1 /*- 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 */ 19 20 /* 21 * This file contains a high-performance replacement for the socket-based 22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 23 * all features of sockets, but does do everything that pipes normally 24 * do. 25 */ 26 27 /* 28 * This code has two modes of operation, a small write mode and a large 29 * write mode. The small write mode acts like conventional pipes with 30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and 33 * the receiving process can copy it directly from the pages in the sending 34 * process. 35 * 36 * If the sending process receives a signal, it is possible that it will 37 * go away, and certainly its address space can change, because control 38 * is returned back to the user-mode side. In that case, the pipe code 39 * arranges to copy the buffer supplied by the user process, to a pageable 40 * kernel buffer, and the receiving process will grab the data from the 41 * pageable kernel buffer. Since signals don't happen all that often, 42 * the copy operation is normally eliminated. 43 * 44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 45 * happen for small transfers so that the system will not spend all of 46 * its time context switching. 47 * 48 * In order to limit the resource use of pipes, two sysctls exist: 49 * 50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 51 * address space available to us in pipe_map. This value is normally 52 * autotuned, but may also be loader tuned. 53 * 54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 55 * memory in use by pipes. 56 * 57 * Based on how large pipekva is relative to maxpipekva, the following 58 * will happen: 59 * 60 * 0% - 50%: 61 * New pipes are given 16K of memory backing, pipes may dynamically 62 * grow to as large as 64K where needed. 63 * 50% - 75%: 64 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 65 * existing pipes may NOT grow. 66 * 75% - 100%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes will be shrunk down to 4K whenever possible. 69 * 70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 72 * resize which MUST occur for reverse-direction pipes when they are 73 * first used. 74 * 75 * Additional information about the current state of pipes may be obtained 76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 77 * and kern.ipc.piperesizefail. 78 * 79 * Locking rules: There are two locks present here: A mutex, used via 80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 81 * the flag, as mutexes can not persist over uiomove. The mutex 82 * exists only to guard access to the flag, and is not in itself a 83 * locking mechanism. Also note that there is only a single mutex for 84 * both directions of a pipe. 85 * 86 * As pipelock() may have to sleep before it can acquire the flag, it 87 * is important to reread all data after a call to pipelock(); everything 88 * in the structure may have changed. 89 */ 90 91 #include <sys/cdefs.h> 92 __FBSDID("$FreeBSD$"); 93 94 #include "opt_mac.h" 95 96 #include <sys/param.h> 97 #include <sys/systm.h> 98 #include <sys/fcntl.h> 99 #include <sys/file.h> 100 #include <sys/filedesc.h> 101 #include <sys/filio.h> 102 #include <sys/kernel.h> 103 #include <sys/lock.h> 104 #include <sys/mac.h> 105 #include <sys/mutex.h> 106 #include <sys/ttycom.h> 107 #include <sys/stat.h> 108 #include <sys/malloc.h> 109 #include <sys/poll.h> 110 #include <sys/selinfo.h> 111 #include <sys/signalvar.h> 112 #include <sys/sysctl.h> 113 #include <sys/sysproto.h> 114 #include <sys/pipe.h> 115 #include <sys/proc.h> 116 #include <sys/vnode.h> 117 #include <sys/uio.h> 118 #include <sys/event.h> 119 120 #include <vm/vm.h> 121 #include <vm/vm_param.h> 122 #include <vm/vm_object.h> 123 #include <vm/vm_kern.h> 124 #include <vm/vm_extern.h> 125 #include <vm/pmap.h> 126 #include <vm/vm_map.h> 127 #include <vm/vm_page.h> 128 #include <vm/uma.h> 129 130 /* 131 * Use this define if you want to disable *fancy* VM things. Expect an 132 * approx 30% decrease in transfer rate. This could be useful for 133 * NetBSD or OpenBSD. 134 */ 135 /* #define PIPE_NODIRECT */ 136 137 /* 138 * interfaces to the outside world 139 */ 140 static fo_rdwr_t pipe_read; 141 static fo_rdwr_t pipe_write; 142 static fo_ioctl_t pipe_ioctl; 143 static fo_poll_t pipe_poll; 144 static fo_kqfilter_t pipe_kqfilter; 145 static fo_stat_t pipe_stat; 146 static fo_close_t pipe_close; 147 148 static struct fileops pipeops = { 149 .fo_read = pipe_read, 150 .fo_write = pipe_write, 151 .fo_ioctl = pipe_ioctl, 152 .fo_poll = pipe_poll, 153 .fo_kqfilter = pipe_kqfilter, 154 .fo_stat = pipe_stat, 155 .fo_close = pipe_close, 156 .fo_flags = DFLAG_PASSABLE 157 }; 158 159 static void filt_pipedetach(struct knote *kn); 160 static int filt_piperead(struct knote *kn, long hint); 161 static int filt_pipewrite(struct knote *kn, long hint); 162 163 static struct filterops pipe_rfiltops = 164 { 1, NULL, filt_pipedetach, filt_piperead }; 165 static struct filterops pipe_wfiltops = 166 { 1, NULL, filt_pipedetach, filt_pipewrite }; 167 168 /* 169 * Default pipe buffer size(s), this can be kind-of large now because pipe 170 * space is pageable. The pipe code will try to maintain locality of 171 * reference for performance reasons, so small amounts of outstanding I/O 172 * will not wipe the cache. 173 */ 174 #define MINPIPESIZE (PIPE_SIZE/3) 175 #define MAXPIPESIZE (2*PIPE_SIZE/3) 176 177 static int amountpipes; 178 static int amountpipekva; 179 static int pipefragretry; 180 static int pipeallocfail; 181 static int piperesizefail; 182 static int piperesizeallowed = 1; 183 184 SYSCTL_DECL(_kern_ipc); 185 186 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, 187 &maxpipekva, 0, "Pipe KVA limit"); 188 SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD, 189 &amountpipes, 0, "Current # of pipes"); 190 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 191 &amountpipekva, 0, "Pipe KVA usage"); 192 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 193 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 194 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 195 &pipeallocfail, 0, "Pipe allocation failures"); 196 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 197 &piperesizefail, 0, "Pipe resize failures"); 198 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 199 &piperesizeallowed, 0, "Pipe resizing allowed"); 200 201 static void pipeinit(void *dummy __unused); 202 static void pipeclose(struct pipe *cpipe); 203 static void pipe_free_kmem(struct pipe *cpipe); 204 static int pipe_create(struct pipe *pipe, int backing); 205 static __inline int pipelock(struct pipe *cpipe, int catch); 206 static __inline void pipeunlock(struct pipe *cpipe); 207 static __inline void pipeselwakeup(struct pipe *cpipe); 208 #ifndef PIPE_NODIRECT 209 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 210 static void pipe_destroy_write_buffer(struct pipe *wpipe); 211 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 212 static void pipe_clone_write_buffer(struct pipe *wpipe); 213 #endif 214 static int pipespace(struct pipe *cpipe, int size); 215 static int pipespace_new(struct pipe *cpipe, int size); 216 217 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 218 static void pipe_zone_dtor(void *mem, int size, void *arg); 219 static int pipe_zone_init(void *mem, int size, int flags); 220 static void pipe_zone_fini(void *mem, int size); 221 222 static uma_zone_t pipe_zone; 223 224 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 225 226 static void 227 pipeinit(void *dummy __unused) 228 { 229 230 pipe_zone = uma_zcreate("PIPE", sizeof(struct pipepair), 231 pipe_zone_ctor, pipe_zone_dtor, pipe_zone_init, pipe_zone_fini, 232 UMA_ALIGN_PTR, 0); 233 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 234 } 235 236 static int 237 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 238 { 239 struct pipepair *pp; 240 struct pipe *rpipe, *wpipe; 241 242 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 243 244 pp = (struct pipepair *)mem; 245 246 /* 247 * We zero both pipe endpoints to make sure all the kmem pointers 248 * are NULL, flag fields are zero'd, etc. We timestamp both 249 * endpoints with the same time. 250 */ 251 rpipe = &pp->pp_rpipe; 252 bzero(rpipe, sizeof(*rpipe)); 253 vfs_timestamp(&rpipe->pipe_ctime); 254 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 255 256 wpipe = &pp->pp_wpipe; 257 bzero(wpipe, sizeof(*wpipe)); 258 wpipe->pipe_ctime = rpipe->pipe_ctime; 259 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 260 261 rpipe->pipe_peer = wpipe; 262 rpipe->pipe_pair = pp; 263 wpipe->pipe_peer = rpipe; 264 wpipe->pipe_pair = pp; 265 266 /* 267 * Mark both endpoints as present; they will later get free'd 268 * one at a time. When both are free'd, then the whole pair 269 * is released. 270 */ 271 rpipe->pipe_present = 1; 272 wpipe->pipe_present = 1; 273 274 /* 275 * Eventually, the MAC Framework may initialize the label 276 * in ctor or init, but for now we do it elswhere to avoid 277 * blocking in ctor or init. 278 */ 279 pp->pp_label = NULL; 280 281 atomic_add_int(&amountpipes, 2); 282 return (0); 283 } 284 285 static void 286 pipe_zone_dtor(void *mem, int size, void *arg) 287 { 288 struct pipepair *pp; 289 290 KASSERT(size == sizeof(*pp), ("pipe_zone_dtor: wrong size")); 291 292 pp = (struct pipepair *)mem; 293 294 atomic_subtract_int(&amountpipes, 2); 295 } 296 297 static int 298 pipe_zone_init(void *mem, int size, int flags) 299 { 300 struct pipepair *pp; 301 302 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 303 304 pp = (struct pipepair *)mem; 305 306 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 307 return (0); 308 } 309 310 static void 311 pipe_zone_fini(void *mem, int size) 312 { 313 struct pipepair *pp; 314 315 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 316 317 pp = (struct pipepair *)mem; 318 319 mtx_destroy(&pp->pp_mtx); 320 } 321 322 /* 323 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, 324 * let the zone pick up the pieces via pipeclose(). 325 */ 326 327 /* ARGSUSED */ 328 int 329 pipe(td, uap) 330 struct thread *td; 331 struct pipe_args /* { 332 int dummy; 333 } */ *uap; 334 { 335 struct filedesc *fdp = td->td_proc->p_fd; 336 struct file *rf, *wf; 337 struct pipepair *pp; 338 struct pipe *rpipe, *wpipe; 339 int fd, error; 340 341 pp = uma_zalloc(pipe_zone, M_WAITOK); 342 #ifdef MAC 343 /* 344 * The MAC label is shared between the connected endpoints. As a 345 * result mac_init_pipe() and mac_create_pipe() are called once 346 * for the pair, and not on the endpoints. 347 */ 348 mac_init_pipe(pp); 349 mac_create_pipe(td->td_ucred, pp); 350 #endif 351 rpipe = &pp->pp_rpipe; 352 wpipe = &pp->pp_wpipe; 353 354 knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe)); 355 knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe)); 356 357 /* Only the forward direction pipe is backed by default */ 358 if (pipe_create(rpipe, 1) || pipe_create(wpipe, 0)) { 359 pipeclose(rpipe); 360 pipeclose(wpipe); 361 return (ENFILE); 362 } 363 364 rpipe->pipe_state |= PIPE_DIRECTOK; 365 wpipe->pipe_state |= PIPE_DIRECTOK; 366 367 error = falloc(td, &rf, &fd); 368 if (error) { 369 pipeclose(rpipe); 370 pipeclose(wpipe); 371 return (error); 372 } 373 /* An extra reference on `rf' has been held for us by falloc(). */ 374 td->td_retval[0] = fd; 375 376 /* 377 * Warning: once we've gotten past allocation of the fd for the 378 * read-side, we can only drop the read side via fdrop() in order 379 * to avoid races against processes which manage to dup() the read 380 * side while we are blocked trying to allocate the write side. 381 */ 382 FILE_LOCK(rf); 383 rf->f_flag = FREAD | FWRITE; 384 rf->f_type = DTYPE_PIPE; 385 rf->f_data = rpipe; 386 rf->f_ops = &pipeops; 387 FILE_UNLOCK(rf); 388 error = falloc(td, &wf, &fd); 389 if (error) { 390 fdclose(fdp, rf, td->td_retval[0], td); 391 fdrop(rf, td); 392 /* rpipe has been closed by fdrop(). */ 393 pipeclose(wpipe); 394 return (error); 395 } 396 /* An extra reference on `wf' has been held for us by falloc(). */ 397 FILE_LOCK(wf); 398 wf->f_flag = FREAD | FWRITE; 399 wf->f_type = DTYPE_PIPE; 400 wf->f_data = wpipe; 401 wf->f_ops = &pipeops; 402 FILE_UNLOCK(wf); 403 fdrop(wf, td); 404 td->td_retval[1] = fd; 405 fdrop(rf, td); 406 407 return (0); 408 } 409 410 /* 411 * Allocate kva for pipe circular buffer, the space is pageable 412 * This routine will 'realloc' the size of a pipe safely, if it fails 413 * it will retain the old buffer. 414 * If it fails it will return ENOMEM. 415 */ 416 static int 417 pipespace_new(cpipe, size) 418 struct pipe *cpipe; 419 int size; 420 { 421 caddr_t buffer; 422 int error, cnt, firstseg; 423 static int curfail = 0; 424 static struct timeval lastfail; 425 426 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 427 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 428 ("pipespace: resize of direct writes not allowed")); 429 retry: 430 cnt = cpipe->pipe_buffer.cnt; 431 if (cnt > size) 432 size = cnt; 433 434 size = round_page(size); 435 buffer = (caddr_t) vm_map_min(pipe_map); 436 437 error = vm_map_find(pipe_map, NULL, 0, 438 (vm_offset_t *) &buffer, size, 1, 439 VM_PROT_ALL, VM_PROT_ALL, 0); 440 if (error != KERN_SUCCESS) { 441 if ((cpipe->pipe_buffer.buffer == NULL) && 442 (size > SMALL_PIPE_SIZE)) { 443 size = SMALL_PIPE_SIZE; 444 pipefragretry++; 445 goto retry; 446 } 447 if (cpipe->pipe_buffer.buffer == NULL) { 448 pipeallocfail++; 449 if (ppsratecheck(&lastfail, &curfail, 1)) 450 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 451 } else { 452 piperesizefail++; 453 } 454 return (ENOMEM); 455 } 456 457 /* copy data, then free old resources if we're resizing */ 458 if (cnt > 0) { 459 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 460 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 461 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 462 buffer, firstseg); 463 if ((cnt - firstseg) > 0) 464 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 465 cpipe->pipe_buffer.in); 466 } else { 467 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 468 buffer, cnt); 469 } 470 } 471 pipe_free_kmem(cpipe); 472 cpipe->pipe_buffer.buffer = buffer; 473 cpipe->pipe_buffer.size = size; 474 cpipe->pipe_buffer.in = cnt; 475 cpipe->pipe_buffer.out = 0; 476 cpipe->pipe_buffer.cnt = cnt; 477 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size); 478 return (0); 479 } 480 481 /* 482 * Wrapper for pipespace_new() that performs locking assertions. 483 */ 484 static int 485 pipespace(cpipe, size) 486 struct pipe *cpipe; 487 int size; 488 { 489 490 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 491 ("Unlocked pipe passed to pipespace")); 492 return (pipespace_new(cpipe, size)); 493 } 494 495 /* 496 * lock a pipe for I/O, blocking other access 497 */ 498 static __inline int 499 pipelock(cpipe, catch) 500 struct pipe *cpipe; 501 int catch; 502 { 503 int error; 504 505 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 506 while (cpipe->pipe_state & PIPE_LOCKFL) { 507 cpipe->pipe_state |= PIPE_LWANT; 508 error = msleep(cpipe, PIPE_MTX(cpipe), 509 catch ? (PRIBIO | PCATCH) : PRIBIO, 510 "pipelk", 0); 511 if (error != 0) 512 return (error); 513 } 514 cpipe->pipe_state |= PIPE_LOCKFL; 515 return (0); 516 } 517 518 /* 519 * unlock a pipe I/O lock 520 */ 521 static __inline void 522 pipeunlock(cpipe) 523 struct pipe *cpipe; 524 { 525 526 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 527 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 528 ("Unlocked pipe passed to pipeunlock")); 529 cpipe->pipe_state &= ~PIPE_LOCKFL; 530 if (cpipe->pipe_state & PIPE_LWANT) { 531 cpipe->pipe_state &= ~PIPE_LWANT; 532 wakeup(cpipe); 533 } 534 } 535 536 static __inline void 537 pipeselwakeup(cpipe) 538 struct pipe *cpipe; 539 { 540 541 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 542 if (cpipe->pipe_state & PIPE_SEL) { 543 cpipe->pipe_state &= ~PIPE_SEL; 544 selwakeuppri(&cpipe->pipe_sel, PSOCK); 545 } 546 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 547 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 548 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 549 } 550 551 /* 552 * Initialize and allocate VM and memory for pipe. The structure 553 * will start out zero'd from the ctor, so we just manage the kmem. 554 */ 555 static int 556 pipe_create(pipe, backing) 557 struct pipe *pipe; 558 int backing; 559 { 560 int error; 561 562 if (backing) { 563 if (amountpipekva > maxpipekva / 2) 564 error = pipespace_new(pipe, SMALL_PIPE_SIZE); 565 else 566 error = pipespace_new(pipe, PIPE_SIZE); 567 } else { 568 /* If we're not backing this pipe, no need to do anything. */ 569 error = 0; 570 } 571 return (error); 572 } 573 574 /* ARGSUSED */ 575 static int 576 pipe_read(fp, uio, active_cred, flags, td) 577 struct file *fp; 578 struct uio *uio; 579 struct ucred *active_cred; 580 struct thread *td; 581 int flags; 582 { 583 struct pipe *rpipe = fp->f_data; 584 int error; 585 int nread = 0; 586 u_int size; 587 588 PIPE_LOCK(rpipe); 589 ++rpipe->pipe_busy; 590 error = pipelock(rpipe, 1); 591 if (error) 592 goto unlocked_error; 593 594 #ifdef MAC 595 error = mac_check_pipe_read(active_cred, rpipe->pipe_pair); 596 if (error) 597 goto locked_error; 598 #endif 599 if (amountpipekva > (3 * maxpipekva) / 4) { 600 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 601 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 602 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 603 (piperesizeallowed == 1)) { 604 PIPE_UNLOCK(rpipe); 605 pipespace(rpipe, SMALL_PIPE_SIZE); 606 PIPE_LOCK(rpipe); 607 } 608 } 609 610 while (uio->uio_resid) { 611 /* 612 * normal pipe buffer receive 613 */ 614 if (rpipe->pipe_buffer.cnt > 0) { 615 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 616 if (size > rpipe->pipe_buffer.cnt) 617 size = rpipe->pipe_buffer.cnt; 618 if (size > (u_int) uio->uio_resid) 619 size = (u_int) uio->uio_resid; 620 621 PIPE_UNLOCK(rpipe); 622 error = uiomove( 623 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 624 size, uio); 625 PIPE_LOCK(rpipe); 626 if (error) 627 break; 628 629 rpipe->pipe_buffer.out += size; 630 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 631 rpipe->pipe_buffer.out = 0; 632 633 rpipe->pipe_buffer.cnt -= size; 634 635 /* 636 * If there is no more to read in the pipe, reset 637 * its pointers to the beginning. This improves 638 * cache hit stats. 639 */ 640 if (rpipe->pipe_buffer.cnt == 0) { 641 rpipe->pipe_buffer.in = 0; 642 rpipe->pipe_buffer.out = 0; 643 } 644 nread += size; 645 #ifndef PIPE_NODIRECT 646 /* 647 * Direct copy, bypassing a kernel buffer. 648 */ 649 } else if ((size = rpipe->pipe_map.cnt) && 650 (rpipe->pipe_state & PIPE_DIRECTW)) { 651 if (size > (u_int) uio->uio_resid) 652 size = (u_int) uio->uio_resid; 653 654 PIPE_UNLOCK(rpipe); 655 error = uiomove_fromphys(rpipe->pipe_map.ms, 656 rpipe->pipe_map.pos, size, uio); 657 PIPE_LOCK(rpipe); 658 if (error) 659 break; 660 nread += size; 661 rpipe->pipe_map.pos += size; 662 rpipe->pipe_map.cnt -= size; 663 if (rpipe->pipe_map.cnt == 0) { 664 rpipe->pipe_state &= ~PIPE_DIRECTW; 665 wakeup(rpipe); 666 } 667 #endif 668 } else { 669 /* 670 * detect EOF condition 671 * read returns 0 on EOF, no need to set error 672 */ 673 if (rpipe->pipe_state & PIPE_EOF) 674 break; 675 676 /* 677 * If the "write-side" has been blocked, wake it up now. 678 */ 679 if (rpipe->pipe_state & PIPE_WANTW) { 680 rpipe->pipe_state &= ~PIPE_WANTW; 681 wakeup(rpipe); 682 } 683 684 /* 685 * Break if some data was read. 686 */ 687 if (nread > 0) 688 break; 689 690 /* 691 * Unlock the pipe buffer for our remaining processing. 692 * We will either break out with an error or we will 693 * sleep and relock to loop. 694 */ 695 pipeunlock(rpipe); 696 697 /* 698 * Handle non-blocking mode operation or 699 * wait for more data. 700 */ 701 if (fp->f_flag & FNONBLOCK) { 702 error = EAGAIN; 703 } else { 704 rpipe->pipe_state |= PIPE_WANTR; 705 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 706 PRIBIO | PCATCH, 707 "piperd", 0)) == 0) 708 error = pipelock(rpipe, 1); 709 } 710 if (error) 711 goto unlocked_error; 712 } 713 } 714 #ifdef MAC 715 locked_error: 716 #endif 717 pipeunlock(rpipe); 718 719 /* XXX: should probably do this before getting any locks. */ 720 if (error == 0) 721 vfs_timestamp(&rpipe->pipe_atime); 722 unlocked_error: 723 --rpipe->pipe_busy; 724 725 /* 726 * PIPE_WANT processing only makes sense if pipe_busy is 0. 727 */ 728 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 729 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 730 wakeup(rpipe); 731 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 732 /* 733 * Handle write blocking hysteresis. 734 */ 735 if (rpipe->pipe_state & PIPE_WANTW) { 736 rpipe->pipe_state &= ~PIPE_WANTW; 737 wakeup(rpipe); 738 } 739 } 740 741 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 742 pipeselwakeup(rpipe); 743 744 PIPE_UNLOCK(rpipe); 745 return (error); 746 } 747 748 #ifndef PIPE_NODIRECT 749 /* 750 * Map the sending processes' buffer into kernel space and wire it. 751 * This is similar to a physical write operation. 752 */ 753 static int 754 pipe_build_write_buffer(wpipe, uio) 755 struct pipe *wpipe; 756 struct uio *uio; 757 { 758 pmap_t pmap; 759 u_int size; 760 int i, j; 761 vm_offset_t addr, endaddr; 762 763 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 764 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 765 ("Clone attempt on non-direct write pipe!")); 766 767 size = (u_int) uio->uio_iov->iov_len; 768 if (size > wpipe->pipe_buffer.size) 769 size = wpipe->pipe_buffer.size; 770 771 pmap = vmspace_pmap(curproc->p_vmspace); 772 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size); 773 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base); 774 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) { 775 /* 776 * vm_fault_quick() can sleep. Consequently, 777 * vm_page_lock_queue() and vm_page_unlock_queue() 778 * should not be performed outside of this loop. 779 */ 780 race: 781 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) { 782 vm_page_lock_queues(); 783 for (j = 0; j < i; j++) 784 vm_page_unhold(wpipe->pipe_map.ms[j]); 785 vm_page_unlock_queues(); 786 return (EFAULT); 787 } 788 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr, 789 VM_PROT_READ); 790 if (wpipe->pipe_map.ms[i] == NULL) 791 goto race; 792 } 793 794 /* 795 * set up the control block 796 */ 797 wpipe->pipe_map.npages = i; 798 wpipe->pipe_map.pos = 799 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 800 wpipe->pipe_map.cnt = size; 801 802 /* 803 * and update the uio data 804 */ 805 806 uio->uio_iov->iov_len -= size; 807 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 808 if (uio->uio_iov->iov_len == 0) 809 uio->uio_iov++; 810 uio->uio_resid -= size; 811 uio->uio_offset += size; 812 return (0); 813 } 814 815 /* 816 * unmap and unwire the process buffer 817 */ 818 static void 819 pipe_destroy_write_buffer(wpipe) 820 struct pipe *wpipe; 821 { 822 int i; 823 824 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 825 vm_page_lock_queues(); 826 for (i = 0; i < wpipe->pipe_map.npages; i++) { 827 vm_page_unhold(wpipe->pipe_map.ms[i]); 828 } 829 vm_page_unlock_queues(); 830 wpipe->pipe_map.npages = 0; 831 } 832 833 /* 834 * In the case of a signal, the writing process might go away. This 835 * code copies the data into the circular buffer so that the source 836 * pages can be freed without loss of data. 837 */ 838 static void 839 pipe_clone_write_buffer(wpipe) 840 struct pipe *wpipe; 841 { 842 struct uio uio; 843 struct iovec iov; 844 int size; 845 int pos; 846 847 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 848 size = wpipe->pipe_map.cnt; 849 pos = wpipe->pipe_map.pos; 850 851 wpipe->pipe_buffer.in = size; 852 wpipe->pipe_buffer.out = 0; 853 wpipe->pipe_buffer.cnt = size; 854 wpipe->pipe_state &= ~PIPE_DIRECTW; 855 856 PIPE_UNLOCK(wpipe); 857 iov.iov_base = wpipe->pipe_buffer.buffer; 858 iov.iov_len = size; 859 uio.uio_iov = &iov; 860 uio.uio_iovcnt = 1; 861 uio.uio_offset = 0; 862 uio.uio_resid = size; 863 uio.uio_segflg = UIO_SYSSPACE; 864 uio.uio_rw = UIO_READ; 865 uio.uio_td = curthread; 866 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 867 PIPE_LOCK(wpipe); 868 pipe_destroy_write_buffer(wpipe); 869 } 870 871 /* 872 * This implements the pipe buffer write mechanism. Note that only 873 * a direct write OR a normal pipe write can be pending at any given time. 874 * If there are any characters in the pipe buffer, the direct write will 875 * be deferred until the receiving process grabs all of the bytes from 876 * the pipe buffer. Then the direct mapping write is set-up. 877 */ 878 static int 879 pipe_direct_write(wpipe, uio) 880 struct pipe *wpipe; 881 struct uio *uio; 882 { 883 int error; 884 885 retry: 886 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 887 error = pipelock(wpipe, 1); 888 if (wpipe->pipe_state & PIPE_EOF) 889 error = EPIPE; 890 if (error) { 891 pipeunlock(wpipe); 892 goto error1; 893 } 894 while (wpipe->pipe_state & PIPE_DIRECTW) { 895 if (wpipe->pipe_state & PIPE_WANTR) { 896 wpipe->pipe_state &= ~PIPE_WANTR; 897 wakeup(wpipe); 898 } 899 wpipe->pipe_state |= PIPE_WANTW; 900 pipeunlock(wpipe); 901 error = msleep(wpipe, PIPE_MTX(wpipe), 902 PRIBIO | PCATCH, "pipdww", 0); 903 if (error) 904 goto error1; 905 else 906 goto retry; 907 } 908 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 909 if (wpipe->pipe_buffer.cnt > 0) { 910 if (wpipe->pipe_state & PIPE_WANTR) { 911 wpipe->pipe_state &= ~PIPE_WANTR; 912 wakeup(wpipe); 913 } 914 wpipe->pipe_state |= PIPE_WANTW; 915 pipeunlock(wpipe); 916 error = msleep(wpipe, PIPE_MTX(wpipe), 917 PRIBIO | PCATCH, "pipdwc", 0); 918 if (error) 919 goto error1; 920 else 921 goto retry; 922 } 923 924 wpipe->pipe_state |= PIPE_DIRECTW; 925 926 PIPE_UNLOCK(wpipe); 927 error = pipe_build_write_buffer(wpipe, uio); 928 PIPE_LOCK(wpipe); 929 if (error) { 930 wpipe->pipe_state &= ~PIPE_DIRECTW; 931 pipeunlock(wpipe); 932 goto error1; 933 } 934 935 error = 0; 936 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 937 if (wpipe->pipe_state & PIPE_EOF) { 938 pipe_destroy_write_buffer(wpipe); 939 pipeselwakeup(wpipe); 940 pipeunlock(wpipe); 941 error = EPIPE; 942 goto error1; 943 } 944 if (wpipe->pipe_state & PIPE_WANTR) { 945 wpipe->pipe_state &= ~PIPE_WANTR; 946 wakeup(wpipe); 947 } 948 pipeselwakeup(wpipe); 949 pipeunlock(wpipe); 950 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 951 "pipdwt", 0); 952 pipelock(wpipe, 0); 953 } 954 955 if (wpipe->pipe_state & PIPE_EOF) 956 error = EPIPE; 957 if (wpipe->pipe_state & PIPE_DIRECTW) { 958 /* 959 * this bit of trickery substitutes a kernel buffer for 960 * the process that might be going away. 961 */ 962 pipe_clone_write_buffer(wpipe); 963 } else { 964 pipe_destroy_write_buffer(wpipe); 965 } 966 pipeunlock(wpipe); 967 return (error); 968 969 error1: 970 wakeup(wpipe); 971 return (error); 972 } 973 #endif 974 975 static int 976 pipe_write(fp, uio, active_cred, flags, td) 977 struct file *fp; 978 struct uio *uio; 979 struct ucred *active_cred; 980 struct thread *td; 981 int flags; 982 { 983 int error = 0; 984 int desiredsize, orig_resid; 985 struct pipe *wpipe, *rpipe; 986 987 rpipe = fp->f_data; 988 wpipe = rpipe->pipe_peer; 989 990 PIPE_LOCK(rpipe); 991 error = pipelock(wpipe, 1); 992 if (error) { 993 PIPE_UNLOCK(rpipe); 994 return (error); 995 } 996 /* 997 * detect loss of pipe read side, issue SIGPIPE if lost. 998 */ 999 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1000 pipeunlock(wpipe); 1001 PIPE_UNLOCK(rpipe); 1002 return (EPIPE); 1003 } 1004 #ifdef MAC 1005 error = mac_check_pipe_write(active_cred, wpipe->pipe_pair); 1006 if (error) { 1007 pipeunlock(wpipe); 1008 PIPE_UNLOCK(rpipe); 1009 return (error); 1010 } 1011 #endif 1012 ++wpipe->pipe_busy; 1013 1014 /* Choose a larger size if it's advantageous */ 1015 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1016 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1017 if (piperesizeallowed != 1) 1018 break; 1019 if (amountpipekva > maxpipekva / 2) 1020 break; 1021 if (desiredsize == BIG_PIPE_SIZE) 1022 break; 1023 desiredsize = desiredsize * 2; 1024 } 1025 1026 /* Choose a smaller size if we're in a OOM situation */ 1027 if ((amountpipekva > (3 * maxpipekva) / 4) && 1028 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 1029 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1030 (piperesizeallowed == 1)) 1031 desiredsize = SMALL_PIPE_SIZE; 1032 1033 /* Resize if the above determined that a new size was necessary */ 1034 if ((desiredsize != wpipe->pipe_buffer.size) && 1035 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1036 PIPE_UNLOCK(wpipe); 1037 pipespace(wpipe, desiredsize); 1038 PIPE_LOCK(wpipe); 1039 } 1040 if (wpipe->pipe_buffer.size == 0) { 1041 /* 1042 * This can only happen for reverse direction use of pipes 1043 * in a complete OOM situation. 1044 */ 1045 error = ENOMEM; 1046 --wpipe->pipe_busy; 1047 pipeunlock(wpipe); 1048 PIPE_UNLOCK(wpipe); 1049 return (error); 1050 } 1051 1052 pipeunlock(wpipe); 1053 1054 orig_resid = uio->uio_resid; 1055 1056 while (uio->uio_resid) { 1057 int space; 1058 1059 pipelock(wpipe, 0); 1060 if (wpipe->pipe_state & PIPE_EOF) { 1061 pipeunlock(wpipe); 1062 error = EPIPE; 1063 break; 1064 } 1065 #ifndef PIPE_NODIRECT 1066 /* 1067 * If the transfer is large, we can gain performance if 1068 * we do process-to-process copies directly. 1069 * If the write is non-blocking, we don't use the 1070 * direct write mechanism. 1071 * 1072 * The direct write mechanism will detect the reader going 1073 * away on us. 1074 */ 1075 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 1076 (wpipe->pipe_buffer.size >= PIPE_MINDIRECT) && 1077 (fp->f_flag & FNONBLOCK) == 0) { 1078 pipeunlock(wpipe); 1079 error = pipe_direct_write(wpipe, uio); 1080 if (error) 1081 break; 1082 continue; 1083 } 1084 #endif 1085 1086 /* 1087 * Pipe buffered writes cannot be coincidental with 1088 * direct writes. We wait until the currently executing 1089 * direct write is completed before we start filling the 1090 * pipe buffer. We break out if a signal occurs or the 1091 * reader goes away. 1092 */ 1093 if (wpipe->pipe_state & PIPE_DIRECTW) { 1094 if (wpipe->pipe_state & PIPE_WANTR) { 1095 wpipe->pipe_state &= ~PIPE_WANTR; 1096 wakeup(wpipe); 1097 } 1098 pipeunlock(wpipe); 1099 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1100 "pipbww", 0); 1101 if (error) 1102 break; 1103 else 1104 continue; 1105 } 1106 1107 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1108 1109 /* Writes of size <= PIPE_BUF must be atomic. */ 1110 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1111 space = 0; 1112 1113 if (space > 0) { 1114 int size; /* Transfer size */ 1115 int segsize; /* first segment to transfer */ 1116 1117 /* 1118 * Transfer size is minimum of uio transfer 1119 * and free space in pipe buffer. 1120 */ 1121 if (space > uio->uio_resid) 1122 size = uio->uio_resid; 1123 else 1124 size = space; 1125 /* 1126 * First segment to transfer is minimum of 1127 * transfer size and contiguous space in 1128 * pipe buffer. If first segment to transfer 1129 * is less than the transfer size, we've got 1130 * a wraparound in the buffer. 1131 */ 1132 segsize = wpipe->pipe_buffer.size - 1133 wpipe->pipe_buffer.in; 1134 if (segsize > size) 1135 segsize = size; 1136 1137 /* Transfer first segment */ 1138 1139 PIPE_UNLOCK(rpipe); 1140 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1141 segsize, uio); 1142 PIPE_LOCK(rpipe); 1143 1144 if (error == 0 && segsize < size) { 1145 KASSERT(wpipe->pipe_buffer.in + segsize == 1146 wpipe->pipe_buffer.size, 1147 ("Pipe buffer wraparound disappeared")); 1148 /* 1149 * Transfer remaining part now, to 1150 * support atomic writes. Wraparound 1151 * happened. 1152 */ 1153 1154 PIPE_UNLOCK(rpipe); 1155 error = uiomove( 1156 &wpipe->pipe_buffer.buffer[0], 1157 size - segsize, uio); 1158 PIPE_LOCK(rpipe); 1159 } 1160 if (error == 0) { 1161 wpipe->pipe_buffer.in += size; 1162 if (wpipe->pipe_buffer.in >= 1163 wpipe->pipe_buffer.size) { 1164 KASSERT(wpipe->pipe_buffer.in == 1165 size - segsize + 1166 wpipe->pipe_buffer.size, 1167 ("Expected wraparound bad")); 1168 wpipe->pipe_buffer.in = size - segsize; 1169 } 1170 1171 wpipe->pipe_buffer.cnt += size; 1172 KASSERT(wpipe->pipe_buffer.cnt <= 1173 wpipe->pipe_buffer.size, 1174 ("Pipe buffer overflow")); 1175 } 1176 pipeunlock(wpipe); 1177 } else { 1178 /* 1179 * If the "read-side" has been blocked, wake it up now. 1180 */ 1181 if (wpipe->pipe_state & PIPE_WANTR) { 1182 wpipe->pipe_state &= ~PIPE_WANTR; 1183 wakeup(wpipe); 1184 } 1185 1186 /* 1187 * don't block on non-blocking I/O 1188 */ 1189 if (fp->f_flag & FNONBLOCK) { 1190 error = EAGAIN; 1191 pipeunlock(wpipe); 1192 break; 1193 } 1194 1195 /* 1196 * We have no more space and have something to offer, 1197 * wake up select/poll. 1198 */ 1199 pipeselwakeup(wpipe); 1200 1201 wpipe->pipe_state |= PIPE_WANTW; 1202 pipeunlock(wpipe); 1203 error = msleep(wpipe, PIPE_MTX(rpipe), 1204 PRIBIO | PCATCH, "pipewr", 0); 1205 if (error != 0) 1206 break; 1207 } 1208 } 1209 1210 pipelock(wpipe, 0); 1211 --wpipe->pipe_busy; 1212 1213 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1214 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1215 wakeup(wpipe); 1216 } else if (wpipe->pipe_buffer.cnt > 0) { 1217 /* 1218 * If we have put any characters in the buffer, we wake up 1219 * the reader. 1220 */ 1221 if (wpipe->pipe_state & PIPE_WANTR) { 1222 wpipe->pipe_state &= ~PIPE_WANTR; 1223 wakeup(wpipe); 1224 } 1225 } 1226 1227 /* 1228 * Don't return EPIPE if I/O was successful 1229 */ 1230 if ((wpipe->pipe_buffer.cnt == 0) && 1231 (uio->uio_resid == 0) && 1232 (error == EPIPE)) { 1233 error = 0; 1234 } 1235 1236 if (error == 0) 1237 vfs_timestamp(&wpipe->pipe_mtime); 1238 1239 /* 1240 * We have something to offer, 1241 * wake up select/poll. 1242 */ 1243 if (wpipe->pipe_buffer.cnt) 1244 pipeselwakeup(wpipe); 1245 1246 pipeunlock(wpipe); 1247 PIPE_UNLOCK(rpipe); 1248 return (error); 1249 } 1250 1251 /* 1252 * we implement a very minimal set of ioctls for compatibility with sockets. 1253 */ 1254 static int 1255 pipe_ioctl(fp, cmd, data, active_cred, td) 1256 struct file *fp; 1257 u_long cmd; 1258 void *data; 1259 struct ucred *active_cred; 1260 struct thread *td; 1261 { 1262 struct pipe *mpipe = fp->f_data; 1263 int error; 1264 1265 PIPE_LOCK(mpipe); 1266 1267 #ifdef MAC 1268 error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1269 if (error) { 1270 PIPE_UNLOCK(mpipe); 1271 return (error); 1272 } 1273 #endif 1274 1275 error = 0; 1276 switch (cmd) { 1277 1278 case FIONBIO: 1279 break; 1280 1281 case FIOASYNC: 1282 if (*(int *)data) { 1283 mpipe->pipe_state |= PIPE_ASYNC; 1284 } else { 1285 mpipe->pipe_state &= ~PIPE_ASYNC; 1286 } 1287 break; 1288 1289 case FIONREAD: 1290 if (mpipe->pipe_state & PIPE_DIRECTW) 1291 *(int *)data = mpipe->pipe_map.cnt; 1292 else 1293 *(int *)data = mpipe->pipe_buffer.cnt; 1294 break; 1295 1296 case FIOSETOWN: 1297 PIPE_UNLOCK(mpipe); 1298 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1299 goto out_unlocked; 1300 1301 case FIOGETOWN: 1302 *(int *)data = fgetown(&mpipe->pipe_sigio); 1303 break; 1304 1305 /* This is deprecated, FIOSETOWN should be used instead. */ 1306 case TIOCSPGRP: 1307 PIPE_UNLOCK(mpipe); 1308 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1309 goto out_unlocked; 1310 1311 /* This is deprecated, FIOGETOWN should be used instead. */ 1312 case TIOCGPGRP: 1313 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1314 break; 1315 1316 default: 1317 error = ENOTTY; 1318 break; 1319 } 1320 PIPE_UNLOCK(mpipe); 1321 out_unlocked: 1322 return (error); 1323 } 1324 1325 static int 1326 pipe_poll(fp, events, active_cred, td) 1327 struct file *fp; 1328 int events; 1329 struct ucred *active_cred; 1330 struct thread *td; 1331 { 1332 struct pipe *rpipe = fp->f_data; 1333 struct pipe *wpipe; 1334 int revents = 0; 1335 #ifdef MAC 1336 int error; 1337 #endif 1338 1339 wpipe = rpipe->pipe_peer; 1340 PIPE_LOCK(rpipe); 1341 #ifdef MAC 1342 error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair); 1343 if (error) 1344 goto locked_error; 1345 #endif 1346 if (events & (POLLIN | POLLRDNORM)) 1347 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1348 (rpipe->pipe_buffer.cnt > 0) || 1349 (rpipe->pipe_state & PIPE_EOF)) 1350 revents |= events & (POLLIN | POLLRDNORM); 1351 1352 if (events & (POLLOUT | POLLWRNORM)) 1353 if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) || 1354 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1355 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1356 revents |= events & (POLLOUT | POLLWRNORM); 1357 1358 if ((rpipe->pipe_state & PIPE_EOF) || 1359 (!wpipe->pipe_present) || 1360 (wpipe->pipe_state & PIPE_EOF)) 1361 revents |= POLLHUP; 1362 1363 if (revents == 0) { 1364 if (events & (POLLIN | POLLRDNORM)) { 1365 selrecord(td, &rpipe->pipe_sel); 1366 rpipe->pipe_state |= PIPE_SEL; 1367 } 1368 1369 if (events & (POLLOUT | POLLWRNORM)) { 1370 selrecord(td, &wpipe->pipe_sel); 1371 wpipe->pipe_state |= PIPE_SEL; 1372 } 1373 } 1374 #ifdef MAC 1375 locked_error: 1376 #endif 1377 PIPE_UNLOCK(rpipe); 1378 1379 return (revents); 1380 } 1381 1382 /* 1383 * We shouldn't need locks here as we're doing a read and this should 1384 * be a natural race. 1385 */ 1386 static int 1387 pipe_stat(fp, ub, active_cred, td) 1388 struct file *fp; 1389 struct stat *ub; 1390 struct ucred *active_cred; 1391 struct thread *td; 1392 { 1393 struct pipe *pipe = fp->f_data; 1394 #ifdef MAC 1395 int error; 1396 1397 PIPE_LOCK(pipe); 1398 error = mac_check_pipe_stat(active_cred, pipe->pipe_pair); 1399 PIPE_UNLOCK(pipe); 1400 if (error) 1401 return (error); 1402 #endif 1403 bzero(ub, sizeof(*ub)); 1404 ub->st_mode = S_IFIFO; 1405 ub->st_blksize = PAGE_SIZE; 1406 if (pipe->pipe_state & PIPE_DIRECTW) 1407 ub->st_size = pipe->pipe_map.cnt; 1408 else 1409 ub->st_size = pipe->pipe_buffer.cnt; 1410 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1411 ub->st_atimespec = pipe->pipe_atime; 1412 ub->st_mtimespec = pipe->pipe_mtime; 1413 ub->st_ctimespec = pipe->pipe_ctime; 1414 ub->st_uid = fp->f_cred->cr_uid; 1415 ub->st_gid = fp->f_cred->cr_gid; 1416 /* 1417 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1418 * XXX (st_dev, st_ino) should be unique. 1419 */ 1420 return (0); 1421 } 1422 1423 /* ARGSUSED */ 1424 static int 1425 pipe_close(fp, td) 1426 struct file *fp; 1427 struct thread *td; 1428 { 1429 struct pipe *cpipe = fp->f_data; 1430 1431 fp->f_ops = &badfileops; 1432 fp->f_data = NULL; 1433 funsetown(&cpipe->pipe_sigio); 1434 pipeclose(cpipe); 1435 return (0); 1436 } 1437 1438 static void 1439 pipe_free_kmem(cpipe) 1440 struct pipe *cpipe; 1441 { 1442 1443 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1444 ("pipe_free_kmem: pipe mutex locked")); 1445 1446 if (cpipe->pipe_buffer.buffer != NULL) { 1447 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size); 1448 vm_map_remove(pipe_map, 1449 (vm_offset_t)cpipe->pipe_buffer.buffer, 1450 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1451 cpipe->pipe_buffer.buffer = NULL; 1452 } 1453 #ifndef PIPE_NODIRECT 1454 { 1455 cpipe->pipe_map.cnt = 0; 1456 cpipe->pipe_map.pos = 0; 1457 cpipe->pipe_map.npages = 0; 1458 } 1459 #endif 1460 } 1461 1462 /* 1463 * shutdown the pipe 1464 */ 1465 static void 1466 pipeclose(cpipe) 1467 struct pipe *cpipe; 1468 { 1469 struct pipepair *pp; 1470 struct pipe *ppipe; 1471 1472 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1473 1474 PIPE_LOCK(cpipe); 1475 pipelock(cpipe, 0); 1476 pp = cpipe->pipe_pair; 1477 1478 pipeselwakeup(cpipe); 1479 1480 /* 1481 * If the other side is blocked, wake it up saying that 1482 * we want to close it down. 1483 */ 1484 cpipe->pipe_state |= PIPE_EOF; 1485 while (cpipe->pipe_busy) { 1486 wakeup(cpipe); 1487 cpipe->pipe_state |= PIPE_WANT; 1488 pipeunlock(cpipe); 1489 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1490 pipelock(cpipe, 0); 1491 } 1492 1493 1494 /* 1495 * Disconnect from peer, if any. 1496 */ 1497 ppipe = cpipe->pipe_peer; 1498 if (ppipe->pipe_present != 0) { 1499 pipeselwakeup(ppipe); 1500 1501 ppipe->pipe_state |= PIPE_EOF; 1502 wakeup(ppipe); 1503 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1504 } 1505 1506 /* 1507 * Mark this endpoint as free. Release kmem resources. We 1508 * don't mark this endpoint as unused until we've finished 1509 * doing that, or the pipe might disappear out from under 1510 * us. 1511 */ 1512 PIPE_UNLOCK(cpipe); 1513 pipe_free_kmem(cpipe); 1514 PIPE_LOCK(cpipe); 1515 cpipe->pipe_present = 0; 1516 pipeunlock(cpipe); 1517 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1518 knlist_destroy(&cpipe->pipe_sel.si_note); 1519 1520 /* 1521 * If both endpoints are now closed, release the memory for the 1522 * pipe pair. If not, unlock. 1523 */ 1524 if (ppipe->pipe_present == 0) { 1525 PIPE_UNLOCK(cpipe); 1526 #ifdef MAC 1527 mac_destroy_pipe(pp); 1528 #endif 1529 uma_zfree(pipe_zone, cpipe->pipe_pair); 1530 } else 1531 PIPE_UNLOCK(cpipe); 1532 } 1533 1534 /*ARGSUSED*/ 1535 static int 1536 pipe_kqfilter(struct file *fp, struct knote *kn) 1537 { 1538 struct pipe *cpipe; 1539 1540 cpipe = kn->kn_fp->f_data; 1541 PIPE_LOCK(cpipe); 1542 switch (kn->kn_filter) { 1543 case EVFILT_READ: 1544 kn->kn_fop = &pipe_rfiltops; 1545 break; 1546 case EVFILT_WRITE: 1547 kn->kn_fop = &pipe_wfiltops; 1548 if (!cpipe->pipe_peer->pipe_present) { 1549 /* other end of pipe has been closed */ 1550 PIPE_UNLOCK(cpipe); 1551 return (EPIPE); 1552 } 1553 cpipe = cpipe->pipe_peer; 1554 break; 1555 default: 1556 PIPE_UNLOCK(cpipe); 1557 return (EINVAL); 1558 } 1559 1560 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1561 PIPE_UNLOCK(cpipe); 1562 return (0); 1563 } 1564 1565 static void 1566 filt_pipedetach(struct knote *kn) 1567 { 1568 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; 1569 1570 PIPE_LOCK(cpipe); 1571 if (kn->kn_filter == EVFILT_WRITE) { 1572 if (!cpipe->pipe_peer->pipe_present) { 1573 PIPE_UNLOCK(cpipe); 1574 return; 1575 } 1576 cpipe = cpipe->pipe_peer; 1577 } 1578 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1579 PIPE_UNLOCK(cpipe); 1580 } 1581 1582 /*ARGSUSED*/ 1583 static int 1584 filt_piperead(struct knote *kn, long hint) 1585 { 1586 struct pipe *rpipe = kn->kn_fp->f_data; 1587 struct pipe *wpipe = rpipe->pipe_peer; 1588 int ret; 1589 1590 PIPE_LOCK(rpipe); 1591 kn->kn_data = rpipe->pipe_buffer.cnt; 1592 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1593 kn->kn_data = rpipe->pipe_map.cnt; 1594 1595 if ((rpipe->pipe_state & PIPE_EOF) || 1596 (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1597 kn->kn_flags |= EV_EOF; 1598 PIPE_UNLOCK(rpipe); 1599 return (1); 1600 } 1601 ret = kn->kn_data > 0; 1602 PIPE_UNLOCK(rpipe); 1603 return ret; 1604 } 1605 1606 /*ARGSUSED*/ 1607 static int 1608 filt_pipewrite(struct knote *kn, long hint) 1609 { 1610 struct pipe *rpipe = kn->kn_fp->f_data; 1611 struct pipe *wpipe = rpipe->pipe_peer; 1612 1613 PIPE_LOCK(rpipe); 1614 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1615 kn->kn_data = 0; 1616 kn->kn_flags |= EV_EOF; 1617 PIPE_UNLOCK(rpipe); 1618 return (1); 1619 } 1620 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1621 if (wpipe->pipe_state & PIPE_DIRECTW) 1622 kn->kn_data = 0; 1623 1624 PIPE_UNLOCK(rpipe); 1625 return (kn->kn_data >= PIPE_BUF); 1626 } 1627