
529 	return (0);
530 }
531 #endif
532 
533 int
534 sys_pipe2(struct thread *td, struct pipe2_args *uap)
535 {
536 	int error, fildes[2];
537 
538 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
539 		return (EINVAL);
540 	error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
541 	if (error)
542 		return (error);
543 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
544 	if (error) {
545 		(void)kern_close(td, fildes[0]);
546 		(void)kern_close(td, fildes[1]);
547 	}
548 	return (error);
549 }
550 
551 /*
552  * Allocate kva for pipe circular buffer, the space is pageable
553  * This routine will 'realloc' the size of a pipe safely, if it fails
554  * it will retain the old buffer.
555  * If it fails it will return ENOMEM.
556  */
557 static int
558 pipespace_new(struct pipe *cpipe, int size)
559 {
560 	caddr_t buffer;
561 	int error, cnt, firstseg;
562 	static int curfail = 0;
563 	static struct timeval lastfail;
564 
565 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
566 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
567 		("pipespace: resize of direct writes not allowed"));
568 retry:
569 	cnt = cpipe->pipe_buffer.cnt;
570 	if (cnt > size)
571 		size = cnt;
572 
573 	size = round_page(size);
574 	buffer = (caddr_t) vm_map_min(pipe_map);
575 
576 	error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
577 	    VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
578 	if (error != KERN_SUCCESS) {
579 		if (cpipe->pipe_buffer.buffer == NULL &&
580 		    size > SMALL_PIPE_SIZE) {
581 			size = SMALL_PIPE_SIZE;
582 			pipefragretry++;
583 			goto retry;
584 		}
585 		if (cpipe->pipe_buffer.buffer == NULL) {
586 			pipeallocfail++;
587 			if (ppsratecheck(&lastfail, &curfail, 1))
588 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
589 		} else {
590 			piperesizefail++;
591 		}
592 		return (ENOMEM);
593 	}
594 
595 	/* copy data, then free old resources if we're resizing */
596 	if (cnt > 0) {
597 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
598 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
599 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
600 				buffer, firstseg);
601 			if ((cnt - firstseg) > 0)
602 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
603 					cpipe->pipe_buffer.in);
604 		} else {
605 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
606 				buffer, cnt);
607 		}
608 	}
609 	pipe_free_kmem(cpipe);
610 	cpipe->pipe_buffer.buffer = buffer;
611 	cpipe->pipe_buffer.size = size;
612 	cpipe->pipe_buffer.in = cnt;
613 	cpipe->pipe_buffer.out = 0;
614 	cpipe->pipe_buffer.cnt = cnt;
615 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
616 	return (0);
617 }
618 
619 /*
620  * Wrapper for pipespace_new() that performs locking assertions.
621  */
622 static int
623 pipespace(struct pipe *cpipe, int size)
624 {
625 
626 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
627 	    ("Unlocked pipe passed to pipespace"));
628 	return (pipespace_new(cpipe, size));
629 }
630 
631 /*
632  * lock a pipe for I/O, blocking other access
633  */
634 static __inline int
635 pipelock(struct pipe *cpipe, int catch)
636 {
637 	int error, prio;
638 
639 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
640 
641 	prio = PRIBIO;
642 	if (catch)
643 		prio |= PCATCH;
644 	while (cpipe->pipe_state & PIPE_LOCKFL) {
645 		KASSERT(cpipe->pipe_waiters >= 0,
646 		    ("%s: bad waiter count %d", __func__,
647 		    cpipe->pipe_waiters));
648 		cpipe->pipe_waiters++;
649 		error = msleep(&cpipe->pipe_waiters, PIPE_MTX(cpipe), prio,
650 		    "pipelk", 0);
651 		cpipe->pipe_waiters--;
652 		if (error != 0)
653 			return (error);
654 	}
655 	cpipe->pipe_state |= PIPE_LOCKFL;
656 	return (0);
657 }
658 
659 /*
660  * unlock a pipe I/O lock
661  */
662 static __inline void
663 pipeunlock(struct pipe *cpipe)
664 {
665 
666 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
667 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
668 		("Unlocked pipe passed to pipeunlock"));
669 	KASSERT(cpipe->pipe_waiters >= 0,
670 	    ("%s: bad waiter count %d", __func__,
671 	    cpipe->pipe_waiters));
672 	cpipe->pipe_state &= ~PIPE_LOCKFL;
673 	if (cpipe->pipe_waiters > 0)
674 		wakeup_one(&cpipe->pipe_waiters);
675 }
676 
677 void
678 pipeselwakeup(struct pipe *cpipe)
679 {
680 
681 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
682 	if (cpipe->pipe_state & PIPE_SEL) {
683 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
684 		if (!SEL_WAITING(&cpipe->pipe_sel))
685 			cpipe->pipe_state &= ~PIPE_SEL;
686 	}
687 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
688 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
689 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
690 }
691 
692 /*
693  * Initialize and allocate VM and memory for pipe.  The structure
694  * will start out zero'd from the ctor, so we just manage the kmem.
695  */
696 static int
697 pipe_create(struct pipe *pipe, bool large_backing)
698 {
699 	int error;
700 
701 	error = pipespace_new(pipe, !large_backing || amountpipekva >
702 	    maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE);
703 	if (error == 0)
704 		pipe->pipe_ino = alloc_unr64(&pipeino_unr);
705 	return (error);
706 }
707 
708 /* ARGSUSED */
709 static int
710 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
711     int flags, struct thread *td)
712 {
713 	struct pipe *rpipe;
714 	int error;
715 	int nread = 0;
716 	int size;
717 
718 	rpipe = fp->f_data;
719 
720 	/*
721 	 * Try to avoid locking the pipe if we have nothing to do.
722 	 *
723 	 * There are programs which share one pipe amongst multiple processes
724 	 * and perform non-blocking reads in parallel, even if the pipe is
725 	 * empty.  This in particular is the case with BSD make, which when
726 	 * spawned with a high -j number can find itself with over half of the
727 	 * calls failing to find anything.
728 	 */
729 	if ((fp->f_flag & FNONBLOCK) != 0 && !mac_pipe_check_read_enabled()) {
730 		if (__predict_false(uio->uio_resid == 0))
731 			return (0);
732 		if ((atomic_load_short(&rpipe->pipe_state) & PIPE_EOF) == 0 &&
733 		    atomic_load_int(&rpipe->pipe_buffer.cnt) == 0 &&
734 		    atomic_load_int(&rpipe->pipe_pages.cnt) == 0)
735 			return (EAGAIN);
736 	}
737 
738 	PIPE_LOCK(rpipe);
739 	++rpipe->pipe_busy;
740 	error = pipelock(rpipe, 1);
741 	if (error)
742 		goto unlocked_error;
743 
744 #ifdef MAC
745 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
746 	if (error)
747 		goto locked_error;
748 #endif
749 	if (amountpipekva > (3 * maxpipekva) / 4) {
750 		if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 &&
751 		    rpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
752 		    rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
753 		    piperesizeallowed == 1) {
754 			PIPE_UNLOCK(rpipe);
755 			pipespace(rpipe, SMALL_PIPE_SIZE);
756 			PIPE_LOCK(rpipe);
757 		}
758 	}
759 
760 	while (uio->uio_resid) {
761 		/*
762 		 * normal pipe buffer receive
763 		 */
764 		if (rpipe->pipe_buffer.cnt > 0) {
765 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
766 			if (size > rpipe->pipe_buffer.cnt)
767 				size = rpipe->pipe_buffer.cnt;
768 			if (size > uio->uio_resid)
769 				size = uio->uio_resid;
770 
771 			PIPE_UNLOCK(rpipe);
772 			error = uiomove(
773 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
774 			    size, uio);
775 			PIPE_LOCK(rpipe);
776 			if (error)
777 				break;
778 
779 			rpipe->pipe_buffer.out += size;
780 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
781 				rpipe->pipe_buffer.out = 0;
782 
783 			rpipe->pipe_buffer.cnt -= size;
784 
785 			/*
786 			 * If there is no more to read in the pipe, reset
787 			 * its pointers to the beginning.  This improves
788 			 * cache hit stats.
789 			 */
790 			if (rpipe->pipe_buffer.cnt == 0) {
791 				rpipe->pipe_buffer.in = 0;
792 				rpipe->pipe_buffer.out = 0;
793 			}
794 			nread += size;
795 #ifndef PIPE_NODIRECT
796 		/*
797 		 * Direct copy, bypassing a kernel buffer.
798 		 */
799 		} else if ((size = rpipe->pipe_pages.cnt) != 0) {
800 			if (size > uio->uio_resid)
801 				size = (u_int) uio->uio_resid;
802 			PIPE_UNLOCK(rpipe);
803 			error = uiomove_fromphys(rpipe->pipe_pages.ms,
804 			    rpipe->pipe_pages.pos, size, uio);
805 			PIPE_LOCK(rpipe);
806 			if (error)
807 				break;
808 			nread += size;
809 			rpipe->pipe_pages.pos += size;
810 			rpipe->pipe_pages.cnt -= size;
811 			if (rpipe->pipe_pages.cnt == 0) {
812 				rpipe->pipe_state &= ~PIPE_WANTW;
813 				wakeup(rpipe);
814 			}
815 #endif
816 		} else {
817 			/*
818 			 * detect EOF condition
819 			 * read returns 0 on EOF, no need to set error
820 			 */
821 			if (rpipe->pipe_state & PIPE_EOF)
822 				break;
823 
824 			/*
825 			 * If the "write-side" has been blocked, wake it up now.
826 			 */
827 			if (rpipe->pipe_state & PIPE_WANTW) {
828 				rpipe->pipe_state &= ~PIPE_WANTW;
829 				wakeup(rpipe);
830 			}
831 
832 			/*
833 			 * Break if some data was read.
834 			 */
835 			if (nread > 0)
836 				break;
837 
838 			/*
839 			 * Unlock the pipe buffer for our remaining processing.
840 			 * We will either break out with an error or we will
841 			 * sleep and relock to loop.
842 			 */
843 			pipeunlock(rpipe);
844 
845 			/*
846 			 * Handle non-blocking mode operation or
847 			 * wait for more data.
848 			 */
849 			if (fp->f_flag & FNONBLOCK) {
850 				error = EAGAIN;
851 			} else {
852 				rpipe->pipe_state |= PIPE_WANTR;
853 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
854 				    PRIBIO | PCATCH,
855 				    "piperd", 0)) == 0)
856 					error = pipelock(rpipe, 1);
857 			}
858 			if (error)
859 				goto unlocked_error;
860 		}
861 	}
862 #ifdef MAC
863 locked_error:
864 #endif
865 	pipeunlock(rpipe);
866 
867 	/* XXX: should probably do this before getting any locks. */
868 	if (error == 0)
869 		pipe_timestamp(&rpipe->pipe_atime);
870 unlocked_error:
871 	--rpipe->pipe_busy;
872 
873 	/*
874 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
875 	 */
876 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
877 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
878 		wakeup(rpipe);
879 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
880 		/*
881 		 * Handle write blocking hysteresis.
882 		 */
883 		if (rpipe->pipe_state & PIPE_WANTW) {
884 			rpipe->pipe_state &= ~PIPE_WANTW;
885 			wakeup(rpipe);
886 		}
887 	}
888 
889 	/*
890 	 * Only wake up writers if there was actually something read.
891 	 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs.
892 	 */
893 	if (nread > 0 &&
894 	    rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
895 		pipeselwakeup(rpipe);
896 
897 	PIPE_UNLOCK(rpipe);
898 	if (nread > 0)
899 		td->td_ru.ru_msgrcv++;
900 	return (error);
901 }
902 
903 #ifndef PIPE_NODIRECT
904 /*
905  * Map the sending processes' buffer into kernel space and wire it.
906  * This is similar to a physical write operation.
907  */
908 static int
909 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
910 {
911 	u_int size;
912 	int i;
913 
914 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
915 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
916 	    ("%s: PIPE_DIRECTW set on %p", __func__, wpipe));
917 	KASSERT(wpipe->pipe_pages.cnt == 0,
918 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
919 
920 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
921                 size = wpipe->pipe_buffer.size;
922 	else
923                 size = uio->uio_iov->iov_len;
924 
925 	wpipe->pipe_state |= PIPE_DIRECTW;
926 	PIPE_UNLOCK(wpipe);
927 	i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
928 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
929 	    wpipe->pipe_pages.ms, PIPENPAGES);
930 	PIPE_LOCK(wpipe);
931 	if (i < 0) {
932 		wpipe->pipe_state &= ~PIPE_DIRECTW;
933 		return (EFAULT);
934 	}
935 
936 	wpipe->pipe_pages.npages = i;
937 	wpipe->pipe_pages.pos =
938 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
939 	wpipe->pipe_pages.cnt = size;
940 
941 	uio->uio_iov->iov_len -= size;
942 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
943 	if (uio->uio_iov->iov_len == 0)
944 		uio->uio_iov++;
945 	uio->uio_resid -= size;
946 	uio->uio_offset += size;
947 	return (0);
948 }
949 
950 /*
951  * Unwire the process buffer.
952  */
953 static void
954 pipe_destroy_write_buffer(struct pipe *wpipe)
955 {
956 
957 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
958 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
959 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
960 	KASSERT(wpipe->pipe_pages.cnt == 0,
961 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
962 
963 	wpipe->pipe_state &= ~PIPE_DIRECTW;
964 	vm_page_unhold_pages(wpipe->pipe_pages.ms, wpipe->pipe_pages.npages);
965 	wpipe->pipe_pages.npages = 0;
966 }
967 
968 /*
969  * In the case of a signal, the writing process might go away.  This
970  * code copies the data into the circular buffer so that the source
971  * pages can be freed without loss of data.
972  */
973 static void
974 pipe_clone_write_buffer(struct pipe *wpipe)
975 {
976 	struct uio uio;
977 	struct iovec iov;
978 	int size;
979 	int pos;
980 
981 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
982 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
983 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
984 
985 	size = wpipe->pipe_pages.cnt;
986 	pos = wpipe->pipe_pages.pos;
987 	wpipe->pipe_pages.cnt = 0;
988 
989 	wpipe->pipe_buffer.in = size;
990 	wpipe->pipe_buffer.out = 0;
991 	wpipe->pipe_buffer.cnt = size;
992 
993 	PIPE_UNLOCK(wpipe);
994 	iov.iov_base = wpipe->pipe_buffer.buffer;
995 	iov.iov_len = size;
996 	uio.uio_iov = &iov;
997 	uio.uio_iovcnt = 1;
998 	uio.uio_offset = 0;
999 	uio.uio_resid = size;
1000 	uio.uio_segflg = UIO_SYSSPACE;
1001 	uio.uio_rw = UIO_READ;
1002 	uio.uio_td = curthread;
1003 	uiomove_fromphys(wpipe->pipe_pages.ms, pos, size, &uio);
1004 	PIPE_LOCK(wpipe);
1005 	pipe_destroy_write_buffer(wpipe);
1006 }
1007 
1008 /*
1009  * This implements the pipe buffer write mechanism.  Note that only
1010  * a direct write OR a normal pipe write can be pending at any given time.
1011  * If there are any characters in the pipe buffer, the direct write will
1012  * be deferred until the receiving process grabs all of the bytes from
1013  * the pipe buffer.  Then the direct mapping write is set-up.
1014  */
1015 static int
1016 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
1017 {
1018 	int error;
1019 
1020 retry:
1021 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1022 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1023 		error = EPIPE;
1024 		goto error1;
1025 	}
1026 	if (wpipe->pipe_state & PIPE_DIRECTW) {
1027 		if (wpipe->pipe_state & PIPE_WANTR) {
1028 			wpipe->pipe_state &= ~PIPE_WANTR;
1029 			wakeup(wpipe);
1030 		}
1031 		pipeselwakeup(wpipe);
1032 		wpipe->pipe_state |= PIPE_WANTW;
1033 		pipeunlock(wpipe);
1034 		error = msleep(wpipe, PIPE_MTX(wpipe),
1035 		    PRIBIO | PCATCH, "pipdww", 0);
1036 		pipelock(wpipe, 0);
1037 		if (error != 0)
1038 			goto error1;
1039 		goto retry;
1040 	}
1041 	if (wpipe->pipe_buffer.cnt > 0) {
1042 		if (wpipe->pipe_state & PIPE_WANTR) {
1043 			wpipe->pipe_state &= ~PIPE_WANTR;
1044 			wakeup(wpipe);
1045 		}
1046 		pipeselwakeup(wpipe);
1047 		wpipe->pipe_state |= PIPE_WANTW;
1048 		pipeunlock(wpipe);
1049 		error = msleep(wpipe, PIPE_MTX(wpipe),
1050 		    PRIBIO | PCATCH, "pipdwc", 0);
1051 		pipelock(wpipe, 0);
1052 		if (error != 0)
1053 			goto error1;
1054 		goto retry;
1055 	}
1056 
1057 	error = pipe_build_write_buffer(wpipe, uio);
1058 	if (error) {
1059 		goto error1;
1060 	}
1061 
1062 	while (wpipe->pipe_pages.cnt != 0 &&
1063 	    (wpipe->pipe_state & PIPE_EOF) == 0) {
1064 		if (wpipe->pipe_state & PIPE_WANTR) {
1065 			wpipe->pipe_state &= ~PIPE_WANTR;
1066 			wakeup(wpipe);
1067 		}
1068 		pipeselwakeup(wpipe);
1069 		wpipe->pipe_state |= PIPE_WANTW;
1070 		pipeunlock(wpipe);
1071 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1072 		    "pipdwt", 0);
1073 		pipelock(wpipe, 0);
1074 		if (error != 0)
1075 			break;
1076 	}
1077 
1078 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1079 		wpipe->pipe_pages.cnt = 0;
1080 		pipe_destroy_write_buffer(wpipe);
1081 		pipeselwakeup(wpipe);
1082 		error = EPIPE;
1083 	} else if (error == EINTR || error == ERESTART) {
1084 		pipe_clone_write_buffer(wpipe);
1085 	} else {
1086 		pipe_destroy_write_buffer(wpipe);
1087 	}
1088 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
1089 	    ("pipe %p leaked PIPE_DIRECTW", wpipe));
1090 	return (error);
1091 
1092 error1:
1093 	wakeup(wpipe);
1094 	return (error);
1095 }
1096 #endif
1097 
1098 static int
1099 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1100     int flags, struct thread *td)
1101 {
1102 	struct pipe *wpipe, *rpipe;
1103 	ssize_t orig_resid;
1104 	int desiredsize, error;
1105 
1106 	rpipe = fp->f_data;
1107 	wpipe = PIPE_PEER(rpipe);
1108 	PIPE_LOCK(rpipe);
1109 	error = pipelock(wpipe, 1);
1110 	if (error) {
1111 		PIPE_UNLOCK(rpipe);
1112 		return (error);
1113 	}
1114 	/*
1115 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1116 	 */
1117 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1118 	    (wpipe->pipe_state & PIPE_EOF)) {
1119 		pipeunlock(wpipe);
1120 		PIPE_UNLOCK(rpipe);
1121 		return (EPIPE);
1122 	}
1123 #ifdef MAC
1124 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1125 	if (error) {
1126 		pipeunlock(wpipe);
1127 		PIPE_UNLOCK(rpipe);
1128 		return (error);
1129 	}
1130 #endif
1131 	++wpipe->pipe_busy;
1132 
1133 	/* Choose a larger size if it's advantageous */
1134 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1135 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1136 		if (piperesizeallowed != 1)
1137 			break;
1138 		if (amountpipekva > maxpipekva / 2)
1139 			break;
1140 		if (desiredsize == BIG_PIPE_SIZE)
1141 			break;
1142 		desiredsize = desiredsize * 2;
1143 	}
1144 
1145 	/* Choose a smaller size if we're in a OOM situation */
1146 	if (amountpipekva > (3 * maxpipekva) / 4 &&
1147 	    wpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
1148 	    wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
1149 	    piperesizeallowed == 1)
1150 		desiredsize = SMALL_PIPE_SIZE;
1151 
1152 	/* Resize if the above determined that a new size was necessary */
1153 	if (desiredsize != wpipe->pipe_buffer.size &&
1154 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0) {
1155 		PIPE_UNLOCK(wpipe);
1156 		pipespace(wpipe, desiredsize);
1157 		PIPE_LOCK(wpipe);
1158 	}
1159 	MPASS(wpipe->pipe_buffer.size != 0);
1160 
1161 	orig_resid = uio->uio_resid;
1162 
1163 	while (uio->uio_resid) {
1164 		int space;
1165 
1166 		if (wpipe->pipe_state & PIPE_EOF) {
1167 			error = EPIPE;
1168 			break;
1169 		}
1170 #ifndef PIPE_NODIRECT
1171 		/*
1172 		 * If the transfer is large, we can gain performance if
1173 		 * we do process-to-process copies directly.
1174 		 * If the write is non-blocking, we don't use the
1175 		 * direct write mechanism.
1176 		 *
1177 		 * The direct write mechanism will detect the reader going
1178 		 * away on us.
1179 		 */
1180 		if (uio->uio_segflg == UIO_USERSPACE &&
1181 		    uio->uio_iov->iov_len >= pipe_mindirect &&
1182 		    wpipe->pipe_buffer.size >= pipe_mindirect &&
1183 		    (fp->f_flag & FNONBLOCK) == 0) {
1184 			error = pipe_direct_write(wpipe, uio);
1185 			if (error != 0)
1186 				break;
1187 			continue;
1188 		}
1189 #endif
1190 
1191 		/*
1192 		 * Pipe buffered writes cannot be coincidental with
1193 		 * direct writes.  We wait until the currently executing
1194 		 * direct write is completed before we start filling the
1195 		 * pipe buffer.  We break out if a signal occurs or the
1196 		 * reader goes away.
1197 		 */
1198 		if (wpipe->pipe_pages.cnt != 0) {
1199 			if (wpipe->pipe_state & PIPE_WANTR) {
1200 				wpipe->pipe_state &= ~PIPE_WANTR;
1201 				wakeup(wpipe);
1202 			}
1203 			pipeselwakeup(wpipe);
1204 			wpipe->pipe_state |= PIPE_WANTW;
1205 			pipeunlock(wpipe);
1206 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1207 			    "pipbww", 0);
1208 			pipelock(wpipe, 0);
1209 			if (error != 0)
1210 				break;
1211 			continue;
1212 		}
1213 
1214 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1215 
1216 		/* Writes of size <= PIPE_BUF must be atomic. */
1217 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1218 			space = 0;
1219 
1220 		if (space > 0) {
1221 			int size;	/* Transfer size */
1222 			int segsize;	/* first segment to transfer */
1223 
1224 			/*
1225 			 * Transfer size is minimum of uio transfer
1226 			 * and free space in pipe buffer.
1227 			 */
1228 			if (space > uio->uio_resid)
1229 				size = uio->uio_resid;
1230 			else
1231 				size = space;
1232 			/*
1233 			 * First segment to transfer is minimum of
1234 			 * transfer size and contiguous space in
1235 			 * pipe buffer.  If first segment to transfer
1236 			 * is less than the transfer size, we've got
1237 			 * a wraparound in the buffer.
1238 			 */
1239 			segsize = wpipe->pipe_buffer.size -
1240 				wpipe->pipe_buffer.in;
1241 			if (segsize > size)
1242 				segsize = size;
1243 
1244 			/* Transfer first segment */
1245 
1246 			PIPE_UNLOCK(rpipe);
1247 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1248 					segsize, uio);
1249 			PIPE_LOCK(rpipe);
1250 
1251 			if (error == 0 && segsize < size) {
1252 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1253 					wpipe->pipe_buffer.size,
1254 					("Pipe buffer wraparound disappeared"));
1255 				/*
1256 				 * Transfer remaining part now, to
1257 				 * support atomic writes.  Wraparound
1258 				 * happened.
1259 				 */
1260 
1261 				PIPE_UNLOCK(rpipe);
1262 				error = uiomove(
1263 				    &wpipe->pipe_buffer.buffer[0],
1264 				    size - segsize, uio);
1265 				PIPE_LOCK(rpipe);
1266 			}
1267 			if (error == 0) {
1268 				wpipe->pipe_buffer.in += size;
1269 				if (wpipe->pipe_buffer.in >=
1270 				    wpipe->pipe_buffer.size) {
1271 					KASSERT(wpipe->pipe_buffer.in ==
1272 						size - segsize +
1273 						wpipe->pipe_buffer.size,
1274 						("Expected wraparound bad"));
1275 					wpipe->pipe_buffer.in = size - segsize;
1276 				}
1277 
1278 				wpipe->pipe_buffer.cnt += size;
1279 				KASSERT(wpipe->pipe_buffer.cnt <=
1280 					wpipe->pipe_buffer.size,
1281 					("Pipe buffer overflow"));
1282 			}
1283 			if (error != 0)
1284 				break;
1285 			continue;
1286 		} else {
1287 			/*
1288 			 * If the "read-side" has been blocked, wake it up now.
1289 			 */
1290 			if (wpipe->pipe_state & PIPE_WANTR) {
1291 				wpipe->pipe_state &= ~PIPE_WANTR;
1292 				wakeup(wpipe);
1293 			}
1294 
1295 			/*
1296 			 * don't block on non-blocking I/O
1297 			 */
1298 			if (fp->f_flag & FNONBLOCK) {
1299 				error = EAGAIN;
1300 				break;
1301 			}
1302 
1303 			/*
1304 			 * We have no more space and have something to offer,
1305 			 * wake up select/poll.
1306 			 */
1307 			pipeselwakeup(wpipe);
1308 
1309 			wpipe->pipe_state |= PIPE_WANTW;
1310 			pipeunlock(wpipe);
1311 			error = msleep(wpipe, PIPE_MTX(rpipe),
1312 			    PRIBIO | PCATCH, "pipewr", 0);
1313 			pipelock(wpipe, 0);
1314 			if (error != 0)
1315 				break;
1316 			continue;
1317 		}
1318 	}
1319 
1320 	--wpipe->pipe_busy;
1321 
1322 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1323 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1324 		wakeup(wpipe);
1325 	} else if (wpipe->pipe_buffer.cnt > 0) {
1326 		/*
1327 		 * If we have put any characters in the buffer, we wake up
1328 		 * the reader.
1329 		 */
1330 		if (wpipe->pipe_state & PIPE_WANTR) {
1331 			wpipe->pipe_state &= ~PIPE_WANTR;
1332 			wakeup(wpipe);
1333 		}
1334 	}
1335 
1336 	/*
1337 	 * Don't return EPIPE if any byte was written.
1338 	 * EINTR and other interrupts are handled by generic I/O layer.
1339 	 * Do not pretend that I/O succeeded for obvious user error
1340 	 * like EFAULT.
1341 	 */
1342 	if (uio->uio_resid != orig_resid && error == EPIPE)
1343 		error = 0;
1344 
1345 	if (error == 0)
1346 		pipe_timestamp(&wpipe->pipe_mtime);
1347 
1348 	/*
1349 	 * We have something to offer,
1350 	 * wake up select/poll.
1351 	 */
1352 	if (wpipe->pipe_buffer.cnt)
1353 		pipeselwakeup(wpipe);
1354 
1355 	pipeunlock(wpipe);
1356 	PIPE_UNLOCK(rpipe);
1357 	if (uio->uio_resid != orig_resid)
1358 		td->td_ru.ru_msgsnd++;
1359 	return (error);
1360 }
1361 
1362 /* ARGSUSED */
1363 static int
1364 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1365     struct thread *td)
1366 {
1367 	struct pipe *cpipe;
1368 	int error;
1369 
1370 	cpipe = fp->f_data;
1371 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1372 		error = vnops.fo_truncate(fp, length, active_cred, td);
1373 	else
1374 		error = invfo_truncate(fp, length, active_cred, td);
1375 	return (error);
1376 }
1377 
1378 /*
1379  * we implement a very minimal set of ioctls for compatibility with sockets.
1380  */
1381 static int
1382 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1383     struct thread *td)
1384 {
1385 	struct pipe *mpipe = fp->f_data;
1386 	int error;
1387 
1388 	PIPE_LOCK(mpipe);
1389 
1390 #ifdef MAC
1391 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1392 	if (error) {
1393 		PIPE_UNLOCK(mpipe);
1394 		return (error);
1395 	}
1396 #endif
1397 
1398 	error = 0;
1399 	switch (cmd) {
1400 	case FIONBIO:
1401 		break;
1402 
1403 	case FIOASYNC:
1404 		if (*(int *)data) {
1405 			mpipe->pipe_state |= PIPE_ASYNC;
1406 		} else {
1407 			mpipe->pipe_state &= ~PIPE_ASYNC;
1408 		}
1409 		break;
1410 
1411 	case FIONREAD:
1412 		if (!(fp->f_flag & FREAD)) {
1413 			*(int *)data = 0;
1414 			PIPE_UNLOCK(mpipe);
1415 			return (0);
1416 		}
1417 		if (mpipe->pipe_pages.cnt != 0)
1418 			*(int *)data = mpipe->pipe_pages.cnt;
1419 		else
1420 			*(int *)data = mpipe->pipe_buffer.cnt;
1421 		break;
1422 
1423 	case FIOSETOWN:
1424 		PIPE_UNLOCK(mpipe);
1425 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1426 		goto out_unlocked;
1427 
1428 	case FIOGETOWN:
1429 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1430 		break;
1431 
1432 	/* This is deprecated, FIOSETOWN should be used instead. */
1433 	case TIOCSPGRP:
1434 		PIPE_UNLOCK(mpipe);
1435 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1436 		goto out_unlocked;
1437 
1438 	/* This is deprecated, FIOGETOWN should be used instead. */
1439 	case TIOCGPGRP:
1440 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1441 		break;
1442 
1443 	default:
1444 		error = ENOTTY;
1445 		break;
1446 	}
1447 	PIPE_UNLOCK(mpipe);
1448 out_unlocked:
1449 	return (error);
1450 }
1451 
1452 static int
1453 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1454     struct thread *td)
1455 {
1456 	struct pipe *rpipe;
1457 	struct pipe *wpipe;
1458 	int levents, revents;
1459 #ifdef MAC
1460 	int error;
1461 #endif
1462 
1463 	revents = 0;
1464 	rpipe = fp->f_data;
1465 	wpipe = PIPE_PEER(rpipe);
1466 	PIPE_LOCK(rpipe);
1467 #ifdef MAC
1468 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1469 	if (error)
1470 		goto locked_error;
1471 #endif
1472 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1473 		if (rpipe->pipe_pages.cnt > 0 || rpipe->pipe_buffer.cnt > 0)
1474 			revents |= events & (POLLIN | POLLRDNORM);
1475 
1476 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1477 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1478 		    (wpipe->pipe_state & PIPE_EOF) ||
1479 		    ((wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1480 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1481 			 wpipe->pipe_buffer.size == 0)))
1482 			revents |= events & (POLLOUT | POLLWRNORM);
1483 
1484 	levents = events &
1485 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1486 	if (rpipe->pipe_type & PIPE_TYPE_NAMED && fp->f_flag & FREAD && levents &&
1487 	    fp->f_pipegen == rpipe->pipe_wgen)
1488 		events |= POLLINIGNEOF;
1489 
1490 	if ((events & POLLINIGNEOF) == 0) {
1491 		if (rpipe->pipe_state & PIPE_EOF) {
1492 			if (fp->f_flag & FREAD)
1493 				revents |= (events & (POLLIN | POLLRDNORM));
1494 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1495 			    (wpipe->pipe_state & PIPE_EOF))
1496 				revents |= POLLHUP;
1497 		}
1498 	}
1499 
1500 	if (revents == 0) {
1501 		/*
1502 		 * Add ourselves regardless of eventmask as we have to return
1503 		 * POLLHUP even if it was not asked for.
1504 		 */
1505 		if ((fp->f_flag & FREAD) != 0) {
1506 			selrecord(td, &rpipe->pipe_sel);
1507 			if (SEL_WAITING(&rpipe->pipe_sel))
1508 				rpipe->pipe_state |= PIPE_SEL;
1509 		}
1510 
1511 		if ((fp->f_flag & FWRITE) != 0 &&
1512 		    wpipe->pipe_present == PIPE_ACTIVE) {
1513 			selrecord(td, &wpipe->pipe_sel);
1514 			if (SEL_WAITING(&wpipe->pipe_sel))
1515 				wpipe->pipe_state |= PIPE_SEL;
1516 		}
1517 	}
1518 #ifdef MAC
1519 locked_error:
1520 #endif
1521 	PIPE_UNLOCK(rpipe);
1522 
1523 	return (revents);
1524 }
1525 
1526 /*
1527  * We shouldn't need locks here as we're doing a read and this should
1528  * be a natural race.
1529  */
1530 static int
1531 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred)
1532 {
1533 	struct pipe *pipe;
1534 #ifdef MAC
1535 	int error;
1536 #endif
1537 
1538 	pipe = fp->f_data;
1539 #ifdef MAC
1540 	if (mac_pipe_check_stat_enabled()) {
1541 		PIPE_LOCK(pipe);
1542 		error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1543 		PIPE_UNLOCK(pipe);
1544 		if (error) {
1545 			return (error);
1546 		}
1547 	}
1548 #endif
1549 
1550 	/* For named pipes ask the underlying filesystem. */
1551 	if (pipe->pipe_type & PIPE_TYPE_NAMED) {
1552 		return (vnops.fo_stat(fp, ub, active_cred));
1553 	}
1554 
1555 	bzero(ub, sizeof(*ub));
1556 	ub->st_mode = S_IFIFO;
1557 	ub->st_blksize = PAGE_SIZE;
1558 	if (pipe->pipe_pages.cnt != 0)
1559 		ub->st_size = pipe->pipe_pages.cnt;
1560 	else
1561 		ub->st_size = pipe->pipe_buffer.cnt;
1562 	ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1563 	ub->st_atim = pipe->pipe_atime;
1564 	ub->st_mtim = pipe->pipe_mtime;
1565 	ub->st_ctim = pipe->pipe_ctime;
1566 	ub->st_uid = fp->f_cred->cr_uid;
1567 	ub->st_gid = fp->f_cred->cr_gid;
1568 	ub->st_dev = pipedev_ino;
1569 	ub->st_ino = pipe->pipe_ino;
1570 	/*
1571 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1572 	 */
1573 	return (0);
1574 }
1575 
1576 /* ARGSUSED */
1577 static int
1578 pipe_close(struct file *fp, struct thread *td)
1579 {
1580 
1581 	if (fp->f_vnode != NULL)
1582 		return vnops.fo_close(fp, td);
1583 	fp->f_ops = &badfileops;
1584 	pipe_dtor(fp->f_data);
1585 	fp->f_data = NULL;
1586 	return (0);
1587 }
1588 
1589 static int
1590 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1591 {
1592 	struct pipe *cpipe;
1593 	int error;
1594 
1595 	cpipe = fp->f_data;
1596 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1597 		error = vn_chmod(fp, mode, active_cred, td);
1598 	else
1599 		error = invfo_chmod(fp, mode, active_cred, td);
1600 	return (error);
1601 }
1602 
1603 static int
1604 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1605     struct thread *td)
1606 {
1607 	struct pipe *cpipe;
1608 	int error;
1609 
1610 	cpipe = fp->f_data;
1611 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1612 		error = vn_chown(fp, uid, gid, active_cred, td);
1613 	else
1614 		error = invfo_chown(fp, uid, gid, active_cred, td);
1615 	return (error);
1616 }
1617 
1618 static int
1619 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1620 {
1621 	struct pipe *pi;
1622 
1623 	if (fp->f_type == DTYPE_FIFO)
1624 		return (vn_fill_kinfo(fp, kif, fdp));
1625 	kif->kf_type = KF_TYPE_PIPE;
1626 	pi = fp->f_data;
1627 	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1628 	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1629 	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1630 	kif->kf_un.kf_pipe.kf_pipe_buffer_in = pi->pipe_buffer.in;
1631 	kif->kf_un.kf_pipe.kf_pipe_buffer_out = pi->pipe_buffer.out;
1632 	kif->kf_un.kf_pipe.kf_pipe_buffer_size = pi->pipe_buffer.size;
1633 	return (0);
1634 }
1635 
1636 static void
1637 pipe_free_kmem(struct pipe *cpipe)
1638 {
1639 
1640 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1641 	    ("pipe_free_kmem: pipe mutex locked"));
1642 
1643 	if (cpipe->pipe_buffer.buffer != NULL) {
1644 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1645 		vm_map_remove(pipe_map,
1646 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1647 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1648 		cpipe->pipe_buffer.buffer = NULL;
1649 	}
1650 #ifndef PIPE_NODIRECT
1651 	{
1652 		cpipe->pipe_pages.cnt = 0;
1653 		cpipe->pipe_pages.pos = 0;
1654 		cpipe->pipe_pages.npages = 0;
1655 	}
1656 #endif
1657 }
1658 
1659 /*
1660  * shutdown the pipe
1661  */
1662 static void
1663 pipeclose(struct pipe *cpipe)
1664 {
1665 #ifdef MAC
1666 	struct pipepair *pp;
1667 #endif
1668 	struct pipe *ppipe;
1669 
1670 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1671 
1672 	PIPE_LOCK(cpipe);
1673 	pipelock(cpipe, 0);
1674 #ifdef MAC
1675 	pp = cpipe->pipe_pair;
1676 #endif
1677 
1678 	/*
1679 	 * If the other side is blocked, wake it up saying that
1680 	 * we want to close it down.
1681 	 */
1682 	cpipe->pipe_state |= PIPE_EOF;
1683 	while (cpipe->pipe_busy) {
1684 		wakeup(cpipe);
1685 		cpipe->pipe_state |= PIPE_WANT;
1686 		pipeunlock(cpipe);
1687 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1688 		pipelock(cpipe, 0);
1689 	}
1690 
1691 	pipeselwakeup(cpipe);
1692 
1693 	/*
1694 	 * Disconnect from peer, if any.
1695 	 */
1696 	ppipe = cpipe->pipe_peer;
1697 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1698 		ppipe->pipe_state |= PIPE_EOF;
1699 		wakeup(ppipe);
1700 		pipeselwakeup(ppipe);
1701 	}
1702 
1703 	/*
1704 	 * Mark this endpoint as free.  Release kmem resources.  We
1705 	 * don't mark this endpoint as unused until we've finished
1706 	 * doing that, or the pipe might disappear out from under
1707 	 * us.
1708 	 */
1709 	PIPE_UNLOCK(cpipe);
1710 	pipe_free_kmem(cpipe);
1711 	PIPE_LOCK(cpipe);
1712 	cpipe->pipe_present = PIPE_CLOSING;
1713 	pipeunlock(cpipe);
1714 
1715 	/*
1716 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1717 	 * PIPE_FINALIZED, that allows other end to free the
1718 	 * pipe_pair, only after the knotes are completely dismantled.
1719 	 */
1720 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1721 	cpipe->pipe_present = PIPE_FINALIZED;
1722 	seldrain(&cpipe->pipe_sel);
1723 	knlist_destroy(&cpipe->pipe_sel.si_note);
1724 
1725 	/*
1726 	 * If both endpoints are now closed, release the memory for the
1727 	 * pipe pair.  If not, unlock.
1728 	 */
1729 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1730 		PIPE_UNLOCK(cpipe);
1731 #ifdef MAC
1732 		mac_pipe_destroy(pp);
1733 #endif
1734 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1735 	} else
1736 		PIPE_UNLOCK(cpipe);
1737 }
1738 
1739 /*ARGSUSED*/
1740 static int
1741 pipe_kqfilter(struct file *fp, struct knote *kn)
1742 {
1743 	struct pipe *cpipe;
1744 
1745 	/*
1746 	 * If a filter is requested that is not supported by this file
1747 	 * descriptor, don't return an error, but also don't ever generate an
1748 	 * event.
1749 	 */
1750 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1751 		kn->kn_fop = &pipe_nfiltops;
1752 		return (0);
1753 	}
1754 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1755 		kn->kn_fop = &pipe_nfiltops;
1756 		return (0);
1757 	}
1758 	cpipe = fp->f_data;
1759 	PIPE_LOCK(cpipe);
1760 	switch (kn->kn_filter) {
1761 	case EVFILT_READ:
1762 		kn->kn_fop = &pipe_rfiltops;
1763 		break;
1764 	case EVFILT_WRITE:
1765 		kn->kn_fop = &pipe_wfiltops;
1766 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1767 			/* other end of pipe has been closed */
1768 			PIPE_UNLOCK(cpipe);
1769 			return (EPIPE);
1770 		}
1771 		cpipe = PIPE_PEER(cpipe);
1772 		break;
1773 	default:
1774 		if ((cpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1775 			PIPE_UNLOCK(cpipe);
1776 			return (vnops.fo_kqfilter(fp, kn));
1777 		}
1778 		PIPE_UNLOCK(cpipe);
1779 		return (EINVAL);
1780 	}
1781 
1782 	kn->kn_hook = cpipe;
1783 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1784 	PIPE_UNLOCK(cpipe);
1785 	return (0);
1786 }
1787 
1788 static void
1789 filt_pipedetach(struct knote *kn)
1790 {
1791 	struct pipe *cpipe = kn->kn_hook;
1792 
1793 	PIPE_LOCK(cpipe);
1794 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1795 	PIPE_UNLOCK(cpipe);
1796 }
1797 
1798 /*ARGSUSED*/
1799 static int
1800 filt_piperead(struct knote *kn, long hint)
1801 {
1802 	struct file *fp = kn->kn_fp;
1803 	struct pipe *rpipe = kn->kn_hook;
1804 
1805 	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1806 	kn->kn_data = rpipe->pipe_buffer.cnt;
1807 	if (kn->kn_data == 0)
1808 		kn->kn_data = rpipe->pipe_pages.cnt;
1809 
1810 	if ((rpipe->pipe_state & PIPE_EOF) != 0 &&
1811 	    ((rpipe->pipe_type & PIPE_TYPE_NAMED) == 0 ||
1812 	    fp->f_pipegen != rpipe->pipe_wgen)) {
1813 		kn->kn_flags |= EV_EOF;
1814 		return (1);
1815 	}
1816 	kn->kn_flags &= ~EV_EOF;
1817 	return (kn->kn_data > 0);
1818 }
1819 
1820 /*ARGSUSED*/
1821 static int
1822 filt_pipewrite(struct knote *kn, long hint)
1823 {
1824 	struct pipe *wpipe = kn->kn_hook;
1825 
1826 	/*
1827 	 * If this end of the pipe is closed, the knote was removed from the
1828 	 * knlist and the list lock (i.e., the pipe lock) is therefore not held.
1829 	 */
1830 	if (wpipe->pipe_present == PIPE_ACTIVE ||
1831 	    (wpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1832 		PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1833 
1834 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1835 			kn->kn_data = 0;
1836 		} else if (wpipe->pipe_buffer.size > 0) {
1837 			kn->kn_data = wpipe->pipe_buffer.size -
1838 			    wpipe->pipe_buffer.cnt;
1839 		} else {
1840 			kn->kn_data = PIPE_BUF;
1841 		}
1842 	}
1843 
1844 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1845 	    (wpipe->pipe_state & PIPE_EOF)) {
1846 		kn->kn_flags |= EV_EOF;
1847 		return (1);
1848 	}
1849 	kn->kn_flags &= ~EV_EOF;
1850 	return (kn->kn_data >= PIPE_BUF);
1851 }
1852 
1853 static void
1854 filt_pipedetach_notsup(struct knote *kn)
1855 {
1856 
1857 }
1858 
1859 static int
1860 filt_pipenotsup(struct knote *kn, long hint)
1861 {
1862 
1863 	return (0);
1864 }
1865