1 /* 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 */ 19 20 /* 21 * This file contains a high-performance replacement for the socket-based 22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 23 * all features of sockets, but does do everything that pipes normally 24 * do. 25 */ 26 27 /* 28 * This code has two modes of operation, a small write mode and a large 29 * write mode. The small write mode acts like conventional pipes with 30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and 33 * the receiving process can copy it directly from the pages in the sending 34 * process. 35 * 36 * If the sending process receives a signal, it is possible that it will 37 * go away, and certainly its address space can change, because control 38 * is returned back to the user-mode side. In that case, the pipe code 39 * arranges to copy the buffer supplied by the user process, to a pageable 40 * kernel buffer, and the receiving process will grab the data from the 41 * pageable kernel buffer. Since signals don't happen all that often, 42 * the copy operation is normally eliminated. 43 * 44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 45 * happen for small transfers so that the system will not spend all of 46 * its time context switching. 47 * 48 * In order to limit the resource use of pipes, two sysctls exist: 49 * 50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 51 * address space available to us in pipe_map. This value is normally 52 * autotuned, but may also be loader tuned. 53 * 54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 55 * memory in use by pipes. 56 * 57 * Based on how large pipekva is relative to maxpipekva, the following 58 * will happen: 59 * 60 * 0% - 50%: 61 * New pipes are given 16K of memory backing, pipes may dynamically 62 * grow to as large as 64K where needed. 63 * 50% - 75%: 64 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 65 * existing pipes may NOT grow. 66 * 75% - 100%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes will be shrunk down to 4K whenever possible. 69 * 70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 72 * resize which MUST occur for reverse-direction pipes when they are 73 * first used. 74 * 75 * Additional information about the current state of pipes may be obtained 76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 77 * and kern.ipc.piperesizefail. 78 * 79 * Locking rules: There are two locks present here: A mutex, used via 80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 81 * the flag, as mutexes can not persist over uiomove. The mutex 82 * exists only to guard access to the flag, and is not in itself a 83 * locking mechanism. Also note that there is only a single mutex for 84 * both directions of a pipe. 85 * 86 * As pipelock() may have to sleep before it can acquire the flag, it 87 * is important to reread all data after a call to pipelock(); everything 88 * in the structure may have changed. 89 */ 90 91 #include <sys/cdefs.h> 92 __FBSDID("$FreeBSD$"); 93 94 #include "opt_mac.h" 95 96 #include <sys/param.h> 97 #include <sys/systm.h> 98 #include <sys/fcntl.h> 99 #include <sys/file.h> 100 #include <sys/filedesc.h> 101 #include <sys/filio.h> 102 #include <sys/kernel.h> 103 #include <sys/lock.h> 104 #include <sys/mac.h> 105 #include <sys/mutex.h> 106 #include <sys/ttycom.h> 107 #include <sys/stat.h> 108 #include <sys/malloc.h> 109 #include <sys/poll.h> 110 #include <sys/selinfo.h> 111 #include <sys/signalvar.h> 112 #include <sys/sysctl.h> 113 #include <sys/sysproto.h> 114 #include <sys/pipe.h> 115 #include <sys/proc.h> 116 #include <sys/vnode.h> 117 #include <sys/uio.h> 118 #include <sys/event.h> 119 120 #include <vm/vm.h> 121 #include <vm/vm_param.h> 122 #include <vm/vm_object.h> 123 #include <vm/vm_kern.h> 124 #include <vm/vm_extern.h> 125 #include <vm/pmap.h> 126 #include <vm/vm_map.h> 127 #include <vm/vm_page.h> 128 #include <vm/uma.h> 129 130 /* 131 * Use this define if you want to disable *fancy* VM things. Expect an 132 * approx 30% decrease in transfer rate. This could be useful for 133 * NetBSD or OpenBSD. 134 */ 135 /* #define PIPE_NODIRECT */ 136 137 /* 138 * interfaces to the outside world 139 */ 140 static fo_rdwr_t pipe_read; 141 static fo_rdwr_t pipe_write; 142 static fo_ioctl_t pipe_ioctl; 143 static fo_poll_t pipe_poll; 144 static fo_kqfilter_t pipe_kqfilter; 145 static fo_stat_t pipe_stat; 146 static fo_close_t pipe_close; 147 148 static struct fileops pipeops = { 149 .fo_read = pipe_read, 150 .fo_write = pipe_write, 151 .fo_ioctl = pipe_ioctl, 152 .fo_poll = pipe_poll, 153 .fo_kqfilter = pipe_kqfilter, 154 .fo_stat = pipe_stat, 155 .fo_close = pipe_close, 156 .fo_flags = DFLAG_PASSABLE 157 }; 158 159 static void filt_pipedetach(struct knote *kn); 160 static int filt_piperead(struct knote *kn, long hint); 161 static int filt_pipewrite(struct knote *kn, long hint); 162 163 static struct filterops pipe_rfiltops = 164 { 1, NULL, filt_pipedetach, filt_piperead }; 165 static struct filterops pipe_wfiltops = 166 { 1, NULL, filt_pipedetach, filt_pipewrite }; 167 168 /* 169 * Default pipe buffer size(s), this can be kind-of large now because pipe 170 * space is pageable. The pipe code will try to maintain locality of 171 * reference for performance reasons, so small amounts of outstanding I/O 172 * will not wipe the cache. 173 */ 174 #define MINPIPESIZE (PIPE_SIZE/3) 175 #define MAXPIPESIZE (2*PIPE_SIZE/3) 176 177 static int amountpipes; 178 static int amountpipekva; 179 static int pipefragretry; 180 static int pipeallocfail; 181 static int piperesizefail; 182 static int piperesizeallowed = 1; 183 184 SYSCTL_DECL(_kern_ipc); 185 186 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, 187 &maxpipekva, 0, "Pipe KVA limit"); 188 SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD, 189 &amountpipes, 0, "Current # of pipes"); 190 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 191 &amountpipekva, 0, "Pipe KVA usage"); 192 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 193 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 194 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 195 &pipeallocfail, 0, "Pipe allocation failures"); 196 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 197 &piperesizefail, 0, "Pipe resize failures"); 198 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 199 &piperesizeallowed, 0, "Pipe resizing allowed"); 200 201 static void pipeinit(void *dummy __unused); 202 static void pipeclose(struct pipe *cpipe); 203 static void pipe_free_kmem(struct pipe *cpipe); 204 static int pipe_create(struct pipe *pipe, int backing); 205 static __inline int pipelock(struct pipe *cpipe, int catch); 206 static __inline void pipeunlock(struct pipe *cpipe); 207 static __inline void pipeselwakeup(struct pipe *cpipe); 208 #ifndef PIPE_NODIRECT 209 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 210 static void pipe_destroy_write_buffer(struct pipe *wpipe); 211 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 212 static void pipe_clone_write_buffer(struct pipe *wpipe); 213 #endif 214 static int pipespace(struct pipe *cpipe, int size); 215 static int pipespace_new(struct pipe *cpipe, int size); 216 217 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 218 static void pipe_zone_dtor(void *mem, int size, void *arg); 219 static int pipe_zone_init(void *mem, int size, int flags); 220 static void pipe_zone_fini(void *mem, int size); 221 222 static uma_zone_t pipe_zone; 223 224 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 225 226 static void 227 pipeinit(void *dummy __unused) 228 { 229 230 pipe_zone = uma_zcreate("PIPE", sizeof(struct pipepair), 231 pipe_zone_ctor, pipe_zone_dtor, pipe_zone_init, pipe_zone_fini, 232 UMA_ALIGN_PTR, 0); 233 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 234 } 235 236 static int 237 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 238 { 239 struct pipepair *pp; 240 struct pipe *rpipe, *wpipe; 241 242 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 243 244 pp = (struct pipepair *)mem; 245 246 /* 247 * We zero both pipe endpoints to make sure all the kmem pointers 248 * are NULL, flag fields are zero'd, etc. We timestamp both 249 * endpoints with the same time. 250 */ 251 rpipe = &pp->pp_rpipe; 252 bzero(rpipe, sizeof(*rpipe)); 253 vfs_timestamp(&rpipe->pipe_ctime); 254 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 255 256 wpipe = &pp->pp_wpipe; 257 bzero(wpipe, sizeof(*wpipe)); 258 wpipe->pipe_ctime = rpipe->pipe_ctime; 259 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 260 261 rpipe->pipe_peer = wpipe; 262 rpipe->pipe_pair = pp; 263 wpipe->pipe_peer = rpipe; 264 wpipe->pipe_pair = pp; 265 266 /* 267 * Mark both endpoints as present; they will later get free'd 268 * one at a time. When both are free'd, then the whole pair 269 * is released. 270 */ 271 rpipe->pipe_present = 1; 272 wpipe->pipe_present = 1; 273 274 /* 275 * Eventually, the MAC Framework may initialize the label 276 * in ctor or init, but for now we do it elswhere to avoid 277 * blocking in ctor or init. 278 */ 279 pp->pp_label = NULL; 280 281 atomic_add_int(&amountpipes, 2); 282 return (0); 283 } 284 285 static void 286 pipe_zone_dtor(void *mem, int size, void *arg) 287 { 288 struct pipepair *pp; 289 290 KASSERT(size == sizeof(*pp), ("pipe_zone_dtor: wrong size")); 291 292 pp = (struct pipepair *)mem; 293 294 atomic_subtract_int(&amountpipes, 2); 295 } 296 297 static int 298 pipe_zone_init(void *mem, int size, int flags) 299 { 300 struct pipepair *pp; 301 302 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 303 304 pp = (struct pipepair *)mem; 305 306 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 307 return (0); 308 } 309 310 static void 311 pipe_zone_fini(void *mem, int size) 312 { 313 struct pipepair *pp; 314 315 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 316 317 pp = (struct pipepair *)mem; 318 319 mtx_destroy(&pp->pp_mtx); 320 } 321 322 /* 323 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, 324 * let the zone pick up the pieces via pipeclose(). 325 */ 326 327 /* ARGSUSED */ 328 int 329 pipe(td, uap) 330 struct thread *td; 331 struct pipe_args /* { 332 int dummy; 333 } */ *uap; 334 { 335 struct filedesc *fdp = td->td_proc->p_fd; 336 struct file *rf, *wf; 337 struct pipepair *pp; 338 struct pipe *rpipe, *wpipe; 339 int fd, error; 340 341 pp = uma_zalloc(pipe_zone, M_WAITOK); 342 #ifdef MAC 343 /* 344 * The MAC label is shared between the connected endpoints. As a 345 * result mac_init_pipe() and mac_create_pipe() are called once 346 * for the pair, and not on the endpoints. 347 */ 348 mac_init_pipe(pp); 349 mac_create_pipe(td->td_ucred, pp); 350 #endif 351 rpipe = &pp->pp_rpipe; 352 wpipe = &pp->pp_wpipe; 353 354 /* Only the forward direction pipe is backed by default */ 355 if (pipe_create(rpipe, 1) || pipe_create(wpipe, 0)) { 356 pipeclose(rpipe); 357 pipeclose(wpipe); 358 return (ENFILE); 359 } 360 361 rpipe->pipe_state |= PIPE_DIRECTOK; 362 wpipe->pipe_state |= PIPE_DIRECTOK; 363 364 error = falloc(td, &rf, &fd); 365 if (error) { 366 pipeclose(rpipe); 367 pipeclose(wpipe); 368 return (error); 369 } 370 /* An extra reference on `rf' has been held for us by falloc(). */ 371 td->td_retval[0] = fd; 372 373 /* 374 * Warning: once we've gotten past allocation of the fd for the 375 * read-side, we can only drop the read side via fdrop() in order 376 * to avoid races against processes which manage to dup() the read 377 * side while we are blocked trying to allocate the write side. 378 */ 379 FILE_LOCK(rf); 380 rf->f_flag = FREAD | FWRITE; 381 rf->f_type = DTYPE_PIPE; 382 rf->f_data = rpipe; 383 rf->f_ops = &pipeops; 384 FILE_UNLOCK(rf); 385 error = falloc(td, &wf, &fd); 386 if (error) { 387 FILEDESC_LOCK(fdp); 388 if (fdp->fd_ofiles[td->td_retval[0]] == rf) { 389 fdp->fd_ofiles[td->td_retval[0]] = NULL; 390 fdunused(fdp, td->td_retval[0]); 391 FILEDESC_UNLOCK(fdp); 392 fdrop(rf, td); 393 } else { 394 FILEDESC_UNLOCK(fdp); 395 } 396 fdrop(rf, td); 397 /* rpipe has been closed by fdrop(). */ 398 pipeclose(wpipe); 399 return (error); 400 } 401 /* An extra reference on `wf' has been held for us by falloc(). */ 402 FILE_LOCK(wf); 403 wf->f_flag = FREAD | FWRITE; 404 wf->f_type = DTYPE_PIPE; 405 wf->f_data = wpipe; 406 wf->f_ops = &pipeops; 407 FILE_UNLOCK(wf); 408 fdrop(wf, td); 409 td->td_retval[1] = fd; 410 fdrop(rf, td); 411 412 return (0); 413 } 414 415 /* 416 * Allocate kva for pipe circular buffer, the space is pageable 417 * This routine will 'realloc' the size of a pipe safely, if it fails 418 * it will retain the old buffer. 419 * If it fails it will return ENOMEM. 420 */ 421 static int 422 pipespace_new(cpipe, size) 423 struct pipe *cpipe; 424 int size; 425 { 426 caddr_t buffer; 427 int error, cnt, firstseg; 428 static int curfail = 0; 429 static struct timeval lastfail; 430 431 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 432 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 433 ("pipespace: resize of direct writes not allowed")); 434 retry: 435 cnt = cpipe->pipe_buffer.cnt; 436 if (cnt > size) 437 size = cnt; 438 439 size = round_page(size); 440 buffer = (caddr_t) vm_map_min(pipe_map); 441 442 error = vm_map_find(pipe_map, NULL, 0, 443 (vm_offset_t *) &buffer, size, 1, 444 VM_PROT_ALL, VM_PROT_ALL, 0); 445 if (error != KERN_SUCCESS) { 446 if ((cpipe->pipe_buffer.buffer == NULL) && 447 (size > SMALL_PIPE_SIZE)) { 448 size = SMALL_PIPE_SIZE; 449 pipefragretry++; 450 goto retry; 451 } 452 if (cpipe->pipe_buffer.buffer == NULL) { 453 pipeallocfail++; 454 if (ppsratecheck(&lastfail, &curfail, 1)) 455 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 456 } else { 457 piperesizefail++; 458 } 459 return (ENOMEM); 460 } 461 462 /* copy data, then free old resources if we're resizing */ 463 if (cnt > 0) { 464 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 465 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 466 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 467 buffer, firstseg); 468 if ((cnt - firstseg) > 0) 469 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 470 cpipe->pipe_buffer.in); 471 } else { 472 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 473 buffer, cnt); 474 } 475 } 476 pipe_free_kmem(cpipe); 477 cpipe->pipe_buffer.buffer = buffer; 478 cpipe->pipe_buffer.size = size; 479 cpipe->pipe_buffer.in = cnt; 480 cpipe->pipe_buffer.out = 0; 481 cpipe->pipe_buffer.cnt = cnt; 482 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size); 483 return (0); 484 } 485 486 /* 487 * Wrapper for pipespace_new() that performs locking assertions. 488 */ 489 static int 490 pipespace(cpipe, size) 491 struct pipe *cpipe; 492 int size; 493 { 494 495 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 496 ("Unlocked pipe passed to pipespace")); 497 return (pipespace_new(cpipe, size)); 498 } 499 500 /* 501 * lock a pipe for I/O, blocking other access 502 */ 503 static __inline int 504 pipelock(cpipe, catch) 505 struct pipe *cpipe; 506 int catch; 507 { 508 int error; 509 510 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 511 while (cpipe->pipe_state & PIPE_LOCKFL) { 512 cpipe->pipe_state |= PIPE_LWANT; 513 error = msleep(cpipe, PIPE_MTX(cpipe), 514 catch ? (PRIBIO | PCATCH) : PRIBIO, 515 "pipelk", 0); 516 if (error != 0) 517 return (error); 518 } 519 cpipe->pipe_state |= PIPE_LOCKFL; 520 return (0); 521 } 522 523 /* 524 * unlock a pipe I/O lock 525 */ 526 static __inline void 527 pipeunlock(cpipe) 528 struct pipe *cpipe; 529 { 530 531 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 532 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 533 ("Unlocked pipe passed to pipeunlock")); 534 cpipe->pipe_state &= ~PIPE_LOCKFL; 535 if (cpipe->pipe_state & PIPE_LWANT) { 536 cpipe->pipe_state &= ~PIPE_LWANT; 537 wakeup(cpipe); 538 } 539 } 540 541 static __inline void 542 pipeselwakeup(cpipe) 543 struct pipe *cpipe; 544 { 545 546 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 547 if (cpipe->pipe_state & PIPE_SEL) { 548 cpipe->pipe_state &= ~PIPE_SEL; 549 selwakeuppri(&cpipe->pipe_sel, PSOCK); 550 } 551 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 552 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 553 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 554 } 555 556 /* 557 * Initialize and allocate VM and memory for pipe. The structure 558 * will start out zero'd from the ctor, so we just manage the kmem. 559 */ 560 static int 561 pipe_create(pipe, backing) 562 struct pipe *pipe; 563 int backing; 564 { 565 int error; 566 567 if (backing) { 568 if (amountpipekva > maxpipekva / 2) 569 error = pipespace_new(pipe, SMALL_PIPE_SIZE); 570 else 571 error = pipespace_new(pipe, PIPE_SIZE); 572 } else { 573 /* If we're not backing this pipe, no need to do anything. */ 574 error = 0; 575 } 576 knlist_init(&pipe->pipe_sel.si_note, PIPE_MTX(pipe)); 577 return (error); 578 } 579 580 /* ARGSUSED */ 581 static int 582 pipe_read(fp, uio, active_cred, flags, td) 583 struct file *fp; 584 struct uio *uio; 585 struct ucred *active_cred; 586 struct thread *td; 587 int flags; 588 { 589 struct pipe *rpipe = fp->f_data; 590 int error; 591 int nread = 0; 592 u_int size; 593 594 PIPE_LOCK(rpipe); 595 ++rpipe->pipe_busy; 596 error = pipelock(rpipe, 1); 597 if (error) 598 goto unlocked_error; 599 600 #ifdef MAC 601 error = mac_check_pipe_read(active_cred, rpipe->pipe_pair); 602 if (error) 603 goto locked_error; 604 #endif 605 if (amountpipekva > (3 * maxpipekva) / 4) { 606 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 607 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 608 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 609 (piperesizeallowed == 1)) { 610 PIPE_UNLOCK(rpipe); 611 pipespace(rpipe, SMALL_PIPE_SIZE); 612 PIPE_LOCK(rpipe); 613 } 614 } 615 616 while (uio->uio_resid) { 617 /* 618 * normal pipe buffer receive 619 */ 620 if (rpipe->pipe_buffer.cnt > 0) { 621 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 622 if (size > rpipe->pipe_buffer.cnt) 623 size = rpipe->pipe_buffer.cnt; 624 if (size > (u_int) uio->uio_resid) 625 size = (u_int) uio->uio_resid; 626 627 PIPE_UNLOCK(rpipe); 628 error = uiomove( 629 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 630 size, uio); 631 PIPE_LOCK(rpipe); 632 if (error) 633 break; 634 635 rpipe->pipe_buffer.out += size; 636 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 637 rpipe->pipe_buffer.out = 0; 638 639 rpipe->pipe_buffer.cnt -= size; 640 641 /* 642 * If there is no more to read in the pipe, reset 643 * its pointers to the beginning. This improves 644 * cache hit stats. 645 */ 646 if (rpipe->pipe_buffer.cnt == 0) { 647 rpipe->pipe_buffer.in = 0; 648 rpipe->pipe_buffer.out = 0; 649 } 650 nread += size; 651 #ifndef PIPE_NODIRECT 652 /* 653 * Direct copy, bypassing a kernel buffer. 654 */ 655 } else if ((size = rpipe->pipe_map.cnt) && 656 (rpipe->pipe_state & PIPE_DIRECTW)) { 657 if (size > (u_int) uio->uio_resid) 658 size = (u_int) uio->uio_resid; 659 660 PIPE_UNLOCK(rpipe); 661 error = uiomove_fromphys(rpipe->pipe_map.ms, 662 rpipe->pipe_map.pos, size, uio); 663 PIPE_LOCK(rpipe); 664 if (error) 665 break; 666 nread += size; 667 rpipe->pipe_map.pos += size; 668 rpipe->pipe_map.cnt -= size; 669 if (rpipe->pipe_map.cnt == 0) { 670 rpipe->pipe_state &= ~PIPE_DIRECTW; 671 wakeup(rpipe); 672 } 673 #endif 674 } else { 675 /* 676 * detect EOF condition 677 * read returns 0 on EOF, no need to set error 678 */ 679 if (rpipe->pipe_state & PIPE_EOF) 680 break; 681 682 /* 683 * If the "write-side" has been blocked, wake it up now. 684 */ 685 if (rpipe->pipe_state & PIPE_WANTW) { 686 rpipe->pipe_state &= ~PIPE_WANTW; 687 wakeup(rpipe); 688 } 689 690 /* 691 * Break if some data was read. 692 */ 693 if (nread > 0) 694 break; 695 696 /* 697 * Unlock the pipe buffer for our remaining processing. 698 * We will either break out with an error or we will 699 * sleep and relock to loop. 700 */ 701 pipeunlock(rpipe); 702 703 /* 704 * Handle non-blocking mode operation or 705 * wait for more data. 706 */ 707 if (fp->f_flag & FNONBLOCK) { 708 error = EAGAIN; 709 } else { 710 rpipe->pipe_state |= PIPE_WANTR; 711 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 712 PRIBIO | PCATCH, 713 "piperd", 0)) == 0) 714 error = pipelock(rpipe, 1); 715 } 716 if (error) 717 goto unlocked_error; 718 } 719 } 720 #ifdef MAC 721 locked_error: 722 #endif 723 pipeunlock(rpipe); 724 725 /* XXX: should probably do this before getting any locks. */ 726 if (error == 0) 727 vfs_timestamp(&rpipe->pipe_atime); 728 unlocked_error: 729 --rpipe->pipe_busy; 730 731 /* 732 * PIPE_WANT processing only makes sense if pipe_busy is 0. 733 */ 734 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 735 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 736 wakeup(rpipe); 737 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 738 /* 739 * Handle write blocking hysteresis. 740 */ 741 if (rpipe->pipe_state & PIPE_WANTW) { 742 rpipe->pipe_state &= ~PIPE_WANTW; 743 wakeup(rpipe); 744 } 745 } 746 747 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 748 pipeselwakeup(rpipe); 749 750 PIPE_UNLOCK(rpipe); 751 return (error); 752 } 753 754 #ifndef PIPE_NODIRECT 755 /* 756 * Map the sending processes' buffer into kernel space and wire it. 757 * This is similar to a physical write operation. 758 */ 759 static int 760 pipe_build_write_buffer(wpipe, uio) 761 struct pipe *wpipe; 762 struct uio *uio; 763 { 764 pmap_t pmap; 765 u_int size; 766 int i, j; 767 vm_offset_t addr, endaddr; 768 769 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 770 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 771 ("Clone attempt on non-direct write pipe!")); 772 773 size = (u_int) uio->uio_iov->iov_len; 774 if (size > wpipe->pipe_buffer.size) 775 size = wpipe->pipe_buffer.size; 776 777 pmap = vmspace_pmap(curproc->p_vmspace); 778 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size); 779 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base); 780 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) { 781 /* 782 * vm_fault_quick() can sleep. Consequently, 783 * vm_page_lock_queue() and vm_page_unlock_queue() 784 * should not be performed outside of this loop. 785 */ 786 race: 787 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) { 788 vm_page_lock_queues(); 789 for (j = 0; j < i; j++) 790 vm_page_unhold(wpipe->pipe_map.ms[j]); 791 vm_page_unlock_queues(); 792 return (EFAULT); 793 } 794 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr, 795 VM_PROT_READ); 796 if (wpipe->pipe_map.ms[i] == NULL) 797 goto race; 798 } 799 800 /* 801 * set up the control block 802 */ 803 wpipe->pipe_map.npages = i; 804 wpipe->pipe_map.pos = 805 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 806 wpipe->pipe_map.cnt = size; 807 808 /* 809 * and update the uio data 810 */ 811 812 uio->uio_iov->iov_len -= size; 813 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 814 if (uio->uio_iov->iov_len == 0) 815 uio->uio_iov++; 816 uio->uio_resid -= size; 817 uio->uio_offset += size; 818 return (0); 819 } 820 821 /* 822 * unmap and unwire the process buffer 823 */ 824 static void 825 pipe_destroy_write_buffer(wpipe) 826 struct pipe *wpipe; 827 { 828 int i; 829 830 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 831 vm_page_lock_queues(); 832 for (i = 0; i < wpipe->pipe_map.npages; i++) { 833 vm_page_unhold(wpipe->pipe_map.ms[i]); 834 } 835 vm_page_unlock_queues(); 836 wpipe->pipe_map.npages = 0; 837 } 838 839 /* 840 * In the case of a signal, the writing process might go away. This 841 * code copies the data into the circular buffer so that the source 842 * pages can be freed without loss of data. 843 */ 844 static void 845 pipe_clone_write_buffer(wpipe) 846 struct pipe *wpipe; 847 { 848 struct uio uio; 849 struct iovec iov; 850 int size; 851 int pos; 852 853 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 854 size = wpipe->pipe_map.cnt; 855 pos = wpipe->pipe_map.pos; 856 857 wpipe->pipe_buffer.in = size; 858 wpipe->pipe_buffer.out = 0; 859 wpipe->pipe_buffer.cnt = size; 860 wpipe->pipe_state &= ~PIPE_DIRECTW; 861 862 PIPE_UNLOCK(wpipe); 863 iov.iov_base = wpipe->pipe_buffer.buffer; 864 iov.iov_len = size; 865 uio.uio_iov = &iov; 866 uio.uio_iovcnt = 1; 867 uio.uio_offset = 0; 868 uio.uio_resid = size; 869 uio.uio_segflg = UIO_SYSSPACE; 870 uio.uio_rw = UIO_READ; 871 uio.uio_td = curthread; 872 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 873 PIPE_LOCK(wpipe); 874 pipe_destroy_write_buffer(wpipe); 875 } 876 877 /* 878 * This implements the pipe buffer write mechanism. Note that only 879 * a direct write OR a normal pipe write can be pending at any given time. 880 * If there are any characters in the pipe buffer, the direct write will 881 * be deferred until the receiving process grabs all of the bytes from 882 * the pipe buffer. Then the direct mapping write is set-up. 883 */ 884 static int 885 pipe_direct_write(wpipe, uio) 886 struct pipe *wpipe; 887 struct uio *uio; 888 { 889 int error; 890 891 retry: 892 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 893 error = pipelock(wpipe, 1); 894 if (wpipe->pipe_state & PIPE_EOF) 895 error = EPIPE; 896 if (error) { 897 pipeunlock(wpipe); 898 goto error1; 899 } 900 while (wpipe->pipe_state & PIPE_DIRECTW) { 901 if (wpipe->pipe_state & PIPE_WANTR) { 902 wpipe->pipe_state &= ~PIPE_WANTR; 903 wakeup(wpipe); 904 } 905 wpipe->pipe_state |= PIPE_WANTW; 906 pipeunlock(wpipe); 907 error = msleep(wpipe, PIPE_MTX(wpipe), 908 PRIBIO | PCATCH, "pipdww", 0); 909 if (error) 910 goto error1; 911 else 912 goto retry; 913 } 914 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 915 if (wpipe->pipe_buffer.cnt > 0) { 916 if (wpipe->pipe_state & PIPE_WANTR) { 917 wpipe->pipe_state &= ~PIPE_WANTR; 918 wakeup(wpipe); 919 } 920 wpipe->pipe_state |= PIPE_WANTW; 921 pipeunlock(wpipe); 922 error = msleep(wpipe, PIPE_MTX(wpipe), 923 PRIBIO | PCATCH, "pipdwc", 0); 924 if (error) 925 goto error1; 926 else 927 goto retry; 928 } 929 930 wpipe->pipe_state |= PIPE_DIRECTW; 931 932 PIPE_UNLOCK(wpipe); 933 error = pipe_build_write_buffer(wpipe, uio); 934 PIPE_LOCK(wpipe); 935 if (error) { 936 wpipe->pipe_state &= ~PIPE_DIRECTW; 937 pipeunlock(wpipe); 938 goto error1; 939 } 940 941 error = 0; 942 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 943 if (wpipe->pipe_state & PIPE_EOF) { 944 pipe_destroy_write_buffer(wpipe); 945 pipeselwakeup(wpipe); 946 pipeunlock(wpipe); 947 error = EPIPE; 948 goto error1; 949 } 950 if (wpipe->pipe_state & PIPE_WANTR) { 951 wpipe->pipe_state &= ~PIPE_WANTR; 952 wakeup(wpipe); 953 } 954 pipeselwakeup(wpipe); 955 pipeunlock(wpipe); 956 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 957 "pipdwt", 0); 958 pipelock(wpipe, 0); 959 } 960 961 if (wpipe->pipe_state & PIPE_EOF) 962 error = EPIPE; 963 if (wpipe->pipe_state & PIPE_DIRECTW) { 964 /* 965 * this bit of trickery substitutes a kernel buffer for 966 * the process that might be going away. 967 */ 968 pipe_clone_write_buffer(wpipe); 969 } else { 970 pipe_destroy_write_buffer(wpipe); 971 } 972 pipeunlock(wpipe); 973 return (error); 974 975 error1: 976 wakeup(wpipe); 977 return (error); 978 } 979 #endif 980 981 static int 982 pipe_write(fp, uio, active_cred, flags, td) 983 struct file *fp; 984 struct uio *uio; 985 struct ucred *active_cred; 986 struct thread *td; 987 int flags; 988 { 989 int error = 0; 990 int desiredsize, orig_resid; 991 struct pipe *wpipe, *rpipe; 992 993 rpipe = fp->f_data; 994 wpipe = rpipe->pipe_peer; 995 996 PIPE_LOCK(rpipe); 997 error = pipelock(wpipe, 1); 998 if (error) { 999 PIPE_UNLOCK(rpipe); 1000 return (error); 1001 } 1002 /* 1003 * detect loss of pipe read side, issue SIGPIPE if lost. 1004 */ 1005 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1006 pipeunlock(wpipe); 1007 PIPE_UNLOCK(rpipe); 1008 return (EPIPE); 1009 } 1010 #ifdef MAC 1011 error = mac_check_pipe_write(active_cred, wpipe->pipe_pair); 1012 if (error) { 1013 pipeunlock(wpipe); 1014 PIPE_UNLOCK(rpipe); 1015 return (error); 1016 } 1017 #endif 1018 ++wpipe->pipe_busy; 1019 1020 /* Choose a larger size if it's advantageous */ 1021 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1022 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1023 if (piperesizeallowed != 1) 1024 break; 1025 if (amountpipekva > maxpipekva / 2) 1026 break; 1027 if (desiredsize == BIG_PIPE_SIZE) 1028 break; 1029 desiredsize = desiredsize * 2; 1030 } 1031 1032 /* Choose a smaller size if we're in a OOM situation */ 1033 if ((amountpipekva > (3 * maxpipekva) / 4) && 1034 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 1035 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1036 (piperesizeallowed == 1)) 1037 desiredsize = SMALL_PIPE_SIZE; 1038 1039 /* Resize if the above determined that a new size was necessary */ 1040 if ((desiredsize != wpipe->pipe_buffer.size) && 1041 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1042 PIPE_UNLOCK(wpipe); 1043 pipespace(wpipe, desiredsize); 1044 PIPE_LOCK(wpipe); 1045 } 1046 if (wpipe->pipe_buffer.size == 0) { 1047 /* 1048 * This can only happen for reverse direction use of pipes 1049 * in a complete OOM situation. 1050 */ 1051 error = ENOMEM; 1052 --wpipe->pipe_busy; 1053 pipeunlock(wpipe); 1054 PIPE_UNLOCK(wpipe); 1055 return (error); 1056 } 1057 1058 pipeunlock(wpipe); 1059 1060 orig_resid = uio->uio_resid; 1061 1062 while (uio->uio_resid) { 1063 int space; 1064 1065 pipelock(wpipe, 0); 1066 if (wpipe->pipe_state & PIPE_EOF) { 1067 pipeunlock(wpipe); 1068 error = EPIPE; 1069 break; 1070 } 1071 #ifndef PIPE_NODIRECT 1072 /* 1073 * If the transfer is large, we can gain performance if 1074 * we do process-to-process copies directly. 1075 * If the write is non-blocking, we don't use the 1076 * direct write mechanism. 1077 * 1078 * The direct write mechanism will detect the reader going 1079 * away on us. 1080 */ 1081 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 1082 (wpipe->pipe_buffer.size >= PIPE_MINDIRECT) && 1083 (fp->f_flag & FNONBLOCK) == 0) { 1084 pipeunlock(wpipe); 1085 error = pipe_direct_write(wpipe, uio); 1086 if (error) 1087 break; 1088 continue; 1089 } 1090 #endif 1091 1092 /* 1093 * Pipe buffered writes cannot be coincidental with 1094 * direct writes. We wait until the currently executing 1095 * direct write is completed before we start filling the 1096 * pipe buffer. We break out if a signal occurs or the 1097 * reader goes away. 1098 */ 1099 if (wpipe->pipe_state & PIPE_DIRECTW) { 1100 if (wpipe->pipe_state & PIPE_WANTR) { 1101 wpipe->pipe_state &= ~PIPE_WANTR; 1102 wakeup(wpipe); 1103 } 1104 pipeunlock(wpipe); 1105 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1106 "pipbww", 0); 1107 if (error) 1108 break; 1109 else 1110 continue; 1111 } 1112 1113 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1114 1115 /* Writes of size <= PIPE_BUF must be atomic. */ 1116 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1117 space = 0; 1118 1119 if (space > 0) { 1120 int size; /* Transfer size */ 1121 int segsize; /* first segment to transfer */ 1122 1123 /* 1124 * Transfer size is minimum of uio transfer 1125 * and free space in pipe buffer. 1126 */ 1127 if (space > uio->uio_resid) 1128 size = uio->uio_resid; 1129 else 1130 size = space; 1131 /* 1132 * First segment to transfer is minimum of 1133 * transfer size and contiguous space in 1134 * pipe buffer. If first segment to transfer 1135 * is less than the transfer size, we've got 1136 * a wraparound in the buffer. 1137 */ 1138 segsize = wpipe->pipe_buffer.size - 1139 wpipe->pipe_buffer.in; 1140 if (segsize > size) 1141 segsize = size; 1142 1143 /* Transfer first segment */ 1144 1145 PIPE_UNLOCK(rpipe); 1146 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1147 segsize, uio); 1148 PIPE_LOCK(rpipe); 1149 1150 if (error == 0 && segsize < size) { 1151 KASSERT(wpipe->pipe_buffer.in + segsize == 1152 wpipe->pipe_buffer.size, 1153 ("Pipe buffer wraparound disappeared")); 1154 /* 1155 * Transfer remaining part now, to 1156 * support atomic writes. Wraparound 1157 * happened. 1158 */ 1159 1160 PIPE_UNLOCK(rpipe); 1161 error = uiomove( 1162 &wpipe->pipe_buffer.buffer[0], 1163 size - segsize, uio); 1164 PIPE_LOCK(rpipe); 1165 } 1166 if (error == 0) { 1167 wpipe->pipe_buffer.in += size; 1168 if (wpipe->pipe_buffer.in >= 1169 wpipe->pipe_buffer.size) { 1170 KASSERT(wpipe->pipe_buffer.in == 1171 size - segsize + 1172 wpipe->pipe_buffer.size, 1173 ("Expected wraparound bad")); 1174 wpipe->pipe_buffer.in = size - segsize; 1175 } 1176 1177 wpipe->pipe_buffer.cnt += size; 1178 KASSERT(wpipe->pipe_buffer.cnt <= 1179 wpipe->pipe_buffer.size, 1180 ("Pipe buffer overflow")); 1181 } 1182 pipeunlock(wpipe); 1183 } else { 1184 /* 1185 * If the "read-side" has been blocked, wake it up now. 1186 */ 1187 if (wpipe->pipe_state & PIPE_WANTR) { 1188 wpipe->pipe_state &= ~PIPE_WANTR; 1189 wakeup(wpipe); 1190 } 1191 1192 /* 1193 * don't block on non-blocking I/O 1194 */ 1195 if (fp->f_flag & FNONBLOCK) { 1196 error = EAGAIN; 1197 pipeunlock(wpipe); 1198 break; 1199 } 1200 1201 /* 1202 * We have no more space and have something to offer, 1203 * wake up select/poll. 1204 */ 1205 pipeselwakeup(wpipe); 1206 1207 wpipe->pipe_state |= PIPE_WANTW; 1208 pipeunlock(wpipe); 1209 error = msleep(wpipe, PIPE_MTX(rpipe), 1210 PRIBIO | PCATCH, "pipewr", 0); 1211 if (error != 0) 1212 break; 1213 } 1214 } 1215 1216 pipelock(wpipe, 0); 1217 --wpipe->pipe_busy; 1218 1219 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1220 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1221 wakeup(wpipe); 1222 } else if (wpipe->pipe_buffer.cnt > 0) { 1223 /* 1224 * If we have put any characters in the buffer, we wake up 1225 * the reader. 1226 */ 1227 if (wpipe->pipe_state & PIPE_WANTR) { 1228 wpipe->pipe_state &= ~PIPE_WANTR; 1229 wakeup(wpipe); 1230 } 1231 } 1232 1233 /* 1234 * Don't return EPIPE if I/O was successful 1235 */ 1236 if ((wpipe->pipe_buffer.cnt == 0) && 1237 (uio->uio_resid == 0) && 1238 (error == EPIPE)) { 1239 error = 0; 1240 } 1241 1242 if (error == 0) 1243 vfs_timestamp(&wpipe->pipe_mtime); 1244 1245 /* 1246 * We have something to offer, 1247 * wake up select/poll. 1248 */ 1249 if (wpipe->pipe_buffer.cnt) 1250 pipeselwakeup(wpipe); 1251 1252 pipeunlock(wpipe); 1253 PIPE_UNLOCK(rpipe); 1254 return (error); 1255 } 1256 1257 /* 1258 * we implement a very minimal set of ioctls for compatibility with sockets. 1259 */ 1260 static int 1261 pipe_ioctl(fp, cmd, data, active_cred, td) 1262 struct file *fp; 1263 u_long cmd; 1264 void *data; 1265 struct ucred *active_cred; 1266 struct thread *td; 1267 { 1268 struct pipe *mpipe = fp->f_data; 1269 #ifdef MAC 1270 int error; 1271 #endif 1272 1273 PIPE_LOCK(mpipe); 1274 1275 #ifdef MAC 1276 error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1277 if (error) { 1278 PIPE_UNLOCK(mpipe); 1279 return (error); 1280 } 1281 #endif 1282 1283 switch (cmd) { 1284 1285 case FIONBIO: 1286 PIPE_UNLOCK(mpipe); 1287 return (0); 1288 1289 case FIOASYNC: 1290 if (*(int *)data) { 1291 mpipe->pipe_state |= PIPE_ASYNC; 1292 } else { 1293 mpipe->pipe_state &= ~PIPE_ASYNC; 1294 } 1295 PIPE_UNLOCK(mpipe); 1296 return (0); 1297 1298 case FIONREAD: 1299 if (mpipe->pipe_state & PIPE_DIRECTW) 1300 *(int *)data = mpipe->pipe_map.cnt; 1301 else 1302 *(int *)data = mpipe->pipe_buffer.cnt; 1303 PIPE_UNLOCK(mpipe); 1304 return (0); 1305 1306 case FIOSETOWN: 1307 PIPE_UNLOCK(mpipe); 1308 return (fsetown(*(int *)data, &mpipe->pipe_sigio)); 1309 1310 case FIOGETOWN: 1311 PIPE_UNLOCK(mpipe); 1312 *(int *)data = fgetown(&mpipe->pipe_sigio); 1313 return (0); 1314 1315 /* This is deprecated, FIOSETOWN should be used instead. */ 1316 case TIOCSPGRP: 1317 PIPE_UNLOCK(mpipe); 1318 return (fsetown(-(*(int *)data), &mpipe->pipe_sigio)); 1319 1320 /* This is deprecated, FIOGETOWN should be used instead. */ 1321 case TIOCGPGRP: 1322 PIPE_UNLOCK(mpipe); 1323 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1324 return (0); 1325 1326 } 1327 PIPE_UNLOCK(mpipe); 1328 return (ENOTTY); 1329 } 1330 1331 static int 1332 pipe_poll(fp, events, active_cred, td) 1333 struct file *fp; 1334 int events; 1335 struct ucred *active_cred; 1336 struct thread *td; 1337 { 1338 struct pipe *rpipe = fp->f_data; 1339 struct pipe *wpipe; 1340 int revents = 0; 1341 #ifdef MAC 1342 int error; 1343 #endif 1344 1345 wpipe = rpipe->pipe_peer; 1346 PIPE_LOCK(rpipe); 1347 #ifdef MAC 1348 error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair); 1349 if (error) 1350 goto locked_error; 1351 #endif 1352 if (events & (POLLIN | POLLRDNORM)) 1353 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1354 (rpipe->pipe_buffer.cnt > 0) || 1355 (rpipe->pipe_state & PIPE_EOF)) 1356 revents |= events & (POLLIN | POLLRDNORM); 1357 1358 if (events & (POLLOUT | POLLWRNORM)) 1359 if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) || 1360 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1361 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1362 revents |= events & (POLLOUT | POLLWRNORM); 1363 1364 if ((rpipe->pipe_state & PIPE_EOF) || 1365 (!wpipe->pipe_present) || 1366 (wpipe->pipe_state & PIPE_EOF)) 1367 revents |= POLLHUP; 1368 1369 if (revents == 0) { 1370 if (events & (POLLIN | POLLRDNORM)) { 1371 selrecord(td, &rpipe->pipe_sel); 1372 rpipe->pipe_state |= PIPE_SEL; 1373 } 1374 1375 if (events & (POLLOUT | POLLWRNORM)) { 1376 selrecord(td, &wpipe->pipe_sel); 1377 wpipe->pipe_state |= PIPE_SEL; 1378 } 1379 } 1380 #ifdef MAC 1381 locked_error: 1382 #endif 1383 PIPE_UNLOCK(rpipe); 1384 1385 return (revents); 1386 } 1387 1388 /* 1389 * We shouldn't need locks here as we're doing a read and this should 1390 * be a natural race. 1391 */ 1392 static int 1393 pipe_stat(fp, ub, active_cred, td) 1394 struct file *fp; 1395 struct stat *ub; 1396 struct ucred *active_cred; 1397 struct thread *td; 1398 { 1399 struct pipe *pipe = fp->f_data; 1400 #ifdef MAC 1401 int error; 1402 1403 PIPE_LOCK(pipe); 1404 error = mac_check_pipe_stat(active_cred, pipe->pipe_pair); 1405 PIPE_UNLOCK(pipe); 1406 if (error) 1407 return (error); 1408 #endif 1409 bzero(ub, sizeof(*ub)); 1410 ub->st_mode = S_IFIFO; 1411 ub->st_blksize = PAGE_SIZE; 1412 if (pipe->pipe_state & PIPE_DIRECTW) 1413 ub->st_size = pipe->pipe_map.cnt; 1414 else 1415 ub->st_size = pipe->pipe_buffer.cnt; 1416 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1417 ub->st_atimespec = pipe->pipe_atime; 1418 ub->st_mtimespec = pipe->pipe_mtime; 1419 ub->st_ctimespec = pipe->pipe_ctime; 1420 ub->st_uid = fp->f_cred->cr_uid; 1421 ub->st_gid = fp->f_cred->cr_gid; 1422 /* 1423 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1424 * XXX (st_dev, st_ino) should be unique. 1425 */ 1426 return (0); 1427 } 1428 1429 /* ARGSUSED */ 1430 static int 1431 pipe_close(fp, td) 1432 struct file *fp; 1433 struct thread *td; 1434 { 1435 struct pipe *cpipe = fp->f_data; 1436 1437 fp->f_ops = &badfileops; 1438 fp->f_data = NULL; 1439 funsetown(&cpipe->pipe_sigio); 1440 pipeclose(cpipe); 1441 return (0); 1442 } 1443 1444 static void 1445 pipe_free_kmem(cpipe) 1446 struct pipe *cpipe; 1447 { 1448 1449 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1450 ("pipe_free_kmem: pipe mutex locked")); 1451 1452 if (cpipe->pipe_buffer.buffer != NULL) { 1453 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size); 1454 vm_map_remove(pipe_map, 1455 (vm_offset_t)cpipe->pipe_buffer.buffer, 1456 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1457 cpipe->pipe_buffer.buffer = NULL; 1458 } 1459 #ifndef PIPE_NODIRECT 1460 { 1461 cpipe->pipe_map.cnt = 0; 1462 cpipe->pipe_map.pos = 0; 1463 cpipe->pipe_map.npages = 0; 1464 } 1465 #endif 1466 } 1467 1468 /* 1469 * shutdown the pipe 1470 */ 1471 static void 1472 pipeclose(cpipe) 1473 struct pipe *cpipe; 1474 { 1475 struct pipepair *pp; 1476 struct pipe *ppipe; 1477 1478 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1479 1480 PIPE_LOCK(cpipe); 1481 pipelock(cpipe, 0); 1482 pp = cpipe->pipe_pair; 1483 1484 pipeselwakeup(cpipe); 1485 1486 /* 1487 * If the other side is blocked, wake it up saying that 1488 * we want to close it down. 1489 */ 1490 cpipe->pipe_state |= PIPE_EOF; 1491 while (cpipe->pipe_busy) { 1492 wakeup(cpipe); 1493 cpipe->pipe_state |= PIPE_WANT; 1494 pipeunlock(cpipe); 1495 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1496 pipelock(cpipe, 0); 1497 } 1498 1499 1500 /* 1501 * Disconnect from peer, if any. 1502 */ 1503 ppipe = cpipe->pipe_peer; 1504 if (ppipe->pipe_present != 0) { 1505 pipeselwakeup(ppipe); 1506 1507 ppipe->pipe_state |= PIPE_EOF; 1508 wakeup(ppipe); 1509 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1510 } 1511 1512 /* 1513 * Mark this endpoint as free. Release kmem resources. We 1514 * don't mark this endpoint as unused until we've finished 1515 * doing that, or the pipe might disappear out from under 1516 * us. 1517 */ 1518 PIPE_UNLOCK(cpipe); 1519 pipe_free_kmem(cpipe); 1520 PIPE_LOCK(cpipe); 1521 cpipe->pipe_present = 0; 1522 pipeunlock(cpipe); 1523 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1524 knlist_destroy(&cpipe->pipe_sel.si_note); 1525 1526 /* 1527 * If both endpoints are now closed, release the memory for the 1528 * pipe pair. If not, unlock. 1529 */ 1530 if (ppipe->pipe_present == 0) { 1531 PIPE_UNLOCK(cpipe); 1532 #ifdef MAC 1533 mac_destroy_pipe(pp); 1534 #endif 1535 uma_zfree(pipe_zone, cpipe->pipe_pair); 1536 } else 1537 PIPE_UNLOCK(cpipe); 1538 } 1539 1540 /*ARGSUSED*/ 1541 static int 1542 pipe_kqfilter(struct file *fp, struct knote *kn) 1543 { 1544 struct pipe *cpipe; 1545 1546 cpipe = kn->kn_fp->f_data; 1547 PIPE_LOCK(cpipe); 1548 switch (kn->kn_filter) { 1549 case EVFILT_READ: 1550 kn->kn_fop = &pipe_rfiltops; 1551 break; 1552 case EVFILT_WRITE: 1553 kn->kn_fop = &pipe_wfiltops; 1554 if (!cpipe->pipe_peer->pipe_present) { 1555 /* other end of pipe has been closed */ 1556 PIPE_UNLOCK(cpipe); 1557 return (EPIPE); 1558 } 1559 cpipe = cpipe->pipe_peer; 1560 break; 1561 default: 1562 PIPE_UNLOCK(cpipe); 1563 return (EINVAL); 1564 } 1565 1566 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1567 PIPE_UNLOCK(cpipe); 1568 return (0); 1569 } 1570 1571 static void 1572 filt_pipedetach(struct knote *kn) 1573 { 1574 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; 1575 1576 PIPE_LOCK(cpipe); 1577 if (kn->kn_filter == EVFILT_WRITE) { 1578 if (!cpipe->pipe_peer->pipe_present) { 1579 PIPE_UNLOCK(cpipe); 1580 return; 1581 } 1582 cpipe = cpipe->pipe_peer; 1583 } 1584 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1585 PIPE_UNLOCK(cpipe); 1586 } 1587 1588 /*ARGSUSED*/ 1589 static int 1590 filt_piperead(struct knote *kn, long hint) 1591 { 1592 struct pipe *rpipe = kn->kn_fp->f_data; 1593 struct pipe *wpipe = rpipe->pipe_peer; 1594 int ret; 1595 1596 PIPE_LOCK(rpipe); 1597 kn->kn_data = rpipe->pipe_buffer.cnt; 1598 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1599 kn->kn_data = rpipe->pipe_map.cnt; 1600 1601 if ((rpipe->pipe_state & PIPE_EOF) || 1602 (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1603 kn->kn_flags |= EV_EOF; 1604 PIPE_UNLOCK(rpipe); 1605 return (1); 1606 } 1607 ret = kn->kn_data > 0; 1608 PIPE_UNLOCK(rpipe); 1609 return ret; 1610 } 1611 1612 /*ARGSUSED*/ 1613 static int 1614 filt_pipewrite(struct knote *kn, long hint) 1615 { 1616 struct pipe *rpipe = kn->kn_fp->f_data; 1617 struct pipe *wpipe = rpipe->pipe_peer; 1618 1619 PIPE_LOCK(rpipe); 1620 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1621 kn->kn_data = 0; 1622 kn->kn_flags |= EV_EOF; 1623 PIPE_UNLOCK(rpipe); 1624 return (1); 1625 } 1626 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1627 if (wpipe->pipe_state & PIPE_DIRECTW) 1628 kn->kn_data = 0; 1629 1630 PIPE_UNLOCK(rpipe); 1631 return (kn->kn_data >= PIPE_BUF); 1632 } 1633