1 /*- 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 */ 19 20 /* 21 * This file contains a high-performance replacement for the socket-based 22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 23 * all features of sockets, but does do everything that pipes normally 24 * do. 25 */ 26 27 /* 28 * This code has two modes of operation, a small write mode and a large 29 * write mode. The small write mode acts like conventional pipes with 30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and 33 * the receiving process can copy it directly from the pages in the sending 34 * process. 35 * 36 * If the sending process receives a signal, it is possible that it will 37 * go away, and certainly its address space can change, because control 38 * is returned back to the user-mode side. In that case, the pipe code 39 * arranges to copy the buffer supplied by the user process, to a pageable 40 * kernel buffer, and the receiving process will grab the data from the 41 * pageable kernel buffer. Since signals don't happen all that often, 42 * the copy operation is normally eliminated. 43 * 44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 45 * happen for small transfers so that the system will not spend all of 46 * its time context switching. 47 * 48 * In order to limit the resource use of pipes, two sysctls exist: 49 * 50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 51 * address space available to us in pipe_map. This value is normally 52 * autotuned, but may also be loader tuned. 53 * 54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 55 * memory in use by pipes. 56 * 57 * Based on how large pipekva is relative to maxpipekva, the following 58 * will happen: 59 * 60 * 0% - 50%: 61 * New pipes are given 16K of memory backing, pipes may dynamically 62 * grow to as large as 64K where needed. 63 * 50% - 75%: 64 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 65 * existing pipes may NOT grow. 66 * 75% - 100%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes will be shrunk down to 4K whenever possible. 69 * 70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 72 * resize which MUST occur for reverse-direction pipes when they are 73 * first used. 74 * 75 * Additional information about the current state of pipes may be obtained 76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 77 * and kern.ipc.piperesizefail. 78 * 79 * Locking rules: There are two locks present here: A mutex, used via 80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 81 * the flag, as mutexes can not persist over uiomove. The mutex 82 * exists only to guard access to the flag, and is not in itself a 83 * locking mechanism. Also note that there is only a single mutex for 84 * both directions of a pipe. 85 * 86 * As pipelock() may have to sleep before it can acquire the flag, it 87 * is important to reread all data after a call to pipelock(); everything 88 * in the structure may have changed. 89 */ 90 91 #include <sys/cdefs.h> 92 __FBSDID("$FreeBSD$"); 93 94 #include "opt_mac.h" 95 96 #include <sys/param.h> 97 #include <sys/systm.h> 98 #include <sys/fcntl.h> 99 #include <sys/file.h> 100 #include <sys/filedesc.h> 101 #include <sys/filio.h> 102 #include <sys/kernel.h> 103 #include <sys/lock.h> 104 #include <sys/mutex.h> 105 #include <sys/ttycom.h> 106 #include <sys/stat.h> 107 #include <sys/malloc.h> 108 #include <sys/poll.h> 109 #include <sys/selinfo.h> 110 #include <sys/signalvar.h> 111 #include <sys/sysctl.h> 112 #include <sys/sysproto.h> 113 #include <sys/pipe.h> 114 #include <sys/proc.h> 115 #include <sys/vnode.h> 116 #include <sys/uio.h> 117 #include <sys/event.h> 118 119 #include <security/mac/mac_framework.h> 120 121 #include <vm/vm.h> 122 #include <vm/vm_param.h> 123 #include <vm/vm_object.h> 124 #include <vm/vm_kern.h> 125 #include <vm/vm_extern.h> 126 #include <vm/pmap.h> 127 #include <vm/vm_map.h> 128 #include <vm/vm_page.h> 129 #include <vm/uma.h> 130 131 /* 132 * Use this define if you want to disable *fancy* VM things. Expect an 133 * approx 30% decrease in transfer rate. This could be useful for 134 * NetBSD or OpenBSD. 135 */ 136 /* #define PIPE_NODIRECT */ 137 138 /* 139 * interfaces to the outside world 140 */ 141 static fo_rdwr_t pipe_read; 142 static fo_rdwr_t pipe_write; 143 static fo_ioctl_t pipe_ioctl; 144 static fo_poll_t pipe_poll; 145 static fo_kqfilter_t pipe_kqfilter; 146 static fo_stat_t pipe_stat; 147 static fo_close_t pipe_close; 148 149 static struct fileops pipeops = { 150 .fo_read = pipe_read, 151 .fo_write = pipe_write, 152 .fo_ioctl = pipe_ioctl, 153 .fo_poll = pipe_poll, 154 .fo_kqfilter = pipe_kqfilter, 155 .fo_stat = pipe_stat, 156 .fo_close = pipe_close, 157 .fo_flags = DFLAG_PASSABLE 158 }; 159 160 static void filt_pipedetach(struct knote *kn); 161 static int filt_piperead(struct knote *kn, long hint); 162 static int filt_pipewrite(struct knote *kn, long hint); 163 164 static struct filterops pipe_rfiltops = 165 { 1, NULL, filt_pipedetach, filt_piperead }; 166 static struct filterops pipe_wfiltops = 167 { 1, NULL, filt_pipedetach, filt_pipewrite }; 168 169 /* 170 * Default pipe buffer size(s), this can be kind-of large now because pipe 171 * space is pageable. The pipe code will try to maintain locality of 172 * reference for performance reasons, so small amounts of outstanding I/O 173 * will not wipe the cache. 174 */ 175 #define MINPIPESIZE (PIPE_SIZE/3) 176 #define MAXPIPESIZE (2*PIPE_SIZE/3) 177 178 static int amountpipekva; 179 static int pipefragretry; 180 static int pipeallocfail; 181 static int piperesizefail; 182 static int piperesizeallowed = 1; 183 184 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, 185 &maxpipekva, 0, "Pipe KVA limit"); 186 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 187 &amountpipekva, 0, "Pipe KVA usage"); 188 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 189 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 190 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 191 &pipeallocfail, 0, "Pipe allocation failures"); 192 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 193 &piperesizefail, 0, "Pipe resize failures"); 194 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 195 &piperesizeallowed, 0, "Pipe resizing allowed"); 196 197 static void pipeinit(void *dummy __unused); 198 static void pipeclose(struct pipe *cpipe); 199 static void pipe_free_kmem(struct pipe *cpipe); 200 static int pipe_create(struct pipe *pipe, int backing); 201 static __inline int pipelock(struct pipe *cpipe, int catch); 202 static __inline void pipeunlock(struct pipe *cpipe); 203 static __inline void pipeselwakeup(struct pipe *cpipe); 204 #ifndef PIPE_NODIRECT 205 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 206 static void pipe_destroy_write_buffer(struct pipe *wpipe); 207 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 208 static void pipe_clone_write_buffer(struct pipe *wpipe); 209 #endif 210 static int pipespace(struct pipe *cpipe, int size); 211 static int pipespace_new(struct pipe *cpipe, int size); 212 213 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 214 static int pipe_zone_init(void *mem, int size, int flags); 215 static void pipe_zone_fini(void *mem, int size); 216 217 static uma_zone_t pipe_zone; 218 219 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 220 221 static void 222 pipeinit(void *dummy __unused) 223 { 224 225 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair), 226 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini, 227 UMA_ALIGN_PTR, 0); 228 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 229 } 230 231 static int 232 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 233 { 234 struct pipepair *pp; 235 struct pipe *rpipe, *wpipe; 236 237 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 238 239 pp = (struct pipepair *)mem; 240 241 /* 242 * We zero both pipe endpoints to make sure all the kmem pointers 243 * are NULL, flag fields are zero'd, etc. We timestamp both 244 * endpoints with the same time. 245 */ 246 rpipe = &pp->pp_rpipe; 247 bzero(rpipe, sizeof(*rpipe)); 248 vfs_timestamp(&rpipe->pipe_ctime); 249 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 250 251 wpipe = &pp->pp_wpipe; 252 bzero(wpipe, sizeof(*wpipe)); 253 wpipe->pipe_ctime = rpipe->pipe_ctime; 254 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 255 256 rpipe->pipe_peer = wpipe; 257 rpipe->pipe_pair = pp; 258 wpipe->pipe_peer = rpipe; 259 wpipe->pipe_pair = pp; 260 261 /* 262 * Mark both endpoints as present; they will later get free'd 263 * one at a time. When both are free'd, then the whole pair 264 * is released. 265 */ 266 rpipe->pipe_present = 1; 267 wpipe->pipe_present = 1; 268 269 /* 270 * Eventually, the MAC Framework may initialize the label 271 * in ctor or init, but for now we do it elswhere to avoid 272 * blocking in ctor or init. 273 */ 274 pp->pp_label = NULL; 275 276 return (0); 277 } 278 279 static int 280 pipe_zone_init(void *mem, int size, int flags) 281 { 282 struct pipepair *pp; 283 284 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 285 286 pp = (struct pipepair *)mem; 287 288 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 289 return (0); 290 } 291 292 static void 293 pipe_zone_fini(void *mem, int size) 294 { 295 struct pipepair *pp; 296 297 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 298 299 pp = (struct pipepair *)mem; 300 301 mtx_destroy(&pp->pp_mtx); 302 } 303 304 /* 305 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let 306 * the zone pick up the pieces via pipeclose(). 307 */ 308 /* ARGSUSED */ 309 int 310 pipe(td, uap) 311 struct thread *td; 312 struct pipe_args /* { 313 int dummy; 314 } */ *uap; 315 { 316 struct filedesc *fdp = td->td_proc->p_fd; 317 struct file *rf, *wf; 318 struct pipepair *pp; 319 struct pipe *rpipe, *wpipe; 320 int fd, error; 321 322 pp = uma_zalloc(pipe_zone, M_WAITOK); 323 #ifdef MAC 324 /* 325 * The MAC label is shared between the connected endpoints. As a 326 * result mac_pipe_init() and mac_pipe_create() are called once 327 * for the pair, and not on the endpoints. 328 */ 329 mac_pipe_init(pp); 330 mac_pipe_create(td->td_ucred, pp); 331 #endif 332 rpipe = &pp->pp_rpipe; 333 wpipe = &pp->pp_wpipe; 334 335 knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe), NULL, NULL, 336 NULL); 337 knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe), NULL, NULL, 338 NULL); 339 340 /* Only the forward direction pipe is backed by default */ 341 if ((error = pipe_create(rpipe, 1)) != 0 || 342 (error = pipe_create(wpipe, 0)) != 0) { 343 pipeclose(rpipe); 344 pipeclose(wpipe); 345 return (error); 346 } 347 348 rpipe->pipe_state |= PIPE_DIRECTOK; 349 wpipe->pipe_state |= PIPE_DIRECTOK; 350 351 error = falloc(td, &rf, &fd); 352 if (error) { 353 pipeclose(rpipe); 354 pipeclose(wpipe); 355 return (error); 356 } 357 /* An extra reference on `rf' has been held for us by falloc(). */ 358 td->td_retval[0] = fd; 359 360 /* 361 * Warning: once we've gotten past allocation of the fd for the 362 * read-side, we can only drop the read side via fdrop() in order 363 * to avoid races against processes which manage to dup() the read 364 * side while we are blocked trying to allocate the write side. 365 */ 366 FILE_LOCK(rf); 367 rf->f_flag = FREAD | FWRITE; 368 rf->f_type = DTYPE_PIPE; 369 rf->f_data = rpipe; 370 rf->f_ops = &pipeops; 371 FILE_UNLOCK(rf); 372 error = falloc(td, &wf, &fd); 373 if (error) { 374 fdclose(fdp, rf, td->td_retval[0], td); 375 fdrop(rf, td); 376 /* rpipe has been closed by fdrop(). */ 377 pipeclose(wpipe); 378 return (error); 379 } 380 /* An extra reference on `wf' has been held for us by falloc(). */ 381 FILE_LOCK(wf); 382 wf->f_flag = FREAD | FWRITE; 383 wf->f_type = DTYPE_PIPE; 384 wf->f_data = wpipe; 385 wf->f_ops = &pipeops; 386 FILE_UNLOCK(wf); 387 fdrop(wf, td); 388 td->td_retval[1] = fd; 389 fdrop(rf, td); 390 391 return (0); 392 } 393 394 /* 395 * Allocate kva for pipe circular buffer, the space is pageable 396 * This routine will 'realloc' the size of a pipe safely, if it fails 397 * it will retain the old buffer. 398 * If it fails it will return ENOMEM. 399 */ 400 static int 401 pipespace_new(cpipe, size) 402 struct pipe *cpipe; 403 int size; 404 { 405 caddr_t buffer; 406 int error, cnt, firstseg; 407 static int curfail = 0; 408 static struct timeval lastfail; 409 410 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 411 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 412 ("pipespace: resize of direct writes not allowed")); 413 retry: 414 cnt = cpipe->pipe_buffer.cnt; 415 if (cnt > size) 416 size = cnt; 417 418 size = round_page(size); 419 buffer = (caddr_t) vm_map_min(pipe_map); 420 421 error = vm_map_find(pipe_map, NULL, 0, 422 (vm_offset_t *) &buffer, size, 1, 423 VM_PROT_ALL, VM_PROT_ALL, 0); 424 if (error != KERN_SUCCESS) { 425 if ((cpipe->pipe_buffer.buffer == NULL) && 426 (size > SMALL_PIPE_SIZE)) { 427 size = SMALL_PIPE_SIZE; 428 pipefragretry++; 429 goto retry; 430 } 431 if (cpipe->pipe_buffer.buffer == NULL) { 432 pipeallocfail++; 433 if (ppsratecheck(&lastfail, &curfail, 1)) 434 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 435 } else { 436 piperesizefail++; 437 } 438 return (ENOMEM); 439 } 440 441 /* copy data, then free old resources if we're resizing */ 442 if (cnt > 0) { 443 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 444 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 445 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 446 buffer, firstseg); 447 if ((cnt - firstseg) > 0) 448 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 449 cpipe->pipe_buffer.in); 450 } else { 451 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 452 buffer, cnt); 453 } 454 } 455 pipe_free_kmem(cpipe); 456 cpipe->pipe_buffer.buffer = buffer; 457 cpipe->pipe_buffer.size = size; 458 cpipe->pipe_buffer.in = cnt; 459 cpipe->pipe_buffer.out = 0; 460 cpipe->pipe_buffer.cnt = cnt; 461 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size); 462 return (0); 463 } 464 465 /* 466 * Wrapper for pipespace_new() that performs locking assertions. 467 */ 468 static int 469 pipespace(cpipe, size) 470 struct pipe *cpipe; 471 int size; 472 { 473 474 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 475 ("Unlocked pipe passed to pipespace")); 476 return (pipespace_new(cpipe, size)); 477 } 478 479 /* 480 * lock a pipe for I/O, blocking other access 481 */ 482 static __inline int 483 pipelock(cpipe, catch) 484 struct pipe *cpipe; 485 int catch; 486 { 487 int error; 488 489 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 490 while (cpipe->pipe_state & PIPE_LOCKFL) { 491 cpipe->pipe_state |= PIPE_LWANT; 492 error = msleep(cpipe, PIPE_MTX(cpipe), 493 catch ? (PRIBIO | PCATCH) : PRIBIO, 494 "pipelk", 0); 495 if (error != 0) 496 return (error); 497 } 498 cpipe->pipe_state |= PIPE_LOCKFL; 499 return (0); 500 } 501 502 /* 503 * unlock a pipe I/O lock 504 */ 505 static __inline void 506 pipeunlock(cpipe) 507 struct pipe *cpipe; 508 { 509 510 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 511 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 512 ("Unlocked pipe passed to pipeunlock")); 513 cpipe->pipe_state &= ~PIPE_LOCKFL; 514 if (cpipe->pipe_state & PIPE_LWANT) { 515 cpipe->pipe_state &= ~PIPE_LWANT; 516 wakeup(cpipe); 517 } 518 } 519 520 static __inline void 521 pipeselwakeup(cpipe) 522 struct pipe *cpipe; 523 { 524 525 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 526 if (cpipe->pipe_state & PIPE_SEL) { 527 selwakeuppri(&cpipe->pipe_sel, PSOCK); 528 if (!SEL_WAITING(&cpipe->pipe_sel)) 529 cpipe->pipe_state &= ~PIPE_SEL; 530 } 531 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 532 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 533 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 534 } 535 536 /* 537 * Initialize and allocate VM and memory for pipe. The structure 538 * will start out zero'd from the ctor, so we just manage the kmem. 539 */ 540 static int 541 pipe_create(pipe, backing) 542 struct pipe *pipe; 543 int backing; 544 { 545 int error; 546 547 if (backing) { 548 if (amountpipekva > maxpipekva / 2) 549 error = pipespace_new(pipe, SMALL_PIPE_SIZE); 550 else 551 error = pipespace_new(pipe, PIPE_SIZE); 552 } else { 553 /* If we're not backing this pipe, no need to do anything. */ 554 error = 0; 555 } 556 return (error); 557 } 558 559 /* ARGSUSED */ 560 static int 561 pipe_read(fp, uio, active_cred, flags, td) 562 struct file *fp; 563 struct uio *uio; 564 struct ucred *active_cred; 565 struct thread *td; 566 int flags; 567 { 568 struct pipe *rpipe = fp->f_data; 569 int error; 570 int nread = 0; 571 u_int size; 572 573 PIPE_LOCK(rpipe); 574 ++rpipe->pipe_busy; 575 error = pipelock(rpipe, 1); 576 if (error) 577 goto unlocked_error; 578 579 #ifdef MAC 580 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair); 581 if (error) 582 goto locked_error; 583 #endif 584 if (amountpipekva > (3 * maxpipekva) / 4) { 585 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 586 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 587 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 588 (piperesizeallowed == 1)) { 589 PIPE_UNLOCK(rpipe); 590 pipespace(rpipe, SMALL_PIPE_SIZE); 591 PIPE_LOCK(rpipe); 592 } 593 } 594 595 while (uio->uio_resid) { 596 /* 597 * normal pipe buffer receive 598 */ 599 if (rpipe->pipe_buffer.cnt > 0) { 600 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 601 if (size > rpipe->pipe_buffer.cnt) 602 size = rpipe->pipe_buffer.cnt; 603 if (size > (u_int) uio->uio_resid) 604 size = (u_int) uio->uio_resid; 605 606 PIPE_UNLOCK(rpipe); 607 error = uiomove( 608 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 609 size, uio); 610 PIPE_LOCK(rpipe); 611 if (error) 612 break; 613 614 rpipe->pipe_buffer.out += size; 615 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 616 rpipe->pipe_buffer.out = 0; 617 618 rpipe->pipe_buffer.cnt -= size; 619 620 /* 621 * If there is no more to read in the pipe, reset 622 * its pointers to the beginning. This improves 623 * cache hit stats. 624 */ 625 if (rpipe->pipe_buffer.cnt == 0) { 626 rpipe->pipe_buffer.in = 0; 627 rpipe->pipe_buffer.out = 0; 628 } 629 nread += size; 630 #ifndef PIPE_NODIRECT 631 /* 632 * Direct copy, bypassing a kernel buffer. 633 */ 634 } else if ((size = rpipe->pipe_map.cnt) && 635 (rpipe->pipe_state & PIPE_DIRECTW)) { 636 if (size > (u_int) uio->uio_resid) 637 size = (u_int) uio->uio_resid; 638 639 PIPE_UNLOCK(rpipe); 640 error = uiomove_fromphys(rpipe->pipe_map.ms, 641 rpipe->pipe_map.pos, size, uio); 642 PIPE_LOCK(rpipe); 643 if (error) 644 break; 645 nread += size; 646 rpipe->pipe_map.pos += size; 647 rpipe->pipe_map.cnt -= size; 648 if (rpipe->pipe_map.cnt == 0) { 649 rpipe->pipe_state &= ~PIPE_DIRECTW; 650 wakeup(rpipe); 651 } 652 #endif 653 } else { 654 /* 655 * detect EOF condition 656 * read returns 0 on EOF, no need to set error 657 */ 658 if (rpipe->pipe_state & PIPE_EOF) 659 break; 660 661 /* 662 * If the "write-side" has been blocked, wake it up now. 663 */ 664 if (rpipe->pipe_state & PIPE_WANTW) { 665 rpipe->pipe_state &= ~PIPE_WANTW; 666 wakeup(rpipe); 667 } 668 669 /* 670 * Break if some data was read. 671 */ 672 if (nread > 0) 673 break; 674 675 /* 676 * Unlock the pipe buffer for our remaining processing. 677 * We will either break out with an error or we will 678 * sleep and relock to loop. 679 */ 680 pipeunlock(rpipe); 681 682 /* 683 * Handle non-blocking mode operation or 684 * wait for more data. 685 */ 686 if (fp->f_flag & FNONBLOCK) { 687 error = EAGAIN; 688 } else { 689 rpipe->pipe_state |= PIPE_WANTR; 690 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 691 PRIBIO | PCATCH, 692 "piperd", 0)) == 0) 693 error = pipelock(rpipe, 1); 694 } 695 if (error) 696 goto unlocked_error; 697 } 698 } 699 #ifdef MAC 700 locked_error: 701 #endif 702 pipeunlock(rpipe); 703 704 /* XXX: should probably do this before getting any locks. */ 705 if (error == 0) 706 vfs_timestamp(&rpipe->pipe_atime); 707 unlocked_error: 708 --rpipe->pipe_busy; 709 710 /* 711 * PIPE_WANT processing only makes sense if pipe_busy is 0. 712 */ 713 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 714 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 715 wakeup(rpipe); 716 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 717 /* 718 * Handle write blocking hysteresis. 719 */ 720 if (rpipe->pipe_state & PIPE_WANTW) { 721 rpipe->pipe_state &= ~PIPE_WANTW; 722 wakeup(rpipe); 723 } 724 } 725 726 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 727 pipeselwakeup(rpipe); 728 729 PIPE_UNLOCK(rpipe); 730 return (error); 731 } 732 733 #ifndef PIPE_NODIRECT 734 /* 735 * Map the sending processes' buffer into kernel space and wire it. 736 * This is similar to a physical write operation. 737 */ 738 static int 739 pipe_build_write_buffer(wpipe, uio) 740 struct pipe *wpipe; 741 struct uio *uio; 742 { 743 pmap_t pmap; 744 u_int size; 745 int i, j; 746 vm_offset_t addr, endaddr; 747 748 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 749 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 750 ("Clone attempt on non-direct write pipe!")); 751 752 size = (u_int) uio->uio_iov->iov_len; 753 if (size > wpipe->pipe_buffer.size) 754 size = wpipe->pipe_buffer.size; 755 756 pmap = vmspace_pmap(curproc->p_vmspace); 757 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size); 758 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base); 759 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) { 760 /* 761 * vm_fault_quick() can sleep. Consequently, 762 * vm_page_lock_queue() and vm_page_unlock_queue() 763 * should not be performed outside of this loop. 764 */ 765 race: 766 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) { 767 vm_page_lock_queues(); 768 for (j = 0; j < i; j++) 769 vm_page_unhold(wpipe->pipe_map.ms[j]); 770 vm_page_unlock_queues(); 771 return (EFAULT); 772 } 773 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr, 774 VM_PROT_READ); 775 if (wpipe->pipe_map.ms[i] == NULL) 776 goto race; 777 } 778 779 /* 780 * set up the control block 781 */ 782 wpipe->pipe_map.npages = i; 783 wpipe->pipe_map.pos = 784 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 785 wpipe->pipe_map.cnt = size; 786 787 /* 788 * and update the uio data 789 */ 790 791 uio->uio_iov->iov_len -= size; 792 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 793 if (uio->uio_iov->iov_len == 0) 794 uio->uio_iov++; 795 uio->uio_resid -= size; 796 uio->uio_offset += size; 797 return (0); 798 } 799 800 /* 801 * unmap and unwire the process buffer 802 */ 803 static void 804 pipe_destroy_write_buffer(wpipe) 805 struct pipe *wpipe; 806 { 807 int i; 808 809 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 810 vm_page_lock_queues(); 811 for (i = 0; i < wpipe->pipe_map.npages; i++) { 812 vm_page_unhold(wpipe->pipe_map.ms[i]); 813 } 814 vm_page_unlock_queues(); 815 wpipe->pipe_map.npages = 0; 816 } 817 818 /* 819 * In the case of a signal, the writing process might go away. This 820 * code copies the data into the circular buffer so that the source 821 * pages can be freed without loss of data. 822 */ 823 static void 824 pipe_clone_write_buffer(wpipe) 825 struct pipe *wpipe; 826 { 827 struct uio uio; 828 struct iovec iov; 829 int size; 830 int pos; 831 832 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 833 size = wpipe->pipe_map.cnt; 834 pos = wpipe->pipe_map.pos; 835 836 wpipe->pipe_buffer.in = size; 837 wpipe->pipe_buffer.out = 0; 838 wpipe->pipe_buffer.cnt = size; 839 wpipe->pipe_state &= ~PIPE_DIRECTW; 840 841 PIPE_UNLOCK(wpipe); 842 iov.iov_base = wpipe->pipe_buffer.buffer; 843 iov.iov_len = size; 844 uio.uio_iov = &iov; 845 uio.uio_iovcnt = 1; 846 uio.uio_offset = 0; 847 uio.uio_resid = size; 848 uio.uio_segflg = UIO_SYSSPACE; 849 uio.uio_rw = UIO_READ; 850 uio.uio_td = curthread; 851 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 852 PIPE_LOCK(wpipe); 853 pipe_destroy_write_buffer(wpipe); 854 } 855 856 /* 857 * This implements the pipe buffer write mechanism. Note that only 858 * a direct write OR a normal pipe write can be pending at any given time. 859 * If there are any characters in the pipe buffer, the direct write will 860 * be deferred until the receiving process grabs all of the bytes from 861 * the pipe buffer. Then the direct mapping write is set-up. 862 */ 863 static int 864 pipe_direct_write(wpipe, uio) 865 struct pipe *wpipe; 866 struct uio *uio; 867 { 868 int error; 869 870 retry: 871 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 872 error = pipelock(wpipe, 1); 873 if (wpipe->pipe_state & PIPE_EOF) 874 error = EPIPE; 875 if (error) { 876 pipeunlock(wpipe); 877 goto error1; 878 } 879 while (wpipe->pipe_state & PIPE_DIRECTW) { 880 if (wpipe->pipe_state & PIPE_WANTR) { 881 wpipe->pipe_state &= ~PIPE_WANTR; 882 wakeup(wpipe); 883 } 884 pipeselwakeup(wpipe); 885 wpipe->pipe_state |= PIPE_WANTW; 886 pipeunlock(wpipe); 887 error = msleep(wpipe, PIPE_MTX(wpipe), 888 PRIBIO | PCATCH, "pipdww", 0); 889 if (error) 890 goto error1; 891 else 892 goto retry; 893 } 894 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 895 if (wpipe->pipe_buffer.cnt > 0) { 896 if (wpipe->pipe_state & PIPE_WANTR) { 897 wpipe->pipe_state &= ~PIPE_WANTR; 898 wakeup(wpipe); 899 } 900 pipeselwakeup(wpipe); 901 wpipe->pipe_state |= PIPE_WANTW; 902 pipeunlock(wpipe); 903 error = msleep(wpipe, PIPE_MTX(wpipe), 904 PRIBIO | PCATCH, "pipdwc", 0); 905 if (error) 906 goto error1; 907 else 908 goto retry; 909 } 910 911 wpipe->pipe_state |= PIPE_DIRECTW; 912 913 PIPE_UNLOCK(wpipe); 914 error = pipe_build_write_buffer(wpipe, uio); 915 PIPE_LOCK(wpipe); 916 if (error) { 917 wpipe->pipe_state &= ~PIPE_DIRECTW; 918 pipeunlock(wpipe); 919 goto error1; 920 } 921 922 error = 0; 923 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 924 if (wpipe->pipe_state & PIPE_EOF) { 925 pipe_destroy_write_buffer(wpipe); 926 pipeselwakeup(wpipe); 927 pipeunlock(wpipe); 928 error = EPIPE; 929 goto error1; 930 } 931 if (wpipe->pipe_state & PIPE_WANTR) { 932 wpipe->pipe_state &= ~PIPE_WANTR; 933 wakeup(wpipe); 934 } 935 pipeselwakeup(wpipe); 936 pipeunlock(wpipe); 937 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 938 "pipdwt", 0); 939 pipelock(wpipe, 0); 940 } 941 942 if (wpipe->pipe_state & PIPE_EOF) 943 error = EPIPE; 944 if (wpipe->pipe_state & PIPE_DIRECTW) { 945 /* 946 * this bit of trickery substitutes a kernel buffer for 947 * the process that might be going away. 948 */ 949 pipe_clone_write_buffer(wpipe); 950 } else { 951 pipe_destroy_write_buffer(wpipe); 952 } 953 pipeunlock(wpipe); 954 return (error); 955 956 error1: 957 wakeup(wpipe); 958 return (error); 959 } 960 #endif 961 962 static int 963 pipe_write(fp, uio, active_cred, flags, td) 964 struct file *fp; 965 struct uio *uio; 966 struct ucred *active_cred; 967 struct thread *td; 968 int flags; 969 { 970 int error = 0; 971 int desiredsize, orig_resid; 972 struct pipe *wpipe, *rpipe; 973 974 rpipe = fp->f_data; 975 wpipe = rpipe->pipe_peer; 976 977 PIPE_LOCK(rpipe); 978 error = pipelock(wpipe, 1); 979 if (error) { 980 PIPE_UNLOCK(rpipe); 981 return (error); 982 } 983 /* 984 * detect loss of pipe read side, issue SIGPIPE if lost. 985 */ 986 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 987 pipeunlock(wpipe); 988 PIPE_UNLOCK(rpipe); 989 return (EPIPE); 990 } 991 #ifdef MAC 992 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair); 993 if (error) { 994 pipeunlock(wpipe); 995 PIPE_UNLOCK(rpipe); 996 return (error); 997 } 998 #endif 999 ++wpipe->pipe_busy; 1000 1001 /* Choose a larger size if it's advantageous */ 1002 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1003 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1004 if (piperesizeallowed != 1) 1005 break; 1006 if (amountpipekva > maxpipekva / 2) 1007 break; 1008 if (desiredsize == BIG_PIPE_SIZE) 1009 break; 1010 desiredsize = desiredsize * 2; 1011 } 1012 1013 /* Choose a smaller size if we're in a OOM situation */ 1014 if ((amountpipekva > (3 * maxpipekva) / 4) && 1015 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 1016 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1017 (piperesizeallowed == 1)) 1018 desiredsize = SMALL_PIPE_SIZE; 1019 1020 /* Resize if the above determined that a new size was necessary */ 1021 if ((desiredsize != wpipe->pipe_buffer.size) && 1022 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1023 PIPE_UNLOCK(wpipe); 1024 pipespace(wpipe, desiredsize); 1025 PIPE_LOCK(wpipe); 1026 } 1027 if (wpipe->pipe_buffer.size == 0) { 1028 /* 1029 * This can only happen for reverse direction use of pipes 1030 * in a complete OOM situation. 1031 */ 1032 error = ENOMEM; 1033 --wpipe->pipe_busy; 1034 pipeunlock(wpipe); 1035 PIPE_UNLOCK(wpipe); 1036 return (error); 1037 } 1038 1039 pipeunlock(wpipe); 1040 1041 orig_resid = uio->uio_resid; 1042 1043 while (uio->uio_resid) { 1044 int space; 1045 1046 pipelock(wpipe, 0); 1047 if (wpipe->pipe_state & PIPE_EOF) { 1048 pipeunlock(wpipe); 1049 error = EPIPE; 1050 break; 1051 } 1052 #ifndef PIPE_NODIRECT 1053 /* 1054 * If the transfer is large, we can gain performance if 1055 * we do process-to-process copies directly. 1056 * If the write is non-blocking, we don't use the 1057 * direct write mechanism. 1058 * 1059 * The direct write mechanism will detect the reader going 1060 * away on us. 1061 */ 1062 if (uio->uio_segflg == UIO_USERSPACE && 1063 uio->uio_iov->iov_len >= PIPE_MINDIRECT && 1064 wpipe->pipe_buffer.size >= PIPE_MINDIRECT && 1065 (fp->f_flag & FNONBLOCK) == 0) { 1066 pipeunlock(wpipe); 1067 error = pipe_direct_write(wpipe, uio); 1068 if (error) 1069 break; 1070 continue; 1071 } 1072 #endif 1073 1074 /* 1075 * Pipe buffered writes cannot be coincidental with 1076 * direct writes. We wait until the currently executing 1077 * direct write is completed before we start filling the 1078 * pipe buffer. We break out if a signal occurs or the 1079 * reader goes away. 1080 */ 1081 if (wpipe->pipe_state & PIPE_DIRECTW) { 1082 if (wpipe->pipe_state & PIPE_WANTR) { 1083 wpipe->pipe_state &= ~PIPE_WANTR; 1084 wakeup(wpipe); 1085 } 1086 pipeselwakeup(wpipe); 1087 wpipe->pipe_state |= PIPE_WANTW; 1088 pipeunlock(wpipe); 1089 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1090 "pipbww", 0); 1091 if (error) 1092 break; 1093 else 1094 continue; 1095 } 1096 1097 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1098 1099 /* Writes of size <= PIPE_BUF must be atomic. */ 1100 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1101 space = 0; 1102 1103 if (space > 0) { 1104 int size; /* Transfer size */ 1105 int segsize; /* first segment to transfer */ 1106 1107 /* 1108 * Transfer size is minimum of uio transfer 1109 * and free space in pipe buffer. 1110 */ 1111 if (space > uio->uio_resid) 1112 size = uio->uio_resid; 1113 else 1114 size = space; 1115 /* 1116 * First segment to transfer is minimum of 1117 * transfer size and contiguous space in 1118 * pipe buffer. If first segment to transfer 1119 * is less than the transfer size, we've got 1120 * a wraparound in the buffer. 1121 */ 1122 segsize = wpipe->pipe_buffer.size - 1123 wpipe->pipe_buffer.in; 1124 if (segsize > size) 1125 segsize = size; 1126 1127 /* Transfer first segment */ 1128 1129 PIPE_UNLOCK(rpipe); 1130 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1131 segsize, uio); 1132 PIPE_LOCK(rpipe); 1133 1134 if (error == 0 && segsize < size) { 1135 KASSERT(wpipe->pipe_buffer.in + segsize == 1136 wpipe->pipe_buffer.size, 1137 ("Pipe buffer wraparound disappeared")); 1138 /* 1139 * Transfer remaining part now, to 1140 * support atomic writes. Wraparound 1141 * happened. 1142 */ 1143 1144 PIPE_UNLOCK(rpipe); 1145 error = uiomove( 1146 &wpipe->pipe_buffer.buffer[0], 1147 size - segsize, uio); 1148 PIPE_LOCK(rpipe); 1149 } 1150 if (error == 0) { 1151 wpipe->pipe_buffer.in += size; 1152 if (wpipe->pipe_buffer.in >= 1153 wpipe->pipe_buffer.size) { 1154 KASSERT(wpipe->pipe_buffer.in == 1155 size - segsize + 1156 wpipe->pipe_buffer.size, 1157 ("Expected wraparound bad")); 1158 wpipe->pipe_buffer.in = size - segsize; 1159 } 1160 1161 wpipe->pipe_buffer.cnt += size; 1162 KASSERT(wpipe->pipe_buffer.cnt <= 1163 wpipe->pipe_buffer.size, 1164 ("Pipe buffer overflow")); 1165 } 1166 pipeunlock(wpipe); 1167 if (error != 0) 1168 break; 1169 } else { 1170 /* 1171 * If the "read-side" has been blocked, wake it up now. 1172 */ 1173 if (wpipe->pipe_state & PIPE_WANTR) { 1174 wpipe->pipe_state &= ~PIPE_WANTR; 1175 wakeup(wpipe); 1176 } 1177 1178 /* 1179 * don't block on non-blocking I/O 1180 */ 1181 if (fp->f_flag & FNONBLOCK) { 1182 error = EAGAIN; 1183 pipeunlock(wpipe); 1184 break; 1185 } 1186 1187 /* 1188 * We have no more space and have something to offer, 1189 * wake up select/poll. 1190 */ 1191 pipeselwakeup(wpipe); 1192 1193 wpipe->pipe_state |= PIPE_WANTW; 1194 pipeunlock(wpipe); 1195 error = msleep(wpipe, PIPE_MTX(rpipe), 1196 PRIBIO | PCATCH, "pipewr", 0); 1197 if (error != 0) 1198 break; 1199 } 1200 } 1201 1202 pipelock(wpipe, 0); 1203 --wpipe->pipe_busy; 1204 1205 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1206 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1207 wakeup(wpipe); 1208 } else if (wpipe->pipe_buffer.cnt > 0) { 1209 /* 1210 * If we have put any characters in the buffer, we wake up 1211 * the reader. 1212 */ 1213 if (wpipe->pipe_state & PIPE_WANTR) { 1214 wpipe->pipe_state &= ~PIPE_WANTR; 1215 wakeup(wpipe); 1216 } 1217 } 1218 1219 /* 1220 * Don't return EPIPE if I/O was successful 1221 */ 1222 if ((wpipe->pipe_buffer.cnt == 0) && 1223 (uio->uio_resid == 0) && 1224 (error == EPIPE)) { 1225 error = 0; 1226 } 1227 1228 if (error == 0) 1229 vfs_timestamp(&wpipe->pipe_mtime); 1230 1231 /* 1232 * We have something to offer, 1233 * wake up select/poll. 1234 */ 1235 if (wpipe->pipe_buffer.cnt) 1236 pipeselwakeup(wpipe); 1237 1238 pipeunlock(wpipe); 1239 PIPE_UNLOCK(rpipe); 1240 return (error); 1241 } 1242 1243 /* 1244 * we implement a very minimal set of ioctls for compatibility with sockets. 1245 */ 1246 static int 1247 pipe_ioctl(fp, cmd, data, active_cred, td) 1248 struct file *fp; 1249 u_long cmd; 1250 void *data; 1251 struct ucred *active_cred; 1252 struct thread *td; 1253 { 1254 struct pipe *mpipe = fp->f_data; 1255 int error; 1256 1257 PIPE_LOCK(mpipe); 1258 1259 #ifdef MAC 1260 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1261 if (error) { 1262 PIPE_UNLOCK(mpipe); 1263 return (error); 1264 } 1265 #endif 1266 1267 error = 0; 1268 switch (cmd) { 1269 1270 case FIONBIO: 1271 break; 1272 1273 case FIOASYNC: 1274 if (*(int *)data) { 1275 mpipe->pipe_state |= PIPE_ASYNC; 1276 } else { 1277 mpipe->pipe_state &= ~PIPE_ASYNC; 1278 } 1279 break; 1280 1281 case FIONREAD: 1282 if (mpipe->pipe_state & PIPE_DIRECTW) 1283 *(int *)data = mpipe->pipe_map.cnt; 1284 else 1285 *(int *)data = mpipe->pipe_buffer.cnt; 1286 break; 1287 1288 case FIOSETOWN: 1289 PIPE_UNLOCK(mpipe); 1290 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1291 goto out_unlocked; 1292 1293 case FIOGETOWN: 1294 *(int *)data = fgetown(&mpipe->pipe_sigio); 1295 break; 1296 1297 /* This is deprecated, FIOSETOWN should be used instead. */ 1298 case TIOCSPGRP: 1299 PIPE_UNLOCK(mpipe); 1300 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1301 goto out_unlocked; 1302 1303 /* This is deprecated, FIOGETOWN should be used instead. */ 1304 case TIOCGPGRP: 1305 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1306 break; 1307 1308 default: 1309 error = ENOTTY; 1310 break; 1311 } 1312 PIPE_UNLOCK(mpipe); 1313 out_unlocked: 1314 return (error); 1315 } 1316 1317 static int 1318 pipe_poll(fp, events, active_cred, td) 1319 struct file *fp; 1320 int events; 1321 struct ucred *active_cred; 1322 struct thread *td; 1323 { 1324 struct pipe *rpipe = fp->f_data; 1325 struct pipe *wpipe; 1326 int revents = 0; 1327 #ifdef MAC 1328 int error; 1329 #endif 1330 1331 wpipe = rpipe->pipe_peer; 1332 PIPE_LOCK(rpipe); 1333 #ifdef MAC 1334 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair); 1335 if (error) 1336 goto locked_error; 1337 #endif 1338 if (events & (POLLIN | POLLRDNORM)) 1339 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1340 (rpipe->pipe_buffer.cnt > 0) || 1341 (rpipe->pipe_state & PIPE_EOF)) 1342 revents |= events & (POLLIN | POLLRDNORM); 1343 1344 if (events & (POLLOUT | POLLWRNORM)) 1345 if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) || 1346 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1347 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1348 revents |= events & (POLLOUT | POLLWRNORM); 1349 1350 if ((rpipe->pipe_state & PIPE_EOF) || 1351 (!wpipe->pipe_present) || 1352 (wpipe->pipe_state & PIPE_EOF)) 1353 revents |= POLLHUP; 1354 1355 if (revents == 0) { 1356 if (events & (POLLIN | POLLRDNORM)) { 1357 selrecord(td, &rpipe->pipe_sel); 1358 if (SEL_WAITING(&rpipe->pipe_sel)) 1359 rpipe->pipe_state |= PIPE_SEL; 1360 } 1361 1362 if (events & (POLLOUT | POLLWRNORM)) { 1363 selrecord(td, &wpipe->pipe_sel); 1364 if (SEL_WAITING(&wpipe->pipe_sel)) 1365 wpipe->pipe_state |= PIPE_SEL; 1366 } 1367 } 1368 #ifdef MAC 1369 locked_error: 1370 #endif 1371 PIPE_UNLOCK(rpipe); 1372 1373 return (revents); 1374 } 1375 1376 /* 1377 * We shouldn't need locks here as we're doing a read and this should 1378 * be a natural race. 1379 */ 1380 static int 1381 pipe_stat(fp, ub, active_cred, td) 1382 struct file *fp; 1383 struct stat *ub; 1384 struct ucred *active_cred; 1385 struct thread *td; 1386 { 1387 struct pipe *pipe = fp->f_data; 1388 #ifdef MAC 1389 int error; 1390 1391 PIPE_LOCK(pipe); 1392 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair); 1393 PIPE_UNLOCK(pipe); 1394 if (error) 1395 return (error); 1396 #endif 1397 bzero(ub, sizeof(*ub)); 1398 ub->st_mode = S_IFIFO; 1399 ub->st_blksize = PAGE_SIZE; 1400 if (pipe->pipe_state & PIPE_DIRECTW) 1401 ub->st_size = pipe->pipe_map.cnt; 1402 else 1403 ub->st_size = pipe->pipe_buffer.cnt; 1404 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1405 ub->st_atimespec = pipe->pipe_atime; 1406 ub->st_mtimespec = pipe->pipe_mtime; 1407 ub->st_ctimespec = pipe->pipe_ctime; 1408 ub->st_uid = fp->f_cred->cr_uid; 1409 ub->st_gid = fp->f_cred->cr_gid; 1410 /* 1411 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1412 * XXX (st_dev, st_ino) should be unique. 1413 */ 1414 return (0); 1415 } 1416 1417 /* ARGSUSED */ 1418 static int 1419 pipe_close(fp, td) 1420 struct file *fp; 1421 struct thread *td; 1422 { 1423 struct pipe *cpipe = fp->f_data; 1424 1425 fp->f_ops = &badfileops; 1426 fp->f_data = NULL; 1427 funsetown(&cpipe->pipe_sigio); 1428 pipeclose(cpipe); 1429 return (0); 1430 } 1431 1432 static void 1433 pipe_free_kmem(cpipe) 1434 struct pipe *cpipe; 1435 { 1436 1437 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1438 ("pipe_free_kmem: pipe mutex locked")); 1439 1440 if (cpipe->pipe_buffer.buffer != NULL) { 1441 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size); 1442 vm_map_remove(pipe_map, 1443 (vm_offset_t)cpipe->pipe_buffer.buffer, 1444 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1445 cpipe->pipe_buffer.buffer = NULL; 1446 } 1447 #ifndef PIPE_NODIRECT 1448 { 1449 cpipe->pipe_map.cnt = 0; 1450 cpipe->pipe_map.pos = 0; 1451 cpipe->pipe_map.npages = 0; 1452 } 1453 #endif 1454 } 1455 1456 /* 1457 * shutdown the pipe 1458 */ 1459 static void 1460 pipeclose(cpipe) 1461 struct pipe *cpipe; 1462 { 1463 struct pipepair *pp; 1464 struct pipe *ppipe; 1465 1466 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1467 1468 PIPE_LOCK(cpipe); 1469 pipelock(cpipe, 0); 1470 pp = cpipe->pipe_pair; 1471 1472 pipeselwakeup(cpipe); 1473 1474 /* 1475 * If the other side is blocked, wake it up saying that 1476 * we want to close it down. 1477 */ 1478 cpipe->pipe_state |= PIPE_EOF; 1479 while (cpipe->pipe_busy) { 1480 wakeup(cpipe); 1481 cpipe->pipe_state |= PIPE_WANT; 1482 pipeunlock(cpipe); 1483 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1484 pipelock(cpipe, 0); 1485 } 1486 1487 1488 /* 1489 * Disconnect from peer, if any. 1490 */ 1491 ppipe = cpipe->pipe_peer; 1492 if (ppipe->pipe_present != 0) { 1493 pipeselwakeup(ppipe); 1494 1495 ppipe->pipe_state |= PIPE_EOF; 1496 wakeup(ppipe); 1497 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1498 } 1499 1500 /* 1501 * Mark this endpoint as free. Release kmem resources. We 1502 * don't mark this endpoint as unused until we've finished 1503 * doing that, or the pipe might disappear out from under 1504 * us. 1505 */ 1506 PIPE_UNLOCK(cpipe); 1507 pipe_free_kmem(cpipe); 1508 PIPE_LOCK(cpipe); 1509 cpipe->pipe_present = 0; 1510 pipeunlock(cpipe); 1511 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1512 knlist_destroy(&cpipe->pipe_sel.si_note); 1513 1514 /* 1515 * If both endpoints are now closed, release the memory for the 1516 * pipe pair. If not, unlock. 1517 */ 1518 if (ppipe->pipe_present == 0) { 1519 PIPE_UNLOCK(cpipe); 1520 #ifdef MAC 1521 mac_pipe_destroy(pp); 1522 #endif 1523 uma_zfree(pipe_zone, cpipe->pipe_pair); 1524 } else 1525 PIPE_UNLOCK(cpipe); 1526 } 1527 1528 /*ARGSUSED*/ 1529 static int 1530 pipe_kqfilter(struct file *fp, struct knote *kn) 1531 { 1532 struct pipe *cpipe; 1533 1534 cpipe = kn->kn_fp->f_data; 1535 PIPE_LOCK(cpipe); 1536 switch (kn->kn_filter) { 1537 case EVFILT_READ: 1538 kn->kn_fop = &pipe_rfiltops; 1539 break; 1540 case EVFILT_WRITE: 1541 kn->kn_fop = &pipe_wfiltops; 1542 if (!cpipe->pipe_peer->pipe_present) { 1543 /* other end of pipe has been closed */ 1544 PIPE_UNLOCK(cpipe); 1545 return (EPIPE); 1546 } 1547 cpipe = cpipe->pipe_peer; 1548 break; 1549 default: 1550 PIPE_UNLOCK(cpipe); 1551 return (EINVAL); 1552 } 1553 1554 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1555 PIPE_UNLOCK(cpipe); 1556 return (0); 1557 } 1558 1559 static void 1560 filt_pipedetach(struct knote *kn) 1561 { 1562 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; 1563 1564 PIPE_LOCK(cpipe); 1565 if (kn->kn_filter == EVFILT_WRITE) { 1566 if (!cpipe->pipe_peer->pipe_present) { 1567 PIPE_UNLOCK(cpipe); 1568 return; 1569 } 1570 cpipe = cpipe->pipe_peer; 1571 } 1572 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1573 PIPE_UNLOCK(cpipe); 1574 } 1575 1576 /*ARGSUSED*/ 1577 static int 1578 filt_piperead(struct knote *kn, long hint) 1579 { 1580 struct pipe *rpipe = kn->kn_fp->f_data; 1581 struct pipe *wpipe = rpipe->pipe_peer; 1582 int ret; 1583 1584 PIPE_LOCK(rpipe); 1585 kn->kn_data = rpipe->pipe_buffer.cnt; 1586 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1587 kn->kn_data = rpipe->pipe_map.cnt; 1588 1589 if ((rpipe->pipe_state & PIPE_EOF) || 1590 (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1591 kn->kn_flags |= EV_EOF; 1592 PIPE_UNLOCK(rpipe); 1593 return (1); 1594 } 1595 ret = kn->kn_data > 0; 1596 PIPE_UNLOCK(rpipe); 1597 return ret; 1598 } 1599 1600 /*ARGSUSED*/ 1601 static int 1602 filt_pipewrite(struct knote *kn, long hint) 1603 { 1604 struct pipe *rpipe = kn->kn_fp->f_data; 1605 struct pipe *wpipe = rpipe->pipe_peer; 1606 1607 PIPE_LOCK(rpipe); 1608 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1609 kn->kn_data = 0; 1610 kn->kn_flags |= EV_EOF; 1611 PIPE_UNLOCK(rpipe); 1612 return (1); 1613 } 1614 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1615 if (wpipe->pipe_state & PIPE_DIRECTW) 1616 kn->kn_data = 0; 1617 1618 PIPE_UNLOCK(rpipe); 1619 return (kn->kn_data >= PIPE_BUF); 1620 } 1621