xref: /freebsd/sys/kern/sys_pipe.c (revision 63cbe8d1d95f97e93929ec66f1138693d08dd9f6)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1996 John S. Dyson
5  * Copyright (c) 2012 Giovanni Trematerra
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Absolutely no warranty of function or purpose is made by the author
18  *    John S. Dyson.
19  * 4. Modifications may be freely made to this file if the above conditions
20  *    are met.
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, the sending process pins the underlying pages in
36  * memory, and the receiving process copies directly from these pinned pages
37  * in the sending process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.
50  *
51  * In order to limit the resource use of pipes, two sysctls exist:
52  *
53  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54  * address space available to us in pipe_map. This value is normally
55  * autotuned, but may also be loader tuned.
56  *
57  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58  * memory in use by pipes.
59  *
60  * Based on how large pipekva is relative to maxpipekva, the following
61  * will happen:
62  *
63  * 0% - 50%:
64  *     New pipes are given 16K of memory backing, pipes may dynamically
65  *     grow to as large as 64K where needed.
66  * 50% - 75%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes may NOT grow.
69  * 75% - 100%:
70  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
71  *     existing pipes will be shrunk down to 4K whenever possible.
72  *
73  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
74  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75  * resize which MUST occur for reverse-direction pipes when they are
76  * first used.
77  *
78  * Additional information about the current state of pipes may be obtained
79  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80  * and kern.ipc.piperesizefail.
81  *
82  * Locking rules:  There are two locks present here:  A mutex, used via
83  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
84  * the flag, as mutexes can not persist over uiomove.  The mutex
85  * exists only to guard access to the flag, and is not in itself a
86  * locking mechanism.  Also note that there is only a single mutex for
87  * both directions of a pipe.
88  *
89  * As pipelock() may have to sleep before it can acquire the flag, it
90  * is important to reread all data after a call to pipelock(); everything
91  * in the structure may have changed.
92  */
93 
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD$");
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122 
123 #include <security/mac/mac_framework.h>
124 
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134 
135 /*
136  * Use this define if you want to disable *fancy* VM things.  Expect an
137  * approx 30% decrease in transfer rate.  This could be useful for
138  * NetBSD or OpenBSD.
139  */
140 /* #define PIPE_NODIRECT */
141 
142 #define PIPE_PEER(pipe)	\
143 	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144 
145 /*
146  * interfaces to the outside world
147  */
148 static fo_rdwr_t	pipe_read;
149 static fo_rdwr_t	pipe_write;
150 static fo_truncate_t	pipe_truncate;
151 static fo_ioctl_t	pipe_ioctl;
152 static fo_poll_t	pipe_poll;
153 static fo_kqfilter_t	pipe_kqfilter;
154 static fo_stat_t	pipe_stat;
155 static fo_close_t	pipe_close;
156 static fo_chmod_t	pipe_chmod;
157 static fo_chown_t	pipe_chown;
158 static fo_fill_kinfo_t	pipe_fill_kinfo;
159 
160 struct fileops pipeops = {
161 	.fo_read = pipe_read,
162 	.fo_write = pipe_write,
163 	.fo_truncate = pipe_truncate,
164 	.fo_ioctl = pipe_ioctl,
165 	.fo_poll = pipe_poll,
166 	.fo_kqfilter = pipe_kqfilter,
167 	.fo_stat = pipe_stat,
168 	.fo_close = pipe_close,
169 	.fo_chmod = pipe_chmod,
170 	.fo_chown = pipe_chown,
171 	.fo_sendfile = invfo_sendfile,
172 	.fo_fill_kinfo = pipe_fill_kinfo,
173 	.fo_flags = DFLAG_PASSABLE
174 };
175 
176 static void	filt_pipedetach(struct knote *kn);
177 static void	filt_pipedetach_notsup(struct knote *kn);
178 static int	filt_pipenotsup(struct knote *kn, long hint);
179 static int	filt_piperead(struct knote *kn, long hint);
180 static int	filt_pipewrite(struct knote *kn, long hint);
181 
182 static struct filterops pipe_nfiltops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_pipedetach_notsup,
185 	.f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_pipedetach,
190 	.f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_pipedetach,
195 	.f_event = filt_pipewrite
196 };
197 
198 /*
199  * Default pipe buffer size(s), this can be kind-of large now because pipe
200  * space is pageable.  The pipe code will try to maintain locality of
201  * reference for performance reasons, so small amounts of outstanding I/O
202  * will not wipe the cache.
203  */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206 
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212 
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 	   &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216 	   &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220 	  &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222 	  &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224 	  &piperesizeallowed, 0, "Pipe resizing allowed");
225 
226 static void pipeinit(void *dummy __unused);
227 static void pipeclose(struct pipe *cpipe);
228 static void pipe_free_kmem(struct pipe *cpipe);
229 static void pipe_create(struct pipe *pipe, int backing);
230 static void pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231 static __inline int pipelock(struct pipe *cpipe, int catch);
232 static __inline void pipeunlock(struct pipe *cpipe);
233 #ifndef PIPE_NODIRECT
234 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
235 static void pipe_destroy_write_buffer(struct pipe *wpipe);
236 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
237 static void pipe_clone_write_buffer(struct pipe *wpipe);
238 #endif
239 static int pipespace(struct pipe *cpipe, int size);
240 static int pipespace_new(struct pipe *cpipe, int size);
241 
242 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
243 static int	pipe_zone_init(void *mem, int size, int flags);
244 static void	pipe_zone_fini(void *mem, int size);
245 
246 static uma_zone_t pipe_zone;
247 static struct unrhdr64 pipeino_unr;
248 static dev_t pipedev_ino;
249 
250 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
251 
252 static void
253 pipeinit(void *dummy __unused)
254 {
255 
256 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
257 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
258 	    UMA_ALIGN_PTR, 0);
259 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
260 	new_unrhdr64(&pipeino_unr, 1);
261 	pipedev_ino = devfs_alloc_cdp_inode();
262 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
263 }
264 
265 static int
266 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
267 {
268 	struct pipepair *pp;
269 	struct pipe *rpipe, *wpipe;
270 
271 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
272 
273 	pp = (struct pipepair *)mem;
274 
275 	/*
276 	 * We zero both pipe endpoints to make sure all the kmem pointers
277 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
278 	 * endpoints with the same time.
279 	 */
280 	rpipe = &pp->pp_rpipe;
281 	bzero(rpipe, sizeof(*rpipe));
282 	vfs_timestamp(&rpipe->pipe_ctime);
283 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
284 
285 	wpipe = &pp->pp_wpipe;
286 	bzero(wpipe, sizeof(*wpipe));
287 	wpipe->pipe_ctime = rpipe->pipe_ctime;
288 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
289 
290 	rpipe->pipe_peer = wpipe;
291 	rpipe->pipe_pair = pp;
292 	wpipe->pipe_peer = rpipe;
293 	wpipe->pipe_pair = pp;
294 
295 	/*
296 	 * Mark both endpoints as present; they will later get free'd
297 	 * one at a time.  When both are free'd, then the whole pair
298 	 * is released.
299 	 */
300 	rpipe->pipe_present = PIPE_ACTIVE;
301 	wpipe->pipe_present = PIPE_ACTIVE;
302 
303 	/*
304 	 * Eventually, the MAC Framework may initialize the label
305 	 * in ctor or init, but for now we do it elswhere to avoid
306 	 * blocking in ctor or init.
307 	 */
308 	pp->pp_label = NULL;
309 
310 	return (0);
311 }
312 
313 static int
314 pipe_zone_init(void *mem, int size, int flags)
315 {
316 	struct pipepair *pp;
317 
318 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
319 
320 	pp = (struct pipepair *)mem;
321 
322 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
323 	return (0);
324 }
325 
326 static void
327 pipe_zone_fini(void *mem, int size)
328 {
329 	struct pipepair *pp;
330 
331 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
332 
333 	pp = (struct pipepair *)mem;
334 
335 	mtx_destroy(&pp->pp_mtx);
336 }
337 
338 static void
339 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
340 {
341 	struct pipepair *pp;
342 	struct pipe *rpipe, *wpipe;
343 
344 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
345 #ifdef MAC
346 	/*
347 	 * The MAC label is shared between the connected endpoints.  As a
348 	 * result mac_pipe_init() and mac_pipe_create() are called once
349 	 * for the pair, and not on the endpoints.
350 	 */
351 	mac_pipe_init(pp);
352 	mac_pipe_create(td->td_ucred, pp);
353 #endif
354 	rpipe = &pp->pp_rpipe;
355 	wpipe = &pp->pp_wpipe;
356 
357 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
358 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
359 
360 	/* Only the forward direction pipe is backed by default */
361 	pipe_create(rpipe, 1);
362 	pipe_create(wpipe, 0);
363 
364 	rpipe->pipe_state |= PIPE_DIRECTOK;
365 	wpipe->pipe_state |= PIPE_DIRECTOK;
366 }
367 
368 void
369 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
370 {
371 	struct pipepair *pp;
372 
373 	pipe_paircreate(td, &pp);
374 	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
375 	*ppipe = &pp->pp_rpipe;
376 }
377 
378 void
379 pipe_dtor(struct pipe *dpipe)
380 {
381 	struct pipe *peer;
382 	ino_t ino;
383 
384 	ino = dpipe->pipe_ino;
385 	peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
386 	funsetown(&dpipe->pipe_sigio);
387 	pipeclose(dpipe);
388 	if (peer != NULL) {
389 		funsetown(&peer->pipe_sigio);
390 		pipeclose(peer);
391 	}
392 }
393 
394 /*
395  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
396  * the zone pick up the pieces via pipeclose().
397  */
398 int
399 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
400     struct filecaps *fcaps2)
401 {
402 	struct file *rf, *wf;
403 	struct pipe *rpipe, *wpipe;
404 	struct pipepair *pp;
405 	int fd, fflags, error;
406 
407 	pipe_paircreate(td, &pp);
408 	rpipe = &pp->pp_rpipe;
409 	wpipe = &pp->pp_wpipe;
410 	error = falloc_caps(td, &rf, &fd, flags, fcaps1);
411 	if (error) {
412 		pipeclose(rpipe);
413 		pipeclose(wpipe);
414 		return (error);
415 	}
416 	/* An extra reference on `rf' has been held for us by falloc_caps(). */
417 	fildes[0] = fd;
418 
419 	fflags = FREAD | FWRITE;
420 	if ((flags & O_NONBLOCK) != 0)
421 		fflags |= FNONBLOCK;
422 
423 	/*
424 	 * Warning: once we've gotten past allocation of the fd for the
425 	 * read-side, we can only drop the read side via fdrop() in order
426 	 * to avoid races against processes which manage to dup() the read
427 	 * side while we are blocked trying to allocate the write side.
428 	 */
429 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
430 	error = falloc_caps(td, &wf, &fd, flags, fcaps2);
431 	if (error) {
432 		fdclose(td, rf, fildes[0]);
433 		fdrop(rf, td);
434 		/* rpipe has been closed by fdrop(). */
435 		pipeclose(wpipe);
436 		return (error);
437 	}
438 	/* An extra reference on `wf' has been held for us by falloc_caps(). */
439 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
440 	fdrop(wf, td);
441 	fildes[1] = fd;
442 	fdrop(rf, td);
443 
444 	return (0);
445 }
446 
447 #ifdef COMPAT_FREEBSD10
448 /* ARGSUSED */
449 int
450 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
451 {
452 	int error;
453 	int fildes[2];
454 
455 	error = kern_pipe(td, fildes, 0, NULL, NULL);
456 	if (error)
457 		return (error);
458 
459 	td->td_retval[0] = fildes[0];
460 	td->td_retval[1] = fildes[1];
461 
462 	return (0);
463 }
464 #endif
465 
466 int
467 sys_pipe2(struct thread *td, struct pipe2_args *uap)
468 {
469 	int error, fildes[2];
470 
471 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
472 		return (EINVAL);
473 	error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
474 	if (error)
475 		return (error);
476 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
477 	if (error) {
478 		(void)kern_close(td, fildes[0]);
479 		(void)kern_close(td, fildes[1]);
480 	}
481 	return (error);
482 }
483 
484 /*
485  * Allocate kva for pipe circular buffer, the space is pageable
486  * This routine will 'realloc' the size of a pipe safely, if it fails
487  * it will retain the old buffer.
488  * If it fails it will return ENOMEM.
489  */
490 static int
491 pipespace_new(struct pipe *cpipe, int size)
492 {
493 	caddr_t buffer;
494 	int error, cnt, firstseg;
495 	static int curfail = 0;
496 	static struct timeval lastfail;
497 
498 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
499 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
500 		("pipespace: resize of direct writes not allowed"));
501 retry:
502 	cnt = cpipe->pipe_buffer.cnt;
503 	if (cnt > size)
504 		size = cnt;
505 
506 	size = round_page(size);
507 	buffer = (caddr_t) vm_map_min(pipe_map);
508 
509 	error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
510 	    VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
511 	if (error != KERN_SUCCESS) {
512 		if ((cpipe->pipe_buffer.buffer == NULL) &&
513 			(size > SMALL_PIPE_SIZE)) {
514 			size = SMALL_PIPE_SIZE;
515 			pipefragretry++;
516 			goto retry;
517 		}
518 		if (cpipe->pipe_buffer.buffer == NULL) {
519 			pipeallocfail++;
520 			if (ppsratecheck(&lastfail, &curfail, 1))
521 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
522 		} else {
523 			piperesizefail++;
524 		}
525 		return (ENOMEM);
526 	}
527 
528 	/* copy data, then free old resources if we're resizing */
529 	if (cnt > 0) {
530 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
531 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
532 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
533 				buffer, firstseg);
534 			if ((cnt - firstseg) > 0)
535 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
536 					cpipe->pipe_buffer.in);
537 		} else {
538 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
539 				buffer, cnt);
540 		}
541 	}
542 	pipe_free_kmem(cpipe);
543 	cpipe->pipe_buffer.buffer = buffer;
544 	cpipe->pipe_buffer.size = size;
545 	cpipe->pipe_buffer.in = cnt;
546 	cpipe->pipe_buffer.out = 0;
547 	cpipe->pipe_buffer.cnt = cnt;
548 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
549 	return (0);
550 }
551 
552 /*
553  * Wrapper for pipespace_new() that performs locking assertions.
554  */
555 static int
556 pipespace(struct pipe *cpipe, int size)
557 {
558 
559 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
560 		("Unlocked pipe passed to pipespace"));
561 	return (pipespace_new(cpipe, size));
562 }
563 
564 /*
565  * lock a pipe for I/O, blocking other access
566  */
567 static __inline int
568 pipelock(struct pipe *cpipe, int catch)
569 {
570 	int error;
571 
572 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
573 	while (cpipe->pipe_state & PIPE_LOCKFL) {
574 		cpipe->pipe_state |= PIPE_LWANT;
575 		error = msleep(cpipe, PIPE_MTX(cpipe),
576 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
577 		    "pipelk", 0);
578 		if (error != 0)
579 			return (error);
580 	}
581 	cpipe->pipe_state |= PIPE_LOCKFL;
582 	return (0);
583 }
584 
585 /*
586  * unlock a pipe I/O lock
587  */
588 static __inline void
589 pipeunlock(struct pipe *cpipe)
590 {
591 
592 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
593 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
594 		("Unlocked pipe passed to pipeunlock"));
595 	cpipe->pipe_state &= ~PIPE_LOCKFL;
596 	if (cpipe->pipe_state & PIPE_LWANT) {
597 		cpipe->pipe_state &= ~PIPE_LWANT;
598 		wakeup(cpipe);
599 	}
600 }
601 
602 void
603 pipeselwakeup(struct pipe *cpipe)
604 {
605 
606 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
607 	if (cpipe->pipe_state & PIPE_SEL) {
608 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
609 		if (!SEL_WAITING(&cpipe->pipe_sel))
610 			cpipe->pipe_state &= ~PIPE_SEL;
611 	}
612 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
613 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
614 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
615 }
616 
617 /*
618  * Initialize and allocate VM and memory for pipe.  The structure
619  * will start out zero'd from the ctor, so we just manage the kmem.
620  */
621 static void
622 pipe_create(struct pipe *pipe, int backing)
623 {
624 
625 	if (backing) {
626 		/*
627 		 * Note that these functions can fail if pipe map is exhausted
628 		 * (as a result of too many pipes created), but we ignore the
629 		 * error as it is not fatal and could be provoked by
630 		 * unprivileged users. The only consequence is worse performance
631 		 * with given pipe.
632 		 */
633 		if (amountpipekva > maxpipekva / 2)
634 			(void)pipespace_new(pipe, SMALL_PIPE_SIZE);
635 		else
636 			(void)pipespace_new(pipe, PIPE_SIZE);
637 	}
638 
639 	pipe->pipe_ino = alloc_unr64(&pipeino_unr);
640 }
641 
642 /* ARGSUSED */
643 static int
644 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
645     int flags, struct thread *td)
646 {
647 	struct pipe *rpipe;
648 	int error;
649 	int nread = 0;
650 	int size;
651 
652 	rpipe = fp->f_data;
653 	PIPE_LOCK(rpipe);
654 	++rpipe->pipe_busy;
655 	error = pipelock(rpipe, 1);
656 	if (error)
657 		goto unlocked_error;
658 
659 #ifdef MAC
660 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
661 	if (error)
662 		goto locked_error;
663 #endif
664 	if (amountpipekva > (3 * maxpipekva) / 4) {
665 		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
666 			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
667 			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
668 			(piperesizeallowed == 1)) {
669 			PIPE_UNLOCK(rpipe);
670 			pipespace(rpipe, SMALL_PIPE_SIZE);
671 			PIPE_LOCK(rpipe);
672 		}
673 	}
674 
675 	while (uio->uio_resid) {
676 		/*
677 		 * normal pipe buffer receive
678 		 */
679 		if (rpipe->pipe_buffer.cnt > 0) {
680 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
681 			if (size > rpipe->pipe_buffer.cnt)
682 				size = rpipe->pipe_buffer.cnt;
683 			if (size > uio->uio_resid)
684 				size = uio->uio_resid;
685 
686 			PIPE_UNLOCK(rpipe);
687 			error = uiomove(
688 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
689 			    size, uio);
690 			PIPE_LOCK(rpipe);
691 			if (error)
692 				break;
693 
694 			rpipe->pipe_buffer.out += size;
695 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
696 				rpipe->pipe_buffer.out = 0;
697 
698 			rpipe->pipe_buffer.cnt -= size;
699 
700 			/*
701 			 * If there is no more to read in the pipe, reset
702 			 * its pointers to the beginning.  This improves
703 			 * cache hit stats.
704 			 */
705 			if (rpipe->pipe_buffer.cnt == 0) {
706 				rpipe->pipe_buffer.in = 0;
707 				rpipe->pipe_buffer.out = 0;
708 			}
709 			nread += size;
710 #ifndef PIPE_NODIRECT
711 		/*
712 		 * Direct copy, bypassing a kernel buffer.
713 		 */
714 		} else if ((size = rpipe->pipe_map.cnt) &&
715 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
716 			if (size > uio->uio_resid)
717 				size = (u_int) uio->uio_resid;
718 
719 			PIPE_UNLOCK(rpipe);
720 			error = uiomove_fromphys(rpipe->pipe_map.ms,
721 			    rpipe->pipe_map.pos, size, uio);
722 			PIPE_LOCK(rpipe);
723 			if (error)
724 				break;
725 			nread += size;
726 			rpipe->pipe_map.pos += size;
727 			rpipe->pipe_map.cnt -= size;
728 			if (rpipe->pipe_map.cnt == 0) {
729 				rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
730 				wakeup(rpipe);
731 			}
732 #endif
733 		} else {
734 			/*
735 			 * detect EOF condition
736 			 * read returns 0 on EOF, no need to set error
737 			 */
738 			if (rpipe->pipe_state & PIPE_EOF)
739 				break;
740 
741 			/*
742 			 * If the "write-side" has been blocked, wake it up now.
743 			 */
744 			if (rpipe->pipe_state & PIPE_WANTW) {
745 				rpipe->pipe_state &= ~PIPE_WANTW;
746 				wakeup(rpipe);
747 			}
748 
749 			/*
750 			 * Break if some data was read.
751 			 */
752 			if (nread > 0)
753 				break;
754 
755 			/*
756 			 * Unlock the pipe buffer for our remaining processing.
757 			 * We will either break out with an error or we will
758 			 * sleep and relock to loop.
759 			 */
760 			pipeunlock(rpipe);
761 
762 			/*
763 			 * Handle non-blocking mode operation or
764 			 * wait for more data.
765 			 */
766 			if (fp->f_flag & FNONBLOCK) {
767 				error = EAGAIN;
768 			} else {
769 				rpipe->pipe_state |= PIPE_WANTR;
770 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
771 				    PRIBIO | PCATCH,
772 				    "piperd", 0)) == 0)
773 					error = pipelock(rpipe, 1);
774 			}
775 			if (error)
776 				goto unlocked_error;
777 		}
778 	}
779 #ifdef MAC
780 locked_error:
781 #endif
782 	pipeunlock(rpipe);
783 
784 	/* XXX: should probably do this before getting any locks. */
785 	if (error == 0)
786 		vfs_timestamp(&rpipe->pipe_atime);
787 unlocked_error:
788 	--rpipe->pipe_busy;
789 
790 	/*
791 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
792 	 */
793 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
794 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
795 		wakeup(rpipe);
796 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
797 		/*
798 		 * Handle write blocking hysteresis.
799 		 */
800 		if (rpipe->pipe_state & PIPE_WANTW) {
801 			rpipe->pipe_state &= ~PIPE_WANTW;
802 			wakeup(rpipe);
803 		}
804 	}
805 
806 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
807 		pipeselwakeup(rpipe);
808 
809 	PIPE_UNLOCK(rpipe);
810 	return (error);
811 }
812 
813 #ifndef PIPE_NODIRECT
814 /*
815  * Map the sending processes' buffer into kernel space and wire it.
816  * This is similar to a physical write operation.
817  */
818 static int
819 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
820 {
821 	u_int size;
822 	int i;
823 
824 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
825 	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
826 		("Clone attempt on non-direct write pipe!"));
827 
828 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
829                 size = wpipe->pipe_buffer.size;
830 	else
831                 size = uio->uio_iov->iov_len;
832 
833 	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
834 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
835 	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
836 		return (EFAULT);
837 
838 /*
839  * set up the control block
840  */
841 	wpipe->pipe_map.npages = i;
842 	wpipe->pipe_map.pos =
843 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
844 	wpipe->pipe_map.cnt = size;
845 
846 /*
847  * and update the uio data
848  */
849 
850 	uio->uio_iov->iov_len -= size;
851 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
852 	if (uio->uio_iov->iov_len == 0)
853 		uio->uio_iov++;
854 	uio->uio_resid -= size;
855 	uio->uio_offset += size;
856 	return (0);
857 }
858 
859 /*
860  * unmap and unwire the process buffer
861  */
862 static void
863 pipe_destroy_write_buffer(struct pipe *wpipe)
864 {
865 
866 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
867 	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
868 	wpipe->pipe_map.npages = 0;
869 }
870 
871 /*
872  * In the case of a signal, the writing process might go away.  This
873  * code copies the data into the circular buffer so that the source
874  * pages can be freed without loss of data.
875  */
876 static void
877 pipe_clone_write_buffer(struct pipe *wpipe)
878 {
879 	struct uio uio;
880 	struct iovec iov;
881 	int size;
882 	int pos;
883 
884 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
885 	size = wpipe->pipe_map.cnt;
886 	pos = wpipe->pipe_map.pos;
887 
888 	wpipe->pipe_buffer.in = size;
889 	wpipe->pipe_buffer.out = 0;
890 	wpipe->pipe_buffer.cnt = size;
891 	wpipe->pipe_state &= ~PIPE_DIRECTW;
892 
893 	PIPE_UNLOCK(wpipe);
894 	iov.iov_base = wpipe->pipe_buffer.buffer;
895 	iov.iov_len = size;
896 	uio.uio_iov = &iov;
897 	uio.uio_iovcnt = 1;
898 	uio.uio_offset = 0;
899 	uio.uio_resid = size;
900 	uio.uio_segflg = UIO_SYSSPACE;
901 	uio.uio_rw = UIO_READ;
902 	uio.uio_td = curthread;
903 	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
904 	PIPE_LOCK(wpipe);
905 	pipe_destroy_write_buffer(wpipe);
906 }
907 
908 /*
909  * This implements the pipe buffer write mechanism.  Note that only
910  * a direct write OR a normal pipe write can be pending at any given time.
911  * If there are any characters in the pipe buffer, the direct write will
912  * be deferred until the receiving process grabs all of the bytes from
913  * the pipe buffer.  Then the direct mapping write is set-up.
914  */
915 static int
916 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
917 {
918 	int error;
919 
920 retry:
921 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
922 	error = pipelock(wpipe, 1);
923 	if (error != 0)
924 		goto error1;
925 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
926 		error = EPIPE;
927 		pipeunlock(wpipe);
928 		goto error1;
929 	}
930 	while (wpipe->pipe_state & PIPE_DIRECTW) {
931 		if (wpipe->pipe_state & PIPE_WANTR) {
932 			wpipe->pipe_state &= ~PIPE_WANTR;
933 			wakeup(wpipe);
934 		}
935 		pipeselwakeup(wpipe);
936 		wpipe->pipe_state |= PIPE_WANTW;
937 		pipeunlock(wpipe);
938 		error = msleep(wpipe, PIPE_MTX(wpipe),
939 		    PRIBIO | PCATCH, "pipdww", 0);
940 		if (error)
941 			goto error1;
942 		else
943 			goto retry;
944 	}
945 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
946 	if (wpipe->pipe_buffer.cnt > 0) {
947 		if (wpipe->pipe_state & PIPE_WANTR) {
948 			wpipe->pipe_state &= ~PIPE_WANTR;
949 			wakeup(wpipe);
950 		}
951 		pipeselwakeup(wpipe);
952 		wpipe->pipe_state |= PIPE_WANTW;
953 		pipeunlock(wpipe);
954 		error = msleep(wpipe, PIPE_MTX(wpipe),
955 		    PRIBIO | PCATCH, "pipdwc", 0);
956 		if (error)
957 			goto error1;
958 		else
959 			goto retry;
960 	}
961 
962 	wpipe->pipe_state |= PIPE_DIRECTW;
963 
964 	PIPE_UNLOCK(wpipe);
965 	error = pipe_build_write_buffer(wpipe, uio);
966 	PIPE_LOCK(wpipe);
967 	if (error) {
968 		wpipe->pipe_state &= ~PIPE_DIRECTW;
969 		pipeunlock(wpipe);
970 		goto error1;
971 	}
972 
973 	error = 0;
974 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
975 		if (wpipe->pipe_state & PIPE_EOF) {
976 			pipe_destroy_write_buffer(wpipe);
977 			pipeselwakeup(wpipe);
978 			pipeunlock(wpipe);
979 			error = EPIPE;
980 			goto error1;
981 		}
982 		if (wpipe->pipe_state & PIPE_WANTR) {
983 			wpipe->pipe_state &= ~PIPE_WANTR;
984 			wakeup(wpipe);
985 		}
986 		pipeselwakeup(wpipe);
987 		wpipe->pipe_state |= PIPE_WANTW;
988 		pipeunlock(wpipe);
989 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
990 		    "pipdwt", 0);
991 		pipelock(wpipe, 0);
992 	}
993 
994 	if (wpipe->pipe_state & PIPE_EOF)
995 		error = EPIPE;
996 	if (wpipe->pipe_state & PIPE_DIRECTW) {
997 		/*
998 		 * this bit of trickery substitutes a kernel buffer for
999 		 * the process that might be going away.
1000 		 */
1001 		pipe_clone_write_buffer(wpipe);
1002 	} else {
1003 		pipe_destroy_write_buffer(wpipe);
1004 	}
1005 	pipeunlock(wpipe);
1006 	return (error);
1007 
1008 error1:
1009 	wakeup(wpipe);
1010 	return (error);
1011 }
1012 #endif
1013 
1014 static int
1015 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1016     int flags, struct thread *td)
1017 {
1018 	int error = 0;
1019 	int desiredsize;
1020 	ssize_t orig_resid;
1021 	struct pipe *wpipe, *rpipe;
1022 
1023 	rpipe = fp->f_data;
1024 	wpipe = PIPE_PEER(rpipe);
1025 	PIPE_LOCK(rpipe);
1026 	error = pipelock(wpipe, 1);
1027 	if (error) {
1028 		PIPE_UNLOCK(rpipe);
1029 		return (error);
1030 	}
1031 	/*
1032 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1033 	 */
1034 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1035 	    (wpipe->pipe_state & PIPE_EOF)) {
1036 		pipeunlock(wpipe);
1037 		PIPE_UNLOCK(rpipe);
1038 		return (EPIPE);
1039 	}
1040 #ifdef MAC
1041 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1042 	if (error) {
1043 		pipeunlock(wpipe);
1044 		PIPE_UNLOCK(rpipe);
1045 		return (error);
1046 	}
1047 #endif
1048 	++wpipe->pipe_busy;
1049 
1050 	/* Choose a larger size if it's advantageous */
1051 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1052 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1053 		if (piperesizeallowed != 1)
1054 			break;
1055 		if (amountpipekva > maxpipekva / 2)
1056 			break;
1057 		if (desiredsize == BIG_PIPE_SIZE)
1058 			break;
1059 		desiredsize = desiredsize * 2;
1060 	}
1061 
1062 	/* Choose a smaller size if we're in a OOM situation */
1063 	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1064 		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1065 		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1066 		(piperesizeallowed == 1))
1067 		desiredsize = SMALL_PIPE_SIZE;
1068 
1069 	/* Resize if the above determined that a new size was necessary */
1070 	if ((desiredsize != wpipe->pipe_buffer.size) &&
1071 		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1072 		PIPE_UNLOCK(wpipe);
1073 		pipespace(wpipe, desiredsize);
1074 		PIPE_LOCK(wpipe);
1075 	}
1076 	if (wpipe->pipe_buffer.size == 0) {
1077 		/*
1078 		 * This can only happen for reverse direction use of pipes
1079 		 * in a complete OOM situation.
1080 		 */
1081 		error = ENOMEM;
1082 		--wpipe->pipe_busy;
1083 		pipeunlock(wpipe);
1084 		PIPE_UNLOCK(wpipe);
1085 		return (error);
1086 	}
1087 
1088 	pipeunlock(wpipe);
1089 
1090 	orig_resid = uio->uio_resid;
1091 
1092 	while (uio->uio_resid) {
1093 		int space;
1094 
1095 		pipelock(wpipe, 0);
1096 		if (wpipe->pipe_state & PIPE_EOF) {
1097 			pipeunlock(wpipe);
1098 			error = EPIPE;
1099 			break;
1100 		}
1101 #ifndef PIPE_NODIRECT
1102 		/*
1103 		 * If the transfer is large, we can gain performance if
1104 		 * we do process-to-process copies directly.
1105 		 * If the write is non-blocking, we don't use the
1106 		 * direct write mechanism.
1107 		 *
1108 		 * The direct write mechanism will detect the reader going
1109 		 * away on us.
1110 		 */
1111 		if (uio->uio_segflg == UIO_USERSPACE &&
1112 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1113 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1114 		    (fp->f_flag & FNONBLOCK) == 0) {
1115 			pipeunlock(wpipe);
1116 			error = pipe_direct_write(wpipe, uio);
1117 			if (error)
1118 				break;
1119 			continue;
1120 		}
1121 #endif
1122 
1123 		/*
1124 		 * Pipe buffered writes cannot be coincidental with
1125 		 * direct writes.  We wait until the currently executing
1126 		 * direct write is completed before we start filling the
1127 		 * pipe buffer.  We break out if a signal occurs or the
1128 		 * reader goes away.
1129 		 */
1130 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1131 			if (wpipe->pipe_state & PIPE_WANTR) {
1132 				wpipe->pipe_state &= ~PIPE_WANTR;
1133 				wakeup(wpipe);
1134 			}
1135 			pipeselwakeup(wpipe);
1136 			wpipe->pipe_state |= PIPE_WANTW;
1137 			pipeunlock(wpipe);
1138 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1139 			    "pipbww", 0);
1140 			if (error)
1141 				break;
1142 			else
1143 				continue;
1144 		}
1145 
1146 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1147 
1148 		/* Writes of size <= PIPE_BUF must be atomic. */
1149 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1150 			space = 0;
1151 
1152 		if (space > 0) {
1153 			int size;	/* Transfer size */
1154 			int segsize;	/* first segment to transfer */
1155 
1156 			/*
1157 			 * Transfer size is minimum of uio transfer
1158 			 * and free space in pipe buffer.
1159 			 */
1160 			if (space > uio->uio_resid)
1161 				size = uio->uio_resid;
1162 			else
1163 				size = space;
1164 			/*
1165 			 * First segment to transfer is minimum of
1166 			 * transfer size and contiguous space in
1167 			 * pipe buffer.  If first segment to transfer
1168 			 * is less than the transfer size, we've got
1169 			 * a wraparound in the buffer.
1170 			 */
1171 			segsize = wpipe->pipe_buffer.size -
1172 				wpipe->pipe_buffer.in;
1173 			if (segsize > size)
1174 				segsize = size;
1175 
1176 			/* Transfer first segment */
1177 
1178 			PIPE_UNLOCK(rpipe);
1179 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1180 					segsize, uio);
1181 			PIPE_LOCK(rpipe);
1182 
1183 			if (error == 0 && segsize < size) {
1184 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1185 					wpipe->pipe_buffer.size,
1186 					("Pipe buffer wraparound disappeared"));
1187 				/*
1188 				 * Transfer remaining part now, to
1189 				 * support atomic writes.  Wraparound
1190 				 * happened.
1191 				 */
1192 
1193 				PIPE_UNLOCK(rpipe);
1194 				error = uiomove(
1195 				    &wpipe->pipe_buffer.buffer[0],
1196 				    size - segsize, uio);
1197 				PIPE_LOCK(rpipe);
1198 			}
1199 			if (error == 0) {
1200 				wpipe->pipe_buffer.in += size;
1201 				if (wpipe->pipe_buffer.in >=
1202 				    wpipe->pipe_buffer.size) {
1203 					KASSERT(wpipe->pipe_buffer.in ==
1204 						size - segsize +
1205 						wpipe->pipe_buffer.size,
1206 						("Expected wraparound bad"));
1207 					wpipe->pipe_buffer.in = size - segsize;
1208 				}
1209 
1210 				wpipe->pipe_buffer.cnt += size;
1211 				KASSERT(wpipe->pipe_buffer.cnt <=
1212 					wpipe->pipe_buffer.size,
1213 					("Pipe buffer overflow"));
1214 			}
1215 			pipeunlock(wpipe);
1216 			if (error != 0)
1217 				break;
1218 		} else {
1219 			/*
1220 			 * If the "read-side" has been blocked, wake it up now.
1221 			 */
1222 			if (wpipe->pipe_state & PIPE_WANTR) {
1223 				wpipe->pipe_state &= ~PIPE_WANTR;
1224 				wakeup(wpipe);
1225 			}
1226 
1227 			/*
1228 			 * don't block on non-blocking I/O
1229 			 */
1230 			if (fp->f_flag & FNONBLOCK) {
1231 				error = EAGAIN;
1232 				pipeunlock(wpipe);
1233 				break;
1234 			}
1235 
1236 			/*
1237 			 * We have no more space and have something to offer,
1238 			 * wake up select/poll.
1239 			 */
1240 			pipeselwakeup(wpipe);
1241 
1242 			wpipe->pipe_state |= PIPE_WANTW;
1243 			pipeunlock(wpipe);
1244 			error = msleep(wpipe, PIPE_MTX(rpipe),
1245 			    PRIBIO | PCATCH, "pipewr", 0);
1246 			if (error != 0)
1247 				break;
1248 		}
1249 	}
1250 
1251 	pipelock(wpipe, 0);
1252 	--wpipe->pipe_busy;
1253 
1254 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1255 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1256 		wakeup(wpipe);
1257 	} else if (wpipe->pipe_buffer.cnt > 0) {
1258 		/*
1259 		 * If we have put any characters in the buffer, we wake up
1260 		 * the reader.
1261 		 */
1262 		if (wpipe->pipe_state & PIPE_WANTR) {
1263 			wpipe->pipe_state &= ~PIPE_WANTR;
1264 			wakeup(wpipe);
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * Don't return EPIPE if any byte was written.
1270 	 * EINTR and other interrupts are handled by generic I/O layer.
1271 	 * Do not pretend that I/O succeeded for obvious user error
1272 	 * like EFAULT.
1273 	 */
1274 	if (uio->uio_resid != orig_resid && error == EPIPE)
1275 		error = 0;
1276 
1277 	if (error == 0)
1278 		vfs_timestamp(&wpipe->pipe_mtime);
1279 
1280 	/*
1281 	 * We have something to offer,
1282 	 * wake up select/poll.
1283 	 */
1284 	if (wpipe->pipe_buffer.cnt)
1285 		pipeselwakeup(wpipe);
1286 
1287 	pipeunlock(wpipe);
1288 	PIPE_UNLOCK(rpipe);
1289 	return (error);
1290 }
1291 
1292 /* ARGSUSED */
1293 static int
1294 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1295     struct thread *td)
1296 {
1297 	struct pipe *cpipe;
1298 	int error;
1299 
1300 	cpipe = fp->f_data;
1301 	if (cpipe->pipe_state & PIPE_NAMED)
1302 		error = vnops.fo_truncate(fp, length, active_cred, td);
1303 	else
1304 		error = invfo_truncate(fp, length, active_cred, td);
1305 	return (error);
1306 }
1307 
1308 /*
1309  * we implement a very minimal set of ioctls for compatibility with sockets.
1310  */
1311 static int
1312 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1313     struct thread *td)
1314 {
1315 	struct pipe *mpipe = fp->f_data;
1316 	int error;
1317 
1318 	PIPE_LOCK(mpipe);
1319 
1320 #ifdef MAC
1321 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1322 	if (error) {
1323 		PIPE_UNLOCK(mpipe);
1324 		return (error);
1325 	}
1326 #endif
1327 
1328 	error = 0;
1329 	switch (cmd) {
1330 
1331 	case FIONBIO:
1332 		break;
1333 
1334 	case FIOASYNC:
1335 		if (*(int *)data) {
1336 			mpipe->pipe_state |= PIPE_ASYNC;
1337 		} else {
1338 			mpipe->pipe_state &= ~PIPE_ASYNC;
1339 		}
1340 		break;
1341 
1342 	case FIONREAD:
1343 		if (!(fp->f_flag & FREAD)) {
1344 			*(int *)data = 0;
1345 			PIPE_UNLOCK(mpipe);
1346 			return (0);
1347 		}
1348 		if (mpipe->pipe_state & PIPE_DIRECTW)
1349 			*(int *)data = mpipe->pipe_map.cnt;
1350 		else
1351 			*(int *)data = mpipe->pipe_buffer.cnt;
1352 		break;
1353 
1354 	case FIOSETOWN:
1355 		PIPE_UNLOCK(mpipe);
1356 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1357 		goto out_unlocked;
1358 
1359 	case FIOGETOWN:
1360 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1361 		break;
1362 
1363 	/* This is deprecated, FIOSETOWN should be used instead. */
1364 	case TIOCSPGRP:
1365 		PIPE_UNLOCK(mpipe);
1366 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1367 		goto out_unlocked;
1368 
1369 	/* This is deprecated, FIOGETOWN should be used instead. */
1370 	case TIOCGPGRP:
1371 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1372 		break;
1373 
1374 	default:
1375 		error = ENOTTY;
1376 		break;
1377 	}
1378 	PIPE_UNLOCK(mpipe);
1379 out_unlocked:
1380 	return (error);
1381 }
1382 
1383 static int
1384 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1385     struct thread *td)
1386 {
1387 	struct pipe *rpipe;
1388 	struct pipe *wpipe;
1389 	int levents, revents;
1390 #ifdef MAC
1391 	int error;
1392 #endif
1393 
1394 	revents = 0;
1395 	rpipe = fp->f_data;
1396 	wpipe = PIPE_PEER(rpipe);
1397 	PIPE_LOCK(rpipe);
1398 #ifdef MAC
1399 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1400 	if (error)
1401 		goto locked_error;
1402 #endif
1403 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1404 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1405 		    (rpipe->pipe_buffer.cnt > 0))
1406 			revents |= events & (POLLIN | POLLRDNORM);
1407 
1408 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1409 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1410 		    (wpipe->pipe_state & PIPE_EOF) ||
1411 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1412 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1413 			 wpipe->pipe_buffer.size == 0)))
1414 			revents |= events & (POLLOUT | POLLWRNORM);
1415 
1416 	levents = events &
1417 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1418 	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1419 	    fp->f_seqcount == rpipe->pipe_wgen)
1420 		events |= POLLINIGNEOF;
1421 
1422 	if ((events & POLLINIGNEOF) == 0) {
1423 		if (rpipe->pipe_state & PIPE_EOF) {
1424 			revents |= (events & (POLLIN | POLLRDNORM));
1425 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1426 			    (wpipe->pipe_state & PIPE_EOF))
1427 				revents |= POLLHUP;
1428 		}
1429 	}
1430 
1431 	if (revents == 0) {
1432 		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1433 			selrecord(td, &rpipe->pipe_sel);
1434 			if (SEL_WAITING(&rpipe->pipe_sel))
1435 				rpipe->pipe_state |= PIPE_SEL;
1436 		}
1437 
1438 		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1439 			selrecord(td, &wpipe->pipe_sel);
1440 			if (SEL_WAITING(&wpipe->pipe_sel))
1441 				wpipe->pipe_state |= PIPE_SEL;
1442 		}
1443 	}
1444 #ifdef MAC
1445 locked_error:
1446 #endif
1447 	PIPE_UNLOCK(rpipe);
1448 
1449 	return (revents);
1450 }
1451 
1452 /*
1453  * We shouldn't need locks here as we're doing a read and this should
1454  * be a natural race.
1455  */
1456 static int
1457 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred,
1458     struct thread *td)
1459 {
1460 	struct pipe *pipe;
1461 #ifdef MAC
1462 	int error;
1463 #endif
1464 
1465 	pipe = fp->f_data;
1466 	PIPE_LOCK(pipe);
1467 #ifdef MAC
1468 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1469 	if (error) {
1470 		PIPE_UNLOCK(pipe);
1471 		return (error);
1472 	}
1473 #endif
1474 
1475 	/* For named pipes ask the underlying filesystem. */
1476 	if (pipe->pipe_state & PIPE_NAMED) {
1477 		PIPE_UNLOCK(pipe);
1478 		return (vnops.fo_stat(fp, ub, active_cred, td));
1479 	}
1480 
1481 	PIPE_UNLOCK(pipe);
1482 
1483 	bzero(ub, sizeof(*ub));
1484 	ub->st_mode = S_IFIFO;
1485 	ub->st_blksize = PAGE_SIZE;
1486 	if (pipe->pipe_state & PIPE_DIRECTW)
1487 		ub->st_size = pipe->pipe_map.cnt;
1488 	else
1489 		ub->st_size = pipe->pipe_buffer.cnt;
1490 	ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1491 	ub->st_atim = pipe->pipe_atime;
1492 	ub->st_mtim = pipe->pipe_mtime;
1493 	ub->st_ctim = pipe->pipe_ctime;
1494 	ub->st_uid = fp->f_cred->cr_uid;
1495 	ub->st_gid = fp->f_cred->cr_gid;
1496 	ub->st_dev = pipedev_ino;
1497 	ub->st_ino = pipe->pipe_ino;
1498 	/*
1499 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1500 	 */
1501 	return (0);
1502 }
1503 
1504 /* ARGSUSED */
1505 static int
1506 pipe_close(struct file *fp, struct thread *td)
1507 {
1508 
1509 	if (fp->f_vnode != NULL)
1510 		return vnops.fo_close(fp, td);
1511 	fp->f_ops = &badfileops;
1512 	pipe_dtor(fp->f_data);
1513 	fp->f_data = NULL;
1514 	return (0);
1515 }
1516 
1517 static int
1518 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1519 {
1520 	struct pipe *cpipe;
1521 	int error;
1522 
1523 	cpipe = fp->f_data;
1524 	if (cpipe->pipe_state & PIPE_NAMED)
1525 		error = vn_chmod(fp, mode, active_cred, td);
1526 	else
1527 		error = invfo_chmod(fp, mode, active_cred, td);
1528 	return (error);
1529 }
1530 
1531 static int
1532 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1533     struct thread *td)
1534 {
1535 	struct pipe *cpipe;
1536 	int error;
1537 
1538 	cpipe = fp->f_data;
1539 	if (cpipe->pipe_state & PIPE_NAMED)
1540 		error = vn_chown(fp, uid, gid, active_cred, td);
1541 	else
1542 		error = invfo_chown(fp, uid, gid, active_cred, td);
1543 	return (error);
1544 }
1545 
1546 static int
1547 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1548 {
1549 	struct pipe *pi;
1550 
1551 	if (fp->f_type == DTYPE_FIFO)
1552 		return (vn_fill_kinfo(fp, kif, fdp));
1553 	kif->kf_type = KF_TYPE_PIPE;
1554 	pi = fp->f_data;
1555 	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1556 	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1557 	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1558 	return (0);
1559 }
1560 
1561 static void
1562 pipe_free_kmem(struct pipe *cpipe)
1563 {
1564 
1565 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1566 	    ("pipe_free_kmem: pipe mutex locked"));
1567 
1568 	if (cpipe->pipe_buffer.buffer != NULL) {
1569 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1570 		vm_map_remove(pipe_map,
1571 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1572 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1573 		cpipe->pipe_buffer.buffer = NULL;
1574 	}
1575 #ifndef PIPE_NODIRECT
1576 	{
1577 		cpipe->pipe_map.cnt = 0;
1578 		cpipe->pipe_map.pos = 0;
1579 		cpipe->pipe_map.npages = 0;
1580 	}
1581 #endif
1582 }
1583 
1584 /*
1585  * shutdown the pipe
1586  */
1587 static void
1588 pipeclose(struct pipe *cpipe)
1589 {
1590 	struct pipepair *pp;
1591 	struct pipe *ppipe;
1592 
1593 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1594 
1595 	PIPE_LOCK(cpipe);
1596 	pipelock(cpipe, 0);
1597 	pp = cpipe->pipe_pair;
1598 
1599 	pipeselwakeup(cpipe);
1600 
1601 	/*
1602 	 * If the other side is blocked, wake it up saying that
1603 	 * we want to close it down.
1604 	 */
1605 	cpipe->pipe_state |= PIPE_EOF;
1606 	while (cpipe->pipe_busy) {
1607 		wakeup(cpipe);
1608 		cpipe->pipe_state |= PIPE_WANT;
1609 		pipeunlock(cpipe);
1610 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1611 		pipelock(cpipe, 0);
1612 	}
1613 
1614 
1615 	/*
1616 	 * Disconnect from peer, if any.
1617 	 */
1618 	ppipe = cpipe->pipe_peer;
1619 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1620 		pipeselwakeup(ppipe);
1621 
1622 		ppipe->pipe_state |= PIPE_EOF;
1623 		wakeup(ppipe);
1624 		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1625 	}
1626 
1627 	/*
1628 	 * Mark this endpoint as free.  Release kmem resources.  We
1629 	 * don't mark this endpoint as unused until we've finished
1630 	 * doing that, or the pipe might disappear out from under
1631 	 * us.
1632 	 */
1633 	PIPE_UNLOCK(cpipe);
1634 	pipe_free_kmem(cpipe);
1635 	PIPE_LOCK(cpipe);
1636 	cpipe->pipe_present = PIPE_CLOSING;
1637 	pipeunlock(cpipe);
1638 
1639 	/*
1640 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1641 	 * PIPE_FINALIZED, that allows other end to free the
1642 	 * pipe_pair, only after the knotes are completely dismantled.
1643 	 */
1644 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1645 	cpipe->pipe_present = PIPE_FINALIZED;
1646 	seldrain(&cpipe->pipe_sel);
1647 	knlist_destroy(&cpipe->pipe_sel.si_note);
1648 
1649 	/*
1650 	 * If both endpoints are now closed, release the memory for the
1651 	 * pipe pair.  If not, unlock.
1652 	 */
1653 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1654 		PIPE_UNLOCK(cpipe);
1655 #ifdef MAC
1656 		mac_pipe_destroy(pp);
1657 #endif
1658 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1659 	} else
1660 		PIPE_UNLOCK(cpipe);
1661 }
1662 
1663 /*ARGSUSED*/
1664 static int
1665 pipe_kqfilter(struct file *fp, struct knote *kn)
1666 {
1667 	struct pipe *cpipe;
1668 
1669 	/*
1670 	 * If a filter is requested that is not supported by this file
1671 	 * descriptor, don't return an error, but also don't ever generate an
1672 	 * event.
1673 	 */
1674 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1675 		kn->kn_fop = &pipe_nfiltops;
1676 		return (0);
1677 	}
1678 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1679 		kn->kn_fop = &pipe_nfiltops;
1680 		return (0);
1681 	}
1682 	cpipe = fp->f_data;
1683 	PIPE_LOCK(cpipe);
1684 	switch (kn->kn_filter) {
1685 	case EVFILT_READ:
1686 		kn->kn_fop = &pipe_rfiltops;
1687 		break;
1688 	case EVFILT_WRITE:
1689 		kn->kn_fop = &pipe_wfiltops;
1690 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1691 			/* other end of pipe has been closed */
1692 			PIPE_UNLOCK(cpipe);
1693 			return (EPIPE);
1694 		}
1695 		cpipe = PIPE_PEER(cpipe);
1696 		break;
1697 	default:
1698 		PIPE_UNLOCK(cpipe);
1699 		return (EINVAL);
1700 	}
1701 
1702 	kn->kn_hook = cpipe;
1703 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1704 	PIPE_UNLOCK(cpipe);
1705 	return (0);
1706 }
1707 
1708 static void
1709 filt_pipedetach(struct knote *kn)
1710 {
1711 	struct pipe *cpipe = kn->kn_hook;
1712 
1713 	PIPE_LOCK(cpipe);
1714 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1715 	PIPE_UNLOCK(cpipe);
1716 }
1717 
1718 /*ARGSUSED*/
1719 static int
1720 filt_piperead(struct knote *kn, long hint)
1721 {
1722 	struct pipe *rpipe = kn->kn_hook;
1723 	struct pipe *wpipe = rpipe->pipe_peer;
1724 	int ret;
1725 
1726 	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1727 	kn->kn_data = rpipe->pipe_buffer.cnt;
1728 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1729 		kn->kn_data = rpipe->pipe_map.cnt;
1730 
1731 	if ((rpipe->pipe_state & PIPE_EOF) ||
1732 	    wpipe->pipe_present != PIPE_ACTIVE ||
1733 	    (wpipe->pipe_state & PIPE_EOF)) {
1734 		kn->kn_flags |= EV_EOF;
1735 		return (1);
1736 	}
1737 	ret = kn->kn_data > 0;
1738 	return ret;
1739 }
1740 
1741 /*ARGSUSED*/
1742 static int
1743 filt_pipewrite(struct knote *kn, long hint)
1744 {
1745 	struct pipe *wpipe;
1746 
1747 	wpipe = kn->kn_hook;
1748 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1749 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1750 	    (wpipe->pipe_state & PIPE_EOF)) {
1751 		kn->kn_data = 0;
1752 		kn->kn_flags |= EV_EOF;
1753 		return (1);
1754 	}
1755 	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1756 	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1757 	if (wpipe->pipe_state & PIPE_DIRECTW)
1758 		kn->kn_data = 0;
1759 
1760 	return (kn->kn_data >= PIPE_BUF);
1761 }
1762 
1763 static void
1764 filt_pipedetach_notsup(struct knote *kn)
1765 {
1766 
1767 }
1768 
1769 static int
1770 filt_pipenotsup(struct knote *kn, long hint)
1771 {
1772 
1773 	return (0);
1774 }
1775