1 /*- 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 */ 19 20 /* 21 * This file contains a high-performance replacement for the socket-based 22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 23 * all features of sockets, but does do everything that pipes normally 24 * do. 25 */ 26 27 /* 28 * This code has two modes of operation, a small write mode and a large 29 * write mode. The small write mode acts like conventional pipes with 30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 32 * and PIPE_SIZE in size, the sending process pins the underlying pages in 33 * memory, and the receiving process copies directly from these pinned pages 34 * in the sending process. 35 * 36 * If the sending process receives a signal, it is possible that it will 37 * go away, and certainly its address space can change, because control 38 * is returned back to the user-mode side. In that case, the pipe code 39 * arranges to copy the buffer supplied by the user process, to a pageable 40 * kernel buffer, and the receiving process will grab the data from the 41 * pageable kernel buffer. Since signals don't happen all that often, 42 * the copy operation is normally eliminated. 43 * 44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 45 * happen for small transfers so that the system will not spend all of 46 * its time context switching. 47 * 48 * In order to limit the resource use of pipes, two sysctls exist: 49 * 50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 51 * address space available to us in pipe_map. This value is normally 52 * autotuned, but may also be loader tuned. 53 * 54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 55 * memory in use by pipes. 56 * 57 * Based on how large pipekva is relative to maxpipekva, the following 58 * will happen: 59 * 60 * 0% - 50%: 61 * New pipes are given 16K of memory backing, pipes may dynamically 62 * grow to as large as 64K where needed. 63 * 50% - 75%: 64 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 65 * existing pipes may NOT grow. 66 * 75% - 100%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes will be shrunk down to 4K whenever possible. 69 * 70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 72 * resize which MUST occur for reverse-direction pipes when they are 73 * first used. 74 * 75 * Additional information about the current state of pipes may be obtained 76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 77 * and kern.ipc.piperesizefail. 78 * 79 * Locking rules: There are two locks present here: A mutex, used via 80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 81 * the flag, as mutexes can not persist over uiomove. The mutex 82 * exists only to guard access to the flag, and is not in itself a 83 * locking mechanism. Also note that there is only a single mutex for 84 * both directions of a pipe. 85 * 86 * As pipelock() may have to sleep before it can acquire the flag, it 87 * is important to reread all data after a call to pipelock(); everything 88 * in the structure may have changed. 89 */ 90 91 #include <sys/cdefs.h> 92 __FBSDID("$FreeBSD$"); 93 94 #include <sys/param.h> 95 #include <sys/systm.h> 96 #include <sys/fcntl.h> 97 #include <sys/file.h> 98 #include <sys/filedesc.h> 99 #include <sys/filio.h> 100 #include <sys/kernel.h> 101 #include <sys/lock.h> 102 #include <sys/mutex.h> 103 #include <sys/ttycom.h> 104 #include <sys/stat.h> 105 #include <sys/malloc.h> 106 #include <sys/poll.h> 107 #include <sys/selinfo.h> 108 #include <sys/signalvar.h> 109 #include <sys/syscallsubr.h> 110 #include <sys/sysctl.h> 111 #include <sys/sysproto.h> 112 #include <sys/pipe.h> 113 #include <sys/proc.h> 114 #include <sys/vnode.h> 115 #include <sys/uio.h> 116 #include <sys/event.h> 117 118 #include <security/mac/mac_framework.h> 119 120 #include <vm/vm.h> 121 #include <vm/vm_param.h> 122 #include <vm/vm_object.h> 123 #include <vm/vm_kern.h> 124 #include <vm/vm_extern.h> 125 #include <vm/pmap.h> 126 #include <vm/vm_map.h> 127 #include <vm/vm_page.h> 128 #include <vm/uma.h> 129 130 /* 131 * Use this define if you want to disable *fancy* VM things. Expect an 132 * approx 30% decrease in transfer rate. This could be useful for 133 * NetBSD or OpenBSD. 134 */ 135 /* #define PIPE_NODIRECT */ 136 137 /* 138 * interfaces to the outside world 139 */ 140 static fo_rdwr_t pipe_read; 141 static fo_rdwr_t pipe_write; 142 static fo_truncate_t pipe_truncate; 143 static fo_ioctl_t pipe_ioctl; 144 static fo_poll_t pipe_poll; 145 static fo_kqfilter_t pipe_kqfilter; 146 static fo_stat_t pipe_stat; 147 static fo_close_t pipe_close; 148 149 static struct fileops pipeops = { 150 .fo_read = pipe_read, 151 .fo_write = pipe_write, 152 .fo_truncate = pipe_truncate, 153 .fo_ioctl = pipe_ioctl, 154 .fo_poll = pipe_poll, 155 .fo_kqfilter = pipe_kqfilter, 156 .fo_stat = pipe_stat, 157 .fo_close = pipe_close, 158 .fo_chmod = invfo_chmod, 159 .fo_chown = invfo_chown, 160 .fo_flags = DFLAG_PASSABLE 161 }; 162 163 static void filt_pipedetach(struct knote *kn); 164 static int filt_piperead(struct knote *kn, long hint); 165 static int filt_pipewrite(struct knote *kn, long hint); 166 167 static struct filterops pipe_rfiltops = { 168 .f_isfd = 1, 169 .f_detach = filt_pipedetach, 170 .f_event = filt_piperead 171 }; 172 static struct filterops pipe_wfiltops = { 173 .f_isfd = 1, 174 .f_detach = filt_pipedetach, 175 .f_event = filt_pipewrite 176 }; 177 178 /* 179 * Default pipe buffer size(s), this can be kind-of large now because pipe 180 * space is pageable. The pipe code will try to maintain locality of 181 * reference for performance reasons, so small amounts of outstanding I/O 182 * will not wipe the cache. 183 */ 184 #define MINPIPESIZE (PIPE_SIZE/3) 185 #define MAXPIPESIZE (2*PIPE_SIZE/3) 186 187 static long amountpipekva; 188 static int pipefragretry; 189 static int pipeallocfail; 190 static int piperesizefail; 191 static int piperesizeallowed = 1; 192 193 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, 194 &maxpipekva, 0, "Pipe KVA limit"); 195 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 196 &amountpipekva, 0, "Pipe KVA usage"); 197 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 198 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 199 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 200 &pipeallocfail, 0, "Pipe allocation failures"); 201 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 202 &piperesizefail, 0, "Pipe resize failures"); 203 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 204 &piperesizeallowed, 0, "Pipe resizing allowed"); 205 206 static void pipeinit(void *dummy __unused); 207 static void pipeclose(struct pipe *cpipe); 208 static void pipe_free_kmem(struct pipe *cpipe); 209 static int pipe_create(struct pipe *pipe, int backing); 210 static __inline int pipelock(struct pipe *cpipe, int catch); 211 static __inline void pipeunlock(struct pipe *cpipe); 212 static __inline void pipeselwakeup(struct pipe *cpipe); 213 #ifndef PIPE_NODIRECT 214 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 215 static void pipe_destroy_write_buffer(struct pipe *wpipe); 216 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 217 static void pipe_clone_write_buffer(struct pipe *wpipe); 218 #endif 219 static int pipespace(struct pipe *cpipe, int size); 220 static int pipespace_new(struct pipe *cpipe, int size); 221 222 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 223 static int pipe_zone_init(void *mem, int size, int flags); 224 static void pipe_zone_fini(void *mem, int size); 225 226 static uma_zone_t pipe_zone; 227 228 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 229 230 static void 231 pipeinit(void *dummy __unused) 232 { 233 234 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair), 235 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini, 236 UMA_ALIGN_PTR, 0); 237 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 238 } 239 240 static int 241 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 242 { 243 struct pipepair *pp; 244 struct pipe *rpipe, *wpipe; 245 246 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 247 248 pp = (struct pipepair *)mem; 249 250 /* 251 * We zero both pipe endpoints to make sure all the kmem pointers 252 * are NULL, flag fields are zero'd, etc. We timestamp both 253 * endpoints with the same time. 254 */ 255 rpipe = &pp->pp_rpipe; 256 bzero(rpipe, sizeof(*rpipe)); 257 vfs_timestamp(&rpipe->pipe_ctime); 258 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 259 260 wpipe = &pp->pp_wpipe; 261 bzero(wpipe, sizeof(*wpipe)); 262 wpipe->pipe_ctime = rpipe->pipe_ctime; 263 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 264 265 rpipe->pipe_peer = wpipe; 266 rpipe->pipe_pair = pp; 267 wpipe->pipe_peer = rpipe; 268 wpipe->pipe_pair = pp; 269 270 /* 271 * Mark both endpoints as present; they will later get free'd 272 * one at a time. When both are free'd, then the whole pair 273 * is released. 274 */ 275 rpipe->pipe_present = PIPE_ACTIVE; 276 wpipe->pipe_present = PIPE_ACTIVE; 277 278 /* 279 * Eventually, the MAC Framework may initialize the label 280 * in ctor or init, but for now we do it elswhere to avoid 281 * blocking in ctor or init. 282 */ 283 pp->pp_label = NULL; 284 285 return (0); 286 } 287 288 static int 289 pipe_zone_init(void *mem, int size, int flags) 290 { 291 struct pipepair *pp; 292 293 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 294 295 pp = (struct pipepair *)mem; 296 297 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 298 return (0); 299 } 300 301 static void 302 pipe_zone_fini(void *mem, int size) 303 { 304 struct pipepair *pp; 305 306 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 307 308 pp = (struct pipepair *)mem; 309 310 mtx_destroy(&pp->pp_mtx); 311 } 312 313 /* 314 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let 315 * the zone pick up the pieces via pipeclose(). 316 */ 317 int 318 kern_pipe(struct thread *td, int fildes[2]) 319 { 320 struct filedesc *fdp = td->td_proc->p_fd; 321 struct file *rf, *wf; 322 struct pipepair *pp; 323 struct pipe *rpipe, *wpipe; 324 int fd, error; 325 326 pp = uma_zalloc(pipe_zone, M_WAITOK); 327 #ifdef MAC 328 /* 329 * The MAC label is shared between the connected endpoints. As a 330 * result mac_pipe_init() and mac_pipe_create() are called once 331 * for the pair, and not on the endpoints. 332 */ 333 mac_pipe_init(pp); 334 mac_pipe_create(td->td_ucred, pp); 335 #endif 336 rpipe = &pp->pp_rpipe; 337 wpipe = &pp->pp_wpipe; 338 339 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe)); 340 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe)); 341 342 /* Only the forward direction pipe is backed by default */ 343 if ((error = pipe_create(rpipe, 1)) != 0 || 344 (error = pipe_create(wpipe, 0)) != 0) { 345 pipeclose(rpipe); 346 pipeclose(wpipe); 347 return (error); 348 } 349 350 rpipe->pipe_state |= PIPE_DIRECTOK; 351 wpipe->pipe_state |= PIPE_DIRECTOK; 352 353 error = falloc(td, &rf, &fd, 0); 354 if (error) { 355 pipeclose(rpipe); 356 pipeclose(wpipe); 357 return (error); 358 } 359 /* An extra reference on `rf' has been held for us by falloc(). */ 360 fildes[0] = fd; 361 362 /* 363 * Warning: once we've gotten past allocation of the fd for the 364 * read-side, we can only drop the read side via fdrop() in order 365 * to avoid races against processes which manage to dup() the read 366 * side while we are blocked trying to allocate the write side. 367 */ 368 finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops); 369 error = falloc(td, &wf, &fd, 0); 370 if (error) { 371 fdclose(fdp, rf, fildes[0], td); 372 fdrop(rf, td); 373 /* rpipe has been closed by fdrop(). */ 374 pipeclose(wpipe); 375 return (error); 376 } 377 /* An extra reference on `wf' has been held for us by falloc(). */ 378 finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops); 379 fdrop(wf, td); 380 fildes[1] = fd; 381 fdrop(rf, td); 382 383 return (0); 384 } 385 386 /* ARGSUSED */ 387 int 388 sys_pipe(struct thread *td, struct pipe_args *uap) 389 { 390 int error; 391 int fildes[2]; 392 393 error = kern_pipe(td, fildes); 394 if (error) 395 return (error); 396 397 td->td_retval[0] = fildes[0]; 398 td->td_retval[1] = fildes[1]; 399 400 return (0); 401 } 402 403 /* 404 * Allocate kva for pipe circular buffer, the space is pageable 405 * This routine will 'realloc' the size of a pipe safely, if it fails 406 * it will retain the old buffer. 407 * If it fails it will return ENOMEM. 408 */ 409 static int 410 pipespace_new(cpipe, size) 411 struct pipe *cpipe; 412 int size; 413 { 414 caddr_t buffer; 415 int error, cnt, firstseg; 416 static int curfail = 0; 417 static struct timeval lastfail; 418 419 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 420 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 421 ("pipespace: resize of direct writes not allowed")); 422 retry: 423 cnt = cpipe->pipe_buffer.cnt; 424 if (cnt > size) 425 size = cnt; 426 427 size = round_page(size); 428 buffer = (caddr_t) vm_map_min(pipe_map); 429 430 error = vm_map_find(pipe_map, NULL, 0, 431 (vm_offset_t *) &buffer, size, 1, 432 VM_PROT_ALL, VM_PROT_ALL, 0); 433 if (error != KERN_SUCCESS) { 434 if ((cpipe->pipe_buffer.buffer == NULL) && 435 (size > SMALL_PIPE_SIZE)) { 436 size = SMALL_PIPE_SIZE; 437 pipefragretry++; 438 goto retry; 439 } 440 if (cpipe->pipe_buffer.buffer == NULL) { 441 pipeallocfail++; 442 if (ppsratecheck(&lastfail, &curfail, 1)) 443 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 444 } else { 445 piperesizefail++; 446 } 447 return (ENOMEM); 448 } 449 450 /* copy data, then free old resources if we're resizing */ 451 if (cnt > 0) { 452 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 453 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 454 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 455 buffer, firstseg); 456 if ((cnt - firstseg) > 0) 457 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 458 cpipe->pipe_buffer.in); 459 } else { 460 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 461 buffer, cnt); 462 } 463 } 464 pipe_free_kmem(cpipe); 465 cpipe->pipe_buffer.buffer = buffer; 466 cpipe->pipe_buffer.size = size; 467 cpipe->pipe_buffer.in = cnt; 468 cpipe->pipe_buffer.out = 0; 469 cpipe->pipe_buffer.cnt = cnt; 470 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size); 471 return (0); 472 } 473 474 /* 475 * Wrapper for pipespace_new() that performs locking assertions. 476 */ 477 static int 478 pipespace(cpipe, size) 479 struct pipe *cpipe; 480 int size; 481 { 482 483 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 484 ("Unlocked pipe passed to pipespace")); 485 return (pipespace_new(cpipe, size)); 486 } 487 488 /* 489 * lock a pipe for I/O, blocking other access 490 */ 491 static __inline int 492 pipelock(cpipe, catch) 493 struct pipe *cpipe; 494 int catch; 495 { 496 int error; 497 498 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 499 while (cpipe->pipe_state & PIPE_LOCKFL) { 500 cpipe->pipe_state |= PIPE_LWANT; 501 error = msleep(cpipe, PIPE_MTX(cpipe), 502 catch ? (PRIBIO | PCATCH) : PRIBIO, 503 "pipelk", 0); 504 if (error != 0) 505 return (error); 506 } 507 cpipe->pipe_state |= PIPE_LOCKFL; 508 return (0); 509 } 510 511 /* 512 * unlock a pipe I/O lock 513 */ 514 static __inline void 515 pipeunlock(cpipe) 516 struct pipe *cpipe; 517 { 518 519 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 520 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 521 ("Unlocked pipe passed to pipeunlock")); 522 cpipe->pipe_state &= ~PIPE_LOCKFL; 523 if (cpipe->pipe_state & PIPE_LWANT) { 524 cpipe->pipe_state &= ~PIPE_LWANT; 525 wakeup(cpipe); 526 } 527 } 528 529 static __inline void 530 pipeselwakeup(cpipe) 531 struct pipe *cpipe; 532 { 533 534 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 535 if (cpipe->pipe_state & PIPE_SEL) { 536 selwakeuppri(&cpipe->pipe_sel, PSOCK); 537 if (!SEL_WAITING(&cpipe->pipe_sel)) 538 cpipe->pipe_state &= ~PIPE_SEL; 539 } 540 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 541 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 542 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 543 } 544 545 /* 546 * Initialize and allocate VM and memory for pipe. The structure 547 * will start out zero'd from the ctor, so we just manage the kmem. 548 */ 549 static int 550 pipe_create(pipe, backing) 551 struct pipe *pipe; 552 int backing; 553 { 554 int error; 555 556 if (backing) { 557 if (amountpipekva > maxpipekva / 2) 558 error = pipespace_new(pipe, SMALL_PIPE_SIZE); 559 else 560 error = pipespace_new(pipe, PIPE_SIZE); 561 } else { 562 /* If we're not backing this pipe, no need to do anything. */ 563 error = 0; 564 } 565 return (error); 566 } 567 568 /* ARGSUSED */ 569 static int 570 pipe_read(fp, uio, active_cred, flags, td) 571 struct file *fp; 572 struct uio *uio; 573 struct ucred *active_cred; 574 struct thread *td; 575 int flags; 576 { 577 struct pipe *rpipe = fp->f_data; 578 int error; 579 int nread = 0; 580 u_int size; 581 582 PIPE_LOCK(rpipe); 583 ++rpipe->pipe_busy; 584 error = pipelock(rpipe, 1); 585 if (error) 586 goto unlocked_error; 587 588 #ifdef MAC 589 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair); 590 if (error) 591 goto locked_error; 592 #endif 593 if (amountpipekva > (3 * maxpipekva) / 4) { 594 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 595 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 596 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 597 (piperesizeallowed == 1)) { 598 PIPE_UNLOCK(rpipe); 599 pipespace(rpipe, SMALL_PIPE_SIZE); 600 PIPE_LOCK(rpipe); 601 } 602 } 603 604 while (uio->uio_resid) { 605 /* 606 * normal pipe buffer receive 607 */ 608 if (rpipe->pipe_buffer.cnt > 0) { 609 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 610 if (size > rpipe->pipe_buffer.cnt) 611 size = rpipe->pipe_buffer.cnt; 612 if (size > (u_int) uio->uio_resid) 613 size = (u_int) uio->uio_resid; 614 615 PIPE_UNLOCK(rpipe); 616 error = uiomove( 617 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 618 size, uio); 619 PIPE_LOCK(rpipe); 620 if (error) 621 break; 622 623 rpipe->pipe_buffer.out += size; 624 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 625 rpipe->pipe_buffer.out = 0; 626 627 rpipe->pipe_buffer.cnt -= size; 628 629 /* 630 * If there is no more to read in the pipe, reset 631 * its pointers to the beginning. This improves 632 * cache hit stats. 633 */ 634 if (rpipe->pipe_buffer.cnt == 0) { 635 rpipe->pipe_buffer.in = 0; 636 rpipe->pipe_buffer.out = 0; 637 } 638 nread += size; 639 #ifndef PIPE_NODIRECT 640 /* 641 * Direct copy, bypassing a kernel buffer. 642 */ 643 } else if ((size = rpipe->pipe_map.cnt) && 644 (rpipe->pipe_state & PIPE_DIRECTW)) { 645 if (size > (u_int) uio->uio_resid) 646 size = (u_int) uio->uio_resid; 647 648 PIPE_UNLOCK(rpipe); 649 error = uiomove_fromphys(rpipe->pipe_map.ms, 650 rpipe->pipe_map.pos, size, uio); 651 PIPE_LOCK(rpipe); 652 if (error) 653 break; 654 nread += size; 655 rpipe->pipe_map.pos += size; 656 rpipe->pipe_map.cnt -= size; 657 if (rpipe->pipe_map.cnt == 0) { 658 rpipe->pipe_state &= ~PIPE_DIRECTW; 659 wakeup(rpipe); 660 } 661 #endif 662 } else { 663 /* 664 * detect EOF condition 665 * read returns 0 on EOF, no need to set error 666 */ 667 if (rpipe->pipe_state & PIPE_EOF) 668 break; 669 670 /* 671 * If the "write-side" has been blocked, wake it up now. 672 */ 673 if (rpipe->pipe_state & PIPE_WANTW) { 674 rpipe->pipe_state &= ~PIPE_WANTW; 675 wakeup(rpipe); 676 } 677 678 /* 679 * Break if some data was read. 680 */ 681 if (nread > 0) 682 break; 683 684 /* 685 * Unlock the pipe buffer for our remaining processing. 686 * We will either break out with an error or we will 687 * sleep and relock to loop. 688 */ 689 pipeunlock(rpipe); 690 691 /* 692 * Handle non-blocking mode operation or 693 * wait for more data. 694 */ 695 if (fp->f_flag & FNONBLOCK) { 696 error = EAGAIN; 697 } else { 698 rpipe->pipe_state |= PIPE_WANTR; 699 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 700 PRIBIO | PCATCH, 701 "piperd", 0)) == 0) 702 error = pipelock(rpipe, 1); 703 } 704 if (error) 705 goto unlocked_error; 706 } 707 } 708 #ifdef MAC 709 locked_error: 710 #endif 711 pipeunlock(rpipe); 712 713 /* XXX: should probably do this before getting any locks. */ 714 if (error == 0) 715 vfs_timestamp(&rpipe->pipe_atime); 716 unlocked_error: 717 --rpipe->pipe_busy; 718 719 /* 720 * PIPE_WANT processing only makes sense if pipe_busy is 0. 721 */ 722 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 723 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 724 wakeup(rpipe); 725 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 726 /* 727 * Handle write blocking hysteresis. 728 */ 729 if (rpipe->pipe_state & PIPE_WANTW) { 730 rpipe->pipe_state &= ~PIPE_WANTW; 731 wakeup(rpipe); 732 } 733 } 734 735 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 736 pipeselwakeup(rpipe); 737 738 PIPE_UNLOCK(rpipe); 739 return (error); 740 } 741 742 #ifndef PIPE_NODIRECT 743 /* 744 * Map the sending processes' buffer into kernel space and wire it. 745 * This is similar to a physical write operation. 746 */ 747 static int 748 pipe_build_write_buffer(wpipe, uio) 749 struct pipe *wpipe; 750 struct uio *uio; 751 { 752 u_int size; 753 int i; 754 755 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 756 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 757 ("Clone attempt on non-direct write pipe!")); 758 759 size = (u_int) uio->uio_iov->iov_len; 760 if (size > wpipe->pipe_buffer.size) 761 size = wpipe->pipe_buffer.size; 762 763 if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 764 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ, 765 wpipe->pipe_map.ms, PIPENPAGES)) < 0) 766 return (EFAULT); 767 768 /* 769 * set up the control block 770 */ 771 wpipe->pipe_map.npages = i; 772 wpipe->pipe_map.pos = 773 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 774 wpipe->pipe_map.cnt = size; 775 776 /* 777 * and update the uio data 778 */ 779 780 uio->uio_iov->iov_len -= size; 781 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 782 if (uio->uio_iov->iov_len == 0) 783 uio->uio_iov++; 784 uio->uio_resid -= size; 785 uio->uio_offset += size; 786 return (0); 787 } 788 789 /* 790 * unmap and unwire the process buffer 791 */ 792 static void 793 pipe_destroy_write_buffer(wpipe) 794 struct pipe *wpipe; 795 { 796 797 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 798 vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages); 799 wpipe->pipe_map.npages = 0; 800 } 801 802 /* 803 * In the case of a signal, the writing process might go away. This 804 * code copies the data into the circular buffer so that the source 805 * pages can be freed without loss of data. 806 */ 807 static void 808 pipe_clone_write_buffer(wpipe) 809 struct pipe *wpipe; 810 { 811 struct uio uio; 812 struct iovec iov; 813 int size; 814 int pos; 815 816 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 817 size = wpipe->pipe_map.cnt; 818 pos = wpipe->pipe_map.pos; 819 820 wpipe->pipe_buffer.in = size; 821 wpipe->pipe_buffer.out = 0; 822 wpipe->pipe_buffer.cnt = size; 823 wpipe->pipe_state &= ~PIPE_DIRECTW; 824 825 PIPE_UNLOCK(wpipe); 826 iov.iov_base = wpipe->pipe_buffer.buffer; 827 iov.iov_len = size; 828 uio.uio_iov = &iov; 829 uio.uio_iovcnt = 1; 830 uio.uio_offset = 0; 831 uio.uio_resid = size; 832 uio.uio_segflg = UIO_SYSSPACE; 833 uio.uio_rw = UIO_READ; 834 uio.uio_td = curthread; 835 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 836 PIPE_LOCK(wpipe); 837 pipe_destroy_write_buffer(wpipe); 838 } 839 840 /* 841 * This implements the pipe buffer write mechanism. Note that only 842 * a direct write OR a normal pipe write can be pending at any given time. 843 * If there are any characters in the pipe buffer, the direct write will 844 * be deferred until the receiving process grabs all of the bytes from 845 * the pipe buffer. Then the direct mapping write is set-up. 846 */ 847 static int 848 pipe_direct_write(wpipe, uio) 849 struct pipe *wpipe; 850 struct uio *uio; 851 { 852 int error; 853 854 retry: 855 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 856 error = pipelock(wpipe, 1); 857 if (wpipe->pipe_state & PIPE_EOF) 858 error = EPIPE; 859 if (error) { 860 pipeunlock(wpipe); 861 goto error1; 862 } 863 while (wpipe->pipe_state & PIPE_DIRECTW) { 864 if (wpipe->pipe_state & PIPE_WANTR) { 865 wpipe->pipe_state &= ~PIPE_WANTR; 866 wakeup(wpipe); 867 } 868 pipeselwakeup(wpipe); 869 wpipe->pipe_state |= PIPE_WANTW; 870 pipeunlock(wpipe); 871 error = msleep(wpipe, PIPE_MTX(wpipe), 872 PRIBIO | PCATCH, "pipdww", 0); 873 if (error) 874 goto error1; 875 else 876 goto retry; 877 } 878 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 879 if (wpipe->pipe_buffer.cnt > 0) { 880 if (wpipe->pipe_state & PIPE_WANTR) { 881 wpipe->pipe_state &= ~PIPE_WANTR; 882 wakeup(wpipe); 883 } 884 pipeselwakeup(wpipe); 885 wpipe->pipe_state |= PIPE_WANTW; 886 pipeunlock(wpipe); 887 error = msleep(wpipe, PIPE_MTX(wpipe), 888 PRIBIO | PCATCH, "pipdwc", 0); 889 if (error) 890 goto error1; 891 else 892 goto retry; 893 } 894 895 wpipe->pipe_state |= PIPE_DIRECTW; 896 897 PIPE_UNLOCK(wpipe); 898 error = pipe_build_write_buffer(wpipe, uio); 899 PIPE_LOCK(wpipe); 900 if (error) { 901 wpipe->pipe_state &= ~PIPE_DIRECTW; 902 pipeunlock(wpipe); 903 goto error1; 904 } 905 906 error = 0; 907 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 908 if (wpipe->pipe_state & PIPE_EOF) { 909 pipe_destroy_write_buffer(wpipe); 910 pipeselwakeup(wpipe); 911 pipeunlock(wpipe); 912 error = EPIPE; 913 goto error1; 914 } 915 if (wpipe->pipe_state & PIPE_WANTR) { 916 wpipe->pipe_state &= ~PIPE_WANTR; 917 wakeup(wpipe); 918 } 919 pipeselwakeup(wpipe); 920 pipeunlock(wpipe); 921 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 922 "pipdwt", 0); 923 pipelock(wpipe, 0); 924 } 925 926 if (wpipe->pipe_state & PIPE_EOF) 927 error = EPIPE; 928 if (wpipe->pipe_state & PIPE_DIRECTW) { 929 /* 930 * this bit of trickery substitutes a kernel buffer for 931 * the process that might be going away. 932 */ 933 pipe_clone_write_buffer(wpipe); 934 } else { 935 pipe_destroy_write_buffer(wpipe); 936 } 937 pipeunlock(wpipe); 938 return (error); 939 940 error1: 941 wakeup(wpipe); 942 return (error); 943 } 944 #endif 945 946 static int 947 pipe_write(fp, uio, active_cred, flags, td) 948 struct file *fp; 949 struct uio *uio; 950 struct ucred *active_cred; 951 struct thread *td; 952 int flags; 953 { 954 int error = 0; 955 int desiredsize, orig_resid; 956 struct pipe *wpipe, *rpipe; 957 958 rpipe = fp->f_data; 959 wpipe = rpipe->pipe_peer; 960 961 PIPE_LOCK(rpipe); 962 error = pipelock(wpipe, 1); 963 if (error) { 964 PIPE_UNLOCK(rpipe); 965 return (error); 966 } 967 /* 968 * detect loss of pipe read side, issue SIGPIPE if lost. 969 */ 970 if (wpipe->pipe_present != PIPE_ACTIVE || 971 (wpipe->pipe_state & PIPE_EOF)) { 972 pipeunlock(wpipe); 973 PIPE_UNLOCK(rpipe); 974 return (EPIPE); 975 } 976 #ifdef MAC 977 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair); 978 if (error) { 979 pipeunlock(wpipe); 980 PIPE_UNLOCK(rpipe); 981 return (error); 982 } 983 #endif 984 ++wpipe->pipe_busy; 985 986 /* Choose a larger size if it's advantageous */ 987 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 988 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 989 if (piperesizeallowed != 1) 990 break; 991 if (amountpipekva > maxpipekva / 2) 992 break; 993 if (desiredsize == BIG_PIPE_SIZE) 994 break; 995 desiredsize = desiredsize * 2; 996 } 997 998 /* Choose a smaller size if we're in a OOM situation */ 999 if ((amountpipekva > (3 * maxpipekva) / 4) && 1000 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 1001 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1002 (piperesizeallowed == 1)) 1003 desiredsize = SMALL_PIPE_SIZE; 1004 1005 /* Resize if the above determined that a new size was necessary */ 1006 if ((desiredsize != wpipe->pipe_buffer.size) && 1007 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1008 PIPE_UNLOCK(wpipe); 1009 pipespace(wpipe, desiredsize); 1010 PIPE_LOCK(wpipe); 1011 } 1012 if (wpipe->pipe_buffer.size == 0) { 1013 /* 1014 * This can only happen for reverse direction use of pipes 1015 * in a complete OOM situation. 1016 */ 1017 error = ENOMEM; 1018 --wpipe->pipe_busy; 1019 pipeunlock(wpipe); 1020 PIPE_UNLOCK(wpipe); 1021 return (error); 1022 } 1023 1024 pipeunlock(wpipe); 1025 1026 orig_resid = uio->uio_resid; 1027 1028 while (uio->uio_resid) { 1029 int space; 1030 1031 pipelock(wpipe, 0); 1032 if (wpipe->pipe_state & PIPE_EOF) { 1033 pipeunlock(wpipe); 1034 error = EPIPE; 1035 break; 1036 } 1037 #ifndef PIPE_NODIRECT 1038 /* 1039 * If the transfer is large, we can gain performance if 1040 * we do process-to-process copies directly. 1041 * If the write is non-blocking, we don't use the 1042 * direct write mechanism. 1043 * 1044 * The direct write mechanism will detect the reader going 1045 * away on us. 1046 */ 1047 if (uio->uio_segflg == UIO_USERSPACE && 1048 uio->uio_iov->iov_len >= PIPE_MINDIRECT && 1049 wpipe->pipe_buffer.size >= PIPE_MINDIRECT && 1050 (fp->f_flag & FNONBLOCK) == 0) { 1051 pipeunlock(wpipe); 1052 error = pipe_direct_write(wpipe, uio); 1053 if (error) 1054 break; 1055 continue; 1056 } 1057 #endif 1058 1059 /* 1060 * Pipe buffered writes cannot be coincidental with 1061 * direct writes. We wait until the currently executing 1062 * direct write is completed before we start filling the 1063 * pipe buffer. We break out if a signal occurs or the 1064 * reader goes away. 1065 */ 1066 if (wpipe->pipe_state & PIPE_DIRECTW) { 1067 if (wpipe->pipe_state & PIPE_WANTR) { 1068 wpipe->pipe_state &= ~PIPE_WANTR; 1069 wakeup(wpipe); 1070 } 1071 pipeselwakeup(wpipe); 1072 wpipe->pipe_state |= PIPE_WANTW; 1073 pipeunlock(wpipe); 1074 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1075 "pipbww", 0); 1076 if (error) 1077 break; 1078 else 1079 continue; 1080 } 1081 1082 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1083 1084 /* Writes of size <= PIPE_BUF must be atomic. */ 1085 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1086 space = 0; 1087 1088 if (space > 0) { 1089 int size; /* Transfer size */ 1090 int segsize; /* first segment to transfer */ 1091 1092 /* 1093 * Transfer size is minimum of uio transfer 1094 * and free space in pipe buffer. 1095 */ 1096 if (space > uio->uio_resid) 1097 size = uio->uio_resid; 1098 else 1099 size = space; 1100 /* 1101 * First segment to transfer is minimum of 1102 * transfer size and contiguous space in 1103 * pipe buffer. If first segment to transfer 1104 * is less than the transfer size, we've got 1105 * a wraparound in the buffer. 1106 */ 1107 segsize = wpipe->pipe_buffer.size - 1108 wpipe->pipe_buffer.in; 1109 if (segsize > size) 1110 segsize = size; 1111 1112 /* Transfer first segment */ 1113 1114 PIPE_UNLOCK(rpipe); 1115 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1116 segsize, uio); 1117 PIPE_LOCK(rpipe); 1118 1119 if (error == 0 && segsize < size) { 1120 KASSERT(wpipe->pipe_buffer.in + segsize == 1121 wpipe->pipe_buffer.size, 1122 ("Pipe buffer wraparound disappeared")); 1123 /* 1124 * Transfer remaining part now, to 1125 * support atomic writes. Wraparound 1126 * happened. 1127 */ 1128 1129 PIPE_UNLOCK(rpipe); 1130 error = uiomove( 1131 &wpipe->pipe_buffer.buffer[0], 1132 size - segsize, uio); 1133 PIPE_LOCK(rpipe); 1134 } 1135 if (error == 0) { 1136 wpipe->pipe_buffer.in += size; 1137 if (wpipe->pipe_buffer.in >= 1138 wpipe->pipe_buffer.size) { 1139 KASSERT(wpipe->pipe_buffer.in == 1140 size - segsize + 1141 wpipe->pipe_buffer.size, 1142 ("Expected wraparound bad")); 1143 wpipe->pipe_buffer.in = size - segsize; 1144 } 1145 1146 wpipe->pipe_buffer.cnt += size; 1147 KASSERT(wpipe->pipe_buffer.cnt <= 1148 wpipe->pipe_buffer.size, 1149 ("Pipe buffer overflow")); 1150 } 1151 pipeunlock(wpipe); 1152 if (error != 0) 1153 break; 1154 } else { 1155 /* 1156 * If the "read-side" has been blocked, wake it up now. 1157 */ 1158 if (wpipe->pipe_state & PIPE_WANTR) { 1159 wpipe->pipe_state &= ~PIPE_WANTR; 1160 wakeup(wpipe); 1161 } 1162 1163 /* 1164 * don't block on non-blocking I/O 1165 */ 1166 if (fp->f_flag & FNONBLOCK) { 1167 error = EAGAIN; 1168 pipeunlock(wpipe); 1169 break; 1170 } 1171 1172 /* 1173 * We have no more space and have something to offer, 1174 * wake up select/poll. 1175 */ 1176 pipeselwakeup(wpipe); 1177 1178 wpipe->pipe_state |= PIPE_WANTW; 1179 pipeunlock(wpipe); 1180 error = msleep(wpipe, PIPE_MTX(rpipe), 1181 PRIBIO | PCATCH, "pipewr", 0); 1182 if (error != 0) 1183 break; 1184 } 1185 } 1186 1187 pipelock(wpipe, 0); 1188 --wpipe->pipe_busy; 1189 1190 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1191 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1192 wakeup(wpipe); 1193 } else if (wpipe->pipe_buffer.cnt > 0) { 1194 /* 1195 * If we have put any characters in the buffer, we wake up 1196 * the reader. 1197 */ 1198 if (wpipe->pipe_state & PIPE_WANTR) { 1199 wpipe->pipe_state &= ~PIPE_WANTR; 1200 wakeup(wpipe); 1201 } 1202 } 1203 1204 /* 1205 * Don't return EPIPE if I/O was successful 1206 */ 1207 if ((wpipe->pipe_buffer.cnt == 0) && 1208 (uio->uio_resid == 0) && 1209 (error == EPIPE)) { 1210 error = 0; 1211 } 1212 1213 if (error == 0) 1214 vfs_timestamp(&wpipe->pipe_mtime); 1215 1216 /* 1217 * We have something to offer, 1218 * wake up select/poll. 1219 */ 1220 if (wpipe->pipe_buffer.cnt) 1221 pipeselwakeup(wpipe); 1222 1223 pipeunlock(wpipe); 1224 PIPE_UNLOCK(rpipe); 1225 return (error); 1226 } 1227 1228 /* ARGSUSED */ 1229 static int 1230 pipe_truncate(fp, length, active_cred, td) 1231 struct file *fp; 1232 off_t length; 1233 struct ucred *active_cred; 1234 struct thread *td; 1235 { 1236 1237 return (EINVAL); 1238 } 1239 1240 /* 1241 * we implement a very minimal set of ioctls for compatibility with sockets. 1242 */ 1243 static int 1244 pipe_ioctl(fp, cmd, data, active_cred, td) 1245 struct file *fp; 1246 u_long cmd; 1247 void *data; 1248 struct ucred *active_cred; 1249 struct thread *td; 1250 { 1251 struct pipe *mpipe = fp->f_data; 1252 int error; 1253 1254 PIPE_LOCK(mpipe); 1255 1256 #ifdef MAC 1257 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1258 if (error) { 1259 PIPE_UNLOCK(mpipe); 1260 return (error); 1261 } 1262 #endif 1263 1264 error = 0; 1265 switch (cmd) { 1266 1267 case FIONBIO: 1268 break; 1269 1270 case FIOASYNC: 1271 if (*(int *)data) { 1272 mpipe->pipe_state |= PIPE_ASYNC; 1273 } else { 1274 mpipe->pipe_state &= ~PIPE_ASYNC; 1275 } 1276 break; 1277 1278 case FIONREAD: 1279 if (mpipe->pipe_state & PIPE_DIRECTW) 1280 *(int *)data = mpipe->pipe_map.cnt; 1281 else 1282 *(int *)data = mpipe->pipe_buffer.cnt; 1283 break; 1284 1285 case FIOSETOWN: 1286 PIPE_UNLOCK(mpipe); 1287 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1288 goto out_unlocked; 1289 1290 case FIOGETOWN: 1291 *(int *)data = fgetown(&mpipe->pipe_sigio); 1292 break; 1293 1294 /* This is deprecated, FIOSETOWN should be used instead. */ 1295 case TIOCSPGRP: 1296 PIPE_UNLOCK(mpipe); 1297 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1298 goto out_unlocked; 1299 1300 /* This is deprecated, FIOGETOWN should be used instead. */ 1301 case TIOCGPGRP: 1302 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1303 break; 1304 1305 default: 1306 error = ENOTTY; 1307 break; 1308 } 1309 PIPE_UNLOCK(mpipe); 1310 out_unlocked: 1311 return (error); 1312 } 1313 1314 static int 1315 pipe_poll(fp, events, active_cred, td) 1316 struct file *fp; 1317 int events; 1318 struct ucred *active_cred; 1319 struct thread *td; 1320 { 1321 struct pipe *rpipe = fp->f_data; 1322 struct pipe *wpipe; 1323 int revents = 0; 1324 #ifdef MAC 1325 int error; 1326 #endif 1327 1328 wpipe = rpipe->pipe_peer; 1329 PIPE_LOCK(rpipe); 1330 #ifdef MAC 1331 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair); 1332 if (error) 1333 goto locked_error; 1334 #endif 1335 if (events & (POLLIN | POLLRDNORM)) 1336 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1337 (rpipe->pipe_buffer.cnt > 0)) 1338 revents |= events & (POLLIN | POLLRDNORM); 1339 1340 if (events & (POLLOUT | POLLWRNORM)) 1341 if (wpipe->pipe_present != PIPE_ACTIVE || 1342 (wpipe->pipe_state & PIPE_EOF) || 1343 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1344 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1345 revents |= events & (POLLOUT | POLLWRNORM); 1346 1347 if ((events & POLLINIGNEOF) == 0) { 1348 if (rpipe->pipe_state & PIPE_EOF) { 1349 revents |= (events & (POLLIN | POLLRDNORM)); 1350 if (wpipe->pipe_present != PIPE_ACTIVE || 1351 (wpipe->pipe_state & PIPE_EOF)) 1352 revents |= POLLHUP; 1353 } 1354 } 1355 1356 if (revents == 0) { 1357 if (events & (POLLIN | POLLRDNORM)) { 1358 selrecord(td, &rpipe->pipe_sel); 1359 if (SEL_WAITING(&rpipe->pipe_sel)) 1360 rpipe->pipe_state |= PIPE_SEL; 1361 } 1362 1363 if (events & (POLLOUT | POLLWRNORM)) { 1364 selrecord(td, &wpipe->pipe_sel); 1365 if (SEL_WAITING(&wpipe->pipe_sel)) 1366 wpipe->pipe_state |= PIPE_SEL; 1367 } 1368 } 1369 #ifdef MAC 1370 locked_error: 1371 #endif 1372 PIPE_UNLOCK(rpipe); 1373 1374 return (revents); 1375 } 1376 1377 /* 1378 * We shouldn't need locks here as we're doing a read and this should 1379 * be a natural race. 1380 */ 1381 static int 1382 pipe_stat(fp, ub, active_cred, td) 1383 struct file *fp; 1384 struct stat *ub; 1385 struct ucred *active_cred; 1386 struct thread *td; 1387 { 1388 struct pipe *pipe = fp->f_data; 1389 #ifdef MAC 1390 int error; 1391 1392 PIPE_LOCK(pipe); 1393 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair); 1394 PIPE_UNLOCK(pipe); 1395 if (error) 1396 return (error); 1397 #endif 1398 bzero(ub, sizeof(*ub)); 1399 ub->st_mode = S_IFIFO; 1400 ub->st_blksize = PAGE_SIZE; 1401 if (pipe->pipe_state & PIPE_DIRECTW) 1402 ub->st_size = pipe->pipe_map.cnt; 1403 else 1404 ub->st_size = pipe->pipe_buffer.cnt; 1405 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1406 ub->st_atim = pipe->pipe_atime; 1407 ub->st_mtim = pipe->pipe_mtime; 1408 ub->st_ctim = pipe->pipe_ctime; 1409 ub->st_uid = fp->f_cred->cr_uid; 1410 ub->st_gid = fp->f_cred->cr_gid; 1411 /* 1412 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1413 * XXX (st_dev, st_ino) should be unique. 1414 */ 1415 return (0); 1416 } 1417 1418 /* ARGSUSED */ 1419 static int 1420 pipe_close(fp, td) 1421 struct file *fp; 1422 struct thread *td; 1423 { 1424 struct pipe *cpipe = fp->f_data; 1425 1426 fp->f_ops = &badfileops; 1427 fp->f_data = NULL; 1428 funsetown(&cpipe->pipe_sigio); 1429 pipeclose(cpipe); 1430 return (0); 1431 } 1432 1433 static void 1434 pipe_free_kmem(cpipe) 1435 struct pipe *cpipe; 1436 { 1437 1438 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1439 ("pipe_free_kmem: pipe mutex locked")); 1440 1441 if (cpipe->pipe_buffer.buffer != NULL) { 1442 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size); 1443 vm_map_remove(pipe_map, 1444 (vm_offset_t)cpipe->pipe_buffer.buffer, 1445 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1446 cpipe->pipe_buffer.buffer = NULL; 1447 } 1448 #ifndef PIPE_NODIRECT 1449 { 1450 cpipe->pipe_map.cnt = 0; 1451 cpipe->pipe_map.pos = 0; 1452 cpipe->pipe_map.npages = 0; 1453 } 1454 #endif 1455 } 1456 1457 /* 1458 * shutdown the pipe 1459 */ 1460 static void 1461 pipeclose(cpipe) 1462 struct pipe *cpipe; 1463 { 1464 struct pipepair *pp; 1465 struct pipe *ppipe; 1466 1467 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1468 1469 PIPE_LOCK(cpipe); 1470 pipelock(cpipe, 0); 1471 pp = cpipe->pipe_pair; 1472 1473 pipeselwakeup(cpipe); 1474 1475 /* 1476 * If the other side is blocked, wake it up saying that 1477 * we want to close it down. 1478 */ 1479 cpipe->pipe_state |= PIPE_EOF; 1480 while (cpipe->pipe_busy) { 1481 wakeup(cpipe); 1482 cpipe->pipe_state |= PIPE_WANT; 1483 pipeunlock(cpipe); 1484 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1485 pipelock(cpipe, 0); 1486 } 1487 1488 1489 /* 1490 * Disconnect from peer, if any. 1491 */ 1492 ppipe = cpipe->pipe_peer; 1493 if (ppipe->pipe_present == PIPE_ACTIVE) { 1494 pipeselwakeup(ppipe); 1495 1496 ppipe->pipe_state |= PIPE_EOF; 1497 wakeup(ppipe); 1498 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1499 } 1500 1501 /* 1502 * Mark this endpoint as free. Release kmem resources. We 1503 * don't mark this endpoint as unused until we've finished 1504 * doing that, or the pipe might disappear out from under 1505 * us. 1506 */ 1507 PIPE_UNLOCK(cpipe); 1508 pipe_free_kmem(cpipe); 1509 PIPE_LOCK(cpipe); 1510 cpipe->pipe_present = PIPE_CLOSING; 1511 pipeunlock(cpipe); 1512 1513 /* 1514 * knlist_clear() may sleep dropping the PIPE_MTX. Set the 1515 * PIPE_FINALIZED, that allows other end to free the 1516 * pipe_pair, only after the knotes are completely dismantled. 1517 */ 1518 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1519 cpipe->pipe_present = PIPE_FINALIZED; 1520 seldrain(&cpipe->pipe_sel); 1521 knlist_destroy(&cpipe->pipe_sel.si_note); 1522 1523 /* 1524 * If both endpoints are now closed, release the memory for the 1525 * pipe pair. If not, unlock. 1526 */ 1527 if (ppipe->pipe_present == PIPE_FINALIZED) { 1528 PIPE_UNLOCK(cpipe); 1529 #ifdef MAC 1530 mac_pipe_destroy(pp); 1531 #endif 1532 uma_zfree(pipe_zone, cpipe->pipe_pair); 1533 } else 1534 PIPE_UNLOCK(cpipe); 1535 } 1536 1537 /*ARGSUSED*/ 1538 static int 1539 pipe_kqfilter(struct file *fp, struct knote *kn) 1540 { 1541 struct pipe *cpipe; 1542 1543 cpipe = kn->kn_fp->f_data; 1544 PIPE_LOCK(cpipe); 1545 switch (kn->kn_filter) { 1546 case EVFILT_READ: 1547 kn->kn_fop = &pipe_rfiltops; 1548 break; 1549 case EVFILT_WRITE: 1550 kn->kn_fop = &pipe_wfiltops; 1551 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) { 1552 /* other end of pipe has been closed */ 1553 PIPE_UNLOCK(cpipe); 1554 return (EPIPE); 1555 } 1556 cpipe = cpipe->pipe_peer; 1557 break; 1558 default: 1559 PIPE_UNLOCK(cpipe); 1560 return (EINVAL); 1561 } 1562 1563 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1564 PIPE_UNLOCK(cpipe); 1565 return (0); 1566 } 1567 1568 static void 1569 filt_pipedetach(struct knote *kn) 1570 { 1571 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; 1572 1573 PIPE_LOCK(cpipe); 1574 if (kn->kn_filter == EVFILT_WRITE) 1575 cpipe = cpipe->pipe_peer; 1576 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1577 PIPE_UNLOCK(cpipe); 1578 } 1579 1580 /*ARGSUSED*/ 1581 static int 1582 filt_piperead(struct knote *kn, long hint) 1583 { 1584 struct pipe *rpipe = kn->kn_fp->f_data; 1585 struct pipe *wpipe = rpipe->pipe_peer; 1586 int ret; 1587 1588 PIPE_LOCK(rpipe); 1589 kn->kn_data = rpipe->pipe_buffer.cnt; 1590 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1591 kn->kn_data = rpipe->pipe_map.cnt; 1592 1593 if ((rpipe->pipe_state & PIPE_EOF) || 1594 wpipe->pipe_present != PIPE_ACTIVE || 1595 (wpipe->pipe_state & PIPE_EOF)) { 1596 kn->kn_flags |= EV_EOF; 1597 PIPE_UNLOCK(rpipe); 1598 return (1); 1599 } 1600 ret = kn->kn_data > 0; 1601 PIPE_UNLOCK(rpipe); 1602 return ret; 1603 } 1604 1605 /*ARGSUSED*/ 1606 static int 1607 filt_pipewrite(struct knote *kn, long hint) 1608 { 1609 struct pipe *rpipe = kn->kn_fp->f_data; 1610 struct pipe *wpipe = rpipe->pipe_peer; 1611 1612 PIPE_LOCK(rpipe); 1613 if (wpipe->pipe_present != PIPE_ACTIVE || 1614 (wpipe->pipe_state & PIPE_EOF)) { 1615 kn->kn_data = 0; 1616 kn->kn_flags |= EV_EOF; 1617 PIPE_UNLOCK(rpipe); 1618 return (1); 1619 } 1620 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1621 if (wpipe->pipe_state & PIPE_DIRECTW) 1622 kn->kn_data = 0; 1623 1624 PIPE_UNLOCK(rpipe); 1625 return (kn->kn_data >= PIPE_BUF); 1626 } 1627