xref: /freebsd/sys/kern/sys_pipe.c (revision 52c81be11a107cdedb865a274b5567b0c95c0308)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1996 John S. Dyson
5  * Copyright (c) 2012 Giovanni Trematerra
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Absolutely no warranty of function or purpose is made by the author
18  *    John S. Dyson.
19  * 4. Modifications may be freely made to this file if the above conditions
20  *    are met.
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, the sending process pins the underlying pages in
36  * memory, and the receiving process copies directly from these pinned pages
37  * in the sending process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.
50  *
51  * In order to limit the resource use of pipes, two sysctls exist:
52  *
53  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54  * address space available to us in pipe_map. This value is normally
55  * autotuned, but may also be loader tuned.
56  *
57  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58  * memory in use by pipes.
59  *
60  * Based on how large pipekva is relative to maxpipekva, the following
61  * will happen:
62  *
63  * 0% - 50%:
64  *     New pipes are given 16K of memory backing, pipes may dynamically
65  *     grow to as large as 64K where needed.
66  * 50% - 75%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes may NOT grow.
69  * 75% - 100%:
70  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
71  *     existing pipes will be shrunk down to 4K whenever possible.
72  *
73  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
74  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75  * resize which MUST occur for reverse-direction pipes when they are
76  * first used.
77  *
78  * Additional information about the current state of pipes may be obtained
79  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80  * and kern.ipc.piperesizefail.
81  *
82  * Locking rules:  There are two locks present here:  A mutex, used via
83  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
84  * the flag, as mutexes can not persist over uiomove.  The mutex
85  * exists only to guard access to the flag, and is not in itself a
86  * locking mechanism.  Also note that there is only a single mutex for
87  * both directions of a pipe.
88  *
89  * As pipelock() may have to sleep before it can acquire the flag, it
90  * is important to reread all data after a call to pipelock(); everything
91  * in the structure may have changed.
92  */
93 
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD$");
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122 
123 #include <security/mac/mac_framework.h>
124 
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134 
135 /*
136  * Use this define if you want to disable *fancy* VM things.  Expect an
137  * approx 30% decrease in transfer rate.  This could be useful for
138  * NetBSD or OpenBSD.
139  */
140 /* #define PIPE_NODIRECT */
141 
142 #define PIPE_PEER(pipe)	\
143 	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144 
145 /*
146  * interfaces to the outside world
147  */
148 static fo_rdwr_t	pipe_read;
149 static fo_rdwr_t	pipe_write;
150 static fo_truncate_t	pipe_truncate;
151 static fo_ioctl_t	pipe_ioctl;
152 static fo_poll_t	pipe_poll;
153 static fo_kqfilter_t	pipe_kqfilter;
154 static fo_stat_t	pipe_stat;
155 static fo_close_t	pipe_close;
156 static fo_chmod_t	pipe_chmod;
157 static fo_chown_t	pipe_chown;
158 static fo_fill_kinfo_t	pipe_fill_kinfo;
159 
160 struct fileops pipeops = {
161 	.fo_read = pipe_read,
162 	.fo_write = pipe_write,
163 	.fo_truncate = pipe_truncate,
164 	.fo_ioctl = pipe_ioctl,
165 	.fo_poll = pipe_poll,
166 	.fo_kqfilter = pipe_kqfilter,
167 	.fo_stat = pipe_stat,
168 	.fo_close = pipe_close,
169 	.fo_chmod = pipe_chmod,
170 	.fo_chown = pipe_chown,
171 	.fo_sendfile = invfo_sendfile,
172 	.fo_fill_kinfo = pipe_fill_kinfo,
173 	.fo_flags = DFLAG_PASSABLE
174 };
175 
176 static void	filt_pipedetach(struct knote *kn);
177 static void	filt_pipedetach_notsup(struct knote *kn);
178 static int	filt_pipenotsup(struct knote *kn, long hint);
179 static int	filt_piperead(struct knote *kn, long hint);
180 static int	filt_pipewrite(struct knote *kn, long hint);
181 
182 static struct filterops pipe_nfiltops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_pipedetach_notsup,
185 	.f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_pipedetach,
190 	.f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_pipedetach,
195 	.f_event = filt_pipewrite
196 };
197 
198 /*
199  * Default pipe buffer size(s), this can be kind-of large now because pipe
200  * space is pageable.  The pipe code will try to maintain locality of
201  * reference for performance reasons, so small amounts of outstanding I/O
202  * will not wipe the cache.
203  */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206 
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212 
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 	   &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216 	   &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220 	  &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222 	  &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224 	  &piperesizeallowed, 0, "Pipe resizing allowed");
225 
226 static void pipeinit(void *dummy __unused);
227 static void pipeclose(struct pipe *cpipe);
228 static void pipe_free_kmem(struct pipe *cpipe);
229 static int pipe_create(struct pipe *pipe, bool backing);
230 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231 static __inline int pipelock(struct pipe *cpipe, int catch);
232 static __inline void pipeunlock(struct pipe *cpipe);
233 #ifndef PIPE_NODIRECT
234 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
235 static void pipe_destroy_write_buffer(struct pipe *wpipe);
236 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
237 static void pipe_clone_write_buffer(struct pipe *wpipe);
238 #endif
239 static int pipespace(struct pipe *cpipe, int size);
240 static int pipespace_new(struct pipe *cpipe, int size);
241 
242 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
243 static int	pipe_zone_init(void *mem, int size, int flags);
244 static void	pipe_zone_fini(void *mem, int size);
245 
246 static uma_zone_t pipe_zone;
247 static struct unrhdr64 pipeino_unr;
248 static dev_t pipedev_ino;
249 
250 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
251 
252 static void
253 pipeinit(void *dummy __unused)
254 {
255 
256 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
257 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
258 	    UMA_ALIGN_PTR, 0);
259 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
260 	new_unrhdr64(&pipeino_unr, 1);
261 	pipedev_ino = devfs_alloc_cdp_inode();
262 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
263 }
264 
265 static int
266 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
267 {
268 	struct pipepair *pp;
269 	struct pipe *rpipe, *wpipe;
270 
271 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
272 
273 	pp = (struct pipepair *)mem;
274 
275 	/*
276 	 * We zero both pipe endpoints to make sure all the kmem pointers
277 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
278 	 * endpoints with the same time.
279 	 */
280 	rpipe = &pp->pp_rpipe;
281 	bzero(rpipe, sizeof(*rpipe));
282 	vfs_timestamp(&rpipe->pipe_ctime);
283 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
284 
285 	wpipe = &pp->pp_wpipe;
286 	bzero(wpipe, sizeof(*wpipe));
287 	wpipe->pipe_ctime = rpipe->pipe_ctime;
288 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
289 
290 	rpipe->pipe_peer = wpipe;
291 	rpipe->pipe_pair = pp;
292 	wpipe->pipe_peer = rpipe;
293 	wpipe->pipe_pair = pp;
294 
295 	/*
296 	 * Mark both endpoints as present; they will later get free'd
297 	 * one at a time.  When both are free'd, then the whole pair
298 	 * is released.
299 	 */
300 	rpipe->pipe_present = PIPE_ACTIVE;
301 	wpipe->pipe_present = PIPE_ACTIVE;
302 
303 	/*
304 	 * Eventually, the MAC Framework may initialize the label
305 	 * in ctor or init, but for now we do it elswhere to avoid
306 	 * blocking in ctor or init.
307 	 */
308 	pp->pp_label = NULL;
309 
310 	return (0);
311 }
312 
313 static int
314 pipe_zone_init(void *mem, int size, int flags)
315 {
316 	struct pipepair *pp;
317 
318 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
319 
320 	pp = (struct pipepair *)mem;
321 
322 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
323 	return (0);
324 }
325 
326 static void
327 pipe_zone_fini(void *mem, int size)
328 {
329 	struct pipepair *pp;
330 
331 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
332 
333 	pp = (struct pipepair *)mem;
334 
335 	mtx_destroy(&pp->pp_mtx);
336 }
337 
338 static int
339 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
340 {
341 	struct pipepair *pp;
342 	struct pipe *rpipe, *wpipe;
343 	int error;
344 
345 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
346 #ifdef MAC
347 	/*
348 	 * The MAC label is shared between the connected endpoints.  As a
349 	 * result mac_pipe_init() and mac_pipe_create() are called once
350 	 * for the pair, and not on the endpoints.
351 	 */
352 	mac_pipe_init(pp);
353 	mac_pipe_create(td->td_ucred, pp);
354 #endif
355 	rpipe = &pp->pp_rpipe;
356 	wpipe = &pp->pp_wpipe;
357 
358 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
359 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
360 
361 	/*
362 	 * Only the forward direction pipe is backed by big buffer by
363 	 * default.
364 	 */
365 	error = pipe_create(rpipe, true);
366 	if (error != 0)
367 		goto fail;
368 	error = pipe_create(wpipe, false);
369 	if (error != 0) {
370 		/*
371 		 * This cleanup leaves the pipe inode number for rpipe
372 		 * still allocated, but never used.  We do not free
373 		 * inode numbers for opened pipes, which is required
374 		 * for correctness because numbers must be unique.
375 		 * But also it avoids any memory use by the unr
376 		 * allocator, so stashing away the transient inode
377 		 * number is reasonable.
378 		 */
379 		pipe_free_kmem(rpipe);
380 		goto fail;
381 	}
382 
383 	rpipe->pipe_state |= PIPE_DIRECTOK;
384 	wpipe->pipe_state |= PIPE_DIRECTOK;
385 	return (0);
386 
387 fail:
388 	knlist_destroy(&rpipe->pipe_sel.si_note);
389 	knlist_destroy(&wpipe->pipe_sel.si_note);
390 #ifdef MAC
391 	mac_pipe_destroy(pp);
392 #endif
393 	return (error);
394 }
395 
396 int
397 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
398 {
399 	struct pipepair *pp;
400 	int error;
401 
402 	error = pipe_paircreate(td, &pp);
403 	if (error != 0)
404 		return (error);
405 	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
406 	*ppipe = &pp->pp_rpipe;
407 	return (0);
408 }
409 
410 void
411 pipe_dtor(struct pipe *dpipe)
412 {
413 	struct pipe *peer;
414 
415 	peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
416 	funsetown(&dpipe->pipe_sigio);
417 	pipeclose(dpipe);
418 	if (peer != NULL) {
419 		funsetown(&peer->pipe_sigio);
420 		pipeclose(peer);
421 	}
422 }
423 
424 /*
425  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
426  * the zone pick up the pieces via pipeclose().
427  */
428 int
429 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
430     struct filecaps *fcaps2)
431 {
432 	struct file *rf, *wf;
433 	struct pipe *rpipe, *wpipe;
434 	struct pipepair *pp;
435 	int fd, fflags, error;
436 
437 	error = pipe_paircreate(td, &pp);
438 	if (error != 0)
439 		return (error);
440 	rpipe = &pp->pp_rpipe;
441 	wpipe = &pp->pp_wpipe;
442 	error = falloc_caps(td, &rf, &fd, flags, fcaps1);
443 	if (error) {
444 		pipeclose(rpipe);
445 		pipeclose(wpipe);
446 		return (error);
447 	}
448 	/* An extra reference on `rf' has been held for us by falloc_caps(). */
449 	fildes[0] = fd;
450 
451 	fflags = FREAD | FWRITE;
452 	if ((flags & O_NONBLOCK) != 0)
453 		fflags |= FNONBLOCK;
454 
455 	/*
456 	 * Warning: once we've gotten past allocation of the fd for the
457 	 * read-side, we can only drop the read side via fdrop() in order
458 	 * to avoid races against processes which manage to dup() the read
459 	 * side while we are blocked trying to allocate the write side.
460 	 */
461 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
462 	error = falloc_caps(td, &wf, &fd, flags, fcaps2);
463 	if (error) {
464 		fdclose(td, rf, fildes[0]);
465 		fdrop(rf, td);
466 		/* rpipe has been closed by fdrop(). */
467 		pipeclose(wpipe);
468 		return (error);
469 	}
470 	/* An extra reference on `wf' has been held for us by falloc_caps(). */
471 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
472 	fdrop(wf, td);
473 	fildes[1] = fd;
474 	fdrop(rf, td);
475 
476 	return (0);
477 }
478 
479 #ifdef COMPAT_FREEBSD10
480 /* ARGSUSED */
481 int
482 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
483 {
484 	int error;
485 	int fildes[2];
486 
487 	error = kern_pipe(td, fildes, 0, NULL, NULL);
488 	if (error)
489 		return (error);
490 
491 	td->td_retval[0] = fildes[0];
492 	td->td_retval[1] = fildes[1];
493 
494 	return (0);
495 }
496 #endif
497 
498 int
499 sys_pipe2(struct thread *td, struct pipe2_args *uap)
500 {
501 	int error, fildes[2];
502 
503 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
504 		return (EINVAL);
505 	error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
506 	if (error)
507 		return (error);
508 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
509 	if (error) {
510 		(void)kern_close(td, fildes[0]);
511 		(void)kern_close(td, fildes[1]);
512 	}
513 	return (error);
514 }
515 
516 /*
517  * Allocate kva for pipe circular buffer, the space is pageable
518  * This routine will 'realloc' the size of a pipe safely, if it fails
519  * it will retain the old buffer.
520  * If it fails it will return ENOMEM.
521  */
522 static int
523 pipespace_new(struct pipe *cpipe, int size)
524 {
525 	caddr_t buffer;
526 	int error, cnt, firstseg;
527 	static int curfail = 0;
528 	static struct timeval lastfail;
529 
530 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
531 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
532 		("pipespace: resize of direct writes not allowed"));
533 retry:
534 	cnt = cpipe->pipe_buffer.cnt;
535 	if (cnt > size)
536 		size = cnt;
537 
538 	size = round_page(size);
539 	buffer = (caddr_t) vm_map_min(pipe_map);
540 
541 	error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
542 	    VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
543 	if (error != KERN_SUCCESS) {
544 		if (cpipe->pipe_buffer.buffer == NULL &&
545 		    size > SMALL_PIPE_SIZE) {
546 			size = SMALL_PIPE_SIZE;
547 			pipefragretry++;
548 			goto retry;
549 		}
550 		if (cpipe->pipe_buffer.buffer == NULL) {
551 			pipeallocfail++;
552 			if (ppsratecheck(&lastfail, &curfail, 1))
553 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
554 		} else {
555 			piperesizefail++;
556 		}
557 		return (ENOMEM);
558 	}
559 
560 	/* copy data, then free old resources if we're resizing */
561 	if (cnt > 0) {
562 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
563 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
564 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
565 				buffer, firstseg);
566 			if ((cnt - firstseg) > 0)
567 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
568 					cpipe->pipe_buffer.in);
569 		} else {
570 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
571 				buffer, cnt);
572 		}
573 	}
574 	pipe_free_kmem(cpipe);
575 	cpipe->pipe_buffer.buffer = buffer;
576 	cpipe->pipe_buffer.size = size;
577 	cpipe->pipe_buffer.in = cnt;
578 	cpipe->pipe_buffer.out = 0;
579 	cpipe->pipe_buffer.cnt = cnt;
580 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
581 	return (0);
582 }
583 
584 /*
585  * Wrapper for pipespace_new() that performs locking assertions.
586  */
587 static int
588 pipespace(struct pipe *cpipe, int size)
589 {
590 
591 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
592 	    ("Unlocked pipe passed to pipespace"));
593 	return (pipespace_new(cpipe, size));
594 }
595 
596 /*
597  * lock a pipe for I/O, blocking other access
598  */
599 static __inline int
600 pipelock(struct pipe *cpipe, int catch)
601 {
602 	int error;
603 
604 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
605 	while (cpipe->pipe_state & PIPE_LOCKFL) {
606 		cpipe->pipe_state |= PIPE_LWANT;
607 		error = msleep(cpipe, PIPE_MTX(cpipe),
608 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
609 		    "pipelk", 0);
610 		if (error != 0)
611 			return (error);
612 	}
613 	cpipe->pipe_state |= PIPE_LOCKFL;
614 	return (0);
615 }
616 
617 /*
618  * unlock a pipe I/O lock
619  */
620 static __inline void
621 pipeunlock(struct pipe *cpipe)
622 {
623 
624 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
625 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
626 		("Unlocked pipe passed to pipeunlock"));
627 	cpipe->pipe_state &= ~PIPE_LOCKFL;
628 	if (cpipe->pipe_state & PIPE_LWANT) {
629 		cpipe->pipe_state &= ~PIPE_LWANT;
630 		wakeup(cpipe);
631 	}
632 }
633 
634 void
635 pipeselwakeup(struct pipe *cpipe)
636 {
637 
638 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
639 	if (cpipe->pipe_state & PIPE_SEL) {
640 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
641 		if (!SEL_WAITING(&cpipe->pipe_sel))
642 			cpipe->pipe_state &= ~PIPE_SEL;
643 	}
644 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
645 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
646 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
647 }
648 
649 /*
650  * Initialize and allocate VM and memory for pipe.  The structure
651  * will start out zero'd from the ctor, so we just manage the kmem.
652  */
653 static int
654 pipe_create(struct pipe *pipe, bool large_backing)
655 {
656 	int error;
657 
658 	error = pipespace_new(pipe, !large_backing || amountpipekva >
659 	    maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE);
660 	if (error == 0)
661 		pipe->pipe_ino = alloc_unr64(&pipeino_unr);
662 	return (error);
663 }
664 
665 /* ARGSUSED */
666 static int
667 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
668     int flags, struct thread *td)
669 {
670 	struct pipe *rpipe;
671 	int error;
672 	int nread = 0;
673 	int size;
674 
675 	rpipe = fp->f_data;
676 	PIPE_LOCK(rpipe);
677 	++rpipe->pipe_busy;
678 	error = pipelock(rpipe, 1);
679 	if (error)
680 		goto unlocked_error;
681 
682 #ifdef MAC
683 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
684 	if (error)
685 		goto locked_error;
686 #endif
687 	if (amountpipekva > (3 * maxpipekva) / 4) {
688 		if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 &&
689 		    rpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
690 		    rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
691 		    piperesizeallowed == 1) {
692 			PIPE_UNLOCK(rpipe);
693 			pipespace(rpipe, SMALL_PIPE_SIZE);
694 			PIPE_LOCK(rpipe);
695 		}
696 	}
697 
698 	while (uio->uio_resid) {
699 		/*
700 		 * normal pipe buffer receive
701 		 */
702 		if (rpipe->pipe_buffer.cnt > 0) {
703 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
704 			if (size > rpipe->pipe_buffer.cnt)
705 				size = rpipe->pipe_buffer.cnt;
706 			if (size > uio->uio_resid)
707 				size = uio->uio_resid;
708 
709 			PIPE_UNLOCK(rpipe);
710 			error = uiomove(
711 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
712 			    size, uio);
713 			PIPE_LOCK(rpipe);
714 			if (error)
715 				break;
716 
717 			rpipe->pipe_buffer.out += size;
718 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
719 				rpipe->pipe_buffer.out = 0;
720 
721 			rpipe->pipe_buffer.cnt -= size;
722 
723 			/*
724 			 * If there is no more to read in the pipe, reset
725 			 * its pointers to the beginning.  This improves
726 			 * cache hit stats.
727 			 */
728 			if (rpipe->pipe_buffer.cnt == 0) {
729 				rpipe->pipe_buffer.in = 0;
730 				rpipe->pipe_buffer.out = 0;
731 			}
732 			nread += size;
733 #ifndef PIPE_NODIRECT
734 		/*
735 		 * Direct copy, bypassing a kernel buffer.
736 		 */
737 		} else if ((size = rpipe->pipe_map.cnt) != 0) {
738 			if (size > uio->uio_resid)
739 				size = (u_int) uio->uio_resid;
740 			PIPE_UNLOCK(rpipe);
741 			error = uiomove_fromphys(rpipe->pipe_map.ms,
742 			    rpipe->pipe_map.pos, size, uio);
743 			PIPE_LOCK(rpipe);
744 			if (error)
745 				break;
746 			nread += size;
747 			rpipe->pipe_map.pos += size;
748 			rpipe->pipe_map.cnt -= size;
749 			if (rpipe->pipe_map.cnt == 0) {
750 				rpipe->pipe_state &= ~PIPE_WANTW;
751 				wakeup(rpipe);
752 			}
753 #endif
754 		} else {
755 			/*
756 			 * detect EOF condition
757 			 * read returns 0 on EOF, no need to set error
758 			 */
759 			if (rpipe->pipe_state & PIPE_EOF)
760 				break;
761 
762 			/*
763 			 * If the "write-side" has been blocked, wake it up now.
764 			 */
765 			if (rpipe->pipe_state & PIPE_WANTW) {
766 				rpipe->pipe_state &= ~PIPE_WANTW;
767 				wakeup(rpipe);
768 			}
769 
770 			/*
771 			 * Break if some data was read.
772 			 */
773 			if (nread > 0)
774 				break;
775 
776 			/*
777 			 * Unlock the pipe buffer for our remaining processing.
778 			 * We will either break out with an error or we will
779 			 * sleep and relock to loop.
780 			 */
781 			pipeunlock(rpipe);
782 
783 			/*
784 			 * Handle non-blocking mode operation or
785 			 * wait for more data.
786 			 */
787 			if (fp->f_flag & FNONBLOCK) {
788 				error = EAGAIN;
789 			} else {
790 				rpipe->pipe_state |= PIPE_WANTR;
791 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
792 				    PRIBIO | PCATCH,
793 				    "piperd", 0)) == 0)
794 					error = pipelock(rpipe, 1);
795 			}
796 			if (error)
797 				goto unlocked_error;
798 		}
799 	}
800 #ifdef MAC
801 locked_error:
802 #endif
803 	pipeunlock(rpipe);
804 
805 	/* XXX: should probably do this before getting any locks. */
806 	if (error == 0)
807 		vfs_timestamp(&rpipe->pipe_atime);
808 unlocked_error:
809 	--rpipe->pipe_busy;
810 
811 	/*
812 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
813 	 */
814 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
815 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
816 		wakeup(rpipe);
817 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
818 		/*
819 		 * Handle write blocking hysteresis.
820 		 */
821 		if (rpipe->pipe_state & PIPE_WANTW) {
822 			rpipe->pipe_state &= ~PIPE_WANTW;
823 			wakeup(rpipe);
824 		}
825 	}
826 
827 	/*
828 	 * Only wake up writers if there was actually something read.
829 	 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs.
830 	 */
831 	if (nread > 0 &&
832 	    rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
833 		pipeselwakeup(rpipe);
834 
835 	PIPE_UNLOCK(rpipe);
836 	return (error);
837 }
838 
839 #ifndef PIPE_NODIRECT
840 /*
841  * Map the sending processes' buffer into kernel space and wire it.
842  * This is similar to a physical write operation.
843  */
844 static int
845 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
846 {
847 	u_int size;
848 	int i;
849 
850 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
851 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
852 	    ("%s: PIPE_DIRECTW set on %p", __func__, wpipe));
853 	KASSERT(wpipe->pipe_map.cnt == 0,
854 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
855 
856 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
857                 size = wpipe->pipe_buffer.size;
858 	else
859                 size = uio->uio_iov->iov_len;
860 
861 	wpipe->pipe_state |= PIPE_DIRECTW;
862 	PIPE_UNLOCK(wpipe);
863 	i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
864 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
865 	    wpipe->pipe_map.ms, PIPENPAGES);
866 	PIPE_LOCK(wpipe);
867 	if (i < 0) {
868 		wpipe->pipe_state &= ~PIPE_DIRECTW;
869 		return (EFAULT);
870 	}
871 
872 	wpipe->pipe_map.npages = i;
873 	wpipe->pipe_map.pos =
874 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
875 	wpipe->pipe_map.cnt = size;
876 
877 	uio->uio_iov->iov_len -= size;
878 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
879 	if (uio->uio_iov->iov_len == 0)
880 		uio->uio_iov++;
881 	uio->uio_resid -= size;
882 	uio->uio_offset += size;
883 	return (0);
884 }
885 
886 /*
887  * Unwire the process buffer.
888  */
889 static void
890 pipe_destroy_write_buffer(struct pipe *wpipe)
891 {
892 
893 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
894 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
895 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
896 	KASSERT(wpipe->pipe_map.cnt == 0,
897 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
898 
899 	wpipe->pipe_state &= ~PIPE_DIRECTW;
900 	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
901 	wpipe->pipe_map.npages = 0;
902 }
903 
904 /*
905  * In the case of a signal, the writing process might go away.  This
906  * code copies the data into the circular buffer so that the source
907  * pages can be freed without loss of data.
908  */
909 static void
910 pipe_clone_write_buffer(struct pipe *wpipe)
911 {
912 	struct uio uio;
913 	struct iovec iov;
914 	int size;
915 	int pos;
916 
917 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
918 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
919 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
920 
921 	size = wpipe->pipe_map.cnt;
922 	pos = wpipe->pipe_map.pos;
923 	wpipe->pipe_map.cnt = 0;
924 
925 	wpipe->pipe_buffer.in = size;
926 	wpipe->pipe_buffer.out = 0;
927 	wpipe->pipe_buffer.cnt = size;
928 
929 	PIPE_UNLOCK(wpipe);
930 	iov.iov_base = wpipe->pipe_buffer.buffer;
931 	iov.iov_len = size;
932 	uio.uio_iov = &iov;
933 	uio.uio_iovcnt = 1;
934 	uio.uio_offset = 0;
935 	uio.uio_resid = size;
936 	uio.uio_segflg = UIO_SYSSPACE;
937 	uio.uio_rw = UIO_READ;
938 	uio.uio_td = curthread;
939 	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
940 	PIPE_LOCK(wpipe);
941 	pipe_destroy_write_buffer(wpipe);
942 }
943 
944 /*
945  * This implements the pipe buffer write mechanism.  Note that only
946  * a direct write OR a normal pipe write can be pending at any given time.
947  * If there are any characters in the pipe buffer, the direct write will
948  * be deferred until the receiving process grabs all of the bytes from
949  * the pipe buffer.  Then the direct mapping write is set-up.
950  */
951 static int
952 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
953 {
954 	int error;
955 
956 retry:
957 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
958 	error = pipelock(wpipe, 1);
959 	if (error != 0)
960 		goto error1;
961 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
962 		error = EPIPE;
963 		pipeunlock(wpipe);
964 		goto error1;
965 	}
966 	if (wpipe->pipe_state & PIPE_DIRECTW) {
967 		if (wpipe->pipe_state & PIPE_WANTR) {
968 			wpipe->pipe_state &= ~PIPE_WANTR;
969 			wakeup(wpipe);
970 		}
971 		pipeselwakeup(wpipe);
972 		wpipe->pipe_state |= PIPE_WANTW;
973 		pipeunlock(wpipe);
974 		error = msleep(wpipe, PIPE_MTX(wpipe),
975 		    PRIBIO | PCATCH, "pipdww", 0);
976 		if (error)
977 			goto error1;
978 		else
979 			goto retry;
980 	}
981 	if (wpipe->pipe_buffer.cnt > 0) {
982 		if (wpipe->pipe_state & PIPE_WANTR) {
983 			wpipe->pipe_state &= ~PIPE_WANTR;
984 			wakeup(wpipe);
985 		}
986 		pipeselwakeup(wpipe);
987 		wpipe->pipe_state |= PIPE_WANTW;
988 		pipeunlock(wpipe);
989 		error = msleep(wpipe, PIPE_MTX(wpipe),
990 		    PRIBIO | PCATCH, "pipdwc", 0);
991 		if (error)
992 			goto error1;
993 		else
994 			goto retry;
995 	}
996 
997 	error = pipe_build_write_buffer(wpipe, uio);
998 	if (error) {
999 		pipeunlock(wpipe);
1000 		goto error1;
1001 	}
1002 
1003 	while (wpipe->pipe_map.cnt != 0 &&
1004 	    (wpipe->pipe_state & PIPE_EOF) == 0) {
1005 		if (wpipe->pipe_state & PIPE_WANTR) {
1006 			wpipe->pipe_state &= ~PIPE_WANTR;
1007 			wakeup(wpipe);
1008 		}
1009 		pipeselwakeup(wpipe);
1010 		wpipe->pipe_state |= PIPE_WANTW;
1011 		pipeunlock(wpipe);
1012 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1013 		    "pipdwt", 0);
1014 		pipelock(wpipe, 0);
1015 		if (error != 0)
1016 			break;
1017 	}
1018 
1019 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1020 		wpipe->pipe_map.cnt = 0;
1021 		pipe_destroy_write_buffer(wpipe);
1022 		pipeselwakeup(wpipe);
1023 		error = EPIPE;
1024 	} else if (error == EINTR || error == ERESTART) {
1025 		pipe_clone_write_buffer(wpipe);
1026 	} else {
1027 		pipe_destroy_write_buffer(wpipe);
1028 	}
1029 	pipeunlock(wpipe);
1030 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
1031 	    ("pipe %p leaked PIPE_DIRECTW", wpipe));
1032 	return (error);
1033 
1034 error1:
1035 	wakeup(wpipe);
1036 	return (error);
1037 }
1038 #endif
1039 
1040 static int
1041 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1042     int flags, struct thread *td)
1043 {
1044 	struct pipe *wpipe, *rpipe;
1045 	ssize_t orig_resid;
1046 	int desiredsize, error;
1047 
1048 	rpipe = fp->f_data;
1049 	wpipe = PIPE_PEER(rpipe);
1050 	PIPE_LOCK(rpipe);
1051 	error = pipelock(wpipe, 1);
1052 	if (error) {
1053 		PIPE_UNLOCK(rpipe);
1054 		return (error);
1055 	}
1056 	/*
1057 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1058 	 */
1059 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1060 	    (wpipe->pipe_state & PIPE_EOF)) {
1061 		pipeunlock(wpipe);
1062 		PIPE_UNLOCK(rpipe);
1063 		return (EPIPE);
1064 	}
1065 #ifdef MAC
1066 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1067 	if (error) {
1068 		pipeunlock(wpipe);
1069 		PIPE_UNLOCK(rpipe);
1070 		return (error);
1071 	}
1072 #endif
1073 	++wpipe->pipe_busy;
1074 
1075 	/* Choose a larger size if it's advantageous */
1076 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1077 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1078 		if (piperesizeallowed != 1)
1079 			break;
1080 		if (amountpipekva > maxpipekva / 2)
1081 			break;
1082 		if (desiredsize == BIG_PIPE_SIZE)
1083 			break;
1084 		desiredsize = desiredsize * 2;
1085 	}
1086 
1087 	/* Choose a smaller size if we're in a OOM situation */
1088 	if (amountpipekva > (3 * maxpipekva) / 4 &&
1089 	    wpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
1090 	    wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
1091 	    piperesizeallowed == 1)
1092 		desiredsize = SMALL_PIPE_SIZE;
1093 
1094 	/* Resize if the above determined that a new size was necessary */
1095 	if (desiredsize != wpipe->pipe_buffer.size &&
1096 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0) {
1097 		PIPE_UNLOCK(wpipe);
1098 		pipespace(wpipe, desiredsize);
1099 		PIPE_LOCK(wpipe);
1100 	}
1101 	MPASS(wpipe->pipe_buffer.size != 0);
1102 
1103 	pipeunlock(wpipe);
1104 
1105 	orig_resid = uio->uio_resid;
1106 
1107 	while (uio->uio_resid) {
1108 		int space;
1109 
1110 		pipelock(wpipe, 0);
1111 		if (wpipe->pipe_state & PIPE_EOF) {
1112 			pipeunlock(wpipe);
1113 			error = EPIPE;
1114 			break;
1115 		}
1116 #ifndef PIPE_NODIRECT
1117 		/*
1118 		 * If the transfer is large, we can gain performance if
1119 		 * we do process-to-process copies directly.
1120 		 * If the write is non-blocking, we don't use the
1121 		 * direct write mechanism.
1122 		 *
1123 		 * The direct write mechanism will detect the reader going
1124 		 * away on us.
1125 		 */
1126 		if (uio->uio_segflg == UIO_USERSPACE &&
1127 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1128 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1129 		    (fp->f_flag & FNONBLOCK) == 0) {
1130 			pipeunlock(wpipe);
1131 			error = pipe_direct_write(wpipe, uio);
1132 			if (error)
1133 				break;
1134 			continue;
1135 		}
1136 #endif
1137 
1138 		/*
1139 		 * Pipe buffered writes cannot be coincidental with
1140 		 * direct writes.  We wait until the currently executing
1141 		 * direct write is completed before we start filling the
1142 		 * pipe buffer.  We break out if a signal occurs or the
1143 		 * reader goes away.
1144 		 */
1145 		if (wpipe->pipe_map.cnt != 0) {
1146 			if (wpipe->pipe_state & PIPE_WANTR) {
1147 				wpipe->pipe_state &= ~PIPE_WANTR;
1148 				wakeup(wpipe);
1149 			}
1150 			pipeselwakeup(wpipe);
1151 			wpipe->pipe_state |= PIPE_WANTW;
1152 			pipeunlock(wpipe);
1153 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1154 			    "pipbww", 0);
1155 			if (error)
1156 				break;
1157 			else
1158 				continue;
1159 		}
1160 
1161 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1162 
1163 		/* Writes of size <= PIPE_BUF must be atomic. */
1164 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1165 			space = 0;
1166 
1167 		if (space > 0) {
1168 			int size;	/* Transfer size */
1169 			int segsize;	/* first segment to transfer */
1170 
1171 			/*
1172 			 * Transfer size is minimum of uio transfer
1173 			 * and free space in pipe buffer.
1174 			 */
1175 			if (space > uio->uio_resid)
1176 				size = uio->uio_resid;
1177 			else
1178 				size = space;
1179 			/*
1180 			 * First segment to transfer is minimum of
1181 			 * transfer size and contiguous space in
1182 			 * pipe buffer.  If first segment to transfer
1183 			 * is less than the transfer size, we've got
1184 			 * a wraparound in the buffer.
1185 			 */
1186 			segsize = wpipe->pipe_buffer.size -
1187 				wpipe->pipe_buffer.in;
1188 			if (segsize > size)
1189 				segsize = size;
1190 
1191 			/* Transfer first segment */
1192 
1193 			PIPE_UNLOCK(rpipe);
1194 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1195 					segsize, uio);
1196 			PIPE_LOCK(rpipe);
1197 
1198 			if (error == 0 && segsize < size) {
1199 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1200 					wpipe->pipe_buffer.size,
1201 					("Pipe buffer wraparound disappeared"));
1202 				/*
1203 				 * Transfer remaining part now, to
1204 				 * support atomic writes.  Wraparound
1205 				 * happened.
1206 				 */
1207 
1208 				PIPE_UNLOCK(rpipe);
1209 				error = uiomove(
1210 				    &wpipe->pipe_buffer.buffer[0],
1211 				    size - segsize, uio);
1212 				PIPE_LOCK(rpipe);
1213 			}
1214 			if (error == 0) {
1215 				wpipe->pipe_buffer.in += size;
1216 				if (wpipe->pipe_buffer.in >=
1217 				    wpipe->pipe_buffer.size) {
1218 					KASSERT(wpipe->pipe_buffer.in ==
1219 						size - segsize +
1220 						wpipe->pipe_buffer.size,
1221 						("Expected wraparound bad"));
1222 					wpipe->pipe_buffer.in = size - segsize;
1223 				}
1224 
1225 				wpipe->pipe_buffer.cnt += size;
1226 				KASSERT(wpipe->pipe_buffer.cnt <=
1227 					wpipe->pipe_buffer.size,
1228 					("Pipe buffer overflow"));
1229 			}
1230 			pipeunlock(wpipe);
1231 			if (error != 0)
1232 				break;
1233 		} else {
1234 			/*
1235 			 * If the "read-side" has been blocked, wake it up now.
1236 			 */
1237 			if (wpipe->pipe_state & PIPE_WANTR) {
1238 				wpipe->pipe_state &= ~PIPE_WANTR;
1239 				wakeup(wpipe);
1240 			}
1241 
1242 			/*
1243 			 * don't block on non-blocking I/O
1244 			 */
1245 			if (fp->f_flag & FNONBLOCK) {
1246 				error = EAGAIN;
1247 				pipeunlock(wpipe);
1248 				break;
1249 			}
1250 
1251 			/*
1252 			 * We have no more space and have something to offer,
1253 			 * wake up select/poll.
1254 			 */
1255 			pipeselwakeup(wpipe);
1256 
1257 			wpipe->pipe_state |= PIPE_WANTW;
1258 			pipeunlock(wpipe);
1259 			error = msleep(wpipe, PIPE_MTX(rpipe),
1260 			    PRIBIO | PCATCH, "pipewr", 0);
1261 			if (error != 0)
1262 				break;
1263 		}
1264 	}
1265 
1266 	pipelock(wpipe, 0);
1267 	--wpipe->pipe_busy;
1268 
1269 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1270 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1271 		wakeup(wpipe);
1272 	} else if (wpipe->pipe_buffer.cnt > 0) {
1273 		/*
1274 		 * If we have put any characters in the buffer, we wake up
1275 		 * the reader.
1276 		 */
1277 		if (wpipe->pipe_state & PIPE_WANTR) {
1278 			wpipe->pipe_state &= ~PIPE_WANTR;
1279 			wakeup(wpipe);
1280 		}
1281 	}
1282 
1283 	/*
1284 	 * Don't return EPIPE if any byte was written.
1285 	 * EINTR and other interrupts are handled by generic I/O layer.
1286 	 * Do not pretend that I/O succeeded for obvious user error
1287 	 * like EFAULT.
1288 	 */
1289 	if (uio->uio_resid != orig_resid && error == EPIPE)
1290 		error = 0;
1291 
1292 	if (error == 0)
1293 		vfs_timestamp(&wpipe->pipe_mtime);
1294 
1295 	/*
1296 	 * We have something to offer,
1297 	 * wake up select/poll.
1298 	 */
1299 	if (wpipe->pipe_buffer.cnt)
1300 		pipeselwakeup(wpipe);
1301 
1302 	pipeunlock(wpipe);
1303 	PIPE_UNLOCK(rpipe);
1304 	return (error);
1305 }
1306 
1307 /* ARGSUSED */
1308 static int
1309 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1310     struct thread *td)
1311 {
1312 	struct pipe *cpipe;
1313 	int error;
1314 
1315 	cpipe = fp->f_data;
1316 	if (cpipe->pipe_state & PIPE_NAMED)
1317 		error = vnops.fo_truncate(fp, length, active_cred, td);
1318 	else
1319 		error = invfo_truncate(fp, length, active_cred, td);
1320 	return (error);
1321 }
1322 
1323 /*
1324  * we implement a very minimal set of ioctls for compatibility with sockets.
1325  */
1326 static int
1327 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1328     struct thread *td)
1329 {
1330 	struct pipe *mpipe = fp->f_data;
1331 	int error;
1332 
1333 	PIPE_LOCK(mpipe);
1334 
1335 #ifdef MAC
1336 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1337 	if (error) {
1338 		PIPE_UNLOCK(mpipe);
1339 		return (error);
1340 	}
1341 #endif
1342 
1343 	error = 0;
1344 	switch (cmd) {
1345 
1346 	case FIONBIO:
1347 		break;
1348 
1349 	case FIOASYNC:
1350 		if (*(int *)data) {
1351 			mpipe->pipe_state |= PIPE_ASYNC;
1352 		} else {
1353 			mpipe->pipe_state &= ~PIPE_ASYNC;
1354 		}
1355 		break;
1356 
1357 	case FIONREAD:
1358 		if (!(fp->f_flag & FREAD)) {
1359 			*(int *)data = 0;
1360 			PIPE_UNLOCK(mpipe);
1361 			return (0);
1362 		}
1363 		if (mpipe->pipe_map.cnt != 0)
1364 			*(int *)data = mpipe->pipe_map.cnt;
1365 		else
1366 			*(int *)data = mpipe->pipe_buffer.cnt;
1367 		break;
1368 
1369 	case FIOSETOWN:
1370 		PIPE_UNLOCK(mpipe);
1371 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1372 		goto out_unlocked;
1373 
1374 	case FIOGETOWN:
1375 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1376 		break;
1377 
1378 	/* This is deprecated, FIOSETOWN should be used instead. */
1379 	case TIOCSPGRP:
1380 		PIPE_UNLOCK(mpipe);
1381 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1382 		goto out_unlocked;
1383 
1384 	/* This is deprecated, FIOGETOWN should be used instead. */
1385 	case TIOCGPGRP:
1386 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1387 		break;
1388 
1389 	default:
1390 		error = ENOTTY;
1391 		break;
1392 	}
1393 	PIPE_UNLOCK(mpipe);
1394 out_unlocked:
1395 	return (error);
1396 }
1397 
1398 static int
1399 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1400     struct thread *td)
1401 {
1402 	struct pipe *rpipe;
1403 	struct pipe *wpipe;
1404 	int levents, revents;
1405 #ifdef MAC
1406 	int error;
1407 #endif
1408 
1409 	revents = 0;
1410 	rpipe = fp->f_data;
1411 	wpipe = PIPE_PEER(rpipe);
1412 	PIPE_LOCK(rpipe);
1413 #ifdef MAC
1414 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1415 	if (error)
1416 		goto locked_error;
1417 #endif
1418 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1419 		if (rpipe->pipe_map.cnt > 0 || rpipe->pipe_buffer.cnt > 0)
1420 			revents |= events & (POLLIN | POLLRDNORM);
1421 
1422 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1423 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1424 		    (wpipe->pipe_state & PIPE_EOF) ||
1425 		    ((wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1426 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1427 			 wpipe->pipe_buffer.size == 0)))
1428 			revents |= events & (POLLOUT | POLLWRNORM);
1429 
1430 	levents = events &
1431 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1432 	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1433 	    fp->f_pipegen == rpipe->pipe_wgen)
1434 		events |= POLLINIGNEOF;
1435 
1436 	if ((events & POLLINIGNEOF) == 0) {
1437 		if (rpipe->pipe_state & PIPE_EOF) {
1438 			if (fp->f_flag & FREAD)
1439 				revents |= (events & (POLLIN | POLLRDNORM));
1440 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1441 			    (wpipe->pipe_state & PIPE_EOF))
1442 				revents |= POLLHUP;
1443 		}
1444 	}
1445 
1446 	if (revents == 0) {
1447 		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1448 			selrecord(td, &rpipe->pipe_sel);
1449 			if (SEL_WAITING(&rpipe->pipe_sel))
1450 				rpipe->pipe_state |= PIPE_SEL;
1451 		}
1452 
1453 		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1454 			selrecord(td, &wpipe->pipe_sel);
1455 			if (SEL_WAITING(&wpipe->pipe_sel))
1456 				wpipe->pipe_state |= PIPE_SEL;
1457 		}
1458 	}
1459 #ifdef MAC
1460 locked_error:
1461 #endif
1462 	PIPE_UNLOCK(rpipe);
1463 
1464 	return (revents);
1465 }
1466 
1467 /*
1468  * We shouldn't need locks here as we're doing a read and this should
1469  * be a natural race.
1470  */
1471 static int
1472 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred,
1473     struct thread *td)
1474 {
1475 	struct pipe *pipe;
1476 #ifdef MAC
1477 	int error;
1478 #endif
1479 
1480 	pipe = fp->f_data;
1481 	PIPE_LOCK(pipe);
1482 #ifdef MAC
1483 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1484 	if (error) {
1485 		PIPE_UNLOCK(pipe);
1486 		return (error);
1487 	}
1488 #endif
1489 
1490 	/* For named pipes ask the underlying filesystem. */
1491 	if (pipe->pipe_state & PIPE_NAMED) {
1492 		PIPE_UNLOCK(pipe);
1493 		return (vnops.fo_stat(fp, ub, active_cred, td));
1494 	}
1495 
1496 	PIPE_UNLOCK(pipe);
1497 
1498 	bzero(ub, sizeof(*ub));
1499 	ub->st_mode = S_IFIFO;
1500 	ub->st_blksize = PAGE_SIZE;
1501 	if (pipe->pipe_map.cnt != 0)
1502 		ub->st_size = pipe->pipe_map.cnt;
1503 	else
1504 		ub->st_size = pipe->pipe_buffer.cnt;
1505 	ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1506 	ub->st_atim = pipe->pipe_atime;
1507 	ub->st_mtim = pipe->pipe_mtime;
1508 	ub->st_ctim = pipe->pipe_ctime;
1509 	ub->st_uid = fp->f_cred->cr_uid;
1510 	ub->st_gid = fp->f_cred->cr_gid;
1511 	ub->st_dev = pipedev_ino;
1512 	ub->st_ino = pipe->pipe_ino;
1513 	/*
1514 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1515 	 */
1516 	return (0);
1517 }
1518 
1519 /* ARGSUSED */
1520 static int
1521 pipe_close(struct file *fp, struct thread *td)
1522 {
1523 
1524 	if (fp->f_vnode != NULL)
1525 		return vnops.fo_close(fp, td);
1526 	fp->f_ops = &badfileops;
1527 	pipe_dtor(fp->f_data);
1528 	fp->f_data = NULL;
1529 	return (0);
1530 }
1531 
1532 static int
1533 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1534 {
1535 	struct pipe *cpipe;
1536 	int error;
1537 
1538 	cpipe = fp->f_data;
1539 	if (cpipe->pipe_state & PIPE_NAMED)
1540 		error = vn_chmod(fp, mode, active_cred, td);
1541 	else
1542 		error = invfo_chmod(fp, mode, active_cred, td);
1543 	return (error);
1544 }
1545 
1546 static int
1547 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1548     struct thread *td)
1549 {
1550 	struct pipe *cpipe;
1551 	int error;
1552 
1553 	cpipe = fp->f_data;
1554 	if (cpipe->pipe_state & PIPE_NAMED)
1555 		error = vn_chown(fp, uid, gid, active_cred, td);
1556 	else
1557 		error = invfo_chown(fp, uid, gid, active_cred, td);
1558 	return (error);
1559 }
1560 
1561 static int
1562 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1563 {
1564 	struct pipe *pi;
1565 
1566 	if (fp->f_type == DTYPE_FIFO)
1567 		return (vn_fill_kinfo(fp, kif, fdp));
1568 	kif->kf_type = KF_TYPE_PIPE;
1569 	pi = fp->f_data;
1570 	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1571 	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1572 	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1573 	return (0);
1574 }
1575 
1576 static void
1577 pipe_free_kmem(struct pipe *cpipe)
1578 {
1579 
1580 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1581 	    ("pipe_free_kmem: pipe mutex locked"));
1582 
1583 	if (cpipe->pipe_buffer.buffer != NULL) {
1584 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1585 		vm_map_remove(pipe_map,
1586 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1587 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1588 		cpipe->pipe_buffer.buffer = NULL;
1589 	}
1590 #ifndef PIPE_NODIRECT
1591 	{
1592 		cpipe->pipe_map.cnt = 0;
1593 		cpipe->pipe_map.pos = 0;
1594 		cpipe->pipe_map.npages = 0;
1595 	}
1596 #endif
1597 }
1598 
1599 /*
1600  * shutdown the pipe
1601  */
1602 static void
1603 pipeclose(struct pipe *cpipe)
1604 {
1605 	struct pipepair *pp;
1606 	struct pipe *ppipe;
1607 
1608 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1609 
1610 	PIPE_LOCK(cpipe);
1611 	pipelock(cpipe, 0);
1612 	pp = cpipe->pipe_pair;
1613 
1614 	/*
1615 	 * If the other side is blocked, wake it up saying that
1616 	 * we want to close it down.
1617 	 */
1618 	cpipe->pipe_state |= PIPE_EOF;
1619 	while (cpipe->pipe_busy) {
1620 		wakeup(cpipe);
1621 		cpipe->pipe_state |= PIPE_WANT;
1622 		pipeunlock(cpipe);
1623 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1624 		pipelock(cpipe, 0);
1625 	}
1626 
1627 	pipeselwakeup(cpipe);
1628 
1629 	/*
1630 	 * Disconnect from peer, if any.
1631 	 */
1632 	ppipe = cpipe->pipe_peer;
1633 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1634 		ppipe->pipe_state |= PIPE_EOF;
1635 		wakeup(ppipe);
1636 		pipeselwakeup(ppipe);
1637 	}
1638 
1639 	/*
1640 	 * Mark this endpoint as free.  Release kmem resources.  We
1641 	 * don't mark this endpoint as unused until we've finished
1642 	 * doing that, or the pipe might disappear out from under
1643 	 * us.
1644 	 */
1645 	PIPE_UNLOCK(cpipe);
1646 	pipe_free_kmem(cpipe);
1647 	PIPE_LOCK(cpipe);
1648 	cpipe->pipe_present = PIPE_CLOSING;
1649 	pipeunlock(cpipe);
1650 
1651 	/*
1652 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1653 	 * PIPE_FINALIZED, that allows other end to free the
1654 	 * pipe_pair, only after the knotes are completely dismantled.
1655 	 */
1656 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1657 	cpipe->pipe_present = PIPE_FINALIZED;
1658 	seldrain(&cpipe->pipe_sel);
1659 	knlist_destroy(&cpipe->pipe_sel.si_note);
1660 
1661 	/*
1662 	 * If both endpoints are now closed, release the memory for the
1663 	 * pipe pair.  If not, unlock.
1664 	 */
1665 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1666 		PIPE_UNLOCK(cpipe);
1667 #ifdef MAC
1668 		mac_pipe_destroy(pp);
1669 #endif
1670 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1671 	} else
1672 		PIPE_UNLOCK(cpipe);
1673 }
1674 
1675 /*ARGSUSED*/
1676 static int
1677 pipe_kqfilter(struct file *fp, struct knote *kn)
1678 {
1679 	struct pipe *cpipe;
1680 
1681 	/*
1682 	 * If a filter is requested that is not supported by this file
1683 	 * descriptor, don't return an error, but also don't ever generate an
1684 	 * event.
1685 	 */
1686 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1687 		kn->kn_fop = &pipe_nfiltops;
1688 		return (0);
1689 	}
1690 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1691 		kn->kn_fop = &pipe_nfiltops;
1692 		return (0);
1693 	}
1694 	cpipe = fp->f_data;
1695 	PIPE_LOCK(cpipe);
1696 	switch (kn->kn_filter) {
1697 	case EVFILT_READ:
1698 		kn->kn_fop = &pipe_rfiltops;
1699 		break;
1700 	case EVFILT_WRITE:
1701 		kn->kn_fop = &pipe_wfiltops;
1702 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1703 			/* other end of pipe has been closed */
1704 			PIPE_UNLOCK(cpipe);
1705 			return (EPIPE);
1706 		}
1707 		cpipe = PIPE_PEER(cpipe);
1708 		break;
1709 	default:
1710 		PIPE_UNLOCK(cpipe);
1711 		return (EINVAL);
1712 	}
1713 
1714 	kn->kn_hook = cpipe;
1715 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1716 	PIPE_UNLOCK(cpipe);
1717 	return (0);
1718 }
1719 
1720 static void
1721 filt_pipedetach(struct knote *kn)
1722 {
1723 	struct pipe *cpipe = kn->kn_hook;
1724 
1725 	PIPE_LOCK(cpipe);
1726 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1727 	PIPE_UNLOCK(cpipe);
1728 }
1729 
1730 /*ARGSUSED*/
1731 static int
1732 filt_piperead(struct knote *kn, long hint)
1733 {
1734 	struct file *fp = kn->kn_fp;
1735 	struct pipe *rpipe = kn->kn_hook;
1736 
1737 	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1738 	kn->kn_data = rpipe->pipe_buffer.cnt;
1739 	if (kn->kn_data == 0)
1740 		kn->kn_data = rpipe->pipe_map.cnt;
1741 
1742 	if ((rpipe->pipe_state & PIPE_EOF) != 0 &&
1743 	    ((rpipe->pipe_state & PIPE_NAMED) == 0 ||
1744 	    fp->f_pipegen != rpipe->pipe_wgen)) {
1745 		kn->kn_flags |= EV_EOF;
1746 		return (1);
1747 	}
1748 	kn->kn_flags &= ~EV_EOF;
1749 	return (kn->kn_data > 0);
1750 }
1751 
1752 /*ARGSUSED*/
1753 static int
1754 filt_pipewrite(struct knote *kn, long hint)
1755 {
1756 	struct pipe *wpipe = kn->kn_hook;
1757 
1758 	/*
1759 	 * If this end of the pipe is closed, the knote was removed from the
1760 	 * knlist and the list lock (i.e., the pipe lock) is therefore not held.
1761 	 */
1762 	if (wpipe->pipe_present == PIPE_ACTIVE ||
1763 	    (wpipe->pipe_state & PIPE_NAMED) != 0) {
1764 		PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1765 
1766 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1767 			kn->kn_data = 0;
1768 		} else if (wpipe->pipe_buffer.size > 0) {
1769 			kn->kn_data = wpipe->pipe_buffer.size -
1770 			    wpipe->pipe_buffer.cnt;
1771 		} else {
1772 			kn->kn_data = PIPE_BUF;
1773 		}
1774 	}
1775 
1776 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1777 	    (wpipe->pipe_state & PIPE_EOF)) {
1778 		kn->kn_flags |= EV_EOF;
1779 		return (1);
1780 	}
1781 	kn->kn_flags &= ~EV_EOF;
1782 	return (kn->kn_data >= PIPE_BUF);
1783 }
1784 
1785 static void
1786 filt_pipedetach_notsup(struct knote *kn)
1787 {
1788 
1789 }
1790 
1791 static int
1792 filt_pipenotsup(struct knote *kn, long hint)
1793 {
1794 
1795 	return (0);
1796 }
1797