xref: /freebsd/sys/kern/sys_pipe.c (revision 752d135e0dacd9a463d24ffb89779b67ce0a7ea0)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1996 John S. Dyson
5  * Copyright (c) 2012 Giovanni Trematerra
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Absolutely no warranty of function or purpose is made by the author
18  *    John S. Dyson.
19  * 4. Modifications may be freely made to this file if the above conditions
20  *    are met.
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, the sending process pins the underlying pages in
36  * memory, and the receiving process copies directly from these pinned pages
37  * in the sending process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.
50  *
51  * In order to limit the resource use of pipes, two sysctls exist:
52  *
53  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54  * address space available to us in pipe_map. This value is normally
55  * autotuned, but may also be loader tuned.
56  *
57  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58  * memory in use by pipes.
59  *
60  * Based on how large pipekva is relative to maxpipekva, the following
61  * will happen:
62  *
63  * 0% - 50%:
64  *     New pipes are given 16K of memory backing, pipes may dynamically
65  *     grow to as large as 64K where needed.
66  * 50% - 75%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes may NOT grow.
69  * 75% - 100%:
70  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
71  *     existing pipes will be shrunk down to 4K whenever possible.
72  *
73  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
74  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75  * resize which MUST occur for reverse-direction pipes when they are
76  * first used.
77  *
78  * Additional information about the current state of pipes may be obtained
79  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80  * and kern.ipc.piperesizefail.
81  *
82  * Locking rules:  There are two locks present here:  A mutex, used via
83  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
84  * the flag, as mutexes can not persist over uiomove.  The mutex
85  * exists only to guard access to the flag, and is not in itself a
86  * locking mechanism.  Also note that there is only a single mutex for
87  * both directions of a pipe.
88  *
89  * As pipelock() may have to sleep before it can acquire the flag, it
90  * is important to reread all data after a call to pipelock(); everything
91  * in the structure may have changed.
92  */
93 
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD$");
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122 
123 #include <security/mac/mac_framework.h>
124 
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134 
135 /*
136  * Use this define if you want to disable *fancy* VM things.  Expect an
137  * approx 30% decrease in transfer rate.  This could be useful for
138  * NetBSD or OpenBSD.
139  */
140 /* #define PIPE_NODIRECT */
141 
142 #define PIPE_PEER(pipe)	\
143 	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144 
145 /*
146  * interfaces to the outside world
147  */
148 static fo_rdwr_t	pipe_read;
149 static fo_rdwr_t	pipe_write;
150 static fo_truncate_t	pipe_truncate;
151 static fo_ioctl_t	pipe_ioctl;
152 static fo_poll_t	pipe_poll;
153 static fo_kqfilter_t	pipe_kqfilter;
154 static fo_stat_t	pipe_stat;
155 static fo_close_t	pipe_close;
156 static fo_chmod_t	pipe_chmod;
157 static fo_chown_t	pipe_chown;
158 static fo_fill_kinfo_t	pipe_fill_kinfo;
159 
160 struct fileops pipeops = {
161 	.fo_read = pipe_read,
162 	.fo_write = pipe_write,
163 	.fo_truncate = pipe_truncate,
164 	.fo_ioctl = pipe_ioctl,
165 	.fo_poll = pipe_poll,
166 	.fo_kqfilter = pipe_kqfilter,
167 	.fo_stat = pipe_stat,
168 	.fo_close = pipe_close,
169 	.fo_chmod = pipe_chmod,
170 	.fo_chown = pipe_chown,
171 	.fo_sendfile = invfo_sendfile,
172 	.fo_fill_kinfo = pipe_fill_kinfo,
173 	.fo_flags = DFLAG_PASSABLE
174 };
175 
176 static void	filt_pipedetach(struct knote *kn);
177 static void	filt_pipedetach_notsup(struct knote *kn);
178 static int	filt_pipenotsup(struct knote *kn, long hint);
179 static int	filt_piperead(struct knote *kn, long hint);
180 static int	filt_pipewrite(struct knote *kn, long hint);
181 
182 static struct filterops pipe_nfiltops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_pipedetach_notsup,
185 	.f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_pipedetach,
190 	.f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_pipedetach,
195 	.f_event = filt_pipewrite
196 };
197 
198 /*
199  * Default pipe buffer size(s), this can be kind-of large now because pipe
200  * space is pageable.  The pipe code will try to maintain locality of
201  * reference for performance reasons, so small amounts of outstanding I/O
202  * will not wipe the cache.
203  */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206 
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212 
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 	   &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216 	   &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220 	  &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222 	  &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224 	  &piperesizeallowed, 0, "Pipe resizing allowed");
225 
226 static void pipeinit(void *dummy __unused);
227 static void pipeclose(struct pipe *cpipe);
228 static void pipe_free_kmem(struct pipe *cpipe);
229 static void pipe_create(struct pipe *pipe, int backing);
230 static void pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231 static __inline int pipelock(struct pipe *cpipe, int catch);
232 static __inline void pipeunlock(struct pipe *cpipe);
233 #ifndef PIPE_NODIRECT
234 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
235 static void pipe_destroy_write_buffer(struct pipe *wpipe);
236 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
237 static void pipe_clone_write_buffer(struct pipe *wpipe);
238 #endif
239 static int pipespace(struct pipe *cpipe, int size);
240 static int pipespace_new(struct pipe *cpipe, int size);
241 
242 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
243 static int	pipe_zone_init(void *mem, int size, int flags);
244 static void	pipe_zone_fini(void *mem, int size);
245 
246 static uma_zone_t pipe_zone;
247 static struct unrhdr *pipeino_unr;
248 static dev_t pipedev_ino;
249 
250 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
251 
252 static void
253 pipeinit(void *dummy __unused)
254 {
255 
256 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
257 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
258 	    UMA_ALIGN_PTR, 0);
259 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
260 	pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
261 	KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
262 	pipedev_ino = devfs_alloc_cdp_inode();
263 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
264 }
265 
266 static int
267 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
268 {
269 	struct pipepair *pp;
270 	struct pipe *rpipe, *wpipe;
271 
272 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
273 
274 	pp = (struct pipepair *)mem;
275 
276 	/*
277 	 * We zero both pipe endpoints to make sure all the kmem pointers
278 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
279 	 * endpoints with the same time.
280 	 */
281 	rpipe = &pp->pp_rpipe;
282 	bzero(rpipe, sizeof(*rpipe));
283 	vfs_timestamp(&rpipe->pipe_ctime);
284 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
285 
286 	wpipe = &pp->pp_wpipe;
287 	bzero(wpipe, sizeof(*wpipe));
288 	wpipe->pipe_ctime = rpipe->pipe_ctime;
289 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
290 
291 	rpipe->pipe_peer = wpipe;
292 	rpipe->pipe_pair = pp;
293 	wpipe->pipe_peer = rpipe;
294 	wpipe->pipe_pair = pp;
295 
296 	/*
297 	 * Mark both endpoints as present; they will later get free'd
298 	 * one at a time.  When both are free'd, then the whole pair
299 	 * is released.
300 	 */
301 	rpipe->pipe_present = PIPE_ACTIVE;
302 	wpipe->pipe_present = PIPE_ACTIVE;
303 
304 	/*
305 	 * Eventually, the MAC Framework may initialize the label
306 	 * in ctor or init, but for now we do it elswhere to avoid
307 	 * blocking in ctor or init.
308 	 */
309 	pp->pp_label = NULL;
310 
311 	return (0);
312 }
313 
314 static int
315 pipe_zone_init(void *mem, int size, int flags)
316 {
317 	struct pipepair *pp;
318 
319 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
320 
321 	pp = (struct pipepair *)mem;
322 
323 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
324 	return (0);
325 }
326 
327 static void
328 pipe_zone_fini(void *mem, int size)
329 {
330 	struct pipepair *pp;
331 
332 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
333 
334 	pp = (struct pipepair *)mem;
335 
336 	mtx_destroy(&pp->pp_mtx);
337 }
338 
339 static void
340 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
341 {
342 	struct pipepair *pp;
343 	struct pipe *rpipe, *wpipe;
344 
345 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
346 #ifdef MAC
347 	/*
348 	 * The MAC label is shared between the connected endpoints.  As a
349 	 * result mac_pipe_init() and mac_pipe_create() are called once
350 	 * for the pair, and not on the endpoints.
351 	 */
352 	mac_pipe_init(pp);
353 	mac_pipe_create(td->td_ucred, pp);
354 #endif
355 	rpipe = &pp->pp_rpipe;
356 	wpipe = &pp->pp_wpipe;
357 
358 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
359 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
360 
361 	/* Only the forward direction pipe is backed by default */
362 	pipe_create(rpipe, 1);
363 	pipe_create(wpipe, 0);
364 
365 	rpipe->pipe_state |= PIPE_DIRECTOK;
366 	wpipe->pipe_state |= PIPE_DIRECTOK;
367 }
368 
369 void
370 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
371 {
372 	struct pipepair *pp;
373 
374 	pipe_paircreate(td, &pp);
375 	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
376 	*ppipe = &pp->pp_rpipe;
377 }
378 
379 void
380 pipe_dtor(struct pipe *dpipe)
381 {
382 	struct pipe *peer;
383 	ino_t ino;
384 
385 	ino = dpipe->pipe_ino;
386 	peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
387 	funsetown(&dpipe->pipe_sigio);
388 	pipeclose(dpipe);
389 	if (peer != NULL) {
390 		funsetown(&peer->pipe_sigio);
391 		pipeclose(peer);
392 	}
393 	if (ino != 0 && ino != (ino_t)-1)
394 		free_unr(pipeino_unr, ino);
395 }
396 
397 /*
398  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
399  * the zone pick up the pieces via pipeclose().
400  */
401 int
402 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
403     struct filecaps *fcaps2)
404 {
405 	struct file *rf, *wf;
406 	struct pipe *rpipe, *wpipe;
407 	struct pipepair *pp;
408 	int fd, fflags, error;
409 
410 	pipe_paircreate(td, &pp);
411 	rpipe = &pp->pp_rpipe;
412 	wpipe = &pp->pp_wpipe;
413 	error = falloc_caps(td, &rf, &fd, flags, fcaps1);
414 	if (error) {
415 		pipeclose(rpipe);
416 		pipeclose(wpipe);
417 		return (error);
418 	}
419 	/* An extra reference on `rf' has been held for us by falloc_caps(). */
420 	fildes[0] = fd;
421 
422 	fflags = FREAD | FWRITE;
423 	if ((flags & O_NONBLOCK) != 0)
424 		fflags |= FNONBLOCK;
425 
426 	/*
427 	 * Warning: once we've gotten past allocation of the fd for the
428 	 * read-side, we can only drop the read side via fdrop() in order
429 	 * to avoid races against processes which manage to dup() the read
430 	 * side while we are blocked trying to allocate the write side.
431 	 */
432 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
433 	error = falloc_caps(td, &wf, &fd, flags, fcaps2);
434 	if (error) {
435 		fdclose(td, rf, fildes[0]);
436 		fdrop(rf, td);
437 		/* rpipe has been closed by fdrop(). */
438 		pipeclose(wpipe);
439 		return (error);
440 	}
441 	/* An extra reference on `wf' has been held for us by falloc_caps(). */
442 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
443 	fdrop(wf, td);
444 	fildes[1] = fd;
445 	fdrop(rf, td);
446 
447 	return (0);
448 }
449 
450 #ifdef COMPAT_FREEBSD10
451 /* ARGSUSED */
452 int
453 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
454 {
455 	int error;
456 	int fildes[2];
457 
458 	error = kern_pipe(td, fildes, 0, NULL, NULL);
459 	if (error)
460 		return (error);
461 
462 	td->td_retval[0] = fildes[0];
463 	td->td_retval[1] = fildes[1];
464 
465 	return (0);
466 }
467 #endif
468 
469 int
470 sys_pipe2(struct thread *td, struct pipe2_args *uap)
471 {
472 	int error, fildes[2];
473 
474 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
475 		return (EINVAL);
476 	error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
477 	if (error)
478 		return (error);
479 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
480 	if (error) {
481 		(void)kern_close(td, fildes[0]);
482 		(void)kern_close(td, fildes[1]);
483 	}
484 	return (error);
485 }
486 
487 /*
488  * Allocate kva for pipe circular buffer, the space is pageable
489  * This routine will 'realloc' the size of a pipe safely, if it fails
490  * it will retain the old buffer.
491  * If it fails it will return ENOMEM.
492  */
493 static int
494 pipespace_new(struct pipe *cpipe, int size)
495 {
496 	caddr_t buffer;
497 	int error, cnt, firstseg;
498 	static int curfail = 0;
499 	static struct timeval lastfail;
500 
501 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
502 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
503 		("pipespace: resize of direct writes not allowed"));
504 retry:
505 	cnt = cpipe->pipe_buffer.cnt;
506 	if (cnt > size)
507 		size = cnt;
508 
509 	size = round_page(size);
510 	buffer = (caddr_t) vm_map_min(pipe_map);
511 
512 	error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
513 	    VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
514 	if (error != KERN_SUCCESS) {
515 		if ((cpipe->pipe_buffer.buffer == NULL) &&
516 			(size > SMALL_PIPE_SIZE)) {
517 			size = SMALL_PIPE_SIZE;
518 			pipefragretry++;
519 			goto retry;
520 		}
521 		if (cpipe->pipe_buffer.buffer == NULL) {
522 			pipeallocfail++;
523 			if (ppsratecheck(&lastfail, &curfail, 1))
524 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
525 		} else {
526 			piperesizefail++;
527 		}
528 		return (ENOMEM);
529 	}
530 
531 	/* copy data, then free old resources if we're resizing */
532 	if (cnt > 0) {
533 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
534 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
535 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
536 				buffer, firstseg);
537 			if ((cnt - firstseg) > 0)
538 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
539 					cpipe->pipe_buffer.in);
540 		} else {
541 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
542 				buffer, cnt);
543 		}
544 	}
545 	pipe_free_kmem(cpipe);
546 	cpipe->pipe_buffer.buffer = buffer;
547 	cpipe->pipe_buffer.size = size;
548 	cpipe->pipe_buffer.in = cnt;
549 	cpipe->pipe_buffer.out = 0;
550 	cpipe->pipe_buffer.cnt = cnt;
551 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
552 	return (0);
553 }
554 
555 /*
556  * Wrapper for pipespace_new() that performs locking assertions.
557  */
558 static int
559 pipespace(struct pipe *cpipe, int size)
560 {
561 
562 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
563 		("Unlocked pipe passed to pipespace"));
564 	return (pipespace_new(cpipe, size));
565 }
566 
567 /*
568  * lock a pipe for I/O, blocking other access
569  */
570 static __inline int
571 pipelock(struct pipe *cpipe, int catch)
572 {
573 	int error;
574 
575 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
576 	while (cpipe->pipe_state & PIPE_LOCKFL) {
577 		cpipe->pipe_state |= PIPE_LWANT;
578 		error = msleep(cpipe, PIPE_MTX(cpipe),
579 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
580 		    "pipelk", 0);
581 		if (error != 0)
582 			return (error);
583 	}
584 	cpipe->pipe_state |= PIPE_LOCKFL;
585 	return (0);
586 }
587 
588 /*
589  * unlock a pipe I/O lock
590  */
591 static __inline void
592 pipeunlock(struct pipe *cpipe)
593 {
594 
595 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
596 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
597 		("Unlocked pipe passed to pipeunlock"));
598 	cpipe->pipe_state &= ~PIPE_LOCKFL;
599 	if (cpipe->pipe_state & PIPE_LWANT) {
600 		cpipe->pipe_state &= ~PIPE_LWANT;
601 		wakeup(cpipe);
602 	}
603 }
604 
605 void
606 pipeselwakeup(struct pipe *cpipe)
607 {
608 
609 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
610 	if (cpipe->pipe_state & PIPE_SEL) {
611 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
612 		if (!SEL_WAITING(&cpipe->pipe_sel))
613 			cpipe->pipe_state &= ~PIPE_SEL;
614 	}
615 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
616 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
617 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
618 }
619 
620 /*
621  * Initialize and allocate VM and memory for pipe.  The structure
622  * will start out zero'd from the ctor, so we just manage the kmem.
623  */
624 static void
625 pipe_create(struct pipe *pipe, int backing)
626 {
627 
628 	if (backing) {
629 		/*
630 		 * Note that these functions can fail if pipe map is exhausted
631 		 * (as a result of too many pipes created), but we ignore the
632 		 * error as it is not fatal and could be provoked by
633 		 * unprivileged users. The only consequence is worse performance
634 		 * with given pipe.
635 		 */
636 		if (amountpipekva > maxpipekva / 2)
637 			(void)pipespace_new(pipe, SMALL_PIPE_SIZE);
638 		else
639 			(void)pipespace_new(pipe, PIPE_SIZE);
640 	}
641 
642 	pipe->pipe_ino = -1;
643 }
644 
645 /* ARGSUSED */
646 static int
647 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
648     int flags, struct thread *td)
649 {
650 	struct pipe *rpipe;
651 	int error;
652 	int nread = 0;
653 	int size;
654 
655 	rpipe = fp->f_data;
656 	PIPE_LOCK(rpipe);
657 	++rpipe->pipe_busy;
658 	error = pipelock(rpipe, 1);
659 	if (error)
660 		goto unlocked_error;
661 
662 #ifdef MAC
663 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
664 	if (error)
665 		goto locked_error;
666 #endif
667 	if (amountpipekva > (3 * maxpipekva) / 4) {
668 		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
669 			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
670 			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
671 			(piperesizeallowed == 1)) {
672 			PIPE_UNLOCK(rpipe);
673 			pipespace(rpipe, SMALL_PIPE_SIZE);
674 			PIPE_LOCK(rpipe);
675 		}
676 	}
677 
678 	while (uio->uio_resid) {
679 		/*
680 		 * normal pipe buffer receive
681 		 */
682 		if (rpipe->pipe_buffer.cnt > 0) {
683 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
684 			if (size > rpipe->pipe_buffer.cnt)
685 				size = rpipe->pipe_buffer.cnt;
686 			if (size > uio->uio_resid)
687 				size = uio->uio_resid;
688 
689 			PIPE_UNLOCK(rpipe);
690 			error = uiomove(
691 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
692 			    size, uio);
693 			PIPE_LOCK(rpipe);
694 			if (error)
695 				break;
696 
697 			rpipe->pipe_buffer.out += size;
698 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
699 				rpipe->pipe_buffer.out = 0;
700 
701 			rpipe->pipe_buffer.cnt -= size;
702 
703 			/*
704 			 * If there is no more to read in the pipe, reset
705 			 * its pointers to the beginning.  This improves
706 			 * cache hit stats.
707 			 */
708 			if (rpipe->pipe_buffer.cnt == 0) {
709 				rpipe->pipe_buffer.in = 0;
710 				rpipe->pipe_buffer.out = 0;
711 			}
712 			nread += size;
713 #ifndef PIPE_NODIRECT
714 		/*
715 		 * Direct copy, bypassing a kernel buffer.
716 		 */
717 		} else if ((size = rpipe->pipe_map.cnt) &&
718 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
719 			if (size > uio->uio_resid)
720 				size = (u_int) uio->uio_resid;
721 
722 			PIPE_UNLOCK(rpipe);
723 			error = uiomove_fromphys(rpipe->pipe_map.ms,
724 			    rpipe->pipe_map.pos, size, uio);
725 			PIPE_LOCK(rpipe);
726 			if (error)
727 				break;
728 			nread += size;
729 			rpipe->pipe_map.pos += size;
730 			rpipe->pipe_map.cnt -= size;
731 			if (rpipe->pipe_map.cnt == 0) {
732 				rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
733 				wakeup(rpipe);
734 			}
735 #endif
736 		} else {
737 			/*
738 			 * detect EOF condition
739 			 * read returns 0 on EOF, no need to set error
740 			 */
741 			if (rpipe->pipe_state & PIPE_EOF)
742 				break;
743 
744 			/*
745 			 * If the "write-side" has been blocked, wake it up now.
746 			 */
747 			if (rpipe->pipe_state & PIPE_WANTW) {
748 				rpipe->pipe_state &= ~PIPE_WANTW;
749 				wakeup(rpipe);
750 			}
751 
752 			/*
753 			 * Break if some data was read.
754 			 */
755 			if (nread > 0)
756 				break;
757 
758 			/*
759 			 * Unlock the pipe buffer for our remaining processing.
760 			 * We will either break out with an error or we will
761 			 * sleep and relock to loop.
762 			 */
763 			pipeunlock(rpipe);
764 
765 			/*
766 			 * Handle non-blocking mode operation or
767 			 * wait for more data.
768 			 */
769 			if (fp->f_flag & FNONBLOCK) {
770 				error = EAGAIN;
771 			} else {
772 				rpipe->pipe_state |= PIPE_WANTR;
773 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
774 				    PRIBIO | PCATCH,
775 				    "piperd", 0)) == 0)
776 					error = pipelock(rpipe, 1);
777 			}
778 			if (error)
779 				goto unlocked_error;
780 		}
781 	}
782 #ifdef MAC
783 locked_error:
784 #endif
785 	pipeunlock(rpipe);
786 
787 	/* XXX: should probably do this before getting any locks. */
788 	if (error == 0)
789 		vfs_timestamp(&rpipe->pipe_atime);
790 unlocked_error:
791 	--rpipe->pipe_busy;
792 
793 	/*
794 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
795 	 */
796 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
797 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
798 		wakeup(rpipe);
799 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
800 		/*
801 		 * Handle write blocking hysteresis.
802 		 */
803 		if (rpipe->pipe_state & PIPE_WANTW) {
804 			rpipe->pipe_state &= ~PIPE_WANTW;
805 			wakeup(rpipe);
806 		}
807 	}
808 
809 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
810 		pipeselwakeup(rpipe);
811 
812 	PIPE_UNLOCK(rpipe);
813 	return (error);
814 }
815 
816 #ifndef PIPE_NODIRECT
817 /*
818  * Map the sending processes' buffer into kernel space and wire it.
819  * This is similar to a physical write operation.
820  */
821 static int
822 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
823 {
824 	u_int size;
825 	int i;
826 
827 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
828 	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
829 		("Clone attempt on non-direct write pipe!"));
830 
831 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
832                 size = wpipe->pipe_buffer.size;
833 	else
834                 size = uio->uio_iov->iov_len;
835 
836 	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
837 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
838 	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
839 		return (EFAULT);
840 
841 /*
842  * set up the control block
843  */
844 	wpipe->pipe_map.npages = i;
845 	wpipe->pipe_map.pos =
846 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
847 	wpipe->pipe_map.cnt = size;
848 
849 /*
850  * and update the uio data
851  */
852 
853 	uio->uio_iov->iov_len -= size;
854 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
855 	if (uio->uio_iov->iov_len == 0)
856 		uio->uio_iov++;
857 	uio->uio_resid -= size;
858 	uio->uio_offset += size;
859 	return (0);
860 }
861 
862 /*
863  * unmap and unwire the process buffer
864  */
865 static void
866 pipe_destroy_write_buffer(struct pipe *wpipe)
867 {
868 
869 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
870 	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
871 	wpipe->pipe_map.npages = 0;
872 }
873 
874 /*
875  * In the case of a signal, the writing process might go away.  This
876  * code copies the data into the circular buffer so that the source
877  * pages can be freed without loss of data.
878  */
879 static void
880 pipe_clone_write_buffer(struct pipe *wpipe)
881 {
882 	struct uio uio;
883 	struct iovec iov;
884 	int size;
885 	int pos;
886 
887 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
888 	size = wpipe->pipe_map.cnt;
889 	pos = wpipe->pipe_map.pos;
890 
891 	wpipe->pipe_buffer.in = size;
892 	wpipe->pipe_buffer.out = 0;
893 	wpipe->pipe_buffer.cnt = size;
894 	wpipe->pipe_state &= ~PIPE_DIRECTW;
895 
896 	PIPE_UNLOCK(wpipe);
897 	iov.iov_base = wpipe->pipe_buffer.buffer;
898 	iov.iov_len = size;
899 	uio.uio_iov = &iov;
900 	uio.uio_iovcnt = 1;
901 	uio.uio_offset = 0;
902 	uio.uio_resid = size;
903 	uio.uio_segflg = UIO_SYSSPACE;
904 	uio.uio_rw = UIO_READ;
905 	uio.uio_td = curthread;
906 	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
907 	PIPE_LOCK(wpipe);
908 	pipe_destroy_write_buffer(wpipe);
909 }
910 
911 /*
912  * This implements the pipe buffer write mechanism.  Note that only
913  * a direct write OR a normal pipe write can be pending at any given time.
914  * If there are any characters in the pipe buffer, the direct write will
915  * be deferred until the receiving process grabs all of the bytes from
916  * the pipe buffer.  Then the direct mapping write is set-up.
917  */
918 static int
919 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
920 {
921 	int error;
922 
923 retry:
924 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
925 	error = pipelock(wpipe, 1);
926 	if (error != 0)
927 		goto error1;
928 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
929 		error = EPIPE;
930 		pipeunlock(wpipe);
931 		goto error1;
932 	}
933 	while (wpipe->pipe_state & PIPE_DIRECTW) {
934 		if (wpipe->pipe_state & PIPE_WANTR) {
935 			wpipe->pipe_state &= ~PIPE_WANTR;
936 			wakeup(wpipe);
937 		}
938 		pipeselwakeup(wpipe);
939 		wpipe->pipe_state |= PIPE_WANTW;
940 		pipeunlock(wpipe);
941 		error = msleep(wpipe, PIPE_MTX(wpipe),
942 		    PRIBIO | PCATCH, "pipdww", 0);
943 		if (error)
944 			goto error1;
945 		else
946 			goto retry;
947 	}
948 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
949 	if (wpipe->pipe_buffer.cnt > 0) {
950 		if (wpipe->pipe_state & PIPE_WANTR) {
951 			wpipe->pipe_state &= ~PIPE_WANTR;
952 			wakeup(wpipe);
953 		}
954 		pipeselwakeup(wpipe);
955 		wpipe->pipe_state |= PIPE_WANTW;
956 		pipeunlock(wpipe);
957 		error = msleep(wpipe, PIPE_MTX(wpipe),
958 		    PRIBIO | PCATCH, "pipdwc", 0);
959 		if (error)
960 			goto error1;
961 		else
962 			goto retry;
963 	}
964 
965 	wpipe->pipe_state |= PIPE_DIRECTW;
966 
967 	PIPE_UNLOCK(wpipe);
968 	error = pipe_build_write_buffer(wpipe, uio);
969 	PIPE_LOCK(wpipe);
970 	if (error) {
971 		wpipe->pipe_state &= ~PIPE_DIRECTW;
972 		pipeunlock(wpipe);
973 		goto error1;
974 	}
975 
976 	error = 0;
977 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
978 		if (wpipe->pipe_state & PIPE_EOF) {
979 			pipe_destroy_write_buffer(wpipe);
980 			pipeselwakeup(wpipe);
981 			pipeunlock(wpipe);
982 			error = EPIPE;
983 			goto error1;
984 		}
985 		if (wpipe->pipe_state & PIPE_WANTR) {
986 			wpipe->pipe_state &= ~PIPE_WANTR;
987 			wakeup(wpipe);
988 		}
989 		pipeselwakeup(wpipe);
990 		wpipe->pipe_state |= PIPE_WANTW;
991 		pipeunlock(wpipe);
992 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
993 		    "pipdwt", 0);
994 		pipelock(wpipe, 0);
995 	}
996 
997 	if (wpipe->pipe_state & PIPE_EOF)
998 		error = EPIPE;
999 	if (wpipe->pipe_state & PIPE_DIRECTW) {
1000 		/*
1001 		 * this bit of trickery substitutes a kernel buffer for
1002 		 * the process that might be going away.
1003 		 */
1004 		pipe_clone_write_buffer(wpipe);
1005 	} else {
1006 		pipe_destroy_write_buffer(wpipe);
1007 	}
1008 	pipeunlock(wpipe);
1009 	return (error);
1010 
1011 error1:
1012 	wakeup(wpipe);
1013 	return (error);
1014 }
1015 #endif
1016 
1017 static int
1018 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1019     int flags, struct thread *td)
1020 {
1021 	int error = 0;
1022 	int desiredsize;
1023 	ssize_t orig_resid;
1024 	struct pipe *wpipe, *rpipe;
1025 
1026 	rpipe = fp->f_data;
1027 	wpipe = PIPE_PEER(rpipe);
1028 	PIPE_LOCK(rpipe);
1029 	error = pipelock(wpipe, 1);
1030 	if (error) {
1031 		PIPE_UNLOCK(rpipe);
1032 		return (error);
1033 	}
1034 	/*
1035 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1036 	 */
1037 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1038 	    (wpipe->pipe_state & PIPE_EOF)) {
1039 		pipeunlock(wpipe);
1040 		PIPE_UNLOCK(rpipe);
1041 		return (EPIPE);
1042 	}
1043 #ifdef MAC
1044 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1045 	if (error) {
1046 		pipeunlock(wpipe);
1047 		PIPE_UNLOCK(rpipe);
1048 		return (error);
1049 	}
1050 #endif
1051 	++wpipe->pipe_busy;
1052 
1053 	/* Choose a larger size if it's advantageous */
1054 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1055 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1056 		if (piperesizeallowed != 1)
1057 			break;
1058 		if (amountpipekva > maxpipekva / 2)
1059 			break;
1060 		if (desiredsize == BIG_PIPE_SIZE)
1061 			break;
1062 		desiredsize = desiredsize * 2;
1063 	}
1064 
1065 	/* Choose a smaller size if we're in a OOM situation */
1066 	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1067 		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1068 		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1069 		(piperesizeallowed == 1))
1070 		desiredsize = SMALL_PIPE_SIZE;
1071 
1072 	/* Resize if the above determined that a new size was necessary */
1073 	if ((desiredsize != wpipe->pipe_buffer.size) &&
1074 		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1075 		PIPE_UNLOCK(wpipe);
1076 		pipespace(wpipe, desiredsize);
1077 		PIPE_LOCK(wpipe);
1078 	}
1079 	if (wpipe->pipe_buffer.size == 0) {
1080 		/*
1081 		 * This can only happen for reverse direction use of pipes
1082 		 * in a complete OOM situation.
1083 		 */
1084 		error = ENOMEM;
1085 		--wpipe->pipe_busy;
1086 		pipeunlock(wpipe);
1087 		PIPE_UNLOCK(wpipe);
1088 		return (error);
1089 	}
1090 
1091 	pipeunlock(wpipe);
1092 
1093 	orig_resid = uio->uio_resid;
1094 
1095 	while (uio->uio_resid) {
1096 		int space;
1097 
1098 		pipelock(wpipe, 0);
1099 		if (wpipe->pipe_state & PIPE_EOF) {
1100 			pipeunlock(wpipe);
1101 			error = EPIPE;
1102 			break;
1103 		}
1104 #ifndef PIPE_NODIRECT
1105 		/*
1106 		 * If the transfer is large, we can gain performance if
1107 		 * we do process-to-process copies directly.
1108 		 * If the write is non-blocking, we don't use the
1109 		 * direct write mechanism.
1110 		 *
1111 		 * The direct write mechanism will detect the reader going
1112 		 * away on us.
1113 		 */
1114 		if (uio->uio_segflg == UIO_USERSPACE &&
1115 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1116 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1117 		    (fp->f_flag & FNONBLOCK) == 0) {
1118 			pipeunlock(wpipe);
1119 			error = pipe_direct_write(wpipe, uio);
1120 			if (error)
1121 				break;
1122 			continue;
1123 		}
1124 #endif
1125 
1126 		/*
1127 		 * Pipe buffered writes cannot be coincidental with
1128 		 * direct writes.  We wait until the currently executing
1129 		 * direct write is completed before we start filling the
1130 		 * pipe buffer.  We break out if a signal occurs or the
1131 		 * reader goes away.
1132 		 */
1133 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1134 			if (wpipe->pipe_state & PIPE_WANTR) {
1135 				wpipe->pipe_state &= ~PIPE_WANTR;
1136 				wakeup(wpipe);
1137 			}
1138 			pipeselwakeup(wpipe);
1139 			wpipe->pipe_state |= PIPE_WANTW;
1140 			pipeunlock(wpipe);
1141 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1142 			    "pipbww", 0);
1143 			if (error)
1144 				break;
1145 			else
1146 				continue;
1147 		}
1148 
1149 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1150 
1151 		/* Writes of size <= PIPE_BUF must be atomic. */
1152 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1153 			space = 0;
1154 
1155 		if (space > 0) {
1156 			int size;	/* Transfer size */
1157 			int segsize;	/* first segment to transfer */
1158 
1159 			/*
1160 			 * Transfer size is minimum of uio transfer
1161 			 * and free space in pipe buffer.
1162 			 */
1163 			if (space > uio->uio_resid)
1164 				size = uio->uio_resid;
1165 			else
1166 				size = space;
1167 			/*
1168 			 * First segment to transfer is minimum of
1169 			 * transfer size and contiguous space in
1170 			 * pipe buffer.  If first segment to transfer
1171 			 * is less than the transfer size, we've got
1172 			 * a wraparound in the buffer.
1173 			 */
1174 			segsize = wpipe->pipe_buffer.size -
1175 				wpipe->pipe_buffer.in;
1176 			if (segsize > size)
1177 				segsize = size;
1178 
1179 			/* Transfer first segment */
1180 
1181 			PIPE_UNLOCK(rpipe);
1182 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1183 					segsize, uio);
1184 			PIPE_LOCK(rpipe);
1185 
1186 			if (error == 0 && segsize < size) {
1187 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1188 					wpipe->pipe_buffer.size,
1189 					("Pipe buffer wraparound disappeared"));
1190 				/*
1191 				 * Transfer remaining part now, to
1192 				 * support atomic writes.  Wraparound
1193 				 * happened.
1194 				 */
1195 
1196 				PIPE_UNLOCK(rpipe);
1197 				error = uiomove(
1198 				    &wpipe->pipe_buffer.buffer[0],
1199 				    size - segsize, uio);
1200 				PIPE_LOCK(rpipe);
1201 			}
1202 			if (error == 0) {
1203 				wpipe->pipe_buffer.in += size;
1204 				if (wpipe->pipe_buffer.in >=
1205 				    wpipe->pipe_buffer.size) {
1206 					KASSERT(wpipe->pipe_buffer.in ==
1207 						size - segsize +
1208 						wpipe->pipe_buffer.size,
1209 						("Expected wraparound bad"));
1210 					wpipe->pipe_buffer.in = size - segsize;
1211 				}
1212 
1213 				wpipe->pipe_buffer.cnt += size;
1214 				KASSERT(wpipe->pipe_buffer.cnt <=
1215 					wpipe->pipe_buffer.size,
1216 					("Pipe buffer overflow"));
1217 			}
1218 			pipeunlock(wpipe);
1219 			if (error != 0)
1220 				break;
1221 		} else {
1222 			/*
1223 			 * If the "read-side" has been blocked, wake it up now.
1224 			 */
1225 			if (wpipe->pipe_state & PIPE_WANTR) {
1226 				wpipe->pipe_state &= ~PIPE_WANTR;
1227 				wakeup(wpipe);
1228 			}
1229 
1230 			/*
1231 			 * don't block on non-blocking I/O
1232 			 */
1233 			if (fp->f_flag & FNONBLOCK) {
1234 				error = EAGAIN;
1235 				pipeunlock(wpipe);
1236 				break;
1237 			}
1238 
1239 			/*
1240 			 * We have no more space and have something to offer,
1241 			 * wake up select/poll.
1242 			 */
1243 			pipeselwakeup(wpipe);
1244 
1245 			wpipe->pipe_state |= PIPE_WANTW;
1246 			pipeunlock(wpipe);
1247 			error = msleep(wpipe, PIPE_MTX(rpipe),
1248 			    PRIBIO | PCATCH, "pipewr", 0);
1249 			if (error != 0)
1250 				break;
1251 		}
1252 	}
1253 
1254 	pipelock(wpipe, 0);
1255 	--wpipe->pipe_busy;
1256 
1257 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1258 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1259 		wakeup(wpipe);
1260 	} else if (wpipe->pipe_buffer.cnt > 0) {
1261 		/*
1262 		 * If we have put any characters in the buffer, we wake up
1263 		 * the reader.
1264 		 */
1265 		if (wpipe->pipe_state & PIPE_WANTR) {
1266 			wpipe->pipe_state &= ~PIPE_WANTR;
1267 			wakeup(wpipe);
1268 		}
1269 	}
1270 
1271 	/*
1272 	 * Don't return EPIPE if any byte was written.
1273 	 * EINTR and other interrupts are handled by generic I/O layer.
1274 	 * Do not pretend that I/O succeeded for obvious user error
1275 	 * like EFAULT.
1276 	 */
1277 	if (uio->uio_resid != orig_resid && error == EPIPE)
1278 		error = 0;
1279 
1280 	if (error == 0)
1281 		vfs_timestamp(&wpipe->pipe_mtime);
1282 
1283 	/*
1284 	 * We have something to offer,
1285 	 * wake up select/poll.
1286 	 */
1287 	if (wpipe->pipe_buffer.cnt)
1288 		pipeselwakeup(wpipe);
1289 
1290 	pipeunlock(wpipe);
1291 	PIPE_UNLOCK(rpipe);
1292 	return (error);
1293 }
1294 
1295 /* ARGSUSED */
1296 static int
1297 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1298     struct thread *td)
1299 {
1300 	struct pipe *cpipe;
1301 	int error;
1302 
1303 	cpipe = fp->f_data;
1304 	if (cpipe->pipe_state & PIPE_NAMED)
1305 		error = vnops.fo_truncate(fp, length, active_cred, td);
1306 	else
1307 		error = invfo_truncate(fp, length, active_cred, td);
1308 	return (error);
1309 }
1310 
1311 /*
1312  * we implement a very minimal set of ioctls for compatibility with sockets.
1313  */
1314 static int
1315 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1316     struct thread *td)
1317 {
1318 	struct pipe *mpipe = fp->f_data;
1319 	int error;
1320 
1321 	PIPE_LOCK(mpipe);
1322 
1323 #ifdef MAC
1324 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1325 	if (error) {
1326 		PIPE_UNLOCK(mpipe);
1327 		return (error);
1328 	}
1329 #endif
1330 
1331 	error = 0;
1332 	switch (cmd) {
1333 
1334 	case FIONBIO:
1335 		break;
1336 
1337 	case FIOASYNC:
1338 		if (*(int *)data) {
1339 			mpipe->pipe_state |= PIPE_ASYNC;
1340 		} else {
1341 			mpipe->pipe_state &= ~PIPE_ASYNC;
1342 		}
1343 		break;
1344 
1345 	case FIONREAD:
1346 		if (!(fp->f_flag & FREAD)) {
1347 			*(int *)data = 0;
1348 			PIPE_UNLOCK(mpipe);
1349 			return (0);
1350 		}
1351 		if (mpipe->pipe_state & PIPE_DIRECTW)
1352 			*(int *)data = mpipe->pipe_map.cnt;
1353 		else
1354 			*(int *)data = mpipe->pipe_buffer.cnt;
1355 		break;
1356 
1357 	case FIOSETOWN:
1358 		PIPE_UNLOCK(mpipe);
1359 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1360 		goto out_unlocked;
1361 
1362 	case FIOGETOWN:
1363 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1364 		break;
1365 
1366 	/* This is deprecated, FIOSETOWN should be used instead. */
1367 	case TIOCSPGRP:
1368 		PIPE_UNLOCK(mpipe);
1369 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1370 		goto out_unlocked;
1371 
1372 	/* This is deprecated, FIOGETOWN should be used instead. */
1373 	case TIOCGPGRP:
1374 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1375 		break;
1376 
1377 	default:
1378 		error = ENOTTY;
1379 		break;
1380 	}
1381 	PIPE_UNLOCK(mpipe);
1382 out_unlocked:
1383 	return (error);
1384 }
1385 
1386 static int
1387 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1388     struct thread *td)
1389 {
1390 	struct pipe *rpipe;
1391 	struct pipe *wpipe;
1392 	int levents, revents;
1393 #ifdef MAC
1394 	int error;
1395 #endif
1396 
1397 	revents = 0;
1398 	rpipe = fp->f_data;
1399 	wpipe = PIPE_PEER(rpipe);
1400 	PIPE_LOCK(rpipe);
1401 #ifdef MAC
1402 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1403 	if (error)
1404 		goto locked_error;
1405 #endif
1406 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1407 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1408 		    (rpipe->pipe_buffer.cnt > 0))
1409 			revents |= events & (POLLIN | POLLRDNORM);
1410 
1411 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1412 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1413 		    (wpipe->pipe_state & PIPE_EOF) ||
1414 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1415 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1416 			 wpipe->pipe_buffer.size == 0)))
1417 			revents |= events & (POLLOUT | POLLWRNORM);
1418 
1419 	levents = events &
1420 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1421 	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1422 	    fp->f_seqcount == rpipe->pipe_wgen)
1423 		events |= POLLINIGNEOF;
1424 
1425 	if ((events & POLLINIGNEOF) == 0) {
1426 		if (rpipe->pipe_state & PIPE_EOF) {
1427 			revents |= (events & (POLLIN | POLLRDNORM));
1428 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1429 			    (wpipe->pipe_state & PIPE_EOF))
1430 				revents |= POLLHUP;
1431 		}
1432 	}
1433 
1434 	if (revents == 0) {
1435 		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1436 			selrecord(td, &rpipe->pipe_sel);
1437 			if (SEL_WAITING(&rpipe->pipe_sel))
1438 				rpipe->pipe_state |= PIPE_SEL;
1439 		}
1440 
1441 		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1442 			selrecord(td, &wpipe->pipe_sel);
1443 			if (SEL_WAITING(&wpipe->pipe_sel))
1444 				wpipe->pipe_state |= PIPE_SEL;
1445 		}
1446 	}
1447 #ifdef MAC
1448 locked_error:
1449 #endif
1450 	PIPE_UNLOCK(rpipe);
1451 
1452 	return (revents);
1453 }
1454 
1455 /*
1456  * We shouldn't need locks here as we're doing a read and this should
1457  * be a natural race.
1458  */
1459 static int
1460 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred,
1461     struct thread *td)
1462 {
1463 	struct pipe *pipe;
1464 	int new_unr;
1465 #ifdef MAC
1466 	int error;
1467 #endif
1468 
1469 	pipe = fp->f_data;
1470 	PIPE_LOCK(pipe);
1471 #ifdef MAC
1472 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1473 	if (error) {
1474 		PIPE_UNLOCK(pipe);
1475 		return (error);
1476 	}
1477 #endif
1478 
1479 	/* For named pipes ask the underlying filesystem. */
1480 	if (pipe->pipe_state & PIPE_NAMED) {
1481 		PIPE_UNLOCK(pipe);
1482 		return (vnops.fo_stat(fp, ub, active_cred, td));
1483 	}
1484 
1485 	/*
1486 	 * Lazily allocate an inode number for the pipe.  Most pipe
1487 	 * users do not call fstat(2) on the pipe, which means that
1488 	 * postponing the inode allocation until it is must be
1489 	 * returned to userland is useful.  If alloc_unr failed,
1490 	 * assign st_ino zero instead of returning an error.
1491 	 * Special pipe_ino values:
1492 	 *  -1 - not yet initialized;
1493 	 *  0  - alloc_unr failed, return 0 as st_ino forever.
1494 	 */
1495 	if (pipe->pipe_ino == (ino_t)-1) {
1496 		new_unr = alloc_unr(pipeino_unr);
1497 		if (new_unr != -1)
1498 			pipe->pipe_ino = new_unr;
1499 		else
1500 			pipe->pipe_ino = 0;
1501 	}
1502 	PIPE_UNLOCK(pipe);
1503 
1504 	bzero(ub, sizeof(*ub));
1505 	ub->st_mode = S_IFIFO;
1506 	ub->st_blksize = PAGE_SIZE;
1507 	if (pipe->pipe_state & PIPE_DIRECTW)
1508 		ub->st_size = pipe->pipe_map.cnt;
1509 	else
1510 		ub->st_size = pipe->pipe_buffer.cnt;
1511 	ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1512 	ub->st_atim = pipe->pipe_atime;
1513 	ub->st_mtim = pipe->pipe_mtime;
1514 	ub->st_ctim = pipe->pipe_ctime;
1515 	ub->st_uid = fp->f_cred->cr_uid;
1516 	ub->st_gid = fp->f_cred->cr_gid;
1517 	ub->st_dev = pipedev_ino;
1518 	ub->st_ino = pipe->pipe_ino;
1519 	/*
1520 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1521 	 */
1522 	return (0);
1523 }
1524 
1525 /* ARGSUSED */
1526 static int
1527 pipe_close(struct file *fp, struct thread *td)
1528 {
1529 
1530 	if (fp->f_vnode != NULL)
1531 		return vnops.fo_close(fp, td);
1532 	fp->f_ops = &badfileops;
1533 	pipe_dtor(fp->f_data);
1534 	fp->f_data = NULL;
1535 	return (0);
1536 }
1537 
1538 static int
1539 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1540 {
1541 	struct pipe *cpipe;
1542 	int error;
1543 
1544 	cpipe = fp->f_data;
1545 	if (cpipe->pipe_state & PIPE_NAMED)
1546 		error = vn_chmod(fp, mode, active_cred, td);
1547 	else
1548 		error = invfo_chmod(fp, mode, active_cred, td);
1549 	return (error);
1550 }
1551 
1552 static int
1553 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1554     struct thread *td)
1555 {
1556 	struct pipe *cpipe;
1557 	int error;
1558 
1559 	cpipe = fp->f_data;
1560 	if (cpipe->pipe_state & PIPE_NAMED)
1561 		error = vn_chown(fp, uid, gid, active_cred, td);
1562 	else
1563 		error = invfo_chown(fp, uid, gid, active_cred, td);
1564 	return (error);
1565 }
1566 
1567 static int
1568 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1569 {
1570 	struct pipe *pi;
1571 
1572 	if (fp->f_type == DTYPE_FIFO)
1573 		return (vn_fill_kinfo(fp, kif, fdp));
1574 	kif->kf_type = KF_TYPE_PIPE;
1575 	pi = fp->f_data;
1576 	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1577 	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1578 	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1579 	return (0);
1580 }
1581 
1582 static void
1583 pipe_free_kmem(struct pipe *cpipe)
1584 {
1585 
1586 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1587 	    ("pipe_free_kmem: pipe mutex locked"));
1588 
1589 	if (cpipe->pipe_buffer.buffer != NULL) {
1590 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1591 		vm_map_remove(pipe_map,
1592 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1593 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1594 		cpipe->pipe_buffer.buffer = NULL;
1595 	}
1596 #ifndef PIPE_NODIRECT
1597 	{
1598 		cpipe->pipe_map.cnt = 0;
1599 		cpipe->pipe_map.pos = 0;
1600 		cpipe->pipe_map.npages = 0;
1601 	}
1602 #endif
1603 }
1604 
1605 /*
1606  * shutdown the pipe
1607  */
1608 static void
1609 pipeclose(struct pipe *cpipe)
1610 {
1611 	struct pipepair *pp;
1612 	struct pipe *ppipe;
1613 
1614 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1615 
1616 	PIPE_LOCK(cpipe);
1617 	pipelock(cpipe, 0);
1618 	pp = cpipe->pipe_pair;
1619 
1620 	pipeselwakeup(cpipe);
1621 
1622 	/*
1623 	 * If the other side is blocked, wake it up saying that
1624 	 * we want to close it down.
1625 	 */
1626 	cpipe->pipe_state |= PIPE_EOF;
1627 	while (cpipe->pipe_busy) {
1628 		wakeup(cpipe);
1629 		cpipe->pipe_state |= PIPE_WANT;
1630 		pipeunlock(cpipe);
1631 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1632 		pipelock(cpipe, 0);
1633 	}
1634 
1635 
1636 	/*
1637 	 * Disconnect from peer, if any.
1638 	 */
1639 	ppipe = cpipe->pipe_peer;
1640 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1641 		pipeselwakeup(ppipe);
1642 
1643 		ppipe->pipe_state |= PIPE_EOF;
1644 		wakeup(ppipe);
1645 		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1646 	}
1647 
1648 	/*
1649 	 * Mark this endpoint as free.  Release kmem resources.  We
1650 	 * don't mark this endpoint as unused until we've finished
1651 	 * doing that, or the pipe might disappear out from under
1652 	 * us.
1653 	 */
1654 	PIPE_UNLOCK(cpipe);
1655 	pipe_free_kmem(cpipe);
1656 	PIPE_LOCK(cpipe);
1657 	cpipe->pipe_present = PIPE_CLOSING;
1658 	pipeunlock(cpipe);
1659 
1660 	/*
1661 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1662 	 * PIPE_FINALIZED, that allows other end to free the
1663 	 * pipe_pair, only after the knotes are completely dismantled.
1664 	 */
1665 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1666 	cpipe->pipe_present = PIPE_FINALIZED;
1667 	seldrain(&cpipe->pipe_sel);
1668 	knlist_destroy(&cpipe->pipe_sel.si_note);
1669 
1670 	/*
1671 	 * If both endpoints are now closed, release the memory for the
1672 	 * pipe pair.  If not, unlock.
1673 	 */
1674 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1675 		PIPE_UNLOCK(cpipe);
1676 #ifdef MAC
1677 		mac_pipe_destroy(pp);
1678 #endif
1679 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1680 	} else
1681 		PIPE_UNLOCK(cpipe);
1682 }
1683 
1684 /*ARGSUSED*/
1685 static int
1686 pipe_kqfilter(struct file *fp, struct knote *kn)
1687 {
1688 	struct pipe *cpipe;
1689 
1690 	/*
1691 	 * If a filter is requested that is not supported by this file
1692 	 * descriptor, don't return an error, but also don't ever generate an
1693 	 * event.
1694 	 */
1695 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1696 		kn->kn_fop = &pipe_nfiltops;
1697 		return (0);
1698 	}
1699 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1700 		kn->kn_fop = &pipe_nfiltops;
1701 		return (0);
1702 	}
1703 	cpipe = fp->f_data;
1704 	PIPE_LOCK(cpipe);
1705 	switch (kn->kn_filter) {
1706 	case EVFILT_READ:
1707 		kn->kn_fop = &pipe_rfiltops;
1708 		break;
1709 	case EVFILT_WRITE:
1710 		kn->kn_fop = &pipe_wfiltops;
1711 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1712 			/* other end of pipe has been closed */
1713 			PIPE_UNLOCK(cpipe);
1714 			return (EPIPE);
1715 		}
1716 		cpipe = PIPE_PEER(cpipe);
1717 		break;
1718 	default:
1719 		PIPE_UNLOCK(cpipe);
1720 		return (EINVAL);
1721 	}
1722 
1723 	kn->kn_hook = cpipe;
1724 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1725 	PIPE_UNLOCK(cpipe);
1726 	return (0);
1727 }
1728 
1729 static void
1730 filt_pipedetach(struct knote *kn)
1731 {
1732 	struct pipe *cpipe = kn->kn_hook;
1733 
1734 	PIPE_LOCK(cpipe);
1735 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1736 	PIPE_UNLOCK(cpipe);
1737 }
1738 
1739 /*ARGSUSED*/
1740 static int
1741 filt_piperead(struct knote *kn, long hint)
1742 {
1743 	struct pipe *rpipe = kn->kn_hook;
1744 	struct pipe *wpipe = rpipe->pipe_peer;
1745 	int ret;
1746 
1747 	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1748 	kn->kn_data = rpipe->pipe_buffer.cnt;
1749 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1750 		kn->kn_data = rpipe->pipe_map.cnt;
1751 
1752 	if ((rpipe->pipe_state & PIPE_EOF) ||
1753 	    wpipe->pipe_present != PIPE_ACTIVE ||
1754 	    (wpipe->pipe_state & PIPE_EOF)) {
1755 		kn->kn_flags |= EV_EOF;
1756 		return (1);
1757 	}
1758 	ret = kn->kn_data > 0;
1759 	return ret;
1760 }
1761 
1762 /*ARGSUSED*/
1763 static int
1764 filt_pipewrite(struct knote *kn, long hint)
1765 {
1766 	struct pipe *wpipe;
1767 
1768 	wpipe = kn->kn_hook;
1769 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1770 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1771 	    (wpipe->pipe_state & PIPE_EOF)) {
1772 		kn->kn_data = 0;
1773 		kn->kn_flags |= EV_EOF;
1774 		return (1);
1775 	}
1776 	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1777 	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1778 	if (wpipe->pipe_state & PIPE_DIRECTW)
1779 		kn->kn_data = 0;
1780 
1781 	return (kn->kn_data >= PIPE_BUF);
1782 }
1783 
1784 static void
1785 filt_pipedetach_notsup(struct knote *kn)
1786 {
1787 
1788 }
1789 
1790 static int
1791 filt_pipenotsup(struct knote *kn, long hint)
1792 {
1793 
1794 	return (0);
1795 }
1796