xref: /freebsd/sys/kern/sys_pipe.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  */
19 
20 /*
21  * This file contains a high-performance replacement for the socket-based
22  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23  * all features of sockets, but does do everything that pipes normally
24  * do.
25  */
26 
27 /*
28  * This code has two modes of operation, a small write mode and a large
29  * write mode.  The small write mode acts like conventional pipes with
30  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32  * and PIPE_SIZE in size, the sending process pins the underlying pages in
33  * memory, and the receiving process copies directly from these pinned pages
34  * in the sending process.
35  *
36  * If the sending process receives a signal, it is possible that it will
37  * go away, and certainly its address space can change, because control
38  * is returned back to the user-mode side.  In that case, the pipe code
39  * arranges to copy the buffer supplied by the user process, to a pageable
40  * kernel buffer, and the receiving process will grab the data from the
41  * pageable kernel buffer.  Since signals don't happen all that often,
42  * the copy operation is normally eliminated.
43  *
44  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45  * happen for small transfers so that the system will not spend all of
46  * its time context switching.
47  *
48  * In order to limit the resource use of pipes, two sysctls exist:
49  *
50  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51  * address space available to us in pipe_map. This value is normally
52  * autotuned, but may also be loader tuned.
53  *
54  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55  * memory in use by pipes.
56  *
57  * Based on how large pipekva is relative to maxpipekva, the following
58  * will happen:
59  *
60  * 0% - 50%:
61  *     New pipes are given 16K of memory backing, pipes may dynamically
62  *     grow to as large as 64K where needed.
63  * 50% - 75%:
64  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
65  *     existing pipes may NOT grow.
66  * 75% - 100%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes will be shrunk down to 4K whenever possible.
69  *
70  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
71  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72  * resize which MUST occur for reverse-direction pipes when they are
73  * first used.
74  *
75  * Additional information about the current state of pipes may be obtained
76  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77  * and kern.ipc.piperesizefail.
78  *
79  * Locking rules:  There are two locks present here:  A mutex, used via
80  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
81  * the flag, as mutexes can not persist over uiomove.  The mutex
82  * exists only to guard access to the flag, and is not in itself a
83  * locking mechanism.  Also note that there is only a single mutex for
84  * both directions of a pipe.
85  *
86  * As pipelock() may have to sleep before it can acquire the flag, it
87  * is important to reread all data after a call to pipelock(); everything
88  * in the structure may have changed.
89  */
90 
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD$");
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/fcntl.h>
97 #include <sys/file.h>
98 #include <sys/filedesc.h>
99 #include <sys/filio.h>
100 #include <sys/kernel.h>
101 #include <sys/lock.h>
102 #include <sys/mutex.h>
103 #include <sys/ttycom.h>
104 #include <sys/stat.h>
105 #include <sys/malloc.h>
106 #include <sys/poll.h>
107 #include <sys/selinfo.h>
108 #include <sys/signalvar.h>
109 #include <sys/syscallsubr.h>
110 #include <sys/sysctl.h>
111 #include <sys/sysproto.h>
112 #include <sys/pipe.h>
113 #include <sys/proc.h>
114 #include <sys/vnode.h>
115 #include <sys/uio.h>
116 #include <sys/event.h>
117 
118 #include <security/mac/mac_framework.h>
119 
120 #include <vm/vm.h>
121 #include <vm/vm_param.h>
122 #include <vm/vm_object.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_extern.h>
125 #include <vm/pmap.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_page.h>
128 #include <vm/uma.h>
129 
130 /*
131  * Use this define if you want to disable *fancy* VM things.  Expect an
132  * approx 30% decrease in transfer rate.  This could be useful for
133  * NetBSD or OpenBSD.
134  */
135 /* #define PIPE_NODIRECT */
136 
137 /*
138  * interfaces to the outside world
139  */
140 static fo_rdwr_t	pipe_read;
141 static fo_rdwr_t	pipe_write;
142 static fo_truncate_t	pipe_truncate;
143 static fo_ioctl_t	pipe_ioctl;
144 static fo_poll_t	pipe_poll;
145 static fo_kqfilter_t	pipe_kqfilter;
146 static fo_stat_t	pipe_stat;
147 static fo_close_t	pipe_close;
148 
149 static struct fileops pipeops = {
150 	.fo_read = pipe_read,
151 	.fo_write = pipe_write,
152 	.fo_truncate = pipe_truncate,
153 	.fo_ioctl = pipe_ioctl,
154 	.fo_poll = pipe_poll,
155 	.fo_kqfilter = pipe_kqfilter,
156 	.fo_stat = pipe_stat,
157 	.fo_close = pipe_close,
158 	.fo_flags = DFLAG_PASSABLE
159 };
160 
161 static void	filt_pipedetach(struct knote *kn);
162 static int	filt_piperead(struct knote *kn, long hint);
163 static int	filt_pipewrite(struct knote *kn, long hint);
164 
165 static struct filterops pipe_rfiltops = {
166 	.f_isfd = 1,
167 	.f_detach = filt_pipedetach,
168 	.f_event = filt_piperead
169 };
170 static struct filterops pipe_wfiltops = {
171 	.f_isfd = 1,
172 	.f_detach = filt_pipedetach,
173 	.f_event = filt_pipewrite
174 };
175 
176 /*
177  * Default pipe buffer size(s), this can be kind-of large now because pipe
178  * space is pageable.  The pipe code will try to maintain locality of
179  * reference for performance reasons, so small amounts of outstanding I/O
180  * will not wipe the cache.
181  */
182 #define MINPIPESIZE (PIPE_SIZE/3)
183 #define MAXPIPESIZE (2*PIPE_SIZE/3)
184 
185 static long amountpipekva;
186 static int pipefragretry;
187 static int pipeallocfail;
188 static int piperesizefail;
189 static int piperesizeallowed = 1;
190 
191 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
192 	   &maxpipekva, 0, "Pipe KVA limit");
193 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
194 	   &amountpipekva, 0, "Pipe KVA usage");
195 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
196 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
197 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
198 	  &pipeallocfail, 0, "Pipe allocation failures");
199 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
200 	  &piperesizefail, 0, "Pipe resize failures");
201 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
202 	  &piperesizeallowed, 0, "Pipe resizing allowed");
203 
204 static void pipeinit(void *dummy __unused);
205 static void pipeclose(struct pipe *cpipe);
206 static void pipe_free_kmem(struct pipe *cpipe);
207 static int pipe_create(struct pipe *pipe, int backing);
208 static __inline int pipelock(struct pipe *cpipe, int catch);
209 static __inline void pipeunlock(struct pipe *cpipe);
210 static __inline void pipeselwakeup(struct pipe *cpipe);
211 #ifndef PIPE_NODIRECT
212 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
213 static void pipe_destroy_write_buffer(struct pipe *wpipe);
214 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
215 static void pipe_clone_write_buffer(struct pipe *wpipe);
216 #endif
217 static int pipespace(struct pipe *cpipe, int size);
218 static int pipespace_new(struct pipe *cpipe, int size);
219 
220 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
221 static int	pipe_zone_init(void *mem, int size, int flags);
222 static void	pipe_zone_fini(void *mem, int size);
223 
224 static uma_zone_t pipe_zone;
225 
226 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
227 
228 static void
229 pipeinit(void *dummy __unused)
230 {
231 
232 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
233 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
234 	    UMA_ALIGN_PTR, 0);
235 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
236 }
237 
238 static int
239 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
240 {
241 	struct pipepair *pp;
242 	struct pipe *rpipe, *wpipe;
243 
244 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
245 
246 	pp = (struct pipepair *)mem;
247 
248 	/*
249 	 * We zero both pipe endpoints to make sure all the kmem pointers
250 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
251 	 * endpoints with the same time.
252 	 */
253 	rpipe = &pp->pp_rpipe;
254 	bzero(rpipe, sizeof(*rpipe));
255 	vfs_timestamp(&rpipe->pipe_ctime);
256 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
257 
258 	wpipe = &pp->pp_wpipe;
259 	bzero(wpipe, sizeof(*wpipe));
260 	wpipe->pipe_ctime = rpipe->pipe_ctime;
261 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
262 
263 	rpipe->pipe_peer = wpipe;
264 	rpipe->pipe_pair = pp;
265 	wpipe->pipe_peer = rpipe;
266 	wpipe->pipe_pair = pp;
267 
268 	/*
269 	 * Mark both endpoints as present; they will later get free'd
270 	 * one at a time.  When both are free'd, then the whole pair
271 	 * is released.
272 	 */
273 	rpipe->pipe_present = PIPE_ACTIVE;
274 	wpipe->pipe_present = PIPE_ACTIVE;
275 
276 	/*
277 	 * Eventually, the MAC Framework may initialize the label
278 	 * in ctor or init, but for now we do it elswhere to avoid
279 	 * blocking in ctor or init.
280 	 */
281 	pp->pp_label = NULL;
282 
283 	return (0);
284 }
285 
286 static int
287 pipe_zone_init(void *mem, int size, int flags)
288 {
289 	struct pipepair *pp;
290 
291 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
292 
293 	pp = (struct pipepair *)mem;
294 
295 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
296 	return (0);
297 }
298 
299 static void
300 pipe_zone_fini(void *mem, int size)
301 {
302 	struct pipepair *pp;
303 
304 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
305 
306 	pp = (struct pipepair *)mem;
307 
308 	mtx_destroy(&pp->pp_mtx);
309 }
310 
311 /*
312  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
313  * the zone pick up the pieces via pipeclose().
314  */
315 int
316 kern_pipe(struct thread *td, int fildes[2])
317 {
318 	struct filedesc *fdp = td->td_proc->p_fd;
319 	struct file *rf, *wf;
320 	struct pipepair *pp;
321 	struct pipe *rpipe, *wpipe;
322 	int fd, error;
323 
324 	pp = uma_zalloc(pipe_zone, M_WAITOK);
325 #ifdef MAC
326 	/*
327 	 * The MAC label is shared between the connected endpoints.  As a
328 	 * result mac_pipe_init() and mac_pipe_create() are called once
329 	 * for the pair, and not on the endpoints.
330 	 */
331 	mac_pipe_init(pp);
332 	mac_pipe_create(td->td_ucred, pp);
333 #endif
334 	rpipe = &pp->pp_rpipe;
335 	wpipe = &pp->pp_wpipe;
336 
337 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
338 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
339 
340 	/* Only the forward direction pipe is backed by default */
341 	if ((error = pipe_create(rpipe, 1)) != 0 ||
342 	    (error = pipe_create(wpipe, 0)) != 0) {
343 		pipeclose(rpipe);
344 		pipeclose(wpipe);
345 		return (error);
346 	}
347 
348 	rpipe->pipe_state |= PIPE_DIRECTOK;
349 	wpipe->pipe_state |= PIPE_DIRECTOK;
350 
351 	error = falloc(td, &rf, &fd, 0);
352 	if (error) {
353 		pipeclose(rpipe);
354 		pipeclose(wpipe);
355 		return (error);
356 	}
357 	/* An extra reference on `rf' has been held for us by falloc(). */
358 	fildes[0] = fd;
359 
360 	/*
361 	 * Warning: once we've gotten past allocation of the fd for the
362 	 * read-side, we can only drop the read side via fdrop() in order
363 	 * to avoid races against processes which manage to dup() the read
364 	 * side while we are blocked trying to allocate the write side.
365 	 */
366 	finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops);
367 	error = falloc(td, &wf, &fd, 0);
368 	if (error) {
369 		fdclose(fdp, rf, fildes[0], td);
370 		fdrop(rf, td);
371 		/* rpipe has been closed by fdrop(). */
372 		pipeclose(wpipe);
373 		return (error);
374 	}
375 	/* An extra reference on `wf' has been held for us by falloc(). */
376 	finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops);
377 	fdrop(wf, td);
378 	fildes[1] = fd;
379 	fdrop(rf, td);
380 
381 	return (0);
382 }
383 
384 /* ARGSUSED */
385 int
386 pipe(struct thread *td, struct pipe_args *uap)
387 {
388 	int error;
389 	int fildes[2];
390 
391 	error = kern_pipe(td, fildes);
392 	if (error)
393 		return (error);
394 
395 	td->td_retval[0] = fildes[0];
396 	td->td_retval[1] = fildes[1];
397 
398 	return (0);
399 }
400 
401 /*
402  * Allocate kva for pipe circular buffer, the space is pageable
403  * This routine will 'realloc' the size of a pipe safely, if it fails
404  * it will retain the old buffer.
405  * If it fails it will return ENOMEM.
406  */
407 static int
408 pipespace_new(cpipe, size)
409 	struct pipe *cpipe;
410 	int size;
411 {
412 	caddr_t buffer;
413 	int error, cnt, firstseg;
414 	static int curfail = 0;
415 	static struct timeval lastfail;
416 
417 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
418 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
419 		("pipespace: resize of direct writes not allowed"));
420 retry:
421 	cnt = cpipe->pipe_buffer.cnt;
422 	if (cnt > size)
423 		size = cnt;
424 
425 	size = round_page(size);
426 	buffer = (caddr_t) vm_map_min(pipe_map);
427 
428 	error = vm_map_find(pipe_map, NULL, 0,
429 		(vm_offset_t *) &buffer, size, 1,
430 		VM_PROT_ALL, VM_PROT_ALL, 0);
431 	if (error != KERN_SUCCESS) {
432 		if ((cpipe->pipe_buffer.buffer == NULL) &&
433 			(size > SMALL_PIPE_SIZE)) {
434 			size = SMALL_PIPE_SIZE;
435 			pipefragretry++;
436 			goto retry;
437 		}
438 		if (cpipe->pipe_buffer.buffer == NULL) {
439 			pipeallocfail++;
440 			if (ppsratecheck(&lastfail, &curfail, 1))
441 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
442 		} else {
443 			piperesizefail++;
444 		}
445 		return (ENOMEM);
446 	}
447 
448 	/* copy data, then free old resources if we're resizing */
449 	if (cnt > 0) {
450 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
451 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
452 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
453 				buffer, firstseg);
454 			if ((cnt - firstseg) > 0)
455 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
456 					cpipe->pipe_buffer.in);
457 		} else {
458 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
459 				buffer, cnt);
460 		}
461 	}
462 	pipe_free_kmem(cpipe);
463 	cpipe->pipe_buffer.buffer = buffer;
464 	cpipe->pipe_buffer.size = size;
465 	cpipe->pipe_buffer.in = cnt;
466 	cpipe->pipe_buffer.out = 0;
467 	cpipe->pipe_buffer.cnt = cnt;
468 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
469 	return (0);
470 }
471 
472 /*
473  * Wrapper for pipespace_new() that performs locking assertions.
474  */
475 static int
476 pipespace(cpipe, size)
477 	struct pipe *cpipe;
478 	int size;
479 {
480 
481 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
482 		("Unlocked pipe passed to pipespace"));
483 	return (pipespace_new(cpipe, size));
484 }
485 
486 /*
487  * lock a pipe for I/O, blocking other access
488  */
489 static __inline int
490 pipelock(cpipe, catch)
491 	struct pipe *cpipe;
492 	int catch;
493 {
494 	int error;
495 
496 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
497 	while (cpipe->pipe_state & PIPE_LOCKFL) {
498 		cpipe->pipe_state |= PIPE_LWANT;
499 		error = msleep(cpipe, PIPE_MTX(cpipe),
500 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
501 		    "pipelk", 0);
502 		if (error != 0)
503 			return (error);
504 	}
505 	cpipe->pipe_state |= PIPE_LOCKFL;
506 	return (0);
507 }
508 
509 /*
510  * unlock a pipe I/O lock
511  */
512 static __inline void
513 pipeunlock(cpipe)
514 	struct pipe *cpipe;
515 {
516 
517 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
518 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
519 		("Unlocked pipe passed to pipeunlock"));
520 	cpipe->pipe_state &= ~PIPE_LOCKFL;
521 	if (cpipe->pipe_state & PIPE_LWANT) {
522 		cpipe->pipe_state &= ~PIPE_LWANT;
523 		wakeup(cpipe);
524 	}
525 }
526 
527 static __inline void
528 pipeselwakeup(cpipe)
529 	struct pipe *cpipe;
530 {
531 
532 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
533 	if (cpipe->pipe_state & PIPE_SEL) {
534 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
535 		if (!SEL_WAITING(&cpipe->pipe_sel))
536 			cpipe->pipe_state &= ~PIPE_SEL;
537 	}
538 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
539 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
540 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
541 }
542 
543 /*
544  * Initialize and allocate VM and memory for pipe.  The structure
545  * will start out zero'd from the ctor, so we just manage the kmem.
546  */
547 static int
548 pipe_create(pipe, backing)
549 	struct pipe *pipe;
550 	int backing;
551 {
552 	int error;
553 
554 	if (backing) {
555 		if (amountpipekva > maxpipekva / 2)
556 			error = pipespace_new(pipe, SMALL_PIPE_SIZE);
557 		else
558 			error = pipespace_new(pipe, PIPE_SIZE);
559 	} else {
560 		/* If we're not backing this pipe, no need to do anything. */
561 		error = 0;
562 	}
563 	return (error);
564 }
565 
566 /* ARGSUSED */
567 static int
568 pipe_read(fp, uio, active_cred, flags, td)
569 	struct file *fp;
570 	struct uio *uio;
571 	struct ucred *active_cred;
572 	struct thread *td;
573 	int flags;
574 {
575 	struct pipe *rpipe = fp->f_data;
576 	int error;
577 	int nread = 0;
578 	u_int size;
579 
580 	PIPE_LOCK(rpipe);
581 	++rpipe->pipe_busy;
582 	error = pipelock(rpipe, 1);
583 	if (error)
584 		goto unlocked_error;
585 
586 #ifdef MAC
587 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
588 	if (error)
589 		goto locked_error;
590 #endif
591 	if (amountpipekva > (3 * maxpipekva) / 4) {
592 		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
593 			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
594 			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
595 			(piperesizeallowed == 1)) {
596 			PIPE_UNLOCK(rpipe);
597 			pipespace(rpipe, SMALL_PIPE_SIZE);
598 			PIPE_LOCK(rpipe);
599 		}
600 	}
601 
602 	while (uio->uio_resid) {
603 		/*
604 		 * normal pipe buffer receive
605 		 */
606 		if (rpipe->pipe_buffer.cnt > 0) {
607 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
608 			if (size > rpipe->pipe_buffer.cnt)
609 				size = rpipe->pipe_buffer.cnt;
610 			if (size > (u_int) uio->uio_resid)
611 				size = (u_int) uio->uio_resid;
612 
613 			PIPE_UNLOCK(rpipe);
614 			error = uiomove(
615 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
616 			    size, uio);
617 			PIPE_LOCK(rpipe);
618 			if (error)
619 				break;
620 
621 			rpipe->pipe_buffer.out += size;
622 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
623 				rpipe->pipe_buffer.out = 0;
624 
625 			rpipe->pipe_buffer.cnt -= size;
626 
627 			/*
628 			 * If there is no more to read in the pipe, reset
629 			 * its pointers to the beginning.  This improves
630 			 * cache hit stats.
631 			 */
632 			if (rpipe->pipe_buffer.cnt == 0) {
633 				rpipe->pipe_buffer.in = 0;
634 				rpipe->pipe_buffer.out = 0;
635 			}
636 			nread += size;
637 #ifndef PIPE_NODIRECT
638 		/*
639 		 * Direct copy, bypassing a kernel buffer.
640 		 */
641 		} else if ((size = rpipe->pipe_map.cnt) &&
642 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
643 			if (size > (u_int) uio->uio_resid)
644 				size = (u_int) uio->uio_resid;
645 
646 			PIPE_UNLOCK(rpipe);
647 			error = uiomove_fromphys(rpipe->pipe_map.ms,
648 			    rpipe->pipe_map.pos, size, uio);
649 			PIPE_LOCK(rpipe);
650 			if (error)
651 				break;
652 			nread += size;
653 			rpipe->pipe_map.pos += size;
654 			rpipe->pipe_map.cnt -= size;
655 			if (rpipe->pipe_map.cnt == 0) {
656 				rpipe->pipe_state &= ~PIPE_DIRECTW;
657 				wakeup(rpipe);
658 			}
659 #endif
660 		} else {
661 			/*
662 			 * detect EOF condition
663 			 * read returns 0 on EOF, no need to set error
664 			 */
665 			if (rpipe->pipe_state & PIPE_EOF)
666 				break;
667 
668 			/*
669 			 * If the "write-side" has been blocked, wake it up now.
670 			 */
671 			if (rpipe->pipe_state & PIPE_WANTW) {
672 				rpipe->pipe_state &= ~PIPE_WANTW;
673 				wakeup(rpipe);
674 			}
675 
676 			/*
677 			 * Break if some data was read.
678 			 */
679 			if (nread > 0)
680 				break;
681 
682 			/*
683 			 * Unlock the pipe buffer for our remaining processing.
684 			 * We will either break out with an error or we will
685 			 * sleep and relock to loop.
686 			 */
687 			pipeunlock(rpipe);
688 
689 			/*
690 			 * Handle non-blocking mode operation or
691 			 * wait for more data.
692 			 */
693 			if (fp->f_flag & FNONBLOCK) {
694 				error = EAGAIN;
695 			} else {
696 				rpipe->pipe_state |= PIPE_WANTR;
697 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
698 				    PRIBIO | PCATCH,
699 				    "piperd", 0)) == 0)
700 					error = pipelock(rpipe, 1);
701 			}
702 			if (error)
703 				goto unlocked_error;
704 		}
705 	}
706 #ifdef MAC
707 locked_error:
708 #endif
709 	pipeunlock(rpipe);
710 
711 	/* XXX: should probably do this before getting any locks. */
712 	if (error == 0)
713 		vfs_timestamp(&rpipe->pipe_atime);
714 unlocked_error:
715 	--rpipe->pipe_busy;
716 
717 	/*
718 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
719 	 */
720 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
721 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
722 		wakeup(rpipe);
723 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
724 		/*
725 		 * Handle write blocking hysteresis.
726 		 */
727 		if (rpipe->pipe_state & PIPE_WANTW) {
728 			rpipe->pipe_state &= ~PIPE_WANTW;
729 			wakeup(rpipe);
730 		}
731 	}
732 
733 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
734 		pipeselwakeup(rpipe);
735 
736 	PIPE_UNLOCK(rpipe);
737 	return (error);
738 }
739 
740 #ifndef PIPE_NODIRECT
741 /*
742  * Map the sending processes' buffer into kernel space and wire it.
743  * This is similar to a physical write operation.
744  */
745 static int
746 pipe_build_write_buffer(wpipe, uio)
747 	struct pipe *wpipe;
748 	struct uio *uio;
749 {
750 	u_int size;
751 	int i;
752 
753 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
754 	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
755 		("Clone attempt on non-direct write pipe!"));
756 
757 	size = (u_int) uio->uio_iov->iov_len;
758 	if (size > wpipe->pipe_buffer.size)
759 		size = wpipe->pipe_buffer.size;
760 
761 	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
762 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
763 	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
764 		return (EFAULT);
765 
766 /*
767  * set up the control block
768  */
769 	wpipe->pipe_map.npages = i;
770 	wpipe->pipe_map.pos =
771 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
772 	wpipe->pipe_map.cnt = size;
773 
774 /*
775  * and update the uio data
776  */
777 
778 	uio->uio_iov->iov_len -= size;
779 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
780 	if (uio->uio_iov->iov_len == 0)
781 		uio->uio_iov++;
782 	uio->uio_resid -= size;
783 	uio->uio_offset += size;
784 	return (0);
785 }
786 
787 /*
788  * unmap and unwire the process buffer
789  */
790 static void
791 pipe_destroy_write_buffer(wpipe)
792 	struct pipe *wpipe;
793 {
794 
795 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
796 	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
797 	wpipe->pipe_map.npages = 0;
798 }
799 
800 /*
801  * In the case of a signal, the writing process might go away.  This
802  * code copies the data into the circular buffer so that the source
803  * pages can be freed without loss of data.
804  */
805 static void
806 pipe_clone_write_buffer(wpipe)
807 	struct pipe *wpipe;
808 {
809 	struct uio uio;
810 	struct iovec iov;
811 	int size;
812 	int pos;
813 
814 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
815 	size = wpipe->pipe_map.cnt;
816 	pos = wpipe->pipe_map.pos;
817 
818 	wpipe->pipe_buffer.in = size;
819 	wpipe->pipe_buffer.out = 0;
820 	wpipe->pipe_buffer.cnt = size;
821 	wpipe->pipe_state &= ~PIPE_DIRECTW;
822 
823 	PIPE_UNLOCK(wpipe);
824 	iov.iov_base = wpipe->pipe_buffer.buffer;
825 	iov.iov_len = size;
826 	uio.uio_iov = &iov;
827 	uio.uio_iovcnt = 1;
828 	uio.uio_offset = 0;
829 	uio.uio_resid = size;
830 	uio.uio_segflg = UIO_SYSSPACE;
831 	uio.uio_rw = UIO_READ;
832 	uio.uio_td = curthread;
833 	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
834 	PIPE_LOCK(wpipe);
835 	pipe_destroy_write_buffer(wpipe);
836 }
837 
838 /*
839  * This implements the pipe buffer write mechanism.  Note that only
840  * a direct write OR a normal pipe write can be pending at any given time.
841  * If there are any characters in the pipe buffer, the direct write will
842  * be deferred until the receiving process grabs all of the bytes from
843  * the pipe buffer.  Then the direct mapping write is set-up.
844  */
845 static int
846 pipe_direct_write(wpipe, uio)
847 	struct pipe *wpipe;
848 	struct uio *uio;
849 {
850 	int error;
851 
852 retry:
853 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
854 	error = pipelock(wpipe, 1);
855 	if (wpipe->pipe_state & PIPE_EOF)
856 		error = EPIPE;
857 	if (error) {
858 		pipeunlock(wpipe);
859 		goto error1;
860 	}
861 	while (wpipe->pipe_state & PIPE_DIRECTW) {
862 		if (wpipe->pipe_state & PIPE_WANTR) {
863 			wpipe->pipe_state &= ~PIPE_WANTR;
864 			wakeup(wpipe);
865 		}
866 		pipeselwakeup(wpipe);
867 		wpipe->pipe_state |= PIPE_WANTW;
868 		pipeunlock(wpipe);
869 		error = msleep(wpipe, PIPE_MTX(wpipe),
870 		    PRIBIO | PCATCH, "pipdww", 0);
871 		if (error)
872 			goto error1;
873 		else
874 			goto retry;
875 	}
876 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
877 	if (wpipe->pipe_buffer.cnt > 0) {
878 		if (wpipe->pipe_state & PIPE_WANTR) {
879 			wpipe->pipe_state &= ~PIPE_WANTR;
880 			wakeup(wpipe);
881 		}
882 		pipeselwakeup(wpipe);
883 		wpipe->pipe_state |= PIPE_WANTW;
884 		pipeunlock(wpipe);
885 		error = msleep(wpipe, PIPE_MTX(wpipe),
886 		    PRIBIO | PCATCH, "pipdwc", 0);
887 		if (error)
888 			goto error1;
889 		else
890 			goto retry;
891 	}
892 
893 	wpipe->pipe_state |= PIPE_DIRECTW;
894 
895 	PIPE_UNLOCK(wpipe);
896 	error = pipe_build_write_buffer(wpipe, uio);
897 	PIPE_LOCK(wpipe);
898 	if (error) {
899 		wpipe->pipe_state &= ~PIPE_DIRECTW;
900 		pipeunlock(wpipe);
901 		goto error1;
902 	}
903 
904 	error = 0;
905 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
906 		if (wpipe->pipe_state & PIPE_EOF) {
907 			pipe_destroy_write_buffer(wpipe);
908 			pipeselwakeup(wpipe);
909 			pipeunlock(wpipe);
910 			error = EPIPE;
911 			goto error1;
912 		}
913 		if (wpipe->pipe_state & PIPE_WANTR) {
914 			wpipe->pipe_state &= ~PIPE_WANTR;
915 			wakeup(wpipe);
916 		}
917 		pipeselwakeup(wpipe);
918 		pipeunlock(wpipe);
919 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
920 		    "pipdwt", 0);
921 		pipelock(wpipe, 0);
922 	}
923 
924 	if (wpipe->pipe_state & PIPE_EOF)
925 		error = EPIPE;
926 	if (wpipe->pipe_state & PIPE_DIRECTW) {
927 		/*
928 		 * this bit of trickery substitutes a kernel buffer for
929 		 * the process that might be going away.
930 		 */
931 		pipe_clone_write_buffer(wpipe);
932 	} else {
933 		pipe_destroy_write_buffer(wpipe);
934 	}
935 	pipeunlock(wpipe);
936 	return (error);
937 
938 error1:
939 	wakeup(wpipe);
940 	return (error);
941 }
942 #endif
943 
944 static int
945 pipe_write(fp, uio, active_cred, flags, td)
946 	struct file *fp;
947 	struct uio *uio;
948 	struct ucred *active_cred;
949 	struct thread *td;
950 	int flags;
951 {
952 	int error = 0;
953 	int desiredsize, orig_resid;
954 	struct pipe *wpipe, *rpipe;
955 
956 	rpipe = fp->f_data;
957 	wpipe = rpipe->pipe_peer;
958 
959 	PIPE_LOCK(rpipe);
960 	error = pipelock(wpipe, 1);
961 	if (error) {
962 		PIPE_UNLOCK(rpipe);
963 		return (error);
964 	}
965 	/*
966 	 * detect loss of pipe read side, issue SIGPIPE if lost.
967 	 */
968 	if (wpipe->pipe_present != PIPE_ACTIVE ||
969 	    (wpipe->pipe_state & PIPE_EOF)) {
970 		pipeunlock(wpipe);
971 		PIPE_UNLOCK(rpipe);
972 		return (EPIPE);
973 	}
974 #ifdef MAC
975 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
976 	if (error) {
977 		pipeunlock(wpipe);
978 		PIPE_UNLOCK(rpipe);
979 		return (error);
980 	}
981 #endif
982 	++wpipe->pipe_busy;
983 
984 	/* Choose a larger size if it's advantageous */
985 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
986 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
987 		if (piperesizeallowed != 1)
988 			break;
989 		if (amountpipekva > maxpipekva / 2)
990 			break;
991 		if (desiredsize == BIG_PIPE_SIZE)
992 			break;
993 		desiredsize = desiredsize * 2;
994 	}
995 
996 	/* Choose a smaller size if we're in a OOM situation */
997 	if ((amountpipekva > (3 * maxpipekva) / 4) &&
998 		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
999 		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1000 		(piperesizeallowed == 1))
1001 		desiredsize = SMALL_PIPE_SIZE;
1002 
1003 	/* Resize if the above determined that a new size was necessary */
1004 	if ((desiredsize != wpipe->pipe_buffer.size) &&
1005 		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1006 		PIPE_UNLOCK(wpipe);
1007 		pipespace(wpipe, desiredsize);
1008 		PIPE_LOCK(wpipe);
1009 	}
1010 	if (wpipe->pipe_buffer.size == 0) {
1011 		/*
1012 		 * This can only happen for reverse direction use of pipes
1013 		 * in a complete OOM situation.
1014 		 */
1015 		error = ENOMEM;
1016 		--wpipe->pipe_busy;
1017 		pipeunlock(wpipe);
1018 		PIPE_UNLOCK(wpipe);
1019 		return (error);
1020 	}
1021 
1022 	pipeunlock(wpipe);
1023 
1024 	orig_resid = uio->uio_resid;
1025 
1026 	while (uio->uio_resid) {
1027 		int space;
1028 
1029 		pipelock(wpipe, 0);
1030 		if (wpipe->pipe_state & PIPE_EOF) {
1031 			pipeunlock(wpipe);
1032 			error = EPIPE;
1033 			break;
1034 		}
1035 #ifndef PIPE_NODIRECT
1036 		/*
1037 		 * If the transfer is large, we can gain performance if
1038 		 * we do process-to-process copies directly.
1039 		 * If the write is non-blocking, we don't use the
1040 		 * direct write mechanism.
1041 		 *
1042 		 * The direct write mechanism will detect the reader going
1043 		 * away on us.
1044 		 */
1045 		if (uio->uio_segflg == UIO_USERSPACE &&
1046 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1047 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1048 		    (fp->f_flag & FNONBLOCK) == 0) {
1049 			pipeunlock(wpipe);
1050 			error = pipe_direct_write(wpipe, uio);
1051 			if (error)
1052 				break;
1053 			continue;
1054 		}
1055 #endif
1056 
1057 		/*
1058 		 * Pipe buffered writes cannot be coincidental with
1059 		 * direct writes.  We wait until the currently executing
1060 		 * direct write is completed before we start filling the
1061 		 * pipe buffer.  We break out if a signal occurs or the
1062 		 * reader goes away.
1063 		 */
1064 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1065 			if (wpipe->pipe_state & PIPE_WANTR) {
1066 				wpipe->pipe_state &= ~PIPE_WANTR;
1067 				wakeup(wpipe);
1068 			}
1069 			pipeselwakeup(wpipe);
1070 			wpipe->pipe_state |= PIPE_WANTW;
1071 			pipeunlock(wpipe);
1072 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1073 			    "pipbww", 0);
1074 			if (error)
1075 				break;
1076 			else
1077 				continue;
1078 		}
1079 
1080 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1081 
1082 		/* Writes of size <= PIPE_BUF must be atomic. */
1083 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1084 			space = 0;
1085 
1086 		if (space > 0) {
1087 			int size;	/* Transfer size */
1088 			int segsize;	/* first segment to transfer */
1089 
1090 			/*
1091 			 * Transfer size is minimum of uio transfer
1092 			 * and free space in pipe buffer.
1093 			 */
1094 			if (space > uio->uio_resid)
1095 				size = uio->uio_resid;
1096 			else
1097 				size = space;
1098 			/*
1099 			 * First segment to transfer is minimum of
1100 			 * transfer size and contiguous space in
1101 			 * pipe buffer.  If first segment to transfer
1102 			 * is less than the transfer size, we've got
1103 			 * a wraparound in the buffer.
1104 			 */
1105 			segsize = wpipe->pipe_buffer.size -
1106 				wpipe->pipe_buffer.in;
1107 			if (segsize > size)
1108 				segsize = size;
1109 
1110 			/* Transfer first segment */
1111 
1112 			PIPE_UNLOCK(rpipe);
1113 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1114 					segsize, uio);
1115 			PIPE_LOCK(rpipe);
1116 
1117 			if (error == 0 && segsize < size) {
1118 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1119 					wpipe->pipe_buffer.size,
1120 					("Pipe buffer wraparound disappeared"));
1121 				/*
1122 				 * Transfer remaining part now, to
1123 				 * support atomic writes.  Wraparound
1124 				 * happened.
1125 				 */
1126 
1127 				PIPE_UNLOCK(rpipe);
1128 				error = uiomove(
1129 				    &wpipe->pipe_buffer.buffer[0],
1130 				    size - segsize, uio);
1131 				PIPE_LOCK(rpipe);
1132 			}
1133 			if (error == 0) {
1134 				wpipe->pipe_buffer.in += size;
1135 				if (wpipe->pipe_buffer.in >=
1136 				    wpipe->pipe_buffer.size) {
1137 					KASSERT(wpipe->pipe_buffer.in ==
1138 						size - segsize +
1139 						wpipe->pipe_buffer.size,
1140 						("Expected wraparound bad"));
1141 					wpipe->pipe_buffer.in = size - segsize;
1142 				}
1143 
1144 				wpipe->pipe_buffer.cnt += size;
1145 				KASSERT(wpipe->pipe_buffer.cnt <=
1146 					wpipe->pipe_buffer.size,
1147 					("Pipe buffer overflow"));
1148 			}
1149 			pipeunlock(wpipe);
1150 			if (error != 0)
1151 				break;
1152 		} else {
1153 			/*
1154 			 * If the "read-side" has been blocked, wake it up now.
1155 			 */
1156 			if (wpipe->pipe_state & PIPE_WANTR) {
1157 				wpipe->pipe_state &= ~PIPE_WANTR;
1158 				wakeup(wpipe);
1159 			}
1160 
1161 			/*
1162 			 * don't block on non-blocking I/O
1163 			 */
1164 			if (fp->f_flag & FNONBLOCK) {
1165 				error = EAGAIN;
1166 				pipeunlock(wpipe);
1167 				break;
1168 			}
1169 
1170 			/*
1171 			 * We have no more space and have something to offer,
1172 			 * wake up select/poll.
1173 			 */
1174 			pipeselwakeup(wpipe);
1175 
1176 			wpipe->pipe_state |= PIPE_WANTW;
1177 			pipeunlock(wpipe);
1178 			error = msleep(wpipe, PIPE_MTX(rpipe),
1179 			    PRIBIO | PCATCH, "pipewr", 0);
1180 			if (error != 0)
1181 				break;
1182 		}
1183 	}
1184 
1185 	pipelock(wpipe, 0);
1186 	--wpipe->pipe_busy;
1187 
1188 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1189 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1190 		wakeup(wpipe);
1191 	} else if (wpipe->pipe_buffer.cnt > 0) {
1192 		/*
1193 		 * If we have put any characters in the buffer, we wake up
1194 		 * the reader.
1195 		 */
1196 		if (wpipe->pipe_state & PIPE_WANTR) {
1197 			wpipe->pipe_state &= ~PIPE_WANTR;
1198 			wakeup(wpipe);
1199 		}
1200 	}
1201 
1202 	/*
1203 	 * Don't return EPIPE if I/O was successful
1204 	 */
1205 	if ((wpipe->pipe_buffer.cnt == 0) &&
1206 	    (uio->uio_resid == 0) &&
1207 	    (error == EPIPE)) {
1208 		error = 0;
1209 	}
1210 
1211 	if (error == 0)
1212 		vfs_timestamp(&wpipe->pipe_mtime);
1213 
1214 	/*
1215 	 * We have something to offer,
1216 	 * wake up select/poll.
1217 	 */
1218 	if (wpipe->pipe_buffer.cnt)
1219 		pipeselwakeup(wpipe);
1220 
1221 	pipeunlock(wpipe);
1222 	PIPE_UNLOCK(rpipe);
1223 	return (error);
1224 }
1225 
1226 /* ARGSUSED */
1227 static int
1228 pipe_truncate(fp, length, active_cred, td)
1229 	struct file *fp;
1230 	off_t length;
1231 	struct ucred *active_cred;
1232 	struct thread *td;
1233 {
1234 
1235 	return (EINVAL);
1236 }
1237 
1238 /*
1239  * we implement a very minimal set of ioctls for compatibility with sockets.
1240  */
1241 static int
1242 pipe_ioctl(fp, cmd, data, active_cred, td)
1243 	struct file *fp;
1244 	u_long cmd;
1245 	void *data;
1246 	struct ucred *active_cred;
1247 	struct thread *td;
1248 {
1249 	struct pipe *mpipe = fp->f_data;
1250 	int error;
1251 
1252 	PIPE_LOCK(mpipe);
1253 
1254 #ifdef MAC
1255 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1256 	if (error) {
1257 		PIPE_UNLOCK(mpipe);
1258 		return (error);
1259 	}
1260 #endif
1261 
1262 	error = 0;
1263 	switch (cmd) {
1264 
1265 	case FIONBIO:
1266 		break;
1267 
1268 	case FIOASYNC:
1269 		if (*(int *)data) {
1270 			mpipe->pipe_state |= PIPE_ASYNC;
1271 		} else {
1272 			mpipe->pipe_state &= ~PIPE_ASYNC;
1273 		}
1274 		break;
1275 
1276 	case FIONREAD:
1277 		if (mpipe->pipe_state & PIPE_DIRECTW)
1278 			*(int *)data = mpipe->pipe_map.cnt;
1279 		else
1280 			*(int *)data = mpipe->pipe_buffer.cnt;
1281 		break;
1282 
1283 	case FIOSETOWN:
1284 		PIPE_UNLOCK(mpipe);
1285 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1286 		goto out_unlocked;
1287 
1288 	case FIOGETOWN:
1289 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1290 		break;
1291 
1292 	/* This is deprecated, FIOSETOWN should be used instead. */
1293 	case TIOCSPGRP:
1294 		PIPE_UNLOCK(mpipe);
1295 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1296 		goto out_unlocked;
1297 
1298 	/* This is deprecated, FIOGETOWN should be used instead. */
1299 	case TIOCGPGRP:
1300 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1301 		break;
1302 
1303 	default:
1304 		error = ENOTTY;
1305 		break;
1306 	}
1307 	PIPE_UNLOCK(mpipe);
1308 out_unlocked:
1309 	return (error);
1310 }
1311 
1312 static int
1313 pipe_poll(fp, events, active_cred, td)
1314 	struct file *fp;
1315 	int events;
1316 	struct ucred *active_cred;
1317 	struct thread *td;
1318 {
1319 	struct pipe *rpipe = fp->f_data;
1320 	struct pipe *wpipe;
1321 	int revents = 0;
1322 #ifdef MAC
1323 	int error;
1324 #endif
1325 
1326 	wpipe = rpipe->pipe_peer;
1327 	PIPE_LOCK(rpipe);
1328 #ifdef MAC
1329 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1330 	if (error)
1331 		goto locked_error;
1332 #endif
1333 	if (events & (POLLIN | POLLRDNORM))
1334 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1335 		    (rpipe->pipe_buffer.cnt > 0))
1336 			revents |= events & (POLLIN | POLLRDNORM);
1337 
1338 	if (events & (POLLOUT | POLLWRNORM))
1339 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1340 		    (wpipe->pipe_state & PIPE_EOF) ||
1341 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1342 		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1343 			revents |= events & (POLLOUT | POLLWRNORM);
1344 
1345 	if ((events & POLLINIGNEOF) == 0) {
1346 		if (rpipe->pipe_state & PIPE_EOF) {
1347 			revents |= (events & (POLLIN | POLLRDNORM));
1348 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1349 			    (wpipe->pipe_state & PIPE_EOF))
1350 				revents |= POLLHUP;
1351 		}
1352 	}
1353 
1354 	if (revents == 0) {
1355 		if (events & (POLLIN | POLLRDNORM)) {
1356 			selrecord(td, &rpipe->pipe_sel);
1357 			if (SEL_WAITING(&rpipe->pipe_sel))
1358 				rpipe->pipe_state |= PIPE_SEL;
1359 		}
1360 
1361 		if (events & (POLLOUT | POLLWRNORM)) {
1362 			selrecord(td, &wpipe->pipe_sel);
1363 			if (SEL_WAITING(&wpipe->pipe_sel))
1364 				wpipe->pipe_state |= PIPE_SEL;
1365 		}
1366 	}
1367 #ifdef MAC
1368 locked_error:
1369 #endif
1370 	PIPE_UNLOCK(rpipe);
1371 
1372 	return (revents);
1373 }
1374 
1375 /*
1376  * We shouldn't need locks here as we're doing a read and this should
1377  * be a natural race.
1378  */
1379 static int
1380 pipe_stat(fp, ub, active_cred, td)
1381 	struct file *fp;
1382 	struct stat *ub;
1383 	struct ucred *active_cred;
1384 	struct thread *td;
1385 {
1386 	struct pipe *pipe = fp->f_data;
1387 #ifdef MAC
1388 	int error;
1389 
1390 	PIPE_LOCK(pipe);
1391 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1392 	PIPE_UNLOCK(pipe);
1393 	if (error)
1394 		return (error);
1395 #endif
1396 	bzero(ub, sizeof(*ub));
1397 	ub->st_mode = S_IFIFO;
1398 	ub->st_blksize = PAGE_SIZE;
1399 	if (pipe->pipe_state & PIPE_DIRECTW)
1400 		ub->st_size = pipe->pipe_map.cnt;
1401 	else
1402 		ub->st_size = pipe->pipe_buffer.cnt;
1403 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1404 	ub->st_atim = pipe->pipe_atime;
1405 	ub->st_mtim = pipe->pipe_mtime;
1406 	ub->st_ctim = pipe->pipe_ctime;
1407 	ub->st_uid = fp->f_cred->cr_uid;
1408 	ub->st_gid = fp->f_cred->cr_gid;
1409 	/*
1410 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1411 	 * XXX (st_dev, st_ino) should be unique.
1412 	 */
1413 	return (0);
1414 }
1415 
1416 /* ARGSUSED */
1417 static int
1418 pipe_close(fp, td)
1419 	struct file *fp;
1420 	struct thread *td;
1421 {
1422 	struct pipe *cpipe = fp->f_data;
1423 
1424 	fp->f_ops = &badfileops;
1425 	fp->f_data = NULL;
1426 	funsetown(&cpipe->pipe_sigio);
1427 	pipeclose(cpipe);
1428 	return (0);
1429 }
1430 
1431 static void
1432 pipe_free_kmem(cpipe)
1433 	struct pipe *cpipe;
1434 {
1435 
1436 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1437 	    ("pipe_free_kmem: pipe mutex locked"));
1438 
1439 	if (cpipe->pipe_buffer.buffer != NULL) {
1440 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1441 		vm_map_remove(pipe_map,
1442 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1443 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1444 		cpipe->pipe_buffer.buffer = NULL;
1445 	}
1446 #ifndef PIPE_NODIRECT
1447 	{
1448 		cpipe->pipe_map.cnt = 0;
1449 		cpipe->pipe_map.pos = 0;
1450 		cpipe->pipe_map.npages = 0;
1451 	}
1452 #endif
1453 }
1454 
1455 /*
1456  * shutdown the pipe
1457  */
1458 static void
1459 pipeclose(cpipe)
1460 	struct pipe *cpipe;
1461 {
1462 	struct pipepair *pp;
1463 	struct pipe *ppipe;
1464 
1465 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1466 
1467 	PIPE_LOCK(cpipe);
1468 	pipelock(cpipe, 0);
1469 	pp = cpipe->pipe_pair;
1470 
1471 	pipeselwakeup(cpipe);
1472 
1473 	/*
1474 	 * If the other side is blocked, wake it up saying that
1475 	 * we want to close it down.
1476 	 */
1477 	cpipe->pipe_state |= PIPE_EOF;
1478 	while (cpipe->pipe_busy) {
1479 		wakeup(cpipe);
1480 		cpipe->pipe_state |= PIPE_WANT;
1481 		pipeunlock(cpipe);
1482 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1483 		pipelock(cpipe, 0);
1484 	}
1485 
1486 
1487 	/*
1488 	 * Disconnect from peer, if any.
1489 	 */
1490 	ppipe = cpipe->pipe_peer;
1491 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1492 		pipeselwakeup(ppipe);
1493 
1494 		ppipe->pipe_state |= PIPE_EOF;
1495 		wakeup(ppipe);
1496 		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1497 	}
1498 
1499 	/*
1500 	 * Mark this endpoint as free.  Release kmem resources.  We
1501 	 * don't mark this endpoint as unused until we've finished
1502 	 * doing that, or the pipe might disappear out from under
1503 	 * us.
1504 	 */
1505 	PIPE_UNLOCK(cpipe);
1506 	pipe_free_kmem(cpipe);
1507 	PIPE_LOCK(cpipe);
1508 	cpipe->pipe_present = PIPE_CLOSING;
1509 	pipeunlock(cpipe);
1510 
1511 	/*
1512 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1513 	 * PIPE_FINALIZED, that allows other end to free the
1514 	 * pipe_pair, only after the knotes are completely dismantled.
1515 	 */
1516 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1517 	cpipe->pipe_present = PIPE_FINALIZED;
1518 	knlist_destroy(&cpipe->pipe_sel.si_note);
1519 
1520 	/*
1521 	 * If both endpoints are now closed, release the memory for the
1522 	 * pipe pair.  If not, unlock.
1523 	 */
1524 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1525 		PIPE_UNLOCK(cpipe);
1526 #ifdef MAC
1527 		mac_pipe_destroy(pp);
1528 #endif
1529 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1530 	} else
1531 		PIPE_UNLOCK(cpipe);
1532 }
1533 
1534 /*ARGSUSED*/
1535 static int
1536 pipe_kqfilter(struct file *fp, struct knote *kn)
1537 {
1538 	struct pipe *cpipe;
1539 
1540 	cpipe = kn->kn_fp->f_data;
1541 	PIPE_LOCK(cpipe);
1542 	switch (kn->kn_filter) {
1543 	case EVFILT_READ:
1544 		kn->kn_fop = &pipe_rfiltops;
1545 		break;
1546 	case EVFILT_WRITE:
1547 		kn->kn_fop = &pipe_wfiltops;
1548 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1549 			/* other end of pipe has been closed */
1550 			PIPE_UNLOCK(cpipe);
1551 			return (EPIPE);
1552 		}
1553 		cpipe = cpipe->pipe_peer;
1554 		break;
1555 	default:
1556 		PIPE_UNLOCK(cpipe);
1557 		return (EINVAL);
1558 	}
1559 
1560 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1561 	PIPE_UNLOCK(cpipe);
1562 	return (0);
1563 }
1564 
1565 static void
1566 filt_pipedetach(struct knote *kn)
1567 {
1568 	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1569 
1570 	PIPE_LOCK(cpipe);
1571 	if (kn->kn_filter == EVFILT_WRITE)
1572 		cpipe = cpipe->pipe_peer;
1573 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1574 	PIPE_UNLOCK(cpipe);
1575 }
1576 
1577 /*ARGSUSED*/
1578 static int
1579 filt_piperead(struct knote *kn, long hint)
1580 {
1581 	struct pipe *rpipe = kn->kn_fp->f_data;
1582 	struct pipe *wpipe = rpipe->pipe_peer;
1583 	int ret;
1584 
1585 	PIPE_LOCK(rpipe);
1586 	kn->kn_data = rpipe->pipe_buffer.cnt;
1587 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1588 		kn->kn_data = rpipe->pipe_map.cnt;
1589 
1590 	if ((rpipe->pipe_state & PIPE_EOF) ||
1591 	    wpipe->pipe_present != PIPE_ACTIVE ||
1592 	    (wpipe->pipe_state & PIPE_EOF)) {
1593 		kn->kn_flags |= EV_EOF;
1594 		PIPE_UNLOCK(rpipe);
1595 		return (1);
1596 	}
1597 	ret = kn->kn_data > 0;
1598 	PIPE_UNLOCK(rpipe);
1599 	return ret;
1600 }
1601 
1602 /*ARGSUSED*/
1603 static int
1604 filt_pipewrite(struct knote *kn, long hint)
1605 {
1606 	struct pipe *rpipe = kn->kn_fp->f_data;
1607 	struct pipe *wpipe = rpipe->pipe_peer;
1608 
1609 	PIPE_LOCK(rpipe);
1610 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1611 	    (wpipe->pipe_state & PIPE_EOF)) {
1612 		kn->kn_data = 0;
1613 		kn->kn_flags |= EV_EOF;
1614 		PIPE_UNLOCK(rpipe);
1615 		return (1);
1616 	}
1617 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1618 	if (wpipe->pipe_state & PIPE_DIRECTW)
1619 		kn->kn_data = 0;
1620 
1621 	PIPE_UNLOCK(rpipe);
1622 	return (kn->kn_data >= PIPE_BUF);
1623 }
1624