1 /*- 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 */ 19 20 /* 21 * This file contains a high-performance replacement for the socket-based 22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 23 * all features of sockets, but does do everything that pipes normally 24 * do. 25 */ 26 27 /* 28 * This code has two modes of operation, a small write mode and a large 29 * write mode. The small write mode acts like conventional pipes with 30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 32 * and PIPE_SIZE in size, the sending process pins the underlying pages in 33 * memory, and the receiving process copies directly from these pinned pages 34 * in the sending process. 35 * 36 * If the sending process receives a signal, it is possible that it will 37 * go away, and certainly its address space can change, because control 38 * is returned back to the user-mode side. In that case, the pipe code 39 * arranges to copy the buffer supplied by the user process, to a pageable 40 * kernel buffer, and the receiving process will grab the data from the 41 * pageable kernel buffer. Since signals don't happen all that often, 42 * the copy operation is normally eliminated. 43 * 44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 45 * happen for small transfers so that the system will not spend all of 46 * its time context switching. 47 * 48 * In order to limit the resource use of pipes, two sysctls exist: 49 * 50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 51 * address space available to us in pipe_map. This value is normally 52 * autotuned, but may also be loader tuned. 53 * 54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 55 * memory in use by pipes. 56 * 57 * Based on how large pipekva is relative to maxpipekva, the following 58 * will happen: 59 * 60 * 0% - 50%: 61 * New pipes are given 16K of memory backing, pipes may dynamically 62 * grow to as large as 64K where needed. 63 * 50% - 75%: 64 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 65 * existing pipes may NOT grow. 66 * 75% - 100%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes will be shrunk down to 4K whenever possible. 69 * 70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 72 * resize which MUST occur for reverse-direction pipes when they are 73 * first used. 74 * 75 * Additional information about the current state of pipes may be obtained 76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 77 * and kern.ipc.piperesizefail. 78 * 79 * Locking rules: There are two locks present here: A mutex, used via 80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 81 * the flag, as mutexes can not persist over uiomove. The mutex 82 * exists only to guard access to the flag, and is not in itself a 83 * locking mechanism. Also note that there is only a single mutex for 84 * both directions of a pipe. 85 * 86 * As pipelock() may have to sleep before it can acquire the flag, it 87 * is important to reread all data after a call to pipelock(); everything 88 * in the structure may have changed. 89 */ 90 91 #include <sys/cdefs.h> 92 __FBSDID("$FreeBSD$"); 93 94 #include <sys/param.h> 95 #include <sys/systm.h> 96 #include <sys/fcntl.h> 97 #include <sys/file.h> 98 #include <sys/filedesc.h> 99 #include <sys/filio.h> 100 #include <sys/kernel.h> 101 #include <sys/lock.h> 102 #include <sys/mutex.h> 103 #include <sys/ttycom.h> 104 #include <sys/stat.h> 105 #include <sys/malloc.h> 106 #include <sys/poll.h> 107 #include <sys/selinfo.h> 108 #include <sys/signalvar.h> 109 #include <sys/syscallsubr.h> 110 #include <sys/sysctl.h> 111 #include <sys/sysproto.h> 112 #include <sys/pipe.h> 113 #include <sys/proc.h> 114 #include <sys/vnode.h> 115 #include <sys/uio.h> 116 #include <sys/event.h> 117 118 #include <security/mac/mac_framework.h> 119 120 #include <vm/vm.h> 121 #include <vm/vm_param.h> 122 #include <vm/vm_object.h> 123 #include <vm/vm_kern.h> 124 #include <vm/vm_extern.h> 125 #include <vm/pmap.h> 126 #include <vm/vm_map.h> 127 #include <vm/vm_page.h> 128 #include <vm/uma.h> 129 130 /* 131 * Use this define if you want to disable *fancy* VM things. Expect an 132 * approx 30% decrease in transfer rate. This could be useful for 133 * NetBSD or OpenBSD. 134 */ 135 /* #define PIPE_NODIRECT */ 136 137 /* 138 * interfaces to the outside world 139 */ 140 static fo_rdwr_t pipe_read; 141 static fo_rdwr_t pipe_write; 142 static fo_truncate_t pipe_truncate; 143 static fo_ioctl_t pipe_ioctl; 144 static fo_poll_t pipe_poll; 145 static fo_kqfilter_t pipe_kqfilter; 146 static fo_stat_t pipe_stat; 147 static fo_close_t pipe_close; 148 149 static struct fileops pipeops = { 150 .fo_read = pipe_read, 151 .fo_write = pipe_write, 152 .fo_truncate = pipe_truncate, 153 .fo_ioctl = pipe_ioctl, 154 .fo_poll = pipe_poll, 155 .fo_kqfilter = pipe_kqfilter, 156 .fo_stat = pipe_stat, 157 .fo_close = pipe_close, 158 .fo_flags = DFLAG_PASSABLE 159 }; 160 161 static void filt_pipedetach(struct knote *kn); 162 static int filt_piperead(struct knote *kn, long hint); 163 static int filt_pipewrite(struct knote *kn, long hint); 164 165 static struct filterops pipe_rfiltops = { 166 .f_isfd = 1, 167 .f_detach = filt_pipedetach, 168 .f_event = filt_piperead 169 }; 170 static struct filterops pipe_wfiltops = { 171 .f_isfd = 1, 172 .f_detach = filt_pipedetach, 173 .f_event = filt_pipewrite 174 }; 175 176 /* 177 * Default pipe buffer size(s), this can be kind-of large now because pipe 178 * space is pageable. The pipe code will try to maintain locality of 179 * reference for performance reasons, so small amounts of outstanding I/O 180 * will not wipe the cache. 181 */ 182 #define MINPIPESIZE (PIPE_SIZE/3) 183 #define MAXPIPESIZE (2*PIPE_SIZE/3) 184 185 static long amountpipekva; 186 static int pipefragretry; 187 static int pipeallocfail; 188 static int piperesizefail; 189 static int piperesizeallowed = 1; 190 191 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, 192 &maxpipekva, 0, "Pipe KVA limit"); 193 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 194 &amountpipekva, 0, "Pipe KVA usage"); 195 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 196 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 197 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 198 &pipeallocfail, 0, "Pipe allocation failures"); 199 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 200 &piperesizefail, 0, "Pipe resize failures"); 201 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 202 &piperesizeallowed, 0, "Pipe resizing allowed"); 203 204 static void pipeinit(void *dummy __unused); 205 static void pipeclose(struct pipe *cpipe); 206 static void pipe_free_kmem(struct pipe *cpipe); 207 static int pipe_create(struct pipe *pipe, int backing); 208 static __inline int pipelock(struct pipe *cpipe, int catch); 209 static __inline void pipeunlock(struct pipe *cpipe); 210 static __inline void pipeselwakeup(struct pipe *cpipe); 211 #ifndef PIPE_NODIRECT 212 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 213 static void pipe_destroy_write_buffer(struct pipe *wpipe); 214 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 215 static void pipe_clone_write_buffer(struct pipe *wpipe); 216 #endif 217 static int pipespace(struct pipe *cpipe, int size); 218 static int pipespace_new(struct pipe *cpipe, int size); 219 220 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 221 static int pipe_zone_init(void *mem, int size, int flags); 222 static void pipe_zone_fini(void *mem, int size); 223 224 static uma_zone_t pipe_zone; 225 226 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 227 228 static void 229 pipeinit(void *dummy __unused) 230 { 231 232 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair), 233 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini, 234 UMA_ALIGN_PTR, 0); 235 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 236 } 237 238 static int 239 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 240 { 241 struct pipepair *pp; 242 struct pipe *rpipe, *wpipe; 243 244 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 245 246 pp = (struct pipepair *)mem; 247 248 /* 249 * We zero both pipe endpoints to make sure all the kmem pointers 250 * are NULL, flag fields are zero'd, etc. We timestamp both 251 * endpoints with the same time. 252 */ 253 rpipe = &pp->pp_rpipe; 254 bzero(rpipe, sizeof(*rpipe)); 255 vfs_timestamp(&rpipe->pipe_ctime); 256 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 257 258 wpipe = &pp->pp_wpipe; 259 bzero(wpipe, sizeof(*wpipe)); 260 wpipe->pipe_ctime = rpipe->pipe_ctime; 261 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 262 263 rpipe->pipe_peer = wpipe; 264 rpipe->pipe_pair = pp; 265 wpipe->pipe_peer = rpipe; 266 wpipe->pipe_pair = pp; 267 268 /* 269 * Mark both endpoints as present; they will later get free'd 270 * one at a time. When both are free'd, then the whole pair 271 * is released. 272 */ 273 rpipe->pipe_present = PIPE_ACTIVE; 274 wpipe->pipe_present = PIPE_ACTIVE; 275 276 /* 277 * Eventually, the MAC Framework may initialize the label 278 * in ctor or init, but for now we do it elswhere to avoid 279 * blocking in ctor or init. 280 */ 281 pp->pp_label = NULL; 282 283 return (0); 284 } 285 286 static int 287 pipe_zone_init(void *mem, int size, int flags) 288 { 289 struct pipepair *pp; 290 291 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 292 293 pp = (struct pipepair *)mem; 294 295 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 296 return (0); 297 } 298 299 static void 300 pipe_zone_fini(void *mem, int size) 301 { 302 struct pipepair *pp; 303 304 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 305 306 pp = (struct pipepair *)mem; 307 308 mtx_destroy(&pp->pp_mtx); 309 } 310 311 /* 312 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let 313 * the zone pick up the pieces via pipeclose(). 314 */ 315 int 316 kern_pipe(struct thread *td, int fildes[2]) 317 { 318 struct filedesc *fdp = td->td_proc->p_fd; 319 struct file *rf, *wf; 320 struct pipepair *pp; 321 struct pipe *rpipe, *wpipe; 322 int fd, error; 323 324 pp = uma_zalloc(pipe_zone, M_WAITOK); 325 #ifdef MAC 326 /* 327 * The MAC label is shared between the connected endpoints. As a 328 * result mac_pipe_init() and mac_pipe_create() are called once 329 * for the pair, and not on the endpoints. 330 */ 331 mac_pipe_init(pp); 332 mac_pipe_create(td->td_ucred, pp); 333 #endif 334 rpipe = &pp->pp_rpipe; 335 wpipe = &pp->pp_wpipe; 336 337 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe)); 338 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe)); 339 340 /* Only the forward direction pipe is backed by default */ 341 if ((error = pipe_create(rpipe, 1)) != 0 || 342 (error = pipe_create(wpipe, 0)) != 0) { 343 pipeclose(rpipe); 344 pipeclose(wpipe); 345 return (error); 346 } 347 348 rpipe->pipe_state |= PIPE_DIRECTOK; 349 wpipe->pipe_state |= PIPE_DIRECTOK; 350 351 error = falloc(td, &rf, &fd, 0); 352 if (error) { 353 pipeclose(rpipe); 354 pipeclose(wpipe); 355 return (error); 356 } 357 /* An extra reference on `rf' has been held for us by falloc(). */ 358 fildes[0] = fd; 359 360 /* 361 * Warning: once we've gotten past allocation of the fd for the 362 * read-side, we can only drop the read side via fdrop() in order 363 * to avoid races against processes which manage to dup() the read 364 * side while we are blocked trying to allocate the write side. 365 */ 366 finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops); 367 error = falloc(td, &wf, &fd, 0); 368 if (error) { 369 fdclose(fdp, rf, fildes[0], td); 370 fdrop(rf, td); 371 /* rpipe has been closed by fdrop(). */ 372 pipeclose(wpipe); 373 return (error); 374 } 375 /* An extra reference on `wf' has been held for us by falloc(). */ 376 finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops); 377 fdrop(wf, td); 378 fildes[1] = fd; 379 fdrop(rf, td); 380 381 return (0); 382 } 383 384 /* ARGSUSED */ 385 int 386 pipe(struct thread *td, struct pipe_args *uap) 387 { 388 int error; 389 int fildes[2]; 390 391 error = kern_pipe(td, fildes); 392 if (error) 393 return (error); 394 395 td->td_retval[0] = fildes[0]; 396 td->td_retval[1] = fildes[1]; 397 398 return (0); 399 } 400 401 /* 402 * Allocate kva for pipe circular buffer, the space is pageable 403 * This routine will 'realloc' the size of a pipe safely, if it fails 404 * it will retain the old buffer. 405 * If it fails it will return ENOMEM. 406 */ 407 static int 408 pipespace_new(cpipe, size) 409 struct pipe *cpipe; 410 int size; 411 { 412 caddr_t buffer; 413 int error, cnt, firstseg; 414 static int curfail = 0; 415 static struct timeval lastfail; 416 417 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 418 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 419 ("pipespace: resize of direct writes not allowed")); 420 retry: 421 cnt = cpipe->pipe_buffer.cnt; 422 if (cnt > size) 423 size = cnt; 424 425 size = round_page(size); 426 buffer = (caddr_t) vm_map_min(pipe_map); 427 428 error = vm_map_find(pipe_map, NULL, 0, 429 (vm_offset_t *) &buffer, size, 1, 430 VM_PROT_ALL, VM_PROT_ALL, 0); 431 if (error != KERN_SUCCESS) { 432 if ((cpipe->pipe_buffer.buffer == NULL) && 433 (size > SMALL_PIPE_SIZE)) { 434 size = SMALL_PIPE_SIZE; 435 pipefragretry++; 436 goto retry; 437 } 438 if (cpipe->pipe_buffer.buffer == NULL) { 439 pipeallocfail++; 440 if (ppsratecheck(&lastfail, &curfail, 1)) 441 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 442 } else { 443 piperesizefail++; 444 } 445 return (ENOMEM); 446 } 447 448 /* copy data, then free old resources if we're resizing */ 449 if (cnt > 0) { 450 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 451 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 452 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 453 buffer, firstseg); 454 if ((cnt - firstseg) > 0) 455 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 456 cpipe->pipe_buffer.in); 457 } else { 458 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 459 buffer, cnt); 460 } 461 } 462 pipe_free_kmem(cpipe); 463 cpipe->pipe_buffer.buffer = buffer; 464 cpipe->pipe_buffer.size = size; 465 cpipe->pipe_buffer.in = cnt; 466 cpipe->pipe_buffer.out = 0; 467 cpipe->pipe_buffer.cnt = cnt; 468 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size); 469 return (0); 470 } 471 472 /* 473 * Wrapper for pipespace_new() that performs locking assertions. 474 */ 475 static int 476 pipespace(cpipe, size) 477 struct pipe *cpipe; 478 int size; 479 { 480 481 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 482 ("Unlocked pipe passed to pipespace")); 483 return (pipespace_new(cpipe, size)); 484 } 485 486 /* 487 * lock a pipe for I/O, blocking other access 488 */ 489 static __inline int 490 pipelock(cpipe, catch) 491 struct pipe *cpipe; 492 int catch; 493 { 494 int error; 495 496 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 497 while (cpipe->pipe_state & PIPE_LOCKFL) { 498 cpipe->pipe_state |= PIPE_LWANT; 499 error = msleep(cpipe, PIPE_MTX(cpipe), 500 catch ? (PRIBIO | PCATCH) : PRIBIO, 501 "pipelk", 0); 502 if (error != 0) 503 return (error); 504 } 505 cpipe->pipe_state |= PIPE_LOCKFL; 506 return (0); 507 } 508 509 /* 510 * unlock a pipe I/O lock 511 */ 512 static __inline void 513 pipeunlock(cpipe) 514 struct pipe *cpipe; 515 { 516 517 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 518 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 519 ("Unlocked pipe passed to pipeunlock")); 520 cpipe->pipe_state &= ~PIPE_LOCKFL; 521 if (cpipe->pipe_state & PIPE_LWANT) { 522 cpipe->pipe_state &= ~PIPE_LWANT; 523 wakeup(cpipe); 524 } 525 } 526 527 static __inline void 528 pipeselwakeup(cpipe) 529 struct pipe *cpipe; 530 { 531 532 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 533 if (cpipe->pipe_state & PIPE_SEL) { 534 selwakeuppri(&cpipe->pipe_sel, PSOCK); 535 if (!SEL_WAITING(&cpipe->pipe_sel)) 536 cpipe->pipe_state &= ~PIPE_SEL; 537 } 538 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 539 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 540 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 541 } 542 543 /* 544 * Initialize and allocate VM and memory for pipe. The structure 545 * will start out zero'd from the ctor, so we just manage the kmem. 546 */ 547 static int 548 pipe_create(pipe, backing) 549 struct pipe *pipe; 550 int backing; 551 { 552 int error; 553 554 if (backing) { 555 if (amountpipekva > maxpipekva / 2) 556 error = pipespace_new(pipe, SMALL_PIPE_SIZE); 557 else 558 error = pipespace_new(pipe, PIPE_SIZE); 559 } else { 560 /* If we're not backing this pipe, no need to do anything. */ 561 error = 0; 562 } 563 return (error); 564 } 565 566 /* ARGSUSED */ 567 static int 568 pipe_read(fp, uio, active_cred, flags, td) 569 struct file *fp; 570 struct uio *uio; 571 struct ucred *active_cred; 572 struct thread *td; 573 int flags; 574 { 575 struct pipe *rpipe = fp->f_data; 576 int error; 577 int nread = 0; 578 u_int size; 579 580 PIPE_LOCK(rpipe); 581 ++rpipe->pipe_busy; 582 error = pipelock(rpipe, 1); 583 if (error) 584 goto unlocked_error; 585 586 #ifdef MAC 587 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair); 588 if (error) 589 goto locked_error; 590 #endif 591 if (amountpipekva > (3 * maxpipekva) / 4) { 592 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 593 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 594 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 595 (piperesizeallowed == 1)) { 596 PIPE_UNLOCK(rpipe); 597 pipespace(rpipe, SMALL_PIPE_SIZE); 598 PIPE_LOCK(rpipe); 599 } 600 } 601 602 while (uio->uio_resid) { 603 /* 604 * normal pipe buffer receive 605 */ 606 if (rpipe->pipe_buffer.cnt > 0) { 607 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 608 if (size > rpipe->pipe_buffer.cnt) 609 size = rpipe->pipe_buffer.cnt; 610 if (size > (u_int) uio->uio_resid) 611 size = (u_int) uio->uio_resid; 612 613 PIPE_UNLOCK(rpipe); 614 error = uiomove( 615 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 616 size, uio); 617 PIPE_LOCK(rpipe); 618 if (error) 619 break; 620 621 rpipe->pipe_buffer.out += size; 622 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 623 rpipe->pipe_buffer.out = 0; 624 625 rpipe->pipe_buffer.cnt -= size; 626 627 /* 628 * If there is no more to read in the pipe, reset 629 * its pointers to the beginning. This improves 630 * cache hit stats. 631 */ 632 if (rpipe->pipe_buffer.cnt == 0) { 633 rpipe->pipe_buffer.in = 0; 634 rpipe->pipe_buffer.out = 0; 635 } 636 nread += size; 637 #ifndef PIPE_NODIRECT 638 /* 639 * Direct copy, bypassing a kernel buffer. 640 */ 641 } else if ((size = rpipe->pipe_map.cnt) && 642 (rpipe->pipe_state & PIPE_DIRECTW)) { 643 if (size > (u_int) uio->uio_resid) 644 size = (u_int) uio->uio_resid; 645 646 PIPE_UNLOCK(rpipe); 647 error = uiomove_fromphys(rpipe->pipe_map.ms, 648 rpipe->pipe_map.pos, size, uio); 649 PIPE_LOCK(rpipe); 650 if (error) 651 break; 652 nread += size; 653 rpipe->pipe_map.pos += size; 654 rpipe->pipe_map.cnt -= size; 655 if (rpipe->pipe_map.cnt == 0) { 656 rpipe->pipe_state &= ~PIPE_DIRECTW; 657 wakeup(rpipe); 658 } 659 #endif 660 } else { 661 /* 662 * detect EOF condition 663 * read returns 0 on EOF, no need to set error 664 */ 665 if (rpipe->pipe_state & PIPE_EOF) 666 break; 667 668 /* 669 * If the "write-side" has been blocked, wake it up now. 670 */ 671 if (rpipe->pipe_state & PIPE_WANTW) { 672 rpipe->pipe_state &= ~PIPE_WANTW; 673 wakeup(rpipe); 674 } 675 676 /* 677 * Break if some data was read. 678 */ 679 if (nread > 0) 680 break; 681 682 /* 683 * Unlock the pipe buffer for our remaining processing. 684 * We will either break out with an error or we will 685 * sleep and relock to loop. 686 */ 687 pipeunlock(rpipe); 688 689 /* 690 * Handle non-blocking mode operation or 691 * wait for more data. 692 */ 693 if (fp->f_flag & FNONBLOCK) { 694 error = EAGAIN; 695 } else { 696 rpipe->pipe_state |= PIPE_WANTR; 697 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 698 PRIBIO | PCATCH, 699 "piperd", 0)) == 0) 700 error = pipelock(rpipe, 1); 701 } 702 if (error) 703 goto unlocked_error; 704 } 705 } 706 #ifdef MAC 707 locked_error: 708 #endif 709 pipeunlock(rpipe); 710 711 /* XXX: should probably do this before getting any locks. */ 712 if (error == 0) 713 vfs_timestamp(&rpipe->pipe_atime); 714 unlocked_error: 715 --rpipe->pipe_busy; 716 717 /* 718 * PIPE_WANT processing only makes sense if pipe_busy is 0. 719 */ 720 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 721 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 722 wakeup(rpipe); 723 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 724 /* 725 * Handle write blocking hysteresis. 726 */ 727 if (rpipe->pipe_state & PIPE_WANTW) { 728 rpipe->pipe_state &= ~PIPE_WANTW; 729 wakeup(rpipe); 730 } 731 } 732 733 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 734 pipeselwakeup(rpipe); 735 736 PIPE_UNLOCK(rpipe); 737 return (error); 738 } 739 740 #ifndef PIPE_NODIRECT 741 /* 742 * Map the sending processes' buffer into kernel space and wire it. 743 * This is similar to a physical write operation. 744 */ 745 static int 746 pipe_build_write_buffer(wpipe, uio) 747 struct pipe *wpipe; 748 struct uio *uio; 749 { 750 u_int size; 751 int i; 752 753 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 754 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 755 ("Clone attempt on non-direct write pipe!")); 756 757 size = (u_int) uio->uio_iov->iov_len; 758 if (size > wpipe->pipe_buffer.size) 759 size = wpipe->pipe_buffer.size; 760 761 if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 762 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ, 763 wpipe->pipe_map.ms, PIPENPAGES)) < 0) 764 return (EFAULT); 765 766 /* 767 * set up the control block 768 */ 769 wpipe->pipe_map.npages = i; 770 wpipe->pipe_map.pos = 771 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 772 wpipe->pipe_map.cnt = size; 773 774 /* 775 * and update the uio data 776 */ 777 778 uio->uio_iov->iov_len -= size; 779 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 780 if (uio->uio_iov->iov_len == 0) 781 uio->uio_iov++; 782 uio->uio_resid -= size; 783 uio->uio_offset += size; 784 return (0); 785 } 786 787 /* 788 * unmap and unwire the process buffer 789 */ 790 static void 791 pipe_destroy_write_buffer(wpipe) 792 struct pipe *wpipe; 793 { 794 795 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 796 vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages); 797 wpipe->pipe_map.npages = 0; 798 } 799 800 /* 801 * In the case of a signal, the writing process might go away. This 802 * code copies the data into the circular buffer so that the source 803 * pages can be freed without loss of data. 804 */ 805 static void 806 pipe_clone_write_buffer(wpipe) 807 struct pipe *wpipe; 808 { 809 struct uio uio; 810 struct iovec iov; 811 int size; 812 int pos; 813 814 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 815 size = wpipe->pipe_map.cnt; 816 pos = wpipe->pipe_map.pos; 817 818 wpipe->pipe_buffer.in = size; 819 wpipe->pipe_buffer.out = 0; 820 wpipe->pipe_buffer.cnt = size; 821 wpipe->pipe_state &= ~PIPE_DIRECTW; 822 823 PIPE_UNLOCK(wpipe); 824 iov.iov_base = wpipe->pipe_buffer.buffer; 825 iov.iov_len = size; 826 uio.uio_iov = &iov; 827 uio.uio_iovcnt = 1; 828 uio.uio_offset = 0; 829 uio.uio_resid = size; 830 uio.uio_segflg = UIO_SYSSPACE; 831 uio.uio_rw = UIO_READ; 832 uio.uio_td = curthread; 833 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 834 PIPE_LOCK(wpipe); 835 pipe_destroy_write_buffer(wpipe); 836 } 837 838 /* 839 * This implements the pipe buffer write mechanism. Note that only 840 * a direct write OR a normal pipe write can be pending at any given time. 841 * If there are any characters in the pipe buffer, the direct write will 842 * be deferred until the receiving process grabs all of the bytes from 843 * the pipe buffer. Then the direct mapping write is set-up. 844 */ 845 static int 846 pipe_direct_write(wpipe, uio) 847 struct pipe *wpipe; 848 struct uio *uio; 849 { 850 int error; 851 852 retry: 853 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 854 error = pipelock(wpipe, 1); 855 if (wpipe->pipe_state & PIPE_EOF) 856 error = EPIPE; 857 if (error) { 858 pipeunlock(wpipe); 859 goto error1; 860 } 861 while (wpipe->pipe_state & PIPE_DIRECTW) { 862 if (wpipe->pipe_state & PIPE_WANTR) { 863 wpipe->pipe_state &= ~PIPE_WANTR; 864 wakeup(wpipe); 865 } 866 pipeselwakeup(wpipe); 867 wpipe->pipe_state |= PIPE_WANTW; 868 pipeunlock(wpipe); 869 error = msleep(wpipe, PIPE_MTX(wpipe), 870 PRIBIO | PCATCH, "pipdww", 0); 871 if (error) 872 goto error1; 873 else 874 goto retry; 875 } 876 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 877 if (wpipe->pipe_buffer.cnt > 0) { 878 if (wpipe->pipe_state & PIPE_WANTR) { 879 wpipe->pipe_state &= ~PIPE_WANTR; 880 wakeup(wpipe); 881 } 882 pipeselwakeup(wpipe); 883 wpipe->pipe_state |= PIPE_WANTW; 884 pipeunlock(wpipe); 885 error = msleep(wpipe, PIPE_MTX(wpipe), 886 PRIBIO | PCATCH, "pipdwc", 0); 887 if (error) 888 goto error1; 889 else 890 goto retry; 891 } 892 893 wpipe->pipe_state |= PIPE_DIRECTW; 894 895 PIPE_UNLOCK(wpipe); 896 error = pipe_build_write_buffer(wpipe, uio); 897 PIPE_LOCK(wpipe); 898 if (error) { 899 wpipe->pipe_state &= ~PIPE_DIRECTW; 900 pipeunlock(wpipe); 901 goto error1; 902 } 903 904 error = 0; 905 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 906 if (wpipe->pipe_state & PIPE_EOF) { 907 pipe_destroy_write_buffer(wpipe); 908 pipeselwakeup(wpipe); 909 pipeunlock(wpipe); 910 error = EPIPE; 911 goto error1; 912 } 913 if (wpipe->pipe_state & PIPE_WANTR) { 914 wpipe->pipe_state &= ~PIPE_WANTR; 915 wakeup(wpipe); 916 } 917 pipeselwakeup(wpipe); 918 pipeunlock(wpipe); 919 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 920 "pipdwt", 0); 921 pipelock(wpipe, 0); 922 } 923 924 if (wpipe->pipe_state & PIPE_EOF) 925 error = EPIPE; 926 if (wpipe->pipe_state & PIPE_DIRECTW) { 927 /* 928 * this bit of trickery substitutes a kernel buffer for 929 * the process that might be going away. 930 */ 931 pipe_clone_write_buffer(wpipe); 932 } else { 933 pipe_destroy_write_buffer(wpipe); 934 } 935 pipeunlock(wpipe); 936 return (error); 937 938 error1: 939 wakeup(wpipe); 940 return (error); 941 } 942 #endif 943 944 static int 945 pipe_write(fp, uio, active_cred, flags, td) 946 struct file *fp; 947 struct uio *uio; 948 struct ucred *active_cred; 949 struct thread *td; 950 int flags; 951 { 952 int error = 0; 953 int desiredsize, orig_resid; 954 struct pipe *wpipe, *rpipe; 955 956 rpipe = fp->f_data; 957 wpipe = rpipe->pipe_peer; 958 959 PIPE_LOCK(rpipe); 960 error = pipelock(wpipe, 1); 961 if (error) { 962 PIPE_UNLOCK(rpipe); 963 return (error); 964 } 965 /* 966 * detect loss of pipe read side, issue SIGPIPE if lost. 967 */ 968 if (wpipe->pipe_present != PIPE_ACTIVE || 969 (wpipe->pipe_state & PIPE_EOF)) { 970 pipeunlock(wpipe); 971 PIPE_UNLOCK(rpipe); 972 return (EPIPE); 973 } 974 #ifdef MAC 975 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair); 976 if (error) { 977 pipeunlock(wpipe); 978 PIPE_UNLOCK(rpipe); 979 return (error); 980 } 981 #endif 982 ++wpipe->pipe_busy; 983 984 /* Choose a larger size if it's advantageous */ 985 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 986 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 987 if (piperesizeallowed != 1) 988 break; 989 if (amountpipekva > maxpipekva / 2) 990 break; 991 if (desiredsize == BIG_PIPE_SIZE) 992 break; 993 desiredsize = desiredsize * 2; 994 } 995 996 /* Choose a smaller size if we're in a OOM situation */ 997 if ((amountpipekva > (3 * maxpipekva) / 4) && 998 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 999 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1000 (piperesizeallowed == 1)) 1001 desiredsize = SMALL_PIPE_SIZE; 1002 1003 /* Resize if the above determined that a new size was necessary */ 1004 if ((desiredsize != wpipe->pipe_buffer.size) && 1005 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1006 PIPE_UNLOCK(wpipe); 1007 pipespace(wpipe, desiredsize); 1008 PIPE_LOCK(wpipe); 1009 } 1010 if (wpipe->pipe_buffer.size == 0) { 1011 /* 1012 * This can only happen for reverse direction use of pipes 1013 * in a complete OOM situation. 1014 */ 1015 error = ENOMEM; 1016 --wpipe->pipe_busy; 1017 pipeunlock(wpipe); 1018 PIPE_UNLOCK(wpipe); 1019 return (error); 1020 } 1021 1022 pipeunlock(wpipe); 1023 1024 orig_resid = uio->uio_resid; 1025 1026 while (uio->uio_resid) { 1027 int space; 1028 1029 pipelock(wpipe, 0); 1030 if (wpipe->pipe_state & PIPE_EOF) { 1031 pipeunlock(wpipe); 1032 error = EPIPE; 1033 break; 1034 } 1035 #ifndef PIPE_NODIRECT 1036 /* 1037 * If the transfer is large, we can gain performance if 1038 * we do process-to-process copies directly. 1039 * If the write is non-blocking, we don't use the 1040 * direct write mechanism. 1041 * 1042 * The direct write mechanism will detect the reader going 1043 * away on us. 1044 */ 1045 if (uio->uio_segflg == UIO_USERSPACE && 1046 uio->uio_iov->iov_len >= PIPE_MINDIRECT && 1047 wpipe->pipe_buffer.size >= PIPE_MINDIRECT && 1048 (fp->f_flag & FNONBLOCK) == 0) { 1049 pipeunlock(wpipe); 1050 error = pipe_direct_write(wpipe, uio); 1051 if (error) 1052 break; 1053 continue; 1054 } 1055 #endif 1056 1057 /* 1058 * Pipe buffered writes cannot be coincidental with 1059 * direct writes. We wait until the currently executing 1060 * direct write is completed before we start filling the 1061 * pipe buffer. We break out if a signal occurs or the 1062 * reader goes away. 1063 */ 1064 if (wpipe->pipe_state & PIPE_DIRECTW) { 1065 if (wpipe->pipe_state & PIPE_WANTR) { 1066 wpipe->pipe_state &= ~PIPE_WANTR; 1067 wakeup(wpipe); 1068 } 1069 pipeselwakeup(wpipe); 1070 wpipe->pipe_state |= PIPE_WANTW; 1071 pipeunlock(wpipe); 1072 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1073 "pipbww", 0); 1074 if (error) 1075 break; 1076 else 1077 continue; 1078 } 1079 1080 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1081 1082 /* Writes of size <= PIPE_BUF must be atomic. */ 1083 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1084 space = 0; 1085 1086 if (space > 0) { 1087 int size; /* Transfer size */ 1088 int segsize; /* first segment to transfer */ 1089 1090 /* 1091 * Transfer size is minimum of uio transfer 1092 * and free space in pipe buffer. 1093 */ 1094 if (space > uio->uio_resid) 1095 size = uio->uio_resid; 1096 else 1097 size = space; 1098 /* 1099 * First segment to transfer is minimum of 1100 * transfer size and contiguous space in 1101 * pipe buffer. If first segment to transfer 1102 * is less than the transfer size, we've got 1103 * a wraparound in the buffer. 1104 */ 1105 segsize = wpipe->pipe_buffer.size - 1106 wpipe->pipe_buffer.in; 1107 if (segsize > size) 1108 segsize = size; 1109 1110 /* Transfer first segment */ 1111 1112 PIPE_UNLOCK(rpipe); 1113 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1114 segsize, uio); 1115 PIPE_LOCK(rpipe); 1116 1117 if (error == 0 && segsize < size) { 1118 KASSERT(wpipe->pipe_buffer.in + segsize == 1119 wpipe->pipe_buffer.size, 1120 ("Pipe buffer wraparound disappeared")); 1121 /* 1122 * Transfer remaining part now, to 1123 * support atomic writes. Wraparound 1124 * happened. 1125 */ 1126 1127 PIPE_UNLOCK(rpipe); 1128 error = uiomove( 1129 &wpipe->pipe_buffer.buffer[0], 1130 size - segsize, uio); 1131 PIPE_LOCK(rpipe); 1132 } 1133 if (error == 0) { 1134 wpipe->pipe_buffer.in += size; 1135 if (wpipe->pipe_buffer.in >= 1136 wpipe->pipe_buffer.size) { 1137 KASSERT(wpipe->pipe_buffer.in == 1138 size - segsize + 1139 wpipe->pipe_buffer.size, 1140 ("Expected wraparound bad")); 1141 wpipe->pipe_buffer.in = size - segsize; 1142 } 1143 1144 wpipe->pipe_buffer.cnt += size; 1145 KASSERT(wpipe->pipe_buffer.cnt <= 1146 wpipe->pipe_buffer.size, 1147 ("Pipe buffer overflow")); 1148 } 1149 pipeunlock(wpipe); 1150 if (error != 0) 1151 break; 1152 } else { 1153 /* 1154 * If the "read-side" has been blocked, wake it up now. 1155 */ 1156 if (wpipe->pipe_state & PIPE_WANTR) { 1157 wpipe->pipe_state &= ~PIPE_WANTR; 1158 wakeup(wpipe); 1159 } 1160 1161 /* 1162 * don't block on non-blocking I/O 1163 */ 1164 if (fp->f_flag & FNONBLOCK) { 1165 error = EAGAIN; 1166 pipeunlock(wpipe); 1167 break; 1168 } 1169 1170 /* 1171 * We have no more space and have something to offer, 1172 * wake up select/poll. 1173 */ 1174 pipeselwakeup(wpipe); 1175 1176 wpipe->pipe_state |= PIPE_WANTW; 1177 pipeunlock(wpipe); 1178 error = msleep(wpipe, PIPE_MTX(rpipe), 1179 PRIBIO | PCATCH, "pipewr", 0); 1180 if (error != 0) 1181 break; 1182 } 1183 } 1184 1185 pipelock(wpipe, 0); 1186 --wpipe->pipe_busy; 1187 1188 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1189 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1190 wakeup(wpipe); 1191 } else if (wpipe->pipe_buffer.cnt > 0) { 1192 /* 1193 * If we have put any characters in the buffer, we wake up 1194 * the reader. 1195 */ 1196 if (wpipe->pipe_state & PIPE_WANTR) { 1197 wpipe->pipe_state &= ~PIPE_WANTR; 1198 wakeup(wpipe); 1199 } 1200 } 1201 1202 /* 1203 * Don't return EPIPE if I/O was successful 1204 */ 1205 if ((wpipe->pipe_buffer.cnt == 0) && 1206 (uio->uio_resid == 0) && 1207 (error == EPIPE)) { 1208 error = 0; 1209 } 1210 1211 if (error == 0) 1212 vfs_timestamp(&wpipe->pipe_mtime); 1213 1214 /* 1215 * We have something to offer, 1216 * wake up select/poll. 1217 */ 1218 if (wpipe->pipe_buffer.cnt) 1219 pipeselwakeup(wpipe); 1220 1221 pipeunlock(wpipe); 1222 PIPE_UNLOCK(rpipe); 1223 return (error); 1224 } 1225 1226 /* ARGSUSED */ 1227 static int 1228 pipe_truncate(fp, length, active_cred, td) 1229 struct file *fp; 1230 off_t length; 1231 struct ucred *active_cred; 1232 struct thread *td; 1233 { 1234 1235 return (EINVAL); 1236 } 1237 1238 /* 1239 * we implement a very minimal set of ioctls for compatibility with sockets. 1240 */ 1241 static int 1242 pipe_ioctl(fp, cmd, data, active_cred, td) 1243 struct file *fp; 1244 u_long cmd; 1245 void *data; 1246 struct ucred *active_cred; 1247 struct thread *td; 1248 { 1249 struct pipe *mpipe = fp->f_data; 1250 int error; 1251 1252 PIPE_LOCK(mpipe); 1253 1254 #ifdef MAC 1255 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1256 if (error) { 1257 PIPE_UNLOCK(mpipe); 1258 return (error); 1259 } 1260 #endif 1261 1262 error = 0; 1263 switch (cmd) { 1264 1265 case FIONBIO: 1266 break; 1267 1268 case FIOASYNC: 1269 if (*(int *)data) { 1270 mpipe->pipe_state |= PIPE_ASYNC; 1271 } else { 1272 mpipe->pipe_state &= ~PIPE_ASYNC; 1273 } 1274 break; 1275 1276 case FIONREAD: 1277 if (mpipe->pipe_state & PIPE_DIRECTW) 1278 *(int *)data = mpipe->pipe_map.cnt; 1279 else 1280 *(int *)data = mpipe->pipe_buffer.cnt; 1281 break; 1282 1283 case FIOSETOWN: 1284 PIPE_UNLOCK(mpipe); 1285 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1286 goto out_unlocked; 1287 1288 case FIOGETOWN: 1289 *(int *)data = fgetown(&mpipe->pipe_sigio); 1290 break; 1291 1292 /* This is deprecated, FIOSETOWN should be used instead. */ 1293 case TIOCSPGRP: 1294 PIPE_UNLOCK(mpipe); 1295 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1296 goto out_unlocked; 1297 1298 /* This is deprecated, FIOGETOWN should be used instead. */ 1299 case TIOCGPGRP: 1300 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1301 break; 1302 1303 default: 1304 error = ENOTTY; 1305 break; 1306 } 1307 PIPE_UNLOCK(mpipe); 1308 out_unlocked: 1309 return (error); 1310 } 1311 1312 static int 1313 pipe_poll(fp, events, active_cred, td) 1314 struct file *fp; 1315 int events; 1316 struct ucred *active_cred; 1317 struct thread *td; 1318 { 1319 struct pipe *rpipe = fp->f_data; 1320 struct pipe *wpipe; 1321 int revents = 0; 1322 #ifdef MAC 1323 int error; 1324 #endif 1325 1326 wpipe = rpipe->pipe_peer; 1327 PIPE_LOCK(rpipe); 1328 #ifdef MAC 1329 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair); 1330 if (error) 1331 goto locked_error; 1332 #endif 1333 if (events & (POLLIN | POLLRDNORM)) 1334 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1335 (rpipe->pipe_buffer.cnt > 0)) 1336 revents |= events & (POLLIN | POLLRDNORM); 1337 1338 if (events & (POLLOUT | POLLWRNORM)) 1339 if (wpipe->pipe_present != PIPE_ACTIVE || 1340 (wpipe->pipe_state & PIPE_EOF) || 1341 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1342 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1343 revents |= events & (POLLOUT | POLLWRNORM); 1344 1345 if ((events & POLLINIGNEOF) == 0) { 1346 if (rpipe->pipe_state & PIPE_EOF) { 1347 revents |= (events & (POLLIN | POLLRDNORM)); 1348 if (wpipe->pipe_present != PIPE_ACTIVE || 1349 (wpipe->pipe_state & PIPE_EOF)) 1350 revents |= POLLHUP; 1351 } 1352 } 1353 1354 if (revents == 0) { 1355 if (events & (POLLIN | POLLRDNORM)) { 1356 selrecord(td, &rpipe->pipe_sel); 1357 if (SEL_WAITING(&rpipe->pipe_sel)) 1358 rpipe->pipe_state |= PIPE_SEL; 1359 } 1360 1361 if (events & (POLLOUT | POLLWRNORM)) { 1362 selrecord(td, &wpipe->pipe_sel); 1363 if (SEL_WAITING(&wpipe->pipe_sel)) 1364 wpipe->pipe_state |= PIPE_SEL; 1365 } 1366 } 1367 #ifdef MAC 1368 locked_error: 1369 #endif 1370 PIPE_UNLOCK(rpipe); 1371 1372 return (revents); 1373 } 1374 1375 /* 1376 * We shouldn't need locks here as we're doing a read and this should 1377 * be a natural race. 1378 */ 1379 static int 1380 pipe_stat(fp, ub, active_cred, td) 1381 struct file *fp; 1382 struct stat *ub; 1383 struct ucred *active_cred; 1384 struct thread *td; 1385 { 1386 struct pipe *pipe = fp->f_data; 1387 #ifdef MAC 1388 int error; 1389 1390 PIPE_LOCK(pipe); 1391 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair); 1392 PIPE_UNLOCK(pipe); 1393 if (error) 1394 return (error); 1395 #endif 1396 bzero(ub, sizeof(*ub)); 1397 ub->st_mode = S_IFIFO; 1398 ub->st_blksize = PAGE_SIZE; 1399 if (pipe->pipe_state & PIPE_DIRECTW) 1400 ub->st_size = pipe->pipe_map.cnt; 1401 else 1402 ub->st_size = pipe->pipe_buffer.cnt; 1403 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1404 ub->st_atim = pipe->pipe_atime; 1405 ub->st_mtim = pipe->pipe_mtime; 1406 ub->st_ctim = pipe->pipe_ctime; 1407 ub->st_uid = fp->f_cred->cr_uid; 1408 ub->st_gid = fp->f_cred->cr_gid; 1409 /* 1410 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1411 * XXX (st_dev, st_ino) should be unique. 1412 */ 1413 return (0); 1414 } 1415 1416 /* ARGSUSED */ 1417 static int 1418 pipe_close(fp, td) 1419 struct file *fp; 1420 struct thread *td; 1421 { 1422 struct pipe *cpipe = fp->f_data; 1423 1424 fp->f_ops = &badfileops; 1425 fp->f_data = NULL; 1426 funsetown(&cpipe->pipe_sigio); 1427 pipeclose(cpipe); 1428 return (0); 1429 } 1430 1431 static void 1432 pipe_free_kmem(cpipe) 1433 struct pipe *cpipe; 1434 { 1435 1436 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1437 ("pipe_free_kmem: pipe mutex locked")); 1438 1439 if (cpipe->pipe_buffer.buffer != NULL) { 1440 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size); 1441 vm_map_remove(pipe_map, 1442 (vm_offset_t)cpipe->pipe_buffer.buffer, 1443 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1444 cpipe->pipe_buffer.buffer = NULL; 1445 } 1446 #ifndef PIPE_NODIRECT 1447 { 1448 cpipe->pipe_map.cnt = 0; 1449 cpipe->pipe_map.pos = 0; 1450 cpipe->pipe_map.npages = 0; 1451 } 1452 #endif 1453 } 1454 1455 /* 1456 * shutdown the pipe 1457 */ 1458 static void 1459 pipeclose(cpipe) 1460 struct pipe *cpipe; 1461 { 1462 struct pipepair *pp; 1463 struct pipe *ppipe; 1464 1465 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1466 1467 PIPE_LOCK(cpipe); 1468 pipelock(cpipe, 0); 1469 pp = cpipe->pipe_pair; 1470 1471 pipeselwakeup(cpipe); 1472 1473 /* 1474 * If the other side is blocked, wake it up saying that 1475 * we want to close it down. 1476 */ 1477 cpipe->pipe_state |= PIPE_EOF; 1478 while (cpipe->pipe_busy) { 1479 wakeup(cpipe); 1480 cpipe->pipe_state |= PIPE_WANT; 1481 pipeunlock(cpipe); 1482 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1483 pipelock(cpipe, 0); 1484 } 1485 1486 1487 /* 1488 * Disconnect from peer, if any. 1489 */ 1490 ppipe = cpipe->pipe_peer; 1491 if (ppipe->pipe_present == PIPE_ACTIVE) { 1492 pipeselwakeup(ppipe); 1493 1494 ppipe->pipe_state |= PIPE_EOF; 1495 wakeup(ppipe); 1496 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1497 } 1498 1499 /* 1500 * Mark this endpoint as free. Release kmem resources. We 1501 * don't mark this endpoint as unused until we've finished 1502 * doing that, or the pipe might disappear out from under 1503 * us. 1504 */ 1505 PIPE_UNLOCK(cpipe); 1506 pipe_free_kmem(cpipe); 1507 PIPE_LOCK(cpipe); 1508 cpipe->pipe_present = PIPE_CLOSING; 1509 pipeunlock(cpipe); 1510 1511 /* 1512 * knlist_clear() may sleep dropping the PIPE_MTX. Set the 1513 * PIPE_FINALIZED, that allows other end to free the 1514 * pipe_pair, only after the knotes are completely dismantled. 1515 */ 1516 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1517 cpipe->pipe_present = PIPE_FINALIZED; 1518 knlist_destroy(&cpipe->pipe_sel.si_note); 1519 1520 /* 1521 * If both endpoints are now closed, release the memory for the 1522 * pipe pair. If not, unlock. 1523 */ 1524 if (ppipe->pipe_present == PIPE_FINALIZED) { 1525 PIPE_UNLOCK(cpipe); 1526 #ifdef MAC 1527 mac_pipe_destroy(pp); 1528 #endif 1529 uma_zfree(pipe_zone, cpipe->pipe_pair); 1530 } else 1531 PIPE_UNLOCK(cpipe); 1532 } 1533 1534 /*ARGSUSED*/ 1535 static int 1536 pipe_kqfilter(struct file *fp, struct knote *kn) 1537 { 1538 struct pipe *cpipe; 1539 1540 cpipe = kn->kn_fp->f_data; 1541 PIPE_LOCK(cpipe); 1542 switch (kn->kn_filter) { 1543 case EVFILT_READ: 1544 kn->kn_fop = &pipe_rfiltops; 1545 break; 1546 case EVFILT_WRITE: 1547 kn->kn_fop = &pipe_wfiltops; 1548 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) { 1549 /* other end of pipe has been closed */ 1550 PIPE_UNLOCK(cpipe); 1551 return (EPIPE); 1552 } 1553 cpipe = cpipe->pipe_peer; 1554 break; 1555 default: 1556 PIPE_UNLOCK(cpipe); 1557 return (EINVAL); 1558 } 1559 1560 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1561 PIPE_UNLOCK(cpipe); 1562 return (0); 1563 } 1564 1565 static void 1566 filt_pipedetach(struct knote *kn) 1567 { 1568 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; 1569 1570 PIPE_LOCK(cpipe); 1571 if (kn->kn_filter == EVFILT_WRITE) 1572 cpipe = cpipe->pipe_peer; 1573 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1574 PIPE_UNLOCK(cpipe); 1575 } 1576 1577 /*ARGSUSED*/ 1578 static int 1579 filt_piperead(struct knote *kn, long hint) 1580 { 1581 struct pipe *rpipe = kn->kn_fp->f_data; 1582 struct pipe *wpipe = rpipe->pipe_peer; 1583 int ret; 1584 1585 PIPE_LOCK(rpipe); 1586 kn->kn_data = rpipe->pipe_buffer.cnt; 1587 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1588 kn->kn_data = rpipe->pipe_map.cnt; 1589 1590 if ((rpipe->pipe_state & PIPE_EOF) || 1591 wpipe->pipe_present != PIPE_ACTIVE || 1592 (wpipe->pipe_state & PIPE_EOF)) { 1593 kn->kn_flags |= EV_EOF; 1594 PIPE_UNLOCK(rpipe); 1595 return (1); 1596 } 1597 ret = kn->kn_data > 0; 1598 PIPE_UNLOCK(rpipe); 1599 return ret; 1600 } 1601 1602 /*ARGSUSED*/ 1603 static int 1604 filt_pipewrite(struct knote *kn, long hint) 1605 { 1606 struct pipe *rpipe = kn->kn_fp->f_data; 1607 struct pipe *wpipe = rpipe->pipe_peer; 1608 1609 PIPE_LOCK(rpipe); 1610 if (wpipe->pipe_present != PIPE_ACTIVE || 1611 (wpipe->pipe_state & PIPE_EOF)) { 1612 kn->kn_data = 0; 1613 kn->kn_flags |= EV_EOF; 1614 PIPE_UNLOCK(rpipe); 1615 return (1); 1616 } 1617 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1618 if (wpipe->pipe_state & PIPE_DIRECTW) 1619 kn->kn_data = 0; 1620 1621 PIPE_UNLOCK(rpipe); 1622 return (kn->kn_data >= PIPE_BUF); 1623 } 1624