1 /*- 2 * Copyright (c) 1996 John S. Dyson 3 * Copyright (c) 2012 Giovanni Trematerra 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice immediately at the beginning of the file, without modification, 11 * this list of conditions, and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Absolutely no warranty of function or purpose is made by the author 16 * John S. Dyson. 17 * 4. Modifications may be freely made to this file if the above conditions 18 * are met. 19 */ 20 21 /* 22 * This file contains a high-performance replacement for the socket-based 23 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 24 * all features of sockets, but does do everything that pipes normally 25 * do. 26 */ 27 28 /* 29 * This code has two modes of operation, a small write mode and a large 30 * write mode. The small write mode acts like conventional pipes with 31 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 32 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 33 * and PIPE_SIZE in size, the sending process pins the underlying pages in 34 * memory, and the receiving process copies directly from these pinned pages 35 * in the sending process. 36 * 37 * If the sending process receives a signal, it is possible that it will 38 * go away, and certainly its address space can change, because control 39 * is returned back to the user-mode side. In that case, the pipe code 40 * arranges to copy the buffer supplied by the user process, to a pageable 41 * kernel buffer, and the receiving process will grab the data from the 42 * pageable kernel buffer. Since signals don't happen all that often, 43 * the copy operation is normally eliminated. 44 * 45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 46 * happen for small transfers so that the system will not spend all of 47 * its time context switching. 48 * 49 * In order to limit the resource use of pipes, two sysctls exist: 50 * 51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 52 * address space available to us in pipe_map. This value is normally 53 * autotuned, but may also be loader tuned. 54 * 55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 56 * memory in use by pipes. 57 * 58 * Based on how large pipekva is relative to maxpipekva, the following 59 * will happen: 60 * 61 * 0% - 50%: 62 * New pipes are given 16K of memory backing, pipes may dynamically 63 * grow to as large as 64K where needed. 64 * 50% - 75%: 65 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 66 * existing pipes may NOT grow. 67 * 75% - 100%: 68 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 69 * existing pipes will be shrunk down to 4K whenever possible. 70 * 71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 72 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 73 * resize which MUST occur for reverse-direction pipes when they are 74 * first used. 75 * 76 * Additional information about the current state of pipes may be obtained 77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 78 * and kern.ipc.piperesizefail. 79 * 80 * Locking rules: There are two locks present here: A mutex, used via 81 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 82 * the flag, as mutexes can not persist over uiomove. The mutex 83 * exists only to guard access to the flag, and is not in itself a 84 * locking mechanism. Also note that there is only a single mutex for 85 * both directions of a pipe. 86 * 87 * As pipelock() may have to sleep before it can acquire the flag, it 88 * is important to reread all data after a call to pipelock(); everything 89 * in the structure may have changed. 90 */ 91 92 #include <sys/param.h> 93 #include <sys/systm.h> 94 #include <sys/conf.h> 95 #include <sys/fcntl.h> 96 #include <sys/file.h> 97 #include <sys/filedesc.h> 98 #include <sys/filio.h> 99 #include <sys/kernel.h> 100 #include <sys/lock.h> 101 #include <sys/mutex.h> 102 #include <sys/ttycom.h> 103 #include <sys/stat.h> 104 #include <sys/malloc.h> 105 #include <sys/poll.h> 106 #include <sys/priv.h> 107 #include <sys/selinfo.h> 108 #include <sys/signalvar.h> 109 #include <sys/syscallsubr.h> 110 #include <sys/sysctl.h> 111 #include <sys/sysproto.h> 112 #include <sys/pipe.h> 113 #include <sys/proc.h> 114 #include <sys/vnode.h> 115 #include <sys/uio.h> 116 #include <sys/user.h> 117 #include <sys/event.h> 118 119 #include <security/mac/mac_framework.h> 120 121 #include <vm/vm.h> 122 #include <vm/vm_param.h> 123 #include <vm/vm_object.h> 124 #include <vm/vm_kern.h> 125 #include <vm/vm_extern.h> 126 #include <vm/pmap.h> 127 #include <vm/vm_map.h> 128 #include <vm/vm_page.h> 129 #include <vm/uma.h> 130 131 /* 132 * Use this define if you want to disable *fancy* VM things. Expect an 133 * approx 30% decrease in transfer rate. This could be useful for 134 * NetBSD or OpenBSD. 135 */ 136 /* #define PIPE_NODIRECT */ 137 138 #define PIPE_PEER(pipe) \ 139 (((pipe)->pipe_type & PIPE_TYPE_NAMED) ? (pipe) : ((pipe)->pipe_peer)) 140 141 /* 142 * interfaces to the outside world 143 */ 144 static fo_rdwr_t pipe_read; 145 static fo_rdwr_t pipe_write; 146 static fo_truncate_t pipe_truncate; 147 static fo_ioctl_t pipe_ioctl; 148 static fo_poll_t pipe_poll; 149 static fo_kqfilter_t pipe_kqfilter; 150 static fo_stat_t pipe_stat; 151 static fo_close_t pipe_close; 152 static fo_chmod_t pipe_chmod; 153 static fo_chown_t pipe_chown; 154 static fo_fill_kinfo_t pipe_fill_kinfo; 155 156 const struct fileops pipeops = { 157 .fo_read = pipe_read, 158 .fo_write = pipe_write, 159 .fo_truncate = pipe_truncate, 160 .fo_ioctl = pipe_ioctl, 161 .fo_poll = pipe_poll, 162 .fo_kqfilter = pipe_kqfilter, 163 .fo_stat = pipe_stat, 164 .fo_close = pipe_close, 165 .fo_chmod = pipe_chmod, 166 .fo_chown = pipe_chown, 167 .fo_sendfile = invfo_sendfile, 168 .fo_fill_kinfo = pipe_fill_kinfo, 169 .fo_cmp = file_kcmp_generic, 170 .fo_flags = DFLAG_PASSABLE 171 }; 172 173 static void filt_pipedetach(struct knote *kn); 174 static void filt_pipedetach_notsup(struct knote *kn); 175 static int filt_pipenotsup(struct knote *kn, long hint); 176 static int filt_piperead(struct knote *kn, long hint); 177 static int filt_pipewrite(struct knote *kn, long hint); 178 static int filt_pipedump(struct proc *p, struct knote *kn, 179 struct kinfo_knote *kin); 180 181 static const struct filterops pipe_nfiltops = { 182 .f_isfd = 1, 183 .f_detach = filt_pipedetach_notsup, 184 .f_event = filt_pipenotsup 185 /* no userdump */ 186 }; 187 static const struct filterops pipe_rfiltops = { 188 .f_isfd = 1, 189 .f_detach = filt_pipedetach, 190 .f_event = filt_piperead, 191 .f_userdump = filt_pipedump, 192 }; 193 static const struct filterops pipe_wfiltops = { 194 .f_isfd = 1, 195 .f_detach = filt_pipedetach, 196 .f_event = filt_pipewrite, 197 .f_userdump = filt_pipedump, 198 }; 199 200 /* 201 * Default pipe buffer size(s), this can be kind-of large now because pipe 202 * space is pageable. The pipe code will try to maintain locality of 203 * reference for performance reasons, so small amounts of outstanding I/O 204 * will not wipe the cache. 205 */ 206 #define MINPIPESIZE (PIPE_SIZE/3) 207 #define MAXPIPESIZE (2*PIPE_SIZE/3) 208 209 static long amountpipekva; 210 static int pipefragretry; 211 static int pipeallocfail; 212 static int piperesizefail; 213 static int piperesizeallowed = 1; 214 static long pipe_mindirect = PIPE_MINDIRECT; 215 static int pipebuf_reserv = 2; 216 217 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 218 &maxpipekva, 0, "Pipe KVA limit"); 219 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 220 &amountpipekva, 0, "Pipe KVA usage"); 221 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 222 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 223 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 224 &pipeallocfail, 0, "Pipe allocation failures"); 225 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 226 &piperesizefail, 0, "Pipe resize failures"); 227 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 228 &piperesizeallowed, 0, "Pipe resizing allowed"); 229 SYSCTL_INT(_kern_ipc, OID_AUTO, pipebuf_reserv, CTLFLAG_RW, 230 &pipebuf_reserv, 0, 231 "Superuser-reserved percentage of the pipe buffers space"); 232 233 static void pipeinit(void *dummy __unused); 234 static void pipeclose(struct pipe *cpipe); 235 static void pipe_free_kmem(struct pipe *cpipe); 236 static int pipe_create(struct pipe *pipe, bool backing); 237 static void pipe_destroy(struct pipe *pipe); 238 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp); 239 static __inline int pipelock(struct pipe *cpipe, bool catch); 240 static __inline void pipeunlock(struct pipe *cpipe); 241 static void pipe_timestamp(struct timespec *tsp); 242 #ifndef PIPE_NODIRECT 243 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 244 static void pipe_destroy_write_buffer(struct pipe *wpipe); 245 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 246 static void pipe_clone_write_buffer(struct pipe *wpipe); 247 #endif 248 static int pipespace(struct pipe *cpipe, int size); 249 static int pipespace_new(struct pipe *cpipe, int size); 250 251 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 252 static int pipe_zone_init(void *mem, int size, int flags); 253 static void pipe_zone_fini(void *mem, int size); 254 255 static uma_zone_t pipe_zone; 256 static struct unrhdr64 pipeino_unr; 257 static dev_t pipedev_ino; 258 259 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 260 261 static void 262 pipeinit(void *dummy __unused) 263 { 264 265 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair), 266 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini, 267 UMA_ALIGN_PTR, 0); 268 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 269 new_unrhdr64(&pipeino_unr, 1); 270 pipedev_ino = devfs_alloc_cdp_inode(); 271 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized")); 272 } 273 274 static int 275 sysctl_handle_pipe_mindirect(SYSCTL_HANDLER_ARGS) 276 { 277 int error = 0; 278 long tmp_pipe_mindirect = pipe_mindirect; 279 280 error = sysctl_handle_long(oidp, &tmp_pipe_mindirect, arg2, req); 281 if (error != 0 || req->newptr == NULL) 282 return (error); 283 284 /* 285 * Don't allow pipe_mindirect to be set so low that we violate 286 * atomicity requirements. 287 */ 288 if (tmp_pipe_mindirect <= PIPE_BUF) 289 return (EINVAL); 290 pipe_mindirect = tmp_pipe_mindirect; 291 return (0); 292 } 293 SYSCTL_OID(_kern_ipc, OID_AUTO, pipe_mindirect, CTLTYPE_LONG | CTLFLAG_RW, 294 &pipe_mindirect, 0, sysctl_handle_pipe_mindirect, "L", 295 "Minimum write size triggering VM optimization"); 296 297 static int 298 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 299 { 300 struct pipepair *pp; 301 struct pipe *rpipe, *wpipe; 302 303 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 304 305 pp = (struct pipepair *)mem; 306 307 /* 308 * We zero both pipe endpoints to make sure all the kmem pointers 309 * are NULL, flag fields are zero'd, etc. We timestamp both 310 * endpoints with the same time. 311 */ 312 rpipe = &pp->pp_rpipe; 313 bzero(rpipe, sizeof(*rpipe)); 314 pipe_timestamp(&rpipe->pipe_ctime); 315 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 316 317 wpipe = &pp->pp_wpipe; 318 bzero(wpipe, sizeof(*wpipe)); 319 wpipe->pipe_ctime = rpipe->pipe_ctime; 320 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 321 322 rpipe->pipe_peer = wpipe; 323 rpipe->pipe_pair = pp; 324 wpipe->pipe_peer = rpipe; 325 wpipe->pipe_pair = pp; 326 327 /* 328 * Mark both endpoints as present; they will later get free'd 329 * one at a time. When both are free'd, then the whole pair 330 * is released. 331 */ 332 rpipe->pipe_present = PIPE_ACTIVE; 333 wpipe->pipe_present = PIPE_ACTIVE; 334 335 /* 336 * Eventually, the MAC Framework may initialize the label 337 * in ctor or init, but for now we do it elswhere to avoid 338 * blocking in ctor or init. 339 */ 340 pp->pp_label = NULL; 341 342 return (0); 343 } 344 345 static int 346 pipe_zone_init(void *mem, int size, int flags) 347 { 348 struct pipepair *pp; 349 350 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 351 352 pp = (struct pipepair *)mem; 353 354 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW); 355 return (0); 356 } 357 358 static void 359 pipe_zone_fini(void *mem, int size) 360 { 361 struct pipepair *pp; 362 363 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 364 365 pp = (struct pipepair *)mem; 366 367 mtx_destroy(&pp->pp_mtx); 368 } 369 370 static int 371 pipe_paircreate(struct thread *td, struct pipepair **p_pp) 372 { 373 struct pipepair *pp; 374 struct pipe *rpipe, *wpipe; 375 int error; 376 377 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK); 378 #ifdef MAC 379 /* 380 * The MAC label is shared between the connected endpoints. As a 381 * result mac_pipe_init() and mac_pipe_create() are called once 382 * for the pair, and not on the endpoints. 383 */ 384 mac_pipe_init(pp); 385 mac_pipe_create(td->td_ucred, pp); 386 #endif 387 rpipe = &pp->pp_rpipe; 388 wpipe = &pp->pp_wpipe; 389 pp->pp_owner = crhold(td->td_ucred); 390 391 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe)); 392 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe)); 393 394 /* 395 * Only the forward direction pipe is backed by big buffer by 396 * default. 397 */ 398 error = pipe_create(rpipe, true); 399 if (error != 0) 400 goto fail; 401 error = pipe_create(wpipe, false); 402 if (error != 0) { 403 pipe_destroy(rpipe); 404 goto fail; 405 } 406 407 rpipe->pipe_state |= PIPE_DIRECTOK; 408 wpipe->pipe_state |= PIPE_DIRECTOK; 409 return (0); 410 411 fail: 412 knlist_destroy(&rpipe->pipe_sel.si_note); 413 knlist_destroy(&wpipe->pipe_sel.si_note); 414 crfree(pp->pp_owner); 415 #ifdef MAC 416 mac_pipe_destroy(pp); 417 #endif 418 uma_zfree(pipe_zone, pp); 419 return (error); 420 } 421 422 int 423 pipe_named_ctor(struct pipe **ppipe, struct thread *td) 424 { 425 struct pipepair *pp; 426 int error; 427 428 error = pipe_paircreate(td, &pp); 429 if (error != 0) 430 return (error); 431 pp->pp_rpipe.pipe_type |= PIPE_TYPE_NAMED; 432 *ppipe = &pp->pp_rpipe; 433 return (0); 434 } 435 436 void 437 pipe_dtor(struct pipe *dpipe) 438 { 439 struct pipe *peer; 440 441 peer = (dpipe->pipe_type & PIPE_TYPE_NAMED) != 0 ? dpipe->pipe_peer : NULL; 442 funsetown(&dpipe->pipe_sigio); 443 pipeclose(dpipe); 444 if (peer != NULL) { 445 funsetown(&peer->pipe_sigio); 446 pipeclose(peer); 447 } 448 } 449 450 /* 451 * Get a timestamp. 452 * 453 * This used to be vfs_timestamp but the higher precision is unnecessary and 454 * can very negatively affect performance in virtualized environments (e.g., on 455 * vms running on amd64 when using the rdtscp instruction). 456 */ 457 static void 458 pipe_timestamp(struct timespec *tsp) 459 { 460 461 getnanotime(tsp); 462 } 463 464 /* 465 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let 466 * the zone pick up the pieces via pipeclose(). 467 */ 468 int 469 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1, 470 struct filecaps *fcaps2) 471 { 472 struct file *rf, *wf; 473 struct pipe *rpipe, *wpipe; 474 struct pipepair *pp; 475 int fd, fflags, error; 476 477 error = pipe_paircreate(td, &pp); 478 if (error != 0) 479 return (error); 480 rpipe = &pp->pp_rpipe; 481 wpipe = &pp->pp_wpipe; 482 error = falloc_caps(td, &rf, &fd, flags, fcaps1); 483 if (error) { 484 pipeclose(rpipe); 485 pipeclose(wpipe); 486 return (error); 487 } 488 /* An extra reference on `rf' has been held for us by falloc_caps(). */ 489 fildes[0] = fd; 490 491 fflags = FREAD | FWRITE; 492 if ((flags & O_NONBLOCK) != 0) 493 fflags |= FNONBLOCK; 494 495 /* 496 * Warning: once we've gotten past allocation of the fd for the 497 * read-side, we can only drop the read side via fdrop() in order 498 * to avoid races against processes which manage to dup() the read 499 * side while we are blocked trying to allocate the write side. 500 */ 501 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops); 502 error = falloc_caps(td, &wf, &fd, flags, fcaps2); 503 if (error) { 504 fdclose(td, rf, fildes[0]); 505 fdrop(rf, td); 506 /* rpipe has been closed by fdrop(). */ 507 pipeclose(wpipe); 508 return (error); 509 } 510 /* An extra reference on `wf' has been held for us by falloc_caps(). */ 511 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops); 512 fdrop(wf, td); 513 fildes[1] = fd; 514 fdrop(rf, td); 515 516 return (0); 517 } 518 519 #ifdef COMPAT_FREEBSD10 520 /* ARGSUSED */ 521 int 522 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused) 523 { 524 int error; 525 int fildes[2]; 526 527 error = kern_pipe(td, fildes, 0, NULL, NULL); 528 if (error) 529 return (error); 530 531 td->td_retval[0] = fildes[0]; 532 td->td_retval[1] = fildes[1]; 533 534 return (0); 535 } 536 #endif 537 538 int 539 sys_pipe2(struct thread *td, struct pipe2_args *uap) 540 { 541 int error, fildes[2]; 542 543 if ((uap->flags & ~(O_CLOEXEC | O_CLOFORK | O_NONBLOCK)) != 0) 544 return (EINVAL); 545 error = kern_pipe(td, fildes, uap->flags, NULL, NULL); 546 if (error) 547 return (error); 548 error = copyout(fildes, uap->fildes, 2 * sizeof(int)); 549 if (error) { 550 (void)kern_close(td, fildes[0]); 551 (void)kern_close(td, fildes[1]); 552 } 553 return (error); 554 } 555 556 /* 557 * Allocate kva for pipe circular buffer, the space is pageable 558 * This routine will 'realloc' the size of a pipe safely, if it fails 559 * it will retain the old buffer. 560 * If it fails it will return ENOMEM. 561 */ 562 static int 563 pipespace_new(struct pipe *cpipe, int size) 564 { 565 caddr_t buffer; 566 int error, cnt, firstseg; 567 static int curfail = 0; 568 static struct timeval lastfail; 569 570 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 571 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 572 ("pipespace: resize of direct writes not allowed")); 573 retry: 574 cnt = cpipe->pipe_buffer.cnt; 575 if (cnt > size) 576 size = cnt; 577 578 size = round_page(size); 579 buffer = (caddr_t) vm_map_min(pipe_map); 580 581 if (!chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo, 582 size, lim_cur(curthread, RLIMIT_PIPEBUF))) { 583 if (cpipe->pipe_buffer.buffer == NULL && 584 size > SMALL_PIPE_SIZE) { 585 size = SMALL_PIPE_SIZE; 586 goto retry; 587 } 588 return (ENOMEM); 589 } 590 591 vm_map_lock(pipe_map); 592 if (priv_check(curthread, PRIV_PIPEBUF) != 0 && maxpipekva / 100 * 593 (100 - pipebuf_reserv) < amountpipekva + size) { 594 vm_map_unlock(pipe_map); 595 chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo, -size, 0); 596 if (cpipe->pipe_buffer.buffer == NULL && 597 size > SMALL_PIPE_SIZE) { 598 size = SMALL_PIPE_SIZE; 599 pipefragretry++; 600 goto retry; 601 } 602 return (ENOMEM); 603 } 604 error = vm_map_find_locked(pipe_map, NULL, 0, (vm_offset_t *)&buffer, 605 size, 0, VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0); 606 vm_map_unlock(pipe_map); 607 if (error != KERN_SUCCESS) { 608 chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo, -size, 0); 609 if (cpipe->pipe_buffer.buffer == NULL && 610 size > SMALL_PIPE_SIZE) { 611 size = SMALL_PIPE_SIZE; 612 pipefragretry++; 613 goto retry; 614 } 615 if (cpipe->pipe_buffer.buffer == NULL) { 616 pipeallocfail++; 617 if (ppsratecheck(&lastfail, &curfail, 1)) 618 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 619 } else { 620 piperesizefail++; 621 } 622 return (ENOMEM); 623 } 624 625 /* copy data, then free old resources if we're resizing */ 626 if (cnt > 0) { 627 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 628 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 629 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 630 buffer, firstseg); 631 if ((cnt - firstseg) > 0) 632 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 633 cpipe->pipe_buffer.in); 634 } else { 635 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 636 buffer, cnt); 637 } 638 } 639 pipe_free_kmem(cpipe); 640 cpipe->pipe_buffer.buffer = buffer; 641 cpipe->pipe_buffer.size = size; 642 cpipe->pipe_buffer.in = cnt; 643 cpipe->pipe_buffer.out = 0; 644 cpipe->pipe_buffer.cnt = cnt; 645 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size); 646 return (0); 647 } 648 649 /* 650 * Wrapper for pipespace_new() that performs locking assertions. 651 */ 652 static int 653 pipespace(struct pipe *cpipe, int size) 654 { 655 656 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 657 ("Unlocked pipe passed to pipespace")); 658 return (pipespace_new(cpipe, size)); 659 } 660 661 /* 662 * lock a pipe for I/O, blocking other access 663 */ 664 static __inline int 665 pipelock(struct pipe *cpipe, bool catch) 666 { 667 int error, prio; 668 669 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 670 671 prio = PRIBIO; 672 if (catch) 673 prio |= PCATCH; 674 while (cpipe->pipe_state & PIPE_LOCKFL) { 675 KASSERT(cpipe->pipe_waiters >= 0, 676 ("%s: bad waiter count %d", __func__, 677 cpipe->pipe_waiters)); 678 cpipe->pipe_waiters++; 679 error = msleep(&cpipe->pipe_waiters, PIPE_MTX(cpipe), prio, 680 "pipelk", 0); 681 cpipe->pipe_waiters--; 682 if (error != 0) 683 return (error); 684 } 685 cpipe->pipe_state |= PIPE_LOCKFL; 686 return (0); 687 } 688 689 /* 690 * unlock a pipe I/O lock 691 */ 692 static __inline void 693 pipeunlock(struct pipe *cpipe) 694 { 695 696 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 697 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 698 ("Unlocked pipe passed to pipeunlock")); 699 KASSERT(cpipe->pipe_waiters >= 0, 700 ("%s: bad waiter count %d", __func__, 701 cpipe->pipe_waiters)); 702 cpipe->pipe_state &= ~PIPE_LOCKFL; 703 if (cpipe->pipe_waiters > 0) 704 wakeup_one(&cpipe->pipe_waiters); 705 } 706 707 void 708 pipeselwakeup(struct pipe *cpipe) 709 { 710 711 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 712 if (cpipe->pipe_state & PIPE_SEL) { 713 selwakeuppri(&cpipe->pipe_sel, PSOCK); 714 if (!SEL_WAITING(&cpipe->pipe_sel)) 715 cpipe->pipe_state &= ~PIPE_SEL; 716 } 717 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 718 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 719 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 720 } 721 722 /* 723 * Initialize and allocate VM and memory for pipe. The structure 724 * will start out zero'd from the ctor, so we just manage the kmem. 725 */ 726 static int 727 pipe_create(struct pipe *pipe, bool large_backing) 728 { 729 int error; 730 731 error = pipespace_new(pipe, !large_backing || amountpipekva > 732 maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE); 733 if (error == 0) 734 pipe->pipe_ino = alloc_unr64(&pipeino_unr); 735 return (error); 736 } 737 738 static void 739 pipe_destroy(struct pipe *pipe) 740 { 741 pipe_free_kmem(pipe); 742 /* 743 * Note: we "leak" pipe_ino -- by design the alloc_unr64 mechanism does 744 * not undo allocations. 745 */ 746 } 747 748 /* ARGSUSED */ 749 static int 750 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred, 751 int flags, struct thread *td) 752 { 753 struct pipe *rpipe; 754 int error; 755 int nread = 0; 756 int size; 757 758 rpipe = fp->f_data; 759 760 /* 761 * Try to avoid locking the pipe if we have nothing to do. 762 * 763 * There are programs which share one pipe amongst multiple processes 764 * and perform non-blocking reads in parallel, even if the pipe is 765 * empty. This in particular is the case with BSD make, which when 766 * spawned with a high -j number can find itself with over half of the 767 * calls failing to find anything. 768 */ 769 if ((fp->f_flag & FNONBLOCK) != 0 && !mac_pipe_check_read_enabled()) { 770 if (__predict_false(uio->uio_resid == 0)) 771 return (0); 772 if ((atomic_load_short(&rpipe->pipe_state) & PIPE_EOF) == 0 && 773 atomic_load_int(&rpipe->pipe_buffer.cnt) == 0 && 774 atomic_load_int(&rpipe->pipe_pages.cnt) == 0) 775 return (EAGAIN); 776 } 777 778 PIPE_LOCK(rpipe); 779 ++rpipe->pipe_busy; 780 error = pipelock(rpipe, true); 781 if (error) 782 goto unlocked_error; 783 784 #ifdef MAC 785 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair); 786 if (error) 787 goto locked_error; 788 #endif 789 if (amountpipekva > (3 * maxpipekva) / 4) { 790 if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 && 791 rpipe->pipe_buffer.size > SMALL_PIPE_SIZE && 792 rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE && 793 piperesizeallowed == 1) { 794 PIPE_UNLOCK(rpipe); 795 pipespace(rpipe, SMALL_PIPE_SIZE); 796 PIPE_LOCK(rpipe); 797 } 798 } 799 800 while (uio->uio_resid) { 801 /* 802 * normal pipe buffer receive 803 */ 804 if (rpipe->pipe_buffer.cnt > 0) { 805 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 806 if (size > rpipe->pipe_buffer.cnt) 807 size = rpipe->pipe_buffer.cnt; 808 if (size > uio->uio_resid) 809 size = uio->uio_resid; 810 811 PIPE_UNLOCK(rpipe); 812 error = uiomove( 813 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 814 size, uio); 815 PIPE_LOCK(rpipe); 816 if (error) 817 break; 818 819 rpipe->pipe_buffer.out += size; 820 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 821 rpipe->pipe_buffer.out = 0; 822 823 rpipe->pipe_buffer.cnt -= size; 824 825 /* 826 * If there is no more to read in the pipe, reset 827 * its pointers to the beginning. This improves 828 * cache hit stats. 829 */ 830 if (rpipe->pipe_buffer.cnt == 0) { 831 rpipe->pipe_buffer.in = 0; 832 rpipe->pipe_buffer.out = 0; 833 } 834 nread += size; 835 #ifndef PIPE_NODIRECT 836 /* 837 * Direct copy, bypassing a kernel buffer. 838 */ 839 } else if ((size = rpipe->pipe_pages.cnt) != 0) { 840 if (size > uio->uio_resid) 841 size = (u_int) uio->uio_resid; 842 PIPE_UNLOCK(rpipe); 843 error = uiomove_fromphys(rpipe->pipe_pages.ms, 844 rpipe->pipe_pages.pos, size, uio); 845 PIPE_LOCK(rpipe); 846 if (error) 847 break; 848 nread += size; 849 rpipe->pipe_pages.pos += size; 850 rpipe->pipe_pages.cnt -= size; 851 if (rpipe->pipe_pages.cnt == 0) { 852 rpipe->pipe_state &= ~PIPE_WANTW; 853 wakeup(rpipe); 854 } 855 #endif 856 } else { 857 /* 858 * detect EOF condition 859 * read returns 0 on EOF, no need to set error 860 */ 861 if (rpipe->pipe_state & PIPE_EOF) 862 break; 863 864 /* 865 * If the "write-side" has been blocked, wake it up now. 866 */ 867 if (rpipe->pipe_state & PIPE_WANTW) { 868 rpipe->pipe_state &= ~PIPE_WANTW; 869 wakeup(rpipe); 870 } 871 872 /* 873 * Break if some data was read. 874 */ 875 if (nread > 0) 876 break; 877 878 /* 879 * Unlock the pipe buffer for our remaining processing. 880 * We will either break out with an error or we will 881 * sleep and relock to loop. 882 */ 883 pipeunlock(rpipe); 884 885 /* 886 * Handle non-blocking mode operation or 887 * wait for more data. 888 */ 889 if (fp->f_flag & FNONBLOCK) { 890 error = EAGAIN; 891 } else { 892 rpipe->pipe_state |= PIPE_WANTR; 893 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 894 PRIBIO | PCATCH, 895 "piperd", 0)) == 0) 896 error = pipelock(rpipe, true); 897 } 898 if (error) 899 goto unlocked_error; 900 } 901 } 902 #ifdef MAC 903 locked_error: 904 #endif 905 pipeunlock(rpipe); 906 907 /* XXX: should probably do this before getting any locks. */ 908 if (error == 0) 909 pipe_timestamp(&rpipe->pipe_atime); 910 unlocked_error: 911 --rpipe->pipe_busy; 912 913 /* 914 * PIPE_WANT processing only makes sense if pipe_busy is 0. 915 */ 916 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 917 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 918 wakeup(rpipe); 919 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 920 /* 921 * Handle write blocking hysteresis. 922 */ 923 if (rpipe->pipe_state & PIPE_WANTW) { 924 rpipe->pipe_state &= ~PIPE_WANTW; 925 wakeup(rpipe); 926 } 927 } 928 929 /* 930 * Only wake up writers if there was actually something read. 931 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs. 932 */ 933 if (nread > 0 && 934 rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF) 935 pipeselwakeup(rpipe); 936 937 PIPE_UNLOCK(rpipe); 938 if (nread > 0) 939 td->td_ru.ru_msgrcv++; 940 return (error); 941 } 942 943 #ifndef PIPE_NODIRECT 944 /* 945 * Map the sending processes' buffer into kernel space and wire it. 946 * This is similar to a physical write operation. 947 */ 948 static int 949 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio) 950 { 951 u_int size; 952 int i; 953 954 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 955 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0, 956 ("%s: PIPE_DIRECTW set on %p", __func__, wpipe)); 957 KASSERT(wpipe->pipe_pages.cnt == 0, 958 ("%s: pipe map for %p contains residual data", __func__, wpipe)); 959 960 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size) 961 size = wpipe->pipe_buffer.size; 962 else 963 size = uio->uio_iov->iov_len; 964 965 wpipe->pipe_state |= PIPE_DIRECTW; 966 PIPE_UNLOCK(wpipe); 967 i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 968 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ, 969 wpipe->pipe_pages.ms, PIPENPAGES); 970 PIPE_LOCK(wpipe); 971 if (i < 0) { 972 wpipe->pipe_state &= ~PIPE_DIRECTW; 973 return (EFAULT); 974 } 975 976 wpipe->pipe_pages.npages = i; 977 wpipe->pipe_pages.pos = 978 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 979 wpipe->pipe_pages.cnt = size; 980 981 uio->uio_iov->iov_len -= size; 982 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 983 if (uio->uio_iov->iov_len == 0) { 984 uio->uio_iov++; 985 uio->uio_iovcnt--; 986 } 987 uio->uio_resid -= size; 988 uio->uio_offset += size; 989 return (0); 990 } 991 992 /* 993 * Unwire the process buffer. 994 */ 995 static void 996 pipe_destroy_write_buffer(struct pipe *wpipe) 997 { 998 999 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 1000 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0, 1001 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe)); 1002 KASSERT(wpipe->pipe_pages.cnt == 0, 1003 ("%s: pipe map for %p contains residual data", __func__, wpipe)); 1004 1005 wpipe->pipe_state &= ~PIPE_DIRECTW; 1006 vm_page_unhold_pages(wpipe->pipe_pages.ms, wpipe->pipe_pages.npages); 1007 wpipe->pipe_pages.npages = 0; 1008 } 1009 1010 /* 1011 * In the case of a signal, the writing process might go away. This 1012 * code copies the data into the circular buffer so that the source 1013 * pages can be freed without loss of data. 1014 */ 1015 static void 1016 pipe_clone_write_buffer(struct pipe *wpipe) 1017 { 1018 struct uio uio; 1019 struct iovec iov; 1020 int size; 1021 int pos; 1022 1023 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 1024 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0, 1025 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe)); 1026 1027 size = wpipe->pipe_pages.cnt; 1028 pos = wpipe->pipe_pages.pos; 1029 wpipe->pipe_pages.cnt = 0; 1030 1031 wpipe->pipe_buffer.in = size; 1032 wpipe->pipe_buffer.out = 0; 1033 wpipe->pipe_buffer.cnt = size; 1034 1035 PIPE_UNLOCK(wpipe); 1036 iov.iov_base = wpipe->pipe_buffer.buffer; 1037 iov.iov_len = size; 1038 uio.uio_iov = &iov; 1039 uio.uio_iovcnt = 1; 1040 uio.uio_offset = 0; 1041 uio.uio_resid = size; 1042 uio.uio_segflg = UIO_SYSSPACE; 1043 uio.uio_rw = UIO_READ; 1044 uio.uio_td = curthread; 1045 uiomove_fromphys(wpipe->pipe_pages.ms, pos, size, &uio); 1046 PIPE_LOCK(wpipe); 1047 pipe_destroy_write_buffer(wpipe); 1048 } 1049 1050 /* 1051 * This implements the pipe buffer write mechanism. Note that only 1052 * a direct write OR a normal pipe write can be pending at any given time. 1053 * If there are any characters in the pipe buffer, the direct write will 1054 * be deferred until the receiving process grabs all of the bytes from 1055 * the pipe buffer. Then the direct mapping write is set-up. 1056 */ 1057 static int 1058 pipe_direct_write(struct pipe *wpipe, struct uio *uio) 1059 { 1060 int error; 1061 1062 retry: 1063 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 1064 if ((wpipe->pipe_state & PIPE_EOF) != 0) { 1065 error = EPIPE; 1066 goto error1; 1067 } 1068 if (wpipe->pipe_state & PIPE_DIRECTW) { 1069 if (wpipe->pipe_state & PIPE_WANTR) { 1070 wpipe->pipe_state &= ~PIPE_WANTR; 1071 wakeup(wpipe); 1072 } 1073 pipeselwakeup(wpipe); 1074 wpipe->pipe_state |= PIPE_WANTW; 1075 pipeunlock(wpipe); 1076 error = msleep(wpipe, PIPE_MTX(wpipe), 1077 PRIBIO | PCATCH, "pipdww", 0); 1078 pipelock(wpipe, false); 1079 if (error != 0) 1080 goto error1; 1081 goto retry; 1082 } 1083 if (wpipe->pipe_buffer.cnt > 0) { 1084 if (wpipe->pipe_state & PIPE_WANTR) { 1085 wpipe->pipe_state &= ~PIPE_WANTR; 1086 wakeup(wpipe); 1087 } 1088 pipeselwakeup(wpipe); 1089 wpipe->pipe_state |= PIPE_WANTW; 1090 pipeunlock(wpipe); 1091 error = msleep(wpipe, PIPE_MTX(wpipe), 1092 PRIBIO | PCATCH, "pipdwc", 0); 1093 pipelock(wpipe, false); 1094 if (error != 0) 1095 goto error1; 1096 goto retry; 1097 } 1098 1099 error = pipe_build_write_buffer(wpipe, uio); 1100 if (error) { 1101 goto error1; 1102 } 1103 1104 while (wpipe->pipe_pages.cnt != 0 && 1105 (wpipe->pipe_state & PIPE_EOF) == 0) { 1106 if (wpipe->pipe_state & PIPE_WANTR) { 1107 wpipe->pipe_state &= ~PIPE_WANTR; 1108 wakeup(wpipe); 1109 } 1110 pipeselwakeup(wpipe); 1111 wpipe->pipe_state |= PIPE_WANTW; 1112 pipeunlock(wpipe); 1113 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 1114 "pipdwt", 0); 1115 pipelock(wpipe, false); 1116 if (error != 0) 1117 break; 1118 } 1119 1120 if ((wpipe->pipe_state & PIPE_EOF) != 0) { 1121 wpipe->pipe_pages.cnt = 0; 1122 pipe_destroy_write_buffer(wpipe); 1123 pipeselwakeup(wpipe); 1124 error = EPIPE; 1125 } else if (error == EINTR || error == ERESTART) { 1126 pipe_clone_write_buffer(wpipe); 1127 } else { 1128 pipe_destroy_write_buffer(wpipe); 1129 } 1130 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0, 1131 ("pipe %p leaked PIPE_DIRECTW", wpipe)); 1132 return (error); 1133 1134 error1: 1135 wakeup(wpipe); 1136 return (error); 1137 } 1138 #endif 1139 1140 static int 1141 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred, 1142 int flags, struct thread *td) 1143 { 1144 struct pipe *wpipe, *rpipe; 1145 ssize_t orig_resid; 1146 int desiredsize, error; 1147 1148 rpipe = fp->f_data; 1149 wpipe = PIPE_PEER(rpipe); 1150 PIPE_LOCK(rpipe); 1151 error = pipelock(wpipe, true); 1152 if (error) { 1153 PIPE_UNLOCK(rpipe); 1154 return (error); 1155 } 1156 /* 1157 * detect loss of pipe read side, issue SIGPIPE if lost. 1158 */ 1159 if (wpipe->pipe_present != PIPE_ACTIVE || 1160 (wpipe->pipe_state & PIPE_EOF)) { 1161 pipeunlock(wpipe); 1162 PIPE_UNLOCK(rpipe); 1163 return (EPIPE); 1164 } 1165 #ifdef MAC 1166 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair); 1167 if (error) { 1168 pipeunlock(wpipe); 1169 PIPE_UNLOCK(rpipe); 1170 return (error); 1171 } 1172 #endif 1173 ++wpipe->pipe_busy; 1174 1175 /* Choose a larger size if it's advantageous */ 1176 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1177 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1178 if (piperesizeallowed != 1) 1179 break; 1180 if (amountpipekva > maxpipekva / 2) 1181 break; 1182 if (desiredsize == BIG_PIPE_SIZE) 1183 break; 1184 desiredsize = desiredsize * 2; 1185 } 1186 1187 /* Choose a smaller size if we're in a OOM situation */ 1188 if (amountpipekva > (3 * maxpipekva) / 4 && 1189 wpipe->pipe_buffer.size > SMALL_PIPE_SIZE && 1190 wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE && 1191 piperesizeallowed == 1) 1192 desiredsize = SMALL_PIPE_SIZE; 1193 1194 /* Resize if the above determined that a new size was necessary */ 1195 if (desiredsize != wpipe->pipe_buffer.size && 1196 (wpipe->pipe_state & PIPE_DIRECTW) == 0) { 1197 PIPE_UNLOCK(wpipe); 1198 pipespace(wpipe, desiredsize); 1199 PIPE_LOCK(wpipe); 1200 } 1201 MPASS(wpipe->pipe_buffer.size != 0); 1202 1203 orig_resid = uio->uio_resid; 1204 1205 while (uio->uio_resid) { 1206 int space; 1207 1208 if (wpipe->pipe_state & PIPE_EOF) { 1209 error = EPIPE; 1210 break; 1211 } 1212 #ifndef PIPE_NODIRECT 1213 /* 1214 * If the transfer is large, we can gain performance if 1215 * we do process-to-process copies directly. 1216 * If the write is non-blocking, we don't use the 1217 * direct write mechanism. 1218 * 1219 * The direct write mechanism will detect the reader going 1220 * away on us. 1221 */ 1222 if (uio->uio_segflg == UIO_USERSPACE && 1223 uio->uio_iov->iov_len >= pipe_mindirect && 1224 wpipe->pipe_buffer.size >= pipe_mindirect && 1225 (fp->f_flag & FNONBLOCK) == 0) { 1226 error = pipe_direct_write(wpipe, uio); 1227 if (error != 0) 1228 break; 1229 continue; 1230 } 1231 #endif 1232 1233 /* 1234 * Pipe buffered writes cannot be coincidental with 1235 * direct writes. We wait until the currently executing 1236 * direct write is completed before we start filling the 1237 * pipe buffer. We break out if a signal occurs or the 1238 * reader goes away. 1239 */ 1240 if (wpipe->pipe_pages.cnt != 0) { 1241 if (wpipe->pipe_state & PIPE_WANTR) { 1242 wpipe->pipe_state &= ~PIPE_WANTR; 1243 wakeup(wpipe); 1244 } 1245 pipeselwakeup(wpipe); 1246 wpipe->pipe_state |= PIPE_WANTW; 1247 pipeunlock(wpipe); 1248 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1249 "pipbww", 0); 1250 pipelock(wpipe, false); 1251 if (error != 0) 1252 break; 1253 continue; 1254 } 1255 1256 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1257 1258 /* Writes of size <= PIPE_BUF must be atomic. */ 1259 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1260 space = 0; 1261 1262 if (space > 0) { 1263 int size; /* Transfer size */ 1264 int segsize; /* first segment to transfer */ 1265 1266 /* 1267 * Transfer size is minimum of uio transfer 1268 * and free space in pipe buffer. 1269 */ 1270 if (space > uio->uio_resid) 1271 size = uio->uio_resid; 1272 else 1273 size = space; 1274 /* 1275 * First segment to transfer is minimum of 1276 * transfer size and contiguous space in 1277 * pipe buffer. If first segment to transfer 1278 * is less than the transfer size, we've got 1279 * a wraparound in the buffer. 1280 */ 1281 segsize = wpipe->pipe_buffer.size - 1282 wpipe->pipe_buffer.in; 1283 if (segsize > size) 1284 segsize = size; 1285 1286 /* Transfer first segment */ 1287 1288 PIPE_UNLOCK(rpipe); 1289 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1290 segsize, uio); 1291 PIPE_LOCK(rpipe); 1292 1293 if (error == 0 && segsize < size) { 1294 KASSERT(wpipe->pipe_buffer.in + segsize == 1295 wpipe->pipe_buffer.size, 1296 ("Pipe buffer wraparound disappeared")); 1297 /* 1298 * Transfer remaining part now, to 1299 * support atomic writes. Wraparound 1300 * happened. 1301 */ 1302 1303 PIPE_UNLOCK(rpipe); 1304 error = uiomove( 1305 &wpipe->pipe_buffer.buffer[0], 1306 size - segsize, uio); 1307 PIPE_LOCK(rpipe); 1308 } 1309 if (error == 0) { 1310 wpipe->pipe_buffer.in += size; 1311 if (wpipe->pipe_buffer.in >= 1312 wpipe->pipe_buffer.size) { 1313 KASSERT(wpipe->pipe_buffer.in == 1314 size - segsize + 1315 wpipe->pipe_buffer.size, 1316 ("Expected wraparound bad")); 1317 wpipe->pipe_buffer.in = size - segsize; 1318 } 1319 1320 wpipe->pipe_buffer.cnt += size; 1321 KASSERT(wpipe->pipe_buffer.cnt <= 1322 wpipe->pipe_buffer.size, 1323 ("Pipe buffer overflow")); 1324 } 1325 if (error != 0) 1326 break; 1327 continue; 1328 } else { 1329 /* 1330 * If the "read-side" has been blocked, wake it up now. 1331 */ 1332 if (wpipe->pipe_state & PIPE_WANTR) { 1333 wpipe->pipe_state &= ~PIPE_WANTR; 1334 wakeup(wpipe); 1335 } 1336 1337 /* 1338 * don't block on non-blocking I/O 1339 */ 1340 if (fp->f_flag & FNONBLOCK) { 1341 error = EAGAIN; 1342 break; 1343 } 1344 1345 /* 1346 * We have no more space and have something to offer, 1347 * wake up select/poll. 1348 */ 1349 pipeselwakeup(wpipe); 1350 1351 wpipe->pipe_state |= PIPE_WANTW; 1352 pipeunlock(wpipe); 1353 error = msleep(wpipe, PIPE_MTX(rpipe), 1354 PRIBIO | PCATCH, "pipewr", 0); 1355 pipelock(wpipe, false); 1356 if (error != 0) 1357 break; 1358 continue; 1359 } 1360 } 1361 1362 --wpipe->pipe_busy; 1363 1364 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1365 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1366 wakeup(wpipe); 1367 } else if (wpipe->pipe_buffer.cnt > 0) { 1368 /* 1369 * If we have put any characters in the buffer, we wake up 1370 * the reader. 1371 */ 1372 if (wpipe->pipe_state & PIPE_WANTR) { 1373 wpipe->pipe_state &= ~PIPE_WANTR; 1374 wakeup(wpipe); 1375 } 1376 } 1377 1378 /* 1379 * Don't return EPIPE if any byte was written. 1380 * EINTR and other interrupts are handled by generic I/O layer. 1381 * Do not pretend that I/O succeeded for obvious user error 1382 * like EFAULT. 1383 */ 1384 if (uio->uio_resid != orig_resid && error == EPIPE) 1385 error = 0; 1386 1387 if (error == 0) 1388 pipe_timestamp(&wpipe->pipe_mtime); 1389 1390 /* 1391 * We have something to offer, 1392 * wake up select/poll. 1393 */ 1394 if (wpipe->pipe_buffer.cnt) 1395 pipeselwakeup(wpipe); 1396 1397 pipeunlock(wpipe); 1398 PIPE_UNLOCK(rpipe); 1399 if (uio->uio_resid != orig_resid) 1400 td->td_ru.ru_msgsnd++; 1401 return (error); 1402 } 1403 1404 /* ARGSUSED */ 1405 static int 1406 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1407 struct thread *td) 1408 { 1409 struct pipe *cpipe; 1410 int error; 1411 1412 cpipe = fp->f_data; 1413 if (cpipe->pipe_type & PIPE_TYPE_NAMED) 1414 error = vnops.fo_truncate(fp, length, active_cred, td); 1415 else 1416 error = invfo_truncate(fp, length, active_cred, td); 1417 return (error); 1418 } 1419 1420 /* 1421 * we implement a very minimal set of ioctls for compatibility with sockets. 1422 */ 1423 static int 1424 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred, 1425 struct thread *td) 1426 { 1427 struct pipe *mpipe = fp->f_data; 1428 int error; 1429 1430 PIPE_LOCK(mpipe); 1431 1432 #ifdef MAC 1433 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1434 if (error) { 1435 PIPE_UNLOCK(mpipe); 1436 return (error); 1437 } 1438 #endif 1439 1440 error = 0; 1441 switch (cmd) { 1442 case FIONBIO: 1443 break; 1444 1445 case FIOASYNC: 1446 if (*(int *)data) { 1447 mpipe->pipe_state |= PIPE_ASYNC; 1448 } else { 1449 mpipe->pipe_state &= ~PIPE_ASYNC; 1450 } 1451 break; 1452 1453 case FIONREAD: 1454 if (!(fp->f_flag & FREAD)) { 1455 *(int *)data = 0; 1456 PIPE_UNLOCK(mpipe); 1457 return (0); 1458 } 1459 if (mpipe->pipe_pages.cnt != 0) 1460 *(int *)data = mpipe->pipe_pages.cnt; 1461 else 1462 *(int *)data = mpipe->pipe_buffer.cnt; 1463 break; 1464 1465 case FIOSETOWN: 1466 PIPE_UNLOCK(mpipe); 1467 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1468 goto out_unlocked; 1469 1470 case FIOGETOWN: 1471 *(int *)data = fgetown(&mpipe->pipe_sigio); 1472 break; 1473 1474 /* This is deprecated, FIOSETOWN should be used instead. */ 1475 case TIOCSPGRP: 1476 PIPE_UNLOCK(mpipe); 1477 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1478 goto out_unlocked; 1479 1480 /* This is deprecated, FIOGETOWN should be used instead. */ 1481 case TIOCGPGRP: 1482 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1483 break; 1484 1485 default: 1486 error = ENOTTY; 1487 break; 1488 } 1489 PIPE_UNLOCK(mpipe); 1490 out_unlocked: 1491 return (error); 1492 } 1493 1494 static int 1495 pipe_poll(struct file *fp, int events, struct ucred *active_cred, 1496 struct thread *td) 1497 { 1498 struct pipe *rpipe; 1499 struct pipe *wpipe; 1500 int levents, revents; 1501 #ifdef MAC 1502 int error; 1503 #endif 1504 1505 revents = 0; 1506 rpipe = fp->f_data; 1507 wpipe = PIPE_PEER(rpipe); 1508 PIPE_LOCK(rpipe); 1509 #ifdef MAC 1510 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair); 1511 if (error) 1512 goto locked_error; 1513 #endif 1514 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) 1515 if (rpipe->pipe_pages.cnt > 0 || rpipe->pipe_buffer.cnt > 0) 1516 revents |= events & (POLLIN | POLLRDNORM); 1517 1518 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) 1519 if (wpipe->pipe_present != PIPE_ACTIVE || 1520 (wpipe->pipe_state & PIPE_EOF) || 1521 ((wpipe->pipe_state & PIPE_DIRECTW) == 0 && 1522 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF || 1523 wpipe->pipe_buffer.size == 0))) 1524 revents |= events & (POLLOUT | POLLWRNORM); 1525 1526 levents = events & 1527 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND); 1528 if (rpipe->pipe_type & PIPE_TYPE_NAMED && fp->f_flag & FREAD && levents && 1529 fp->f_pipegen == rpipe->pipe_wgen) 1530 events |= POLLINIGNEOF; 1531 1532 if ((events & POLLINIGNEOF) == 0) { 1533 if (rpipe->pipe_state & PIPE_EOF) { 1534 if (fp->f_flag & FREAD) 1535 revents |= (events & (POLLIN | POLLRDNORM)); 1536 if (wpipe->pipe_present != PIPE_ACTIVE || 1537 (wpipe->pipe_state & PIPE_EOF)) 1538 revents |= POLLHUP; 1539 } 1540 } 1541 1542 if (revents == 0) { 1543 /* 1544 * Add ourselves regardless of eventmask as we have to return 1545 * POLLHUP even if it was not asked for. 1546 */ 1547 if ((fp->f_flag & FREAD) != 0) { 1548 selrecord(td, &rpipe->pipe_sel); 1549 if (SEL_WAITING(&rpipe->pipe_sel)) 1550 rpipe->pipe_state |= PIPE_SEL; 1551 } 1552 1553 if ((fp->f_flag & FWRITE) != 0 && 1554 wpipe->pipe_present == PIPE_ACTIVE) { 1555 selrecord(td, &wpipe->pipe_sel); 1556 if (SEL_WAITING(&wpipe->pipe_sel)) 1557 wpipe->pipe_state |= PIPE_SEL; 1558 } 1559 } 1560 #ifdef MAC 1561 locked_error: 1562 #endif 1563 PIPE_UNLOCK(rpipe); 1564 1565 return (revents); 1566 } 1567 1568 /* 1569 * We shouldn't need locks here as we're doing a read and this should 1570 * be a natural race. 1571 */ 1572 static int 1573 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred) 1574 { 1575 struct pipe *pipe; 1576 #ifdef MAC 1577 int error; 1578 #endif 1579 1580 pipe = fp->f_data; 1581 #ifdef MAC 1582 if (mac_pipe_check_stat_enabled()) { 1583 PIPE_LOCK(pipe); 1584 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair); 1585 PIPE_UNLOCK(pipe); 1586 if (error) { 1587 return (error); 1588 } 1589 } 1590 #endif 1591 1592 /* For named pipes ask the underlying filesystem. */ 1593 if (pipe->pipe_type & PIPE_TYPE_NAMED) { 1594 return (vnops.fo_stat(fp, ub, active_cred)); 1595 } 1596 1597 bzero(ub, sizeof(*ub)); 1598 ub->st_mode = S_IFIFO; 1599 ub->st_blksize = PAGE_SIZE; 1600 if (pipe->pipe_pages.cnt != 0) 1601 ub->st_size = pipe->pipe_pages.cnt; 1602 else 1603 ub->st_size = pipe->pipe_buffer.cnt; 1604 ub->st_blocks = howmany(ub->st_size, ub->st_blksize); 1605 ub->st_atim = pipe->pipe_atime; 1606 ub->st_mtim = pipe->pipe_mtime; 1607 ub->st_ctim = pipe->pipe_ctime; 1608 ub->st_uid = fp->f_cred->cr_uid; 1609 ub->st_gid = fp->f_cred->cr_gid; 1610 ub->st_dev = pipedev_ino; 1611 ub->st_ino = pipe->pipe_ino; 1612 /* 1613 * Left as 0: st_nlink, st_rdev, st_flags, st_gen. 1614 */ 1615 return (0); 1616 } 1617 1618 /* ARGSUSED */ 1619 static int 1620 pipe_close(struct file *fp, struct thread *td) 1621 { 1622 1623 if (fp->f_vnode != NULL) 1624 return vnops.fo_close(fp, td); 1625 fp->f_ops = &badfileops; 1626 pipe_dtor(fp->f_data); 1627 fp->f_data = NULL; 1628 return (0); 1629 } 1630 1631 static int 1632 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td) 1633 { 1634 struct pipe *cpipe; 1635 int error; 1636 1637 cpipe = fp->f_data; 1638 if (cpipe->pipe_type & PIPE_TYPE_NAMED) 1639 error = vn_chmod(fp, mode, active_cred, td); 1640 else 1641 error = invfo_chmod(fp, mode, active_cred, td); 1642 return (error); 1643 } 1644 1645 static int 1646 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 1647 struct thread *td) 1648 { 1649 struct pipe *cpipe; 1650 int error; 1651 1652 cpipe = fp->f_data; 1653 if (cpipe->pipe_type & PIPE_TYPE_NAMED) 1654 error = vn_chown(fp, uid, gid, active_cred, td); 1655 else 1656 error = invfo_chown(fp, uid, gid, active_cred, td); 1657 return (error); 1658 } 1659 1660 static int 1661 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) 1662 { 1663 struct pipe *pi; 1664 1665 if (fp->f_type == DTYPE_FIFO) 1666 return (vn_fill_kinfo(fp, kif, fdp)); 1667 kif->kf_type = KF_TYPE_PIPE; 1668 pi = fp->f_data; 1669 kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi; 1670 kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer; 1671 kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt; 1672 kif->kf_un.kf_pipe.kf_pipe_buffer_in = pi->pipe_buffer.in; 1673 kif->kf_un.kf_pipe.kf_pipe_buffer_out = pi->pipe_buffer.out; 1674 kif->kf_un.kf_pipe.kf_pipe_buffer_size = pi->pipe_buffer.size; 1675 return (0); 1676 } 1677 1678 static void 1679 pipe_free_kmem(struct pipe *cpipe) 1680 { 1681 1682 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1683 ("pipe_free_kmem: pipe mutex locked")); 1684 1685 if (cpipe->pipe_buffer.buffer != NULL) { 1686 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size); 1687 chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo, 1688 -cpipe->pipe_buffer.size, 0); 1689 vm_map_remove(pipe_map, 1690 (vm_offset_t)cpipe->pipe_buffer.buffer, 1691 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1692 cpipe->pipe_buffer.buffer = NULL; 1693 } 1694 #ifndef PIPE_NODIRECT 1695 { 1696 cpipe->pipe_pages.cnt = 0; 1697 cpipe->pipe_pages.pos = 0; 1698 cpipe->pipe_pages.npages = 0; 1699 } 1700 #endif 1701 } 1702 1703 /* 1704 * shutdown the pipe 1705 */ 1706 static void 1707 pipeclose(struct pipe *cpipe) 1708 { 1709 #ifdef MAC 1710 struct pipepair *pp; 1711 #endif 1712 struct pipe *ppipe; 1713 1714 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1715 1716 PIPE_LOCK(cpipe); 1717 pipelock(cpipe, false); 1718 #ifdef MAC 1719 pp = cpipe->pipe_pair; 1720 #endif 1721 1722 /* 1723 * If the other side is blocked, wake it up saying that 1724 * we want to close it down. 1725 */ 1726 cpipe->pipe_state |= PIPE_EOF; 1727 while (cpipe->pipe_busy) { 1728 wakeup(cpipe); 1729 cpipe->pipe_state |= PIPE_WANT; 1730 pipeunlock(cpipe); 1731 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1732 pipelock(cpipe, false); 1733 } 1734 1735 pipeselwakeup(cpipe); 1736 1737 /* 1738 * Disconnect from peer, if any. 1739 */ 1740 ppipe = cpipe->pipe_peer; 1741 if (ppipe->pipe_present == PIPE_ACTIVE) { 1742 ppipe->pipe_state |= PIPE_EOF; 1743 wakeup(ppipe); 1744 pipeselwakeup(ppipe); 1745 } 1746 1747 /* 1748 * Mark this endpoint as free. Release kmem resources. We 1749 * don't mark this endpoint as unused until we've finished 1750 * doing that, or the pipe might disappear out from under 1751 * us. 1752 */ 1753 PIPE_UNLOCK(cpipe); 1754 pipe_free_kmem(cpipe); 1755 PIPE_LOCK(cpipe); 1756 cpipe->pipe_present = PIPE_CLOSING; 1757 pipeunlock(cpipe); 1758 1759 /* 1760 * knlist_clear() may sleep dropping the PIPE_MTX. Set the 1761 * PIPE_FINALIZED, that allows other end to free the 1762 * pipe_pair, only after the knotes are completely dismantled. 1763 */ 1764 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1765 cpipe->pipe_present = PIPE_FINALIZED; 1766 seldrain(&cpipe->pipe_sel); 1767 knlist_destroy(&cpipe->pipe_sel.si_note); 1768 1769 /* 1770 * If both endpoints are now closed, release the memory for the 1771 * pipe pair. If not, unlock. 1772 */ 1773 if (ppipe->pipe_present == PIPE_FINALIZED) { 1774 PIPE_UNLOCK(cpipe); 1775 crfree(cpipe->pipe_pair->pp_owner); 1776 #ifdef MAC 1777 mac_pipe_destroy(pp); 1778 #endif 1779 uma_zfree(pipe_zone, cpipe->pipe_pair); 1780 } else 1781 PIPE_UNLOCK(cpipe); 1782 } 1783 1784 /*ARGSUSED*/ 1785 static int 1786 pipe_kqfilter(struct file *fp, struct knote *kn) 1787 { 1788 struct pipe *cpipe; 1789 1790 /* 1791 * If a filter is requested that is not supported by this file 1792 * descriptor, don't return an error, but also don't ever generate an 1793 * event. 1794 */ 1795 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) { 1796 kn->kn_fop = &pipe_nfiltops; 1797 return (0); 1798 } 1799 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) { 1800 kn->kn_fop = &pipe_nfiltops; 1801 return (0); 1802 } 1803 cpipe = fp->f_data; 1804 PIPE_LOCK(cpipe); 1805 switch (kn->kn_filter) { 1806 case EVFILT_READ: 1807 kn->kn_fop = &pipe_rfiltops; 1808 break; 1809 case EVFILT_WRITE: 1810 kn->kn_fop = &pipe_wfiltops; 1811 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) { 1812 /* other end of pipe has been closed */ 1813 PIPE_UNLOCK(cpipe); 1814 return (EPIPE); 1815 } 1816 cpipe = PIPE_PEER(cpipe); 1817 break; 1818 default: 1819 if ((cpipe->pipe_type & PIPE_TYPE_NAMED) != 0) { 1820 PIPE_UNLOCK(cpipe); 1821 return (vnops.fo_kqfilter(fp, kn)); 1822 } 1823 PIPE_UNLOCK(cpipe); 1824 return (EINVAL); 1825 } 1826 1827 kn->kn_hook = cpipe; 1828 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1829 PIPE_UNLOCK(cpipe); 1830 return (0); 1831 } 1832 1833 static void 1834 filt_pipedetach(struct knote *kn) 1835 { 1836 struct pipe *cpipe = kn->kn_hook; 1837 1838 PIPE_LOCK(cpipe); 1839 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1840 PIPE_UNLOCK(cpipe); 1841 } 1842 1843 /*ARGSUSED*/ 1844 static int 1845 filt_piperead(struct knote *kn, long hint) 1846 { 1847 struct file *fp = kn->kn_fp; 1848 struct pipe *rpipe = kn->kn_hook; 1849 1850 PIPE_LOCK_ASSERT(rpipe, MA_OWNED); 1851 kn->kn_data = rpipe->pipe_buffer.cnt; 1852 if (kn->kn_data == 0) 1853 kn->kn_data = rpipe->pipe_pages.cnt; 1854 1855 if ((rpipe->pipe_state & PIPE_EOF) != 0 && 1856 ((rpipe->pipe_type & PIPE_TYPE_NAMED) == 0 || 1857 fp->f_pipegen != rpipe->pipe_wgen)) { 1858 kn->kn_flags |= EV_EOF; 1859 return (1); 1860 } 1861 kn->kn_flags &= ~EV_EOF; 1862 return (kn->kn_data > 0); 1863 } 1864 1865 /*ARGSUSED*/ 1866 static int 1867 filt_pipewrite(struct knote *kn, long hint) 1868 { 1869 struct pipe *wpipe = kn->kn_hook; 1870 1871 /* 1872 * If this end of the pipe is closed, the knote was removed from the 1873 * knlist and the list lock (i.e., the pipe lock) is therefore not held. 1874 */ 1875 if (wpipe->pipe_present == PIPE_ACTIVE || 1876 (wpipe->pipe_type & PIPE_TYPE_NAMED) != 0) { 1877 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 1878 1879 if (wpipe->pipe_state & PIPE_DIRECTW) { 1880 kn->kn_data = 0; 1881 } else if (wpipe->pipe_buffer.size > 0) { 1882 kn->kn_data = wpipe->pipe_buffer.size - 1883 wpipe->pipe_buffer.cnt; 1884 } else { 1885 kn->kn_data = PIPE_BUF; 1886 } 1887 } 1888 1889 if (wpipe->pipe_present != PIPE_ACTIVE || 1890 (wpipe->pipe_state & PIPE_EOF)) { 1891 kn->kn_flags |= EV_EOF; 1892 return (1); 1893 } 1894 kn->kn_flags &= ~EV_EOF; 1895 return (kn->kn_data >= PIPE_BUF); 1896 } 1897 1898 static void 1899 filt_pipedetach_notsup(struct knote *kn) 1900 { 1901 1902 } 1903 1904 static int 1905 filt_pipenotsup(struct knote *kn, long hint) 1906 { 1907 1908 return (0); 1909 } 1910 1911 static int 1912 filt_pipedump(struct proc *p, struct knote *kn, 1913 struct kinfo_knote *kin) 1914 { 1915 struct pipe *pipe = kn->kn_hook; 1916 1917 kin->knt_extdata = KNOTE_EXTDATA_PIPE; 1918 kin->knt_pipe.knt_pipe_ino = pipe->pipe_ino; 1919 return (0); 1920 } 1921