xref: /freebsd/sys/kern/sys_pipe.c (revision 8d20be1e22095c27faf8fe8b2f0d089739cc742e)
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * Copyright (c) 2012 Giovanni Trematerra
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice immediately at the beginning of the file, without modification,
11  *    this list of conditions, and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Absolutely no warranty of function or purpose is made by the author
16  *    John S. Dyson.
17  * 4. Modifications may be freely made to this file if the above conditions
18  *    are met.
19  */
20 
21 /*
22  * This file contains a high-performance replacement for the socket-based
23  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
24  * all features of sockets, but does do everything that pipes normally
25  * do.
26  */
27 
28 /*
29  * This code has two modes of operation, a small write mode and a large
30  * write mode.  The small write mode acts like conventional pipes with
31  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
32  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
33  * and PIPE_SIZE in size, the sending process pins the underlying pages in
34  * memory, and the receiving process copies directly from these pinned pages
35  * in the sending process.
36  *
37  * If the sending process receives a signal, it is possible that it will
38  * go away, and certainly its address space can change, because control
39  * is returned back to the user-mode side.  In that case, the pipe code
40  * arranges to copy the buffer supplied by the user process, to a pageable
41  * kernel buffer, and the receiving process will grab the data from the
42  * pageable kernel buffer.  Since signals don't happen all that often,
43  * the copy operation is normally eliminated.
44  *
45  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46  * happen for small transfers so that the system will not spend all of
47  * its time context switching.
48  *
49  * In order to limit the resource use of pipes, two sysctls exist:
50  *
51  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52  * address space available to us in pipe_map. This value is normally
53  * autotuned, but may also be loader tuned.
54  *
55  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56  * memory in use by pipes.
57  *
58  * Based on how large pipekva is relative to maxpipekva, the following
59  * will happen:
60  *
61  * 0% - 50%:
62  *     New pipes are given 16K of memory backing, pipes may dynamically
63  *     grow to as large as 64K where needed.
64  * 50% - 75%:
65  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
66  *     existing pipes may NOT grow.
67  * 75% - 100%:
68  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
69  *     existing pipes will be shrunk down to 4K whenever possible.
70  *
71  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
72  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73  * resize which MUST occur for reverse-direction pipes when they are
74  * first used.
75  *
76  * Additional information about the current state of pipes may be obtained
77  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78  * and kern.ipc.piperesizefail.
79  *
80  * Locking rules:  There are two locks present here:  A mutex, used via
81  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
82  * the flag, as mutexes can not persist over uiomove.  The mutex
83  * exists only to guard access to the flag, and is not in itself a
84  * locking mechanism.  Also note that there is only a single mutex for
85  * both directions of a pipe.
86  *
87  * As pipelock() may have to sleep before it can acquire the flag, it
88  * is important to reread all data after a call to pipelock(); everything
89  * in the structure may have changed.
90  */
91 
92 #include <sys/cdefs.h>
93 __FBSDID("$FreeBSD$");
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/conf.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mutex.h>
105 #include <sys/ttycom.h>
106 #include <sys/stat.h>
107 #include <sys/malloc.h>
108 #include <sys/poll.h>
109 #include <sys/selinfo.h>
110 #include <sys/signalvar.h>
111 #include <sys/syscallsubr.h>
112 #include <sys/sysctl.h>
113 #include <sys/sysproto.h>
114 #include <sys/pipe.h>
115 #include <sys/proc.h>
116 #include <sys/vnode.h>
117 #include <sys/uio.h>
118 #include <sys/event.h>
119 
120 #include <security/mac/mac_framework.h>
121 
122 #include <vm/vm.h>
123 #include <vm/vm_param.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_kern.h>
126 #include <vm/vm_extern.h>
127 #include <vm/pmap.h>
128 #include <vm/vm_map.h>
129 #include <vm/vm_page.h>
130 #include <vm/uma.h>
131 
132 /*
133  * Use this define if you want to disable *fancy* VM things.  Expect an
134  * approx 30% decrease in transfer rate.  This could be useful for
135  * NetBSD or OpenBSD.
136  */
137 /* #define PIPE_NODIRECT */
138 
139 #define PIPE_PEER(pipe)	\
140 	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
141 
142 /*
143  * interfaces to the outside world
144  */
145 static fo_rdwr_t	pipe_read;
146 static fo_rdwr_t	pipe_write;
147 static fo_truncate_t	pipe_truncate;
148 static fo_ioctl_t	pipe_ioctl;
149 static fo_poll_t	pipe_poll;
150 static fo_kqfilter_t	pipe_kqfilter;
151 static fo_stat_t	pipe_stat;
152 static fo_close_t	pipe_close;
153 static fo_chmod_t	pipe_chmod;
154 static fo_chown_t	pipe_chown;
155 
156 struct fileops pipeops = {
157 	.fo_read = pipe_read,
158 	.fo_write = pipe_write,
159 	.fo_truncate = pipe_truncate,
160 	.fo_ioctl = pipe_ioctl,
161 	.fo_poll = pipe_poll,
162 	.fo_kqfilter = pipe_kqfilter,
163 	.fo_stat = pipe_stat,
164 	.fo_close = pipe_close,
165 	.fo_chmod = pipe_chmod,
166 	.fo_chown = pipe_chown,
167 	.fo_sendfile = invfo_sendfile,
168 	.fo_flags = DFLAG_PASSABLE
169 };
170 
171 static void	filt_pipedetach(struct knote *kn);
172 static void	filt_pipedetach_notsup(struct knote *kn);
173 static int	filt_pipenotsup(struct knote *kn, long hint);
174 static int	filt_piperead(struct knote *kn, long hint);
175 static int	filt_pipewrite(struct knote *kn, long hint);
176 
177 static struct filterops pipe_nfiltops = {
178 	.f_isfd = 1,
179 	.f_detach = filt_pipedetach_notsup,
180 	.f_event = filt_pipenotsup
181 };
182 static struct filterops pipe_rfiltops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_pipedetach,
185 	.f_event = filt_piperead
186 };
187 static struct filterops pipe_wfiltops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_pipedetach,
190 	.f_event = filt_pipewrite
191 };
192 
193 /*
194  * Default pipe buffer size(s), this can be kind-of large now because pipe
195  * space is pageable.  The pipe code will try to maintain locality of
196  * reference for performance reasons, so small amounts of outstanding I/O
197  * will not wipe the cache.
198  */
199 #define MINPIPESIZE (PIPE_SIZE/3)
200 #define MAXPIPESIZE (2*PIPE_SIZE/3)
201 
202 static long amountpipekva;
203 static int pipefragretry;
204 static int pipeallocfail;
205 static int piperesizefail;
206 static int piperesizeallowed = 1;
207 
208 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
209 	   &maxpipekva, 0, "Pipe KVA limit");
210 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
211 	   &amountpipekva, 0, "Pipe KVA usage");
212 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
213 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
214 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
215 	  &pipeallocfail, 0, "Pipe allocation failures");
216 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
217 	  &piperesizefail, 0, "Pipe resize failures");
218 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
219 	  &piperesizeallowed, 0, "Pipe resizing allowed");
220 
221 static void pipeinit(void *dummy __unused);
222 static void pipeclose(struct pipe *cpipe);
223 static void pipe_free_kmem(struct pipe *cpipe);
224 static int pipe_create(struct pipe *pipe, int backing);
225 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
226 static __inline int pipelock(struct pipe *cpipe, int catch);
227 static __inline void pipeunlock(struct pipe *cpipe);
228 #ifndef PIPE_NODIRECT
229 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
230 static void pipe_destroy_write_buffer(struct pipe *wpipe);
231 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
232 static void pipe_clone_write_buffer(struct pipe *wpipe);
233 #endif
234 static int pipespace(struct pipe *cpipe, int size);
235 static int pipespace_new(struct pipe *cpipe, int size);
236 
237 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
238 static int	pipe_zone_init(void *mem, int size, int flags);
239 static void	pipe_zone_fini(void *mem, int size);
240 
241 static uma_zone_t pipe_zone;
242 static struct unrhdr *pipeino_unr;
243 static dev_t pipedev_ino;
244 
245 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
246 
247 static void
248 pipeinit(void *dummy __unused)
249 {
250 
251 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
252 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
253 	    UMA_ALIGN_PTR, 0);
254 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
255 	pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
256 	KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
257 	pipedev_ino = devfs_alloc_cdp_inode();
258 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
259 }
260 
261 static int
262 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
263 {
264 	struct pipepair *pp;
265 	struct pipe *rpipe, *wpipe;
266 
267 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
268 
269 	pp = (struct pipepair *)mem;
270 
271 	/*
272 	 * We zero both pipe endpoints to make sure all the kmem pointers
273 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
274 	 * endpoints with the same time.
275 	 */
276 	rpipe = &pp->pp_rpipe;
277 	bzero(rpipe, sizeof(*rpipe));
278 	vfs_timestamp(&rpipe->pipe_ctime);
279 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
280 
281 	wpipe = &pp->pp_wpipe;
282 	bzero(wpipe, sizeof(*wpipe));
283 	wpipe->pipe_ctime = rpipe->pipe_ctime;
284 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
285 
286 	rpipe->pipe_peer = wpipe;
287 	rpipe->pipe_pair = pp;
288 	wpipe->pipe_peer = rpipe;
289 	wpipe->pipe_pair = pp;
290 
291 	/*
292 	 * Mark both endpoints as present; they will later get free'd
293 	 * one at a time.  When both are free'd, then the whole pair
294 	 * is released.
295 	 */
296 	rpipe->pipe_present = PIPE_ACTIVE;
297 	wpipe->pipe_present = PIPE_ACTIVE;
298 
299 	/*
300 	 * Eventually, the MAC Framework may initialize the label
301 	 * in ctor or init, but for now we do it elswhere to avoid
302 	 * blocking in ctor or init.
303 	 */
304 	pp->pp_label = NULL;
305 
306 	return (0);
307 }
308 
309 static int
310 pipe_zone_init(void *mem, int size, int flags)
311 {
312 	struct pipepair *pp;
313 
314 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
315 
316 	pp = (struct pipepair *)mem;
317 
318 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
319 	return (0);
320 }
321 
322 static void
323 pipe_zone_fini(void *mem, int size)
324 {
325 	struct pipepair *pp;
326 
327 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
328 
329 	pp = (struct pipepair *)mem;
330 
331 	mtx_destroy(&pp->pp_mtx);
332 }
333 
334 static int
335 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
336 {
337 	struct pipepair *pp;
338 	struct pipe *rpipe, *wpipe;
339 	int error;
340 
341 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
342 #ifdef MAC
343 	/*
344 	 * The MAC label is shared between the connected endpoints.  As a
345 	 * result mac_pipe_init() and mac_pipe_create() are called once
346 	 * for the pair, and not on the endpoints.
347 	 */
348 	mac_pipe_init(pp);
349 	mac_pipe_create(td->td_ucred, pp);
350 #endif
351 	rpipe = &pp->pp_rpipe;
352 	wpipe = &pp->pp_wpipe;
353 
354 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
355 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
356 
357 	/* Only the forward direction pipe is backed by default */
358 	if ((error = pipe_create(rpipe, 1)) != 0 ||
359 	    (error = pipe_create(wpipe, 0)) != 0) {
360 		pipeclose(rpipe);
361 		pipeclose(wpipe);
362 		return (error);
363 	}
364 
365 	rpipe->pipe_state |= PIPE_DIRECTOK;
366 	wpipe->pipe_state |= PIPE_DIRECTOK;
367 	return (0);
368 }
369 
370 int
371 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
372 {
373 	struct pipepair *pp;
374 	int error;
375 
376 	error = pipe_paircreate(td, &pp);
377 	if (error != 0)
378 		return (error);
379 	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
380 	*ppipe = &pp->pp_rpipe;
381 	return (0);
382 }
383 
384 void
385 pipe_dtor(struct pipe *dpipe)
386 {
387 	ino_t ino;
388 
389 	ino = dpipe->pipe_ino;
390 	funsetown(&dpipe->pipe_sigio);
391 	pipeclose(dpipe);
392 	if (dpipe->pipe_state & PIPE_NAMED) {
393 		dpipe = dpipe->pipe_peer;
394 		funsetown(&dpipe->pipe_sigio);
395 		pipeclose(dpipe);
396 	}
397 	if (ino != 0 && ino != (ino_t)-1)
398 		free_unr(pipeino_unr, ino);
399 }
400 
401 /*
402  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
403  * the zone pick up the pieces via pipeclose().
404  */
405 int
406 kern_pipe(struct thread *td, int fildes[2])
407 {
408 
409 	return (kern_pipe2(td, fildes, 0));
410 }
411 
412 int
413 kern_pipe2(struct thread *td, int fildes[2], int flags)
414 {
415 	struct filedesc *fdp;
416 	struct file *rf, *wf;
417 	struct pipe *rpipe, *wpipe;
418 	struct pipepair *pp;
419 	int fd, fflags, error;
420 
421 	fdp = td->td_proc->p_fd;
422 	error = pipe_paircreate(td, &pp);
423 	if (error != 0)
424 		return (error);
425 	rpipe = &pp->pp_rpipe;
426 	wpipe = &pp->pp_wpipe;
427 	error = falloc(td, &rf, &fd, flags);
428 	if (error) {
429 		pipeclose(rpipe);
430 		pipeclose(wpipe);
431 		return (error);
432 	}
433 	/* An extra reference on `rf' has been held for us by falloc(). */
434 	fildes[0] = fd;
435 
436 	fflags = FREAD | FWRITE;
437 	if ((flags & O_NONBLOCK) != 0)
438 		fflags |= FNONBLOCK;
439 
440 	/*
441 	 * Warning: once we've gotten past allocation of the fd for the
442 	 * read-side, we can only drop the read side via fdrop() in order
443 	 * to avoid races against processes which manage to dup() the read
444 	 * side while we are blocked trying to allocate the write side.
445 	 */
446 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
447 	error = falloc(td, &wf, &fd, flags);
448 	if (error) {
449 		fdclose(fdp, rf, fildes[0], td);
450 		fdrop(rf, td);
451 		/* rpipe has been closed by fdrop(). */
452 		pipeclose(wpipe);
453 		return (error);
454 	}
455 	/* An extra reference on `wf' has been held for us by falloc(). */
456 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
457 	fdrop(wf, td);
458 	fildes[1] = fd;
459 	fdrop(rf, td);
460 
461 	return (0);
462 }
463 
464 /* ARGSUSED */
465 int
466 sys_pipe(struct thread *td, struct pipe_args *uap)
467 {
468 	int error;
469 	int fildes[2];
470 
471 	error = kern_pipe(td, fildes);
472 	if (error)
473 		return (error);
474 
475 	td->td_retval[0] = fildes[0];
476 	td->td_retval[1] = fildes[1];
477 
478 	return (0);
479 }
480 
481 int
482 sys_pipe2(struct thread *td, struct pipe2_args *uap)
483 {
484 	int error, fildes[2];
485 
486 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
487 		return (EINVAL);
488 	error = kern_pipe2(td, fildes, uap->flags);
489 	if (error)
490 		return (error);
491 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
492 	if (error) {
493 		(void)kern_close(td, fildes[0]);
494 		(void)kern_close(td, fildes[1]);
495 	}
496 	return (error);
497 }
498 
499 /*
500  * Allocate kva for pipe circular buffer, the space is pageable
501  * This routine will 'realloc' the size of a pipe safely, if it fails
502  * it will retain the old buffer.
503  * If it fails it will return ENOMEM.
504  */
505 static int
506 pipespace_new(cpipe, size)
507 	struct pipe *cpipe;
508 	int size;
509 {
510 	caddr_t buffer;
511 	int error, cnt, firstseg;
512 	static int curfail = 0;
513 	static struct timeval lastfail;
514 
515 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
516 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
517 		("pipespace: resize of direct writes not allowed"));
518 retry:
519 	cnt = cpipe->pipe_buffer.cnt;
520 	if (cnt > size)
521 		size = cnt;
522 
523 	size = round_page(size);
524 	buffer = (caddr_t) vm_map_min(pipe_map);
525 
526 	error = vm_map_find(pipe_map, NULL, 0,
527 		(vm_offset_t *) &buffer, size, 0, VMFS_ANY_SPACE,
528 		VM_PROT_ALL, VM_PROT_ALL, 0);
529 	if (error != KERN_SUCCESS) {
530 		if ((cpipe->pipe_buffer.buffer == NULL) &&
531 			(size > SMALL_PIPE_SIZE)) {
532 			size = SMALL_PIPE_SIZE;
533 			pipefragretry++;
534 			goto retry;
535 		}
536 		if (cpipe->pipe_buffer.buffer == NULL) {
537 			pipeallocfail++;
538 			if (ppsratecheck(&lastfail, &curfail, 1))
539 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
540 		} else {
541 			piperesizefail++;
542 		}
543 		return (ENOMEM);
544 	}
545 
546 	/* copy data, then free old resources if we're resizing */
547 	if (cnt > 0) {
548 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
549 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
550 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
551 				buffer, firstseg);
552 			if ((cnt - firstseg) > 0)
553 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
554 					cpipe->pipe_buffer.in);
555 		} else {
556 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
557 				buffer, cnt);
558 		}
559 	}
560 	pipe_free_kmem(cpipe);
561 	cpipe->pipe_buffer.buffer = buffer;
562 	cpipe->pipe_buffer.size = size;
563 	cpipe->pipe_buffer.in = cnt;
564 	cpipe->pipe_buffer.out = 0;
565 	cpipe->pipe_buffer.cnt = cnt;
566 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
567 	return (0);
568 }
569 
570 /*
571  * Wrapper for pipespace_new() that performs locking assertions.
572  */
573 static int
574 pipespace(cpipe, size)
575 	struct pipe *cpipe;
576 	int size;
577 {
578 
579 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
580 		("Unlocked pipe passed to pipespace"));
581 	return (pipespace_new(cpipe, size));
582 }
583 
584 /*
585  * lock a pipe for I/O, blocking other access
586  */
587 static __inline int
588 pipelock(cpipe, catch)
589 	struct pipe *cpipe;
590 	int catch;
591 {
592 	int error;
593 
594 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
595 	while (cpipe->pipe_state & PIPE_LOCKFL) {
596 		cpipe->pipe_state |= PIPE_LWANT;
597 		error = msleep(cpipe, PIPE_MTX(cpipe),
598 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
599 		    "pipelk", 0);
600 		if (error != 0)
601 			return (error);
602 	}
603 	cpipe->pipe_state |= PIPE_LOCKFL;
604 	return (0);
605 }
606 
607 /*
608  * unlock a pipe I/O lock
609  */
610 static __inline void
611 pipeunlock(cpipe)
612 	struct pipe *cpipe;
613 {
614 
615 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
616 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
617 		("Unlocked pipe passed to pipeunlock"));
618 	cpipe->pipe_state &= ~PIPE_LOCKFL;
619 	if (cpipe->pipe_state & PIPE_LWANT) {
620 		cpipe->pipe_state &= ~PIPE_LWANT;
621 		wakeup(cpipe);
622 	}
623 }
624 
625 void
626 pipeselwakeup(cpipe)
627 	struct pipe *cpipe;
628 {
629 
630 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
631 	if (cpipe->pipe_state & PIPE_SEL) {
632 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
633 		if (!SEL_WAITING(&cpipe->pipe_sel))
634 			cpipe->pipe_state &= ~PIPE_SEL;
635 	}
636 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
637 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
638 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
639 }
640 
641 /*
642  * Initialize and allocate VM and memory for pipe.  The structure
643  * will start out zero'd from the ctor, so we just manage the kmem.
644  */
645 static int
646 pipe_create(pipe, backing)
647 	struct pipe *pipe;
648 	int backing;
649 {
650 	int error;
651 
652 	if (backing) {
653 		if (amountpipekva > maxpipekva / 2)
654 			error = pipespace_new(pipe, SMALL_PIPE_SIZE);
655 		else
656 			error = pipespace_new(pipe, PIPE_SIZE);
657 	} else {
658 		/* If we're not backing this pipe, no need to do anything. */
659 		error = 0;
660 	}
661 	pipe->pipe_ino = -1;
662 	return (error);
663 }
664 
665 /* ARGSUSED */
666 static int
667 pipe_read(fp, uio, active_cred, flags, td)
668 	struct file *fp;
669 	struct uio *uio;
670 	struct ucred *active_cred;
671 	struct thread *td;
672 	int flags;
673 {
674 	struct pipe *rpipe;
675 	int error;
676 	int nread = 0;
677 	int size;
678 
679 	rpipe = fp->f_data;
680 	PIPE_LOCK(rpipe);
681 	++rpipe->pipe_busy;
682 	error = pipelock(rpipe, 1);
683 	if (error)
684 		goto unlocked_error;
685 
686 #ifdef MAC
687 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
688 	if (error)
689 		goto locked_error;
690 #endif
691 	if (amountpipekva > (3 * maxpipekva) / 4) {
692 		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
693 			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
694 			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
695 			(piperesizeallowed == 1)) {
696 			PIPE_UNLOCK(rpipe);
697 			pipespace(rpipe, SMALL_PIPE_SIZE);
698 			PIPE_LOCK(rpipe);
699 		}
700 	}
701 
702 	while (uio->uio_resid) {
703 		/*
704 		 * normal pipe buffer receive
705 		 */
706 		if (rpipe->pipe_buffer.cnt > 0) {
707 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
708 			if (size > rpipe->pipe_buffer.cnt)
709 				size = rpipe->pipe_buffer.cnt;
710 			if (size > uio->uio_resid)
711 				size = uio->uio_resid;
712 
713 			PIPE_UNLOCK(rpipe);
714 			error = uiomove(
715 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
716 			    size, uio);
717 			PIPE_LOCK(rpipe);
718 			if (error)
719 				break;
720 
721 			rpipe->pipe_buffer.out += size;
722 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
723 				rpipe->pipe_buffer.out = 0;
724 
725 			rpipe->pipe_buffer.cnt -= size;
726 
727 			/*
728 			 * If there is no more to read in the pipe, reset
729 			 * its pointers to the beginning.  This improves
730 			 * cache hit stats.
731 			 */
732 			if (rpipe->pipe_buffer.cnt == 0) {
733 				rpipe->pipe_buffer.in = 0;
734 				rpipe->pipe_buffer.out = 0;
735 			}
736 			nread += size;
737 #ifndef PIPE_NODIRECT
738 		/*
739 		 * Direct copy, bypassing a kernel buffer.
740 		 */
741 		} else if ((size = rpipe->pipe_map.cnt) &&
742 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
743 			if (size > uio->uio_resid)
744 				size = (u_int) uio->uio_resid;
745 
746 			PIPE_UNLOCK(rpipe);
747 			error = uiomove_fromphys(rpipe->pipe_map.ms,
748 			    rpipe->pipe_map.pos, size, uio);
749 			PIPE_LOCK(rpipe);
750 			if (error)
751 				break;
752 			nread += size;
753 			rpipe->pipe_map.pos += size;
754 			rpipe->pipe_map.cnt -= size;
755 			if (rpipe->pipe_map.cnt == 0) {
756 				rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
757 				wakeup(rpipe);
758 			}
759 #endif
760 		} else {
761 			/*
762 			 * detect EOF condition
763 			 * read returns 0 on EOF, no need to set error
764 			 */
765 			if (rpipe->pipe_state & PIPE_EOF)
766 				break;
767 
768 			/*
769 			 * If the "write-side" has been blocked, wake it up now.
770 			 */
771 			if (rpipe->pipe_state & PIPE_WANTW) {
772 				rpipe->pipe_state &= ~PIPE_WANTW;
773 				wakeup(rpipe);
774 			}
775 
776 			/*
777 			 * Break if some data was read.
778 			 */
779 			if (nread > 0)
780 				break;
781 
782 			/*
783 			 * Unlock the pipe buffer for our remaining processing.
784 			 * We will either break out with an error or we will
785 			 * sleep and relock to loop.
786 			 */
787 			pipeunlock(rpipe);
788 
789 			/*
790 			 * Handle non-blocking mode operation or
791 			 * wait for more data.
792 			 */
793 			if (fp->f_flag & FNONBLOCK) {
794 				error = EAGAIN;
795 			} else {
796 				rpipe->pipe_state |= PIPE_WANTR;
797 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
798 				    PRIBIO | PCATCH,
799 				    "piperd", 0)) == 0)
800 					error = pipelock(rpipe, 1);
801 			}
802 			if (error)
803 				goto unlocked_error;
804 		}
805 	}
806 #ifdef MAC
807 locked_error:
808 #endif
809 	pipeunlock(rpipe);
810 
811 	/* XXX: should probably do this before getting any locks. */
812 	if (error == 0)
813 		vfs_timestamp(&rpipe->pipe_atime);
814 unlocked_error:
815 	--rpipe->pipe_busy;
816 
817 	/*
818 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
819 	 */
820 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
821 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
822 		wakeup(rpipe);
823 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
824 		/*
825 		 * Handle write blocking hysteresis.
826 		 */
827 		if (rpipe->pipe_state & PIPE_WANTW) {
828 			rpipe->pipe_state &= ~PIPE_WANTW;
829 			wakeup(rpipe);
830 		}
831 	}
832 
833 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
834 		pipeselwakeup(rpipe);
835 
836 	PIPE_UNLOCK(rpipe);
837 	return (error);
838 }
839 
840 #ifndef PIPE_NODIRECT
841 /*
842  * Map the sending processes' buffer into kernel space and wire it.
843  * This is similar to a physical write operation.
844  */
845 static int
846 pipe_build_write_buffer(wpipe, uio)
847 	struct pipe *wpipe;
848 	struct uio *uio;
849 {
850 	u_int size;
851 	int i;
852 
853 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
854 	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
855 		("Clone attempt on non-direct write pipe!"));
856 
857 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
858                 size = wpipe->pipe_buffer.size;
859 	else
860                 size = uio->uio_iov->iov_len;
861 
862 	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
863 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
864 	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
865 		return (EFAULT);
866 
867 /*
868  * set up the control block
869  */
870 	wpipe->pipe_map.npages = i;
871 	wpipe->pipe_map.pos =
872 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
873 	wpipe->pipe_map.cnt = size;
874 
875 /*
876  * and update the uio data
877  */
878 
879 	uio->uio_iov->iov_len -= size;
880 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
881 	if (uio->uio_iov->iov_len == 0)
882 		uio->uio_iov++;
883 	uio->uio_resid -= size;
884 	uio->uio_offset += size;
885 	return (0);
886 }
887 
888 /*
889  * unmap and unwire the process buffer
890  */
891 static void
892 pipe_destroy_write_buffer(wpipe)
893 	struct pipe *wpipe;
894 {
895 
896 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
897 	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
898 	wpipe->pipe_map.npages = 0;
899 }
900 
901 /*
902  * In the case of a signal, the writing process might go away.  This
903  * code copies the data into the circular buffer so that the source
904  * pages can be freed without loss of data.
905  */
906 static void
907 pipe_clone_write_buffer(wpipe)
908 	struct pipe *wpipe;
909 {
910 	struct uio uio;
911 	struct iovec iov;
912 	int size;
913 	int pos;
914 
915 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
916 	size = wpipe->pipe_map.cnt;
917 	pos = wpipe->pipe_map.pos;
918 
919 	wpipe->pipe_buffer.in = size;
920 	wpipe->pipe_buffer.out = 0;
921 	wpipe->pipe_buffer.cnt = size;
922 	wpipe->pipe_state &= ~PIPE_DIRECTW;
923 
924 	PIPE_UNLOCK(wpipe);
925 	iov.iov_base = wpipe->pipe_buffer.buffer;
926 	iov.iov_len = size;
927 	uio.uio_iov = &iov;
928 	uio.uio_iovcnt = 1;
929 	uio.uio_offset = 0;
930 	uio.uio_resid = size;
931 	uio.uio_segflg = UIO_SYSSPACE;
932 	uio.uio_rw = UIO_READ;
933 	uio.uio_td = curthread;
934 	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
935 	PIPE_LOCK(wpipe);
936 	pipe_destroy_write_buffer(wpipe);
937 }
938 
939 /*
940  * This implements the pipe buffer write mechanism.  Note that only
941  * a direct write OR a normal pipe write can be pending at any given time.
942  * If there are any characters in the pipe buffer, the direct write will
943  * be deferred until the receiving process grabs all of the bytes from
944  * the pipe buffer.  Then the direct mapping write is set-up.
945  */
946 static int
947 pipe_direct_write(wpipe, uio)
948 	struct pipe *wpipe;
949 	struct uio *uio;
950 {
951 	int error;
952 
953 retry:
954 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
955 	error = pipelock(wpipe, 1);
956 	if (wpipe->pipe_state & PIPE_EOF)
957 		error = EPIPE;
958 	if (error) {
959 		pipeunlock(wpipe);
960 		goto error1;
961 	}
962 	while (wpipe->pipe_state & PIPE_DIRECTW) {
963 		if (wpipe->pipe_state & PIPE_WANTR) {
964 			wpipe->pipe_state &= ~PIPE_WANTR;
965 			wakeup(wpipe);
966 		}
967 		pipeselwakeup(wpipe);
968 		wpipe->pipe_state |= PIPE_WANTW;
969 		pipeunlock(wpipe);
970 		error = msleep(wpipe, PIPE_MTX(wpipe),
971 		    PRIBIO | PCATCH, "pipdww", 0);
972 		if (error)
973 			goto error1;
974 		else
975 			goto retry;
976 	}
977 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
978 	if (wpipe->pipe_buffer.cnt > 0) {
979 		if (wpipe->pipe_state & PIPE_WANTR) {
980 			wpipe->pipe_state &= ~PIPE_WANTR;
981 			wakeup(wpipe);
982 		}
983 		pipeselwakeup(wpipe);
984 		wpipe->pipe_state |= PIPE_WANTW;
985 		pipeunlock(wpipe);
986 		error = msleep(wpipe, PIPE_MTX(wpipe),
987 		    PRIBIO | PCATCH, "pipdwc", 0);
988 		if (error)
989 			goto error1;
990 		else
991 			goto retry;
992 	}
993 
994 	wpipe->pipe_state |= PIPE_DIRECTW;
995 
996 	PIPE_UNLOCK(wpipe);
997 	error = pipe_build_write_buffer(wpipe, uio);
998 	PIPE_LOCK(wpipe);
999 	if (error) {
1000 		wpipe->pipe_state &= ~PIPE_DIRECTW;
1001 		pipeunlock(wpipe);
1002 		goto error1;
1003 	}
1004 
1005 	error = 0;
1006 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
1007 		if (wpipe->pipe_state & PIPE_EOF) {
1008 			pipe_destroy_write_buffer(wpipe);
1009 			pipeselwakeup(wpipe);
1010 			pipeunlock(wpipe);
1011 			error = EPIPE;
1012 			goto error1;
1013 		}
1014 		if (wpipe->pipe_state & PIPE_WANTR) {
1015 			wpipe->pipe_state &= ~PIPE_WANTR;
1016 			wakeup(wpipe);
1017 		}
1018 		pipeselwakeup(wpipe);
1019 		wpipe->pipe_state |= PIPE_WANTW;
1020 		pipeunlock(wpipe);
1021 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1022 		    "pipdwt", 0);
1023 		pipelock(wpipe, 0);
1024 	}
1025 
1026 	if (wpipe->pipe_state & PIPE_EOF)
1027 		error = EPIPE;
1028 	if (wpipe->pipe_state & PIPE_DIRECTW) {
1029 		/*
1030 		 * this bit of trickery substitutes a kernel buffer for
1031 		 * the process that might be going away.
1032 		 */
1033 		pipe_clone_write_buffer(wpipe);
1034 	} else {
1035 		pipe_destroy_write_buffer(wpipe);
1036 	}
1037 	pipeunlock(wpipe);
1038 	return (error);
1039 
1040 error1:
1041 	wakeup(wpipe);
1042 	return (error);
1043 }
1044 #endif
1045 
1046 static int
1047 pipe_write(fp, uio, active_cred, flags, td)
1048 	struct file *fp;
1049 	struct uio *uio;
1050 	struct ucred *active_cred;
1051 	struct thread *td;
1052 	int flags;
1053 {
1054 	int error = 0;
1055 	int desiredsize;
1056 	ssize_t orig_resid;
1057 	struct pipe *wpipe, *rpipe;
1058 
1059 	rpipe = fp->f_data;
1060 	wpipe = PIPE_PEER(rpipe);
1061 	PIPE_LOCK(rpipe);
1062 	error = pipelock(wpipe, 1);
1063 	if (error) {
1064 		PIPE_UNLOCK(rpipe);
1065 		return (error);
1066 	}
1067 	/*
1068 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1069 	 */
1070 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1071 	    (wpipe->pipe_state & PIPE_EOF)) {
1072 		pipeunlock(wpipe);
1073 		PIPE_UNLOCK(rpipe);
1074 		return (EPIPE);
1075 	}
1076 #ifdef MAC
1077 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1078 	if (error) {
1079 		pipeunlock(wpipe);
1080 		PIPE_UNLOCK(rpipe);
1081 		return (error);
1082 	}
1083 #endif
1084 	++wpipe->pipe_busy;
1085 
1086 	/* Choose a larger size if it's advantageous */
1087 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1088 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1089 		if (piperesizeallowed != 1)
1090 			break;
1091 		if (amountpipekva > maxpipekva / 2)
1092 			break;
1093 		if (desiredsize == BIG_PIPE_SIZE)
1094 			break;
1095 		desiredsize = desiredsize * 2;
1096 	}
1097 
1098 	/* Choose a smaller size if we're in a OOM situation */
1099 	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1100 		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1101 		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1102 		(piperesizeallowed == 1))
1103 		desiredsize = SMALL_PIPE_SIZE;
1104 
1105 	/* Resize if the above determined that a new size was necessary */
1106 	if ((desiredsize != wpipe->pipe_buffer.size) &&
1107 		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1108 		PIPE_UNLOCK(wpipe);
1109 		pipespace(wpipe, desiredsize);
1110 		PIPE_LOCK(wpipe);
1111 	}
1112 	if (wpipe->pipe_buffer.size == 0) {
1113 		/*
1114 		 * This can only happen for reverse direction use of pipes
1115 		 * in a complete OOM situation.
1116 		 */
1117 		error = ENOMEM;
1118 		--wpipe->pipe_busy;
1119 		pipeunlock(wpipe);
1120 		PIPE_UNLOCK(wpipe);
1121 		return (error);
1122 	}
1123 
1124 	pipeunlock(wpipe);
1125 
1126 	orig_resid = uio->uio_resid;
1127 
1128 	while (uio->uio_resid) {
1129 		int space;
1130 
1131 		pipelock(wpipe, 0);
1132 		if (wpipe->pipe_state & PIPE_EOF) {
1133 			pipeunlock(wpipe);
1134 			error = EPIPE;
1135 			break;
1136 		}
1137 #ifndef PIPE_NODIRECT
1138 		/*
1139 		 * If the transfer is large, we can gain performance if
1140 		 * we do process-to-process copies directly.
1141 		 * If the write is non-blocking, we don't use the
1142 		 * direct write mechanism.
1143 		 *
1144 		 * The direct write mechanism will detect the reader going
1145 		 * away on us.
1146 		 */
1147 		if (uio->uio_segflg == UIO_USERSPACE &&
1148 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1149 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1150 		    (fp->f_flag & FNONBLOCK) == 0) {
1151 			pipeunlock(wpipe);
1152 			error = pipe_direct_write(wpipe, uio);
1153 			if (error)
1154 				break;
1155 			continue;
1156 		}
1157 #endif
1158 
1159 		/*
1160 		 * Pipe buffered writes cannot be coincidental with
1161 		 * direct writes.  We wait until the currently executing
1162 		 * direct write is completed before we start filling the
1163 		 * pipe buffer.  We break out if a signal occurs or the
1164 		 * reader goes away.
1165 		 */
1166 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1167 			if (wpipe->pipe_state & PIPE_WANTR) {
1168 				wpipe->pipe_state &= ~PIPE_WANTR;
1169 				wakeup(wpipe);
1170 			}
1171 			pipeselwakeup(wpipe);
1172 			wpipe->pipe_state |= PIPE_WANTW;
1173 			pipeunlock(wpipe);
1174 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1175 			    "pipbww", 0);
1176 			if (error)
1177 				break;
1178 			else
1179 				continue;
1180 		}
1181 
1182 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1183 
1184 		/* Writes of size <= PIPE_BUF must be atomic. */
1185 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1186 			space = 0;
1187 
1188 		if (space > 0) {
1189 			int size;	/* Transfer size */
1190 			int segsize;	/* first segment to transfer */
1191 
1192 			/*
1193 			 * Transfer size is minimum of uio transfer
1194 			 * and free space in pipe buffer.
1195 			 */
1196 			if (space > uio->uio_resid)
1197 				size = uio->uio_resid;
1198 			else
1199 				size = space;
1200 			/*
1201 			 * First segment to transfer is minimum of
1202 			 * transfer size and contiguous space in
1203 			 * pipe buffer.  If first segment to transfer
1204 			 * is less than the transfer size, we've got
1205 			 * a wraparound in the buffer.
1206 			 */
1207 			segsize = wpipe->pipe_buffer.size -
1208 				wpipe->pipe_buffer.in;
1209 			if (segsize > size)
1210 				segsize = size;
1211 
1212 			/* Transfer first segment */
1213 
1214 			PIPE_UNLOCK(rpipe);
1215 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1216 					segsize, uio);
1217 			PIPE_LOCK(rpipe);
1218 
1219 			if (error == 0 && segsize < size) {
1220 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1221 					wpipe->pipe_buffer.size,
1222 					("Pipe buffer wraparound disappeared"));
1223 				/*
1224 				 * Transfer remaining part now, to
1225 				 * support atomic writes.  Wraparound
1226 				 * happened.
1227 				 */
1228 
1229 				PIPE_UNLOCK(rpipe);
1230 				error = uiomove(
1231 				    &wpipe->pipe_buffer.buffer[0],
1232 				    size - segsize, uio);
1233 				PIPE_LOCK(rpipe);
1234 			}
1235 			if (error == 0) {
1236 				wpipe->pipe_buffer.in += size;
1237 				if (wpipe->pipe_buffer.in >=
1238 				    wpipe->pipe_buffer.size) {
1239 					KASSERT(wpipe->pipe_buffer.in ==
1240 						size - segsize +
1241 						wpipe->pipe_buffer.size,
1242 						("Expected wraparound bad"));
1243 					wpipe->pipe_buffer.in = size - segsize;
1244 				}
1245 
1246 				wpipe->pipe_buffer.cnt += size;
1247 				KASSERT(wpipe->pipe_buffer.cnt <=
1248 					wpipe->pipe_buffer.size,
1249 					("Pipe buffer overflow"));
1250 			}
1251 			pipeunlock(wpipe);
1252 			if (error != 0)
1253 				break;
1254 		} else {
1255 			/*
1256 			 * If the "read-side" has been blocked, wake it up now.
1257 			 */
1258 			if (wpipe->pipe_state & PIPE_WANTR) {
1259 				wpipe->pipe_state &= ~PIPE_WANTR;
1260 				wakeup(wpipe);
1261 			}
1262 
1263 			/*
1264 			 * don't block on non-blocking I/O
1265 			 */
1266 			if (fp->f_flag & FNONBLOCK) {
1267 				error = EAGAIN;
1268 				pipeunlock(wpipe);
1269 				break;
1270 			}
1271 
1272 			/*
1273 			 * We have no more space and have something to offer,
1274 			 * wake up select/poll.
1275 			 */
1276 			pipeselwakeup(wpipe);
1277 
1278 			wpipe->pipe_state |= PIPE_WANTW;
1279 			pipeunlock(wpipe);
1280 			error = msleep(wpipe, PIPE_MTX(rpipe),
1281 			    PRIBIO | PCATCH, "pipewr", 0);
1282 			if (error != 0)
1283 				break;
1284 		}
1285 	}
1286 
1287 	pipelock(wpipe, 0);
1288 	--wpipe->pipe_busy;
1289 
1290 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1291 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1292 		wakeup(wpipe);
1293 	} else if (wpipe->pipe_buffer.cnt > 0) {
1294 		/*
1295 		 * If we have put any characters in the buffer, we wake up
1296 		 * the reader.
1297 		 */
1298 		if (wpipe->pipe_state & PIPE_WANTR) {
1299 			wpipe->pipe_state &= ~PIPE_WANTR;
1300 			wakeup(wpipe);
1301 		}
1302 	}
1303 
1304 	/*
1305 	 * Don't return EPIPE if I/O was successful
1306 	 */
1307 	if ((wpipe->pipe_buffer.cnt == 0) &&
1308 	    (uio->uio_resid == 0) &&
1309 	    (error == EPIPE)) {
1310 		error = 0;
1311 	}
1312 
1313 	if (error == 0)
1314 		vfs_timestamp(&wpipe->pipe_mtime);
1315 
1316 	/*
1317 	 * We have something to offer,
1318 	 * wake up select/poll.
1319 	 */
1320 	if (wpipe->pipe_buffer.cnt)
1321 		pipeselwakeup(wpipe);
1322 
1323 	pipeunlock(wpipe);
1324 	PIPE_UNLOCK(rpipe);
1325 	return (error);
1326 }
1327 
1328 /* ARGSUSED */
1329 static int
1330 pipe_truncate(fp, length, active_cred, td)
1331 	struct file *fp;
1332 	off_t length;
1333 	struct ucred *active_cred;
1334 	struct thread *td;
1335 {
1336 
1337 	/* For named pipes call the vnode operation. */
1338 	if (fp->f_vnode != NULL)
1339 		return (vnops.fo_truncate(fp, length, active_cred, td));
1340 	return (EINVAL);
1341 }
1342 
1343 /*
1344  * we implement a very minimal set of ioctls for compatibility with sockets.
1345  */
1346 static int
1347 pipe_ioctl(fp, cmd, data, active_cred, td)
1348 	struct file *fp;
1349 	u_long cmd;
1350 	void *data;
1351 	struct ucred *active_cred;
1352 	struct thread *td;
1353 {
1354 	struct pipe *mpipe = fp->f_data;
1355 	int error;
1356 
1357 	PIPE_LOCK(mpipe);
1358 
1359 #ifdef MAC
1360 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1361 	if (error) {
1362 		PIPE_UNLOCK(mpipe);
1363 		return (error);
1364 	}
1365 #endif
1366 
1367 	error = 0;
1368 	switch (cmd) {
1369 
1370 	case FIONBIO:
1371 		break;
1372 
1373 	case FIOASYNC:
1374 		if (*(int *)data) {
1375 			mpipe->pipe_state |= PIPE_ASYNC;
1376 		} else {
1377 			mpipe->pipe_state &= ~PIPE_ASYNC;
1378 		}
1379 		break;
1380 
1381 	case FIONREAD:
1382 		if (!(fp->f_flag & FREAD)) {
1383 			*(int *)data = 0;
1384 			PIPE_UNLOCK(mpipe);
1385 			return (0);
1386 		}
1387 		if (mpipe->pipe_state & PIPE_DIRECTW)
1388 			*(int *)data = mpipe->pipe_map.cnt;
1389 		else
1390 			*(int *)data = mpipe->pipe_buffer.cnt;
1391 		break;
1392 
1393 	case FIOSETOWN:
1394 		PIPE_UNLOCK(mpipe);
1395 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1396 		goto out_unlocked;
1397 
1398 	case FIOGETOWN:
1399 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1400 		break;
1401 
1402 	/* This is deprecated, FIOSETOWN should be used instead. */
1403 	case TIOCSPGRP:
1404 		PIPE_UNLOCK(mpipe);
1405 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1406 		goto out_unlocked;
1407 
1408 	/* This is deprecated, FIOGETOWN should be used instead. */
1409 	case TIOCGPGRP:
1410 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1411 		break;
1412 
1413 	default:
1414 		error = ENOTTY;
1415 		break;
1416 	}
1417 	PIPE_UNLOCK(mpipe);
1418 out_unlocked:
1419 	return (error);
1420 }
1421 
1422 static int
1423 pipe_poll(fp, events, active_cred, td)
1424 	struct file *fp;
1425 	int events;
1426 	struct ucred *active_cred;
1427 	struct thread *td;
1428 {
1429 	struct pipe *rpipe;
1430 	struct pipe *wpipe;
1431 	int levents, revents;
1432 #ifdef MAC
1433 	int error;
1434 #endif
1435 
1436 	revents = 0;
1437 	rpipe = fp->f_data;
1438 	wpipe = PIPE_PEER(rpipe);
1439 	PIPE_LOCK(rpipe);
1440 #ifdef MAC
1441 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1442 	if (error)
1443 		goto locked_error;
1444 #endif
1445 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1446 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1447 		    (rpipe->pipe_buffer.cnt > 0))
1448 			revents |= events & (POLLIN | POLLRDNORM);
1449 
1450 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1451 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1452 		    (wpipe->pipe_state & PIPE_EOF) ||
1453 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1454 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1455 			 wpipe->pipe_buffer.size == 0)))
1456 			revents |= events & (POLLOUT | POLLWRNORM);
1457 
1458 	levents = events &
1459 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1460 	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1461 	    fp->f_seqcount == rpipe->pipe_wgen)
1462 		events |= POLLINIGNEOF;
1463 
1464 	if ((events & POLLINIGNEOF) == 0) {
1465 		if (rpipe->pipe_state & PIPE_EOF) {
1466 			revents |= (events & (POLLIN | POLLRDNORM));
1467 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1468 			    (wpipe->pipe_state & PIPE_EOF))
1469 				revents |= POLLHUP;
1470 		}
1471 	}
1472 
1473 	if (revents == 0) {
1474 		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1475 			selrecord(td, &rpipe->pipe_sel);
1476 			if (SEL_WAITING(&rpipe->pipe_sel))
1477 				rpipe->pipe_state |= PIPE_SEL;
1478 		}
1479 
1480 		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1481 			selrecord(td, &wpipe->pipe_sel);
1482 			if (SEL_WAITING(&wpipe->pipe_sel))
1483 				wpipe->pipe_state |= PIPE_SEL;
1484 		}
1485 	}
1486 #ifdef MAC
1487 locked_error:
1488 #endif
1489 	PIPE_UNLOCK(rpipe);
1490 
1491 	return (revents);
1492 }
1493 
1494 /*
1495  * We shouldn't need locks here as we're doing a read and this should
1496  * be a natural race.
1497  */
1498 static int
1499 pipe_stat(fp, ub, active_cred, td)
1500 	struct file *fp;
1501 	struct stat *ub;
1502 	struct ucred *active_cred;
1503 	struct thread *td;
1504 {
1505 	struct pipe *pipe;
1506 	int new_unr;
1507 #ifdef MAC
1508 	int error;
1509 #endif
1510 
1511 	pipe = fp->f_data;
1512 	PIPE_LOCK(pipe);
1513 #ifdef MAC
1514 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1515 	if (error) {
1516 		PIPE_UNLOCK(pipe);
1517 		return (error);
1518 	}
1519 #endif
1520 
1521 	/* For named pipes ask the underlying filesystem. */
1522 	if (pipe->pipe_state & PIPE_NAMED) {
1523 		PIPE_UNLOCK(pipe);
1524 		return (vnops.fo_stat(fp, ub, active_cred, td));
1525 	}
1526 
1527 	/*
1528 	 * Lazily allocate an inode number for the pipe.  Most pipe
1529 	 * users do not call fstat(2) on the pipe, which means that
1530 	 * postponing the inode allocation until it is must be
1531 	 * returned to userland is useful.  If alloc_unr failed,
1532 	 * assign st_ino zero instead of returning an error.
1533 	 * Special pipe_ino values:
1534 	 *  -1 - not yet initialized;
1535 	 *  0  - alloc_unr failed, return 0 as st_ino forever.
1536 	 */
1537 	if (pipe->pipe_ino == (ino_t)-1) {
1538 		new_unr = alloc_unr(pipeino_unr);
1539 		if (new_unr != -1)
1540 			pipe->pipe_ino = new_unr;
1541 		else
1542 			pipe->pipe_ino = 0;
1543 	}
1544 	PIPE_UNLOCK(pipe);
1545 
1546 	bzero(ub, sizeof(*ub));
1547 	ub->st_mode = S_IFIFO;
1548 	ub->st_blksize = PAGE_SIZE;
1549 	if (pipe->pipe_state & PIPE_DIRECTW)
1550 		ub->st_size = pipe->pipe_map.cnt;
1551 	else
1552 		ub->st_size = pipe->pipe_buffer.cnt;
1553 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1554 	ub->st_atim = pipe->pipe_atime;
1555 	ub->st_mtim = pipe->pipe_mtime;
1556 	ub->st_ctim = pipe->pipe_ctime;
1557 	ub->st_uid = fp->f_cred->cr_uid;
1558 	ub->st_gid = fp->f_cred->cr_gid;
1559 	ub->st_dev = pipedev_ino;
1560 	ub->st_ino = pipe->pipe_ino;
1561 	/*
1562 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1563 	 */
1564 	return (0);
1565 }
1566 
1567 /* ARGSUSED */
1568 static int
1569 pipe_close(fp, td)
1570 	struct file *fp;
1571 	struct thread *td;
1572 {
1573 
1574 	if (fp->f_vnode != NULL)
1575 		return vnops.fo_close(fp, td);
1576 	fp->f_ops = &badfileops;
1577 	pipe_dtor(fp->f_data);
1578 	fp->f_data = NULL;
1579 	return (0);
1580 }
1581 
1582 static int
1583 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1584 {
1585 	struct pipe *cpipe;
1586 	int error;
1587 
1588 	cpipe = fp->f_data;
1589 	if (cpipe->pipe_state & PIPE_NAMED)
1590 		error = vn_chmod(fp, mode, active_cred, td);
1591 	else
1592 		error = invfo_chmod(fp, mode, active_cred, td);
1593 	return (error);
1594 }
1595 
1596 static int
1597 pipe_chown(fp, uid, gid, active_cred, td)
1598 	struct file *fp;
1599 	uid_t uid;
1600 	gid_t gid;
1601 	struct ucred *active_cred;
1602 	struct thread *td;
1603 {
1604 	struct pipe *cpipe;
1605 	int error;
1606 
1607 	cpipe = fp->f_data;
1608 	if (cpipe->pipe_state & PIPE_NAMED)
1609 		error = vn_chown(fp, uid, gid, active_cred, td);
1610 	else
1611 		error = invfo_chown(fp, uid, gid, active_cred, td);
1612 	return (error);
1613 }
1614 
1615 static void
1616 pipe_free_kmem(cpipe)
1617 	struct pipe *cpipe;
1618 {
1619 
1620 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1621 	    ("pipe_free_kmem: pipe mutex locked"));
1622 
1623 	if (cpipe->pipe_buffer.buffer != NULL) {
1624 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1625 		vm_map_remove(pipe_map,
1626 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1627 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1628 		cpipe->pipe_buffer.buffer = NULL;
1629 	}
1630 #ifndef PIPE_NODIRECT
1631 	{
1632 		cpipe->pipe_map.cnt = 0;
1633 		cpipe->pipe_map.pos = 0;
1634 		cpipe->pipe_map.npages = 0;
1635 	}
1636 #endif
1637 }
1638 
1639 /*
1640  * shutdown the pipe
1641  */
1642 static void
1643 pipeclose(cpipe)
1644 	struct pipe *cpipe;
1645 {
1646 	struct pipepair *pp;
1647 	struct pipe *ppipe;
1648 
1649 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1650 
1651 	PIPE_LOCK(cpipe);
1652 	pipelock(cpipe, 0);
1653 	pp = cpipe->pipe_pair;
1654 
1655 	pipeselwakeup(cpipe);
1656 
1657 	/*
1658 	 * If the other side is blocked, wake it up saying that
1659 	 * we want to close it down.
1660 	 */
1661 	cpipe->pipe_state |= PIPE_EOF;
1662 	while (cpipe->pipe_busy) {
1663 		wakeup(cpipe);
1664 		cpipe->pipe_state |= PIPE_WANT;
1665 		pipeunlock(cpipe);
1666 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1667 		pipelock(cpipe, 0);
1668 	}
1669 
1670 
1671 	/*
1672 	 * Disconnect from peer, if any.
1673 	 */
1674 	ppipe = cpipe->pipe_peer;
1675 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1676 		pipeselwakeup(ppipe);
1677 
1678 		ppipe->pipe_state |= PIPE_EOF;
1679 		wakeup(ppipe);
1680 		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1681 	}
1682 
1683 	/*
1684 	 * Mark this endpoint as free.  Release kmem resources.  We
1685 	 * don't mark this endpoint as unused until we've finished
1686 	 * doing that, or the pipe might disappear out from under
1687 	 * us.
1688 	 */
1689 	PIPE_UNLOCK(cpipe);
1690 	pipe_free_kmem(cpipe);
1691 	PIPE_LOCK(cpipe);
1692 	cpipe->pipe_present = PIPE_CLOSING;
1693 	pipeunlock(cpipe);
1694 
1695 	/*
1696 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1697 	 * PIPE_FINALIZED, that allows other end to free the
1698 	 * pipe_pair, only after the knotes are completely dismantled.
1699 	 */
1700 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1701 	cpipe->pipe_present = PIPE_FINALIZED;
1702 	seldrain(&cpipe->pipe_sel);
1703 	knlist_destroy(&cpipe->pipe_sel.si_note);
1704 
1705 	/*
1706 	 * If both endpoints are now closed, release the memory for the
1707 	 * pipe pair.  If not, unlock.
1708 	 */
1709 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1710 		PIPE_UNLOCK(cpipe);
1711 #ifdef MAC
1712 		mac_pipe_destroy(pp);
1713 #endif
1714 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1715 	} else
1716 		PIPE_UNLOCK(cpipe);
1717 }
1718 
1719 /*ARGSUSED*/
1720 static int
1721 pipe_kqfilter(struct file *fp, struct knote *kn)
1722 {
1723 	struct pipe *cpipe;
1724 
1725 	/*
1726 	 * If a filter is requested that is not supported by this file
1727 	 * descriptor, don't return an error, but also don't ever generate an
1728 	 * event.
1729 	 */
1730 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1731 		kn->kn_fop = &pipe_nfiltops;
1732 		return (0);
1733 	}
1734 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1735 		kn->kn_fop = &pipe_nfiltops;
1736 		return (0);
1737 	}
1738 	cpipe = fp->f_data;
1739 	PIPE_LOCK(cpipe);
1740 	switch (kn->kn_filter) {
1741 	case EVFILT_READ:
1742 		kn->kn_fop = &pipe_rfiltops;
1743 		break;
1744 	case EVFILT_WRITE:
1745 		kn->kn_fop = &pipe_wfiltops;
1746 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1747 			/* other end of pipe has been closed */
1748 			PIPE_UNLOCK(cpipe);
1749 			return (EPIPE);
1750 		}
1751 		cpipe = PIPE_PEER(cpipe);
1752 		break;
1753 	default:
1754 		PIPE_UNLOCK(cpipe);
1755 		return (EINVAL);
1756 	}
1757 
1758 	kn->kn_hook = cpipe;
1759 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1760 	PIPE_UNLOCK(cpipe);
1761 	return (0);
1762 }
1763 
1764 static void
1765 filt_pipedetach(struct knote *kn)
1766 {
1767 	struct pipe *cpipe = kn->kn_hook;
1768 
1769 	PIPE_LOCK(cpipe);
1770 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1771 	PIPE_UNLOCK(cpipe);
1772 }
1773 
1774 /*ARGSUSED*/
1775 static int
1776 filt_piperead(struct knote *kn, long hint)
1777 {
1778 	struct pipe *rpipe = kn->kn_hook;
1779 	struct pipe *wpipe = rpipe->pipe_peer;
1780 	int ret;
1781 
1782 	PIPE_LOCK(rpipe);
1783 	kn->kn_data = rpipe->pipe_buffer.cnt;
1784 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1785 		kn->kn_data = rpipe->pipe_map.cnt;
1786 
1787 	if ((rpipe->pipe_state & PIPE_EOF) ||
1788 	    wpipe->pipe_present != PIPE_ACTIVE ||
1789 	    (wpipe->pipe_state & PIPE_EOF)) {
1790 		kn->kn_flags |= EV_EOF;
1791 		PIPE_UNLOCK(rpipe);
1792 		return (1);
1793 	}
1794 	ret = kn->kn_data > 0;
1795 	PIPE_UNLOCK(rpipe);
1796 	return ret;
1797 }
1798 
1799 /*ARGSUSED*/
1800 static int
1801 filt_pipewrite(struct knote *kn, long hint)
1802 {
1803 	struct pipe *wpipe;
1804 
1805 	wpipe = kn->kn_hook;
1806 	PIPE_LOCK(wpipe);
1807 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1808 	    (wpipe->pipe_state & PIPE_EOF)) {
1809 		kn->kn_data = 0;
1810 		kn->kn_flags |= EV_EOF;
1811 		PIPE_UNLOCK(wpipe);
1812 		return (1);
1813 	}
1814 	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1815 	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1816 	if (wpipe->pipe_state & PIPE_DIRECTW)
1817 		kn->kn_data = 0;
1818 
1819 	PIPE_UNLOCK(wpipe);
1820 	return (kn->kn_data >= PIPE_BUF);
1821 }
1822 
1823 static void
1824 filt_pipedetach_notsup(struct knote *kn)
1825 {
1826 
1827 }
1828 
1829 static int
1830 filt_pipenotsup(struct knote *kn, long hint)
1831 {
1832 
1833 	return (0);
1834 }
1835