1 /*- 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 */ 19 20 /* 21 * This file contains a high-performance replacement for the socket-based 22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 23 * all features of sockets, but does do everything that pipes normally 24 * do. 25 */ 26 27 /* 28 * This code has two modes of operation, a small write mode and a large 29 * write mode. The small write mode acts like conventional pipes with 30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and 33 * the receiving process can copy it directly from the pages in the sending 34 * process. 35 * 36 * If the sending process receives a signal, it is possible that it will 37 * go away, and certainly its address space can change, because control 38 * is returned back to the user-mode side. In that case, the pipe code 39 * arranges to copy the buffer supplied by the user process, to a pageable 40 * kernel buffer, and the receiving process will grab the data from the 41 * pageable kernel buffer. Since signals don't happen all that often, 42 * the copy operation is normally eliminated. 43 * 44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 45 * happen for small transfers so that the system will not spend all of 46 * its time context switching. 47 * 48 * In order to limit the resource use of pipes, two sysctls exist: 49 * 50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 51 * address space available to us in pipe_map. This value is normally 52 * autotuned, but may also be loader tuned. 53 * 54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 55 * memory in use by pipes. 56 * 57 * Based on how large pipekva is relative to maxpipekva, the following 58 * will happen: 59 * 60 * 0% - 50%: 61 * New pipes are given 16K of memory backing, pipes may dynamically 62 * grow to as large as 64K where needed. 63 * 50% - 75%: 64 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 65 * existing pipes may NOT grow. 66 * 75% - 100%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes will be shrunk down to 4K whenever possible. 69 * 70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 72 * resize which MUST occur for reverse-direction pipes when they are 73 * first used. 74 * 75 * Additional information about the current state of pipes may be obtained 76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 77 * and kern.ipc.piperesizefail. 78 * 79 * Locking rules: There are two locks present here: A mutex, used via 80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 81 * the flag, as mutexes can not persist over uiomove. The mutex 82 * exists only to guard access to the flag, and is not in itself a 83 * locking mechanism. Also note that there is only a single mutex for 84 * both directions of a pipe. 85 * 86 * As pipelock() may have to sleep before it can acquire the flag, it 87 * is important to reread all data after a call to pipelock(); everything 88 * in the structure may have changed. 89 */ 90 91 #include <sys/cdefs.h> 92 __FBSDID("$FreeBSD$"); 93 94 #include "opt_mac.h" 95 96 #include <sys/param.h> 97 #include <sys/systm.h> 98 #include <sys/fcntl.h> 99 #include <sys/file.h> 100 #include <sys/filedesc.h> 101 #include <sys/filio.h> 102 #include <sys/kernel.h> 103 #include <sys/lock.h> 104 #include <sys/mac.h> 105 #include <sys/mutex.h> 106 #include <sys/ttycom.h> 107 #include <sys/stat.h> 108 #include <sys/malloc.h> 109 #include <sys/poll.h> 110 #include <sys/selinfo.h> 111 #include <sys/signalvar.h> 112 #include <sys/sysctl.h> 113 #include <sys/sysproto.h> 114 #include <sys/pipe.h> 115 #include <sys/proc.h> 116 #include <sys/vnode.h> 117 #include <sys/uio.h> 118 #include <sys/event.h> 119 120 #include <vm/vm.h> 121 #include <vm/vm_param.h> 122 #include <vm/vm_object.h> 123 #include <vm/vm_kern.h> 124 #include <vm/vm_extern.h> 125 #include <vm/pmap.h> 126 #include <vm/vm_map.h> 127 #include <vm/vm_page.h> 128 #include <vm/uma.h> 129 130 /* 131 * Use this define if you want to disable *fancy* VM things. Expect an 132 * approx 30% decrease in transfer rate. This could be useful for 133 * NetBSD or OpenBSD. 134 */ 135 /* #define PIPE_NODIRECT */ 136 137 /* 138 * interfaces to the outside world 139 */ 140 static fo_rdwr_t pipe_read; 141 static fo_rdwr_t pipe_write; 142 static fo_ioctl_t pipe_ioctl; 143 static fo_poll_t pipe_poll; 144 static fo_kqfilter_t pipe_kqfilter; 145 static fo_stat_t pipe_stat; 146 static fo_close_t pipe_close; 147 148 static struct fileops pipeops = { 149 .fo_read = pipe_read, 150 .fo_write = pipe_write, 151 .fo_ioctl = pipe_ioctl, 152 .fo_poll = pipe_poll, 153 .fo_kqfilter = pipe_kqfilter, 154 .fo_stat = pipe_stat, 155 .fo_close = pipe_close, 156 .fo_flags = DFLAG_PASSABLE 157 }; 158 159 static void filt_pipedetach(struct knote *kn); 160 static int filt_piperead(struct knote *kn, long hint); 161 static int filt_pipewrite(struct knote *kn, long hint); 162 163 static struct filterops pipe_rfiltops = 164 { 1, NULL, filt_pipedetach, filt_piperead }; 165 static struct filterops pipe_wfiltops = 166 { 1, NULL, filt_pipedetach, filt_pipewrite }; 167 168 /* 169 * Default pipe buffer size(s), this can be kind-of large now because pipe 170 * space is pageable. The pipe code will try to maintain locality of 171 * reference for performance reasons, so small amounts of outstanding I/O 172 * will not wipe the cache. 173 */ 174 #define MINPIPESIZE (PIPE_SIZE/3) 175 #define MAXPIPESIZE (2*PIPE_SIZE/3) 176 177 static int amountpipes; 178 static int amountpipekva; 179 static int pipefragretry; 180 static int pipeallocfail; 181 static int piperesizefail; 182 static int piperesizeallowed = 1; 183 184 SYSCTL_DECL(_kern_ipc); 185 186 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, 187 &maxpipekva, 0, "Pipe KVA limit"); 188 SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD, 189 &amountpipes, 0, "Current # of pipes"); 190 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 191 &amountpipekva, 0, "Pipe KVA usage"); 192 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 193 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 194 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 195 &pipeallocfail, 0, "Pipe allocation failures"); 196 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 197 &piperesizefail, 0, "Pipe resize failures"); 198 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 199 &piperesizeallowed, 0, "Pipe resizing allowed"); 200 201 static void pipeinit(void *dummy __unused); 202 static void pipeclose(struct pipe *cpipe); 203 static void pipe_free_kmem(struct pipe *cpipe); 204 static int pipe_create(struct pipe *pipe, int backing); 205 static __inline int pipelock(struct pipe *cpipe, int catch); 206 static __inline void pipeunlock(struct pipe *cpipe); 207 static __inline void pipeselwakeup(struct pipe *cpipe); 208 #ifndef PIPE_NODIRECT 209 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 210 static void pipe_destroy_write_buffer(struct pipe *wpipe); 211 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 212 static void pipe_clone_write_buffer(struct pipe *wpipe); 213 #endif 214 static int pipespace(struct pipe *cpipe, int size); 215 static int pipespace_new(struct pipe *cpipe, int size); 216 217 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 218 static void pipe_zone_dtor(void *mem, int size, void *arg); 219 static int pipe_zone_init(void *mem, int size, int flags); 220 static void pipe_zone_fini(void *mem, int size); 221 222 static uma_zone_t pipe_zone; 223 224 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 225 226 static void 227 pipeinit(void *dummy __unused) 228 { 229 230 pipe_zone = uma_zcreate("PIPE", sizeof(struct pipepair), 231 pipe_zone_ctor, pipe_zone_dtor, pipe_zone_init, pipe_zone_fini, 232 UMA_ALIGN_PTR, 0); 233 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 234 } 235 236 static int 237 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 238 { 239 struct pipepair *pp; 240 struct pipe *rpipe, *wpipe; 241 242 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 243 244 pp = (struct pipepair *)mem; 245 246 /* 247 * We zero both pipe endpoints to make sure all the kmem pointers 248 * are NULL, flag fields are zero'd, etc. We timestamp both 249 * endpoints with the same time. 250 */ 251 rpipe = &pp->pp_rpipe; 252 bzero(rpipe, sizeof(*rpipe)); 253 vfs_timestamp(&rpipe->pipe_ctime); 254 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 255 256 wpipe = &pp->pp_wpipe; 257 bzero(wpipe, sizeof(*wpipe)); 258 wpipe->pipe_ctime = rpipe->pipe_ctime; 259 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 260 261 rpipe->pipe_peer = wpipe; 262 rpipe->pipe_pair = pp; 263 wpipe->pipe_peer = rpipe; 264 wpipe->pipe_pair = pp; 265 266 /* 267 * Mark both endpoints as present; they will later get free'd 268 * one at a time. When both are free'd, then the whole pair 269 * is released. 270 */ 271 rpipe->pipe_present = 1; 272 wpipe->pipe_present = 1; 273 274 /* 275 * Eventually, the MAC Framework may initialize the label 276 * in ctor or init, but for now we do it elswhere to avoid 277 * blocking in ctor or init. 278 */ 279 pp->pp_label = NULL; 280 281 atomic_add_int(&amountpipes, 2); 282 return (0); 283 } 284 285 static void 286 pipe_zone_dtor(void *mem, int size, void *arg) 287 { 288 struct pipepair *pp; 289 290 KASSERT(size == sizeof(*pp), ("pipe_zone_dtor: wrong size")); 291 292 pp = (struct pipepair *)mem; 293 294 atomic_subtract_int(&amountpipes, 2); 295 } 296 297 static int 298 pipe_zone_init(void *mem, int size, int flags) 299 { 300 struct pipepair *pp; 301 302 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 303 304 pp = (struct pipepair *)mem; 305 306 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 307 return (0); 308 } 309 310 static void 311 pipe_zone_fini(void *mem, int size) 312 { 313 struct pipepair *pp; 314 315 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 316 317 pp = (struct pipepair *)mem; 318 319 mtx_destroy(&pp->pp_mtx); 320 } 321 322 /* 323 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, 324 * let the zone pick up the pieces via pipeclose(). 325 */ 326 327 /* ARGSUSED */ 328 int 329 pipe(td, uap) 330 struct thread *td; 331 struct pipe_args /* { 332 int dummy; 333 } */ *uap; 334 { 335 struct filedesc *fdp = td->td_proc->p_fd; 336 struct file *rf, *wf; 337 struct pipepair *pp; 338 struct pipe *rpipe, *wpipe; 339 int fd, error; 340 341 pp = uma_zalloc(pipe_zone, M_WAITOK); 342 #ifdef MAC 343 /* 344 * The MAC label is shared between the connected endpoints. As a 345 * result mac_init_pipe() and mac_create_pipe() are called once 346 * for the pair, and not on the endpoints. 347 */ 348 mac_init_pipe(pp); 349 mac_create_pipe(td->td_ucred, pp); 350 #endif 351 rpipe = &pp->pp_rpipe; 352 wpipe = &pp->pp_wpipe; 353 354 knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe), NULL, NULL, 355 NULL); 356 knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe), NULL, NULL, 357 NULL); 358 359 /* Only the forward direction pipe is backed by default */ 360 if ((error = pipe_create(rpipe, 1)) != 0 || 361 (error = pipe_create(wpipe, 0)) != 0) { 362 pipeclose(rpipe); 363 pipeclose(wpipe); 364 return (error); 365 } 366 367 rpipe->pipe_state |= PIPE_DIRECTOK; 368 wpipe->pipe_state |= PIPE_DIRECTOK; 369 370 error = falloc(td, &rf, &fd); 371 if (error) { 372 pipeclose(rpipe); 373 pipeclose(wpipe); 374 return (error); 375 } 376 /* An extra reference on `rf' has been held for us by falloc(). */ 377 td->td_retval[0] = fd; 378 379 /* 380 * Warning: once we've gotten past allocation of the fd for the 381 * read-side, we can only drop the read side via fdrop() in order 382 * to avoid races against processes which manage to dup() the read 383 * side while we are blocked trying to allocate the write side. 384 */ 385 FILE_LOCK(rf); 386 rf->f_flag = FREAD | FWRITE; 387 rf->f_type = DTYPE_PIPE; 388 rf->f_data = rpipe; 389 rf->f_ops = &pipeops; 390 FILE_UNLOCK(rf); 391 error = falloc(td, &wf, &fd); 392 if (error) { 393 fdclose(fdp, rf, td->td_retval[0], td); 394 fdrop(rf, td); 395 /* rpipe has been closed by fdrop(). */ 396 pipeclose(wpipe); 397 return (error); 398 } 399 /* An extra reference on `wf' has been held for us by falloc(). */ 400 FILE_LOCK(wf); 401 wf->f_flag = FREAD | FWRITE; 402 wf->f_type = DTYPE_PIPE; 403 wf->f_data = wpipe; 404 wf->f_ops = &pipeops; 405 FILE_UNLOCK(wf); 406 fdrop(wf, td); 407 td->td_retval[1] = fd; 408 fdrop(rf, td); 409 410 return (0); 411 } 412 413 /* 414 * Allocate kva for pipe circular buffer, the space is pageable 415 * This routine will 'realloc' the size of a pipe safely, if it fails 416 * it will retain the old buffer. 417 * If it fails it will return ENOMEM. 418 */ 419 static int 420 pipespace_new(cpipe, size) 421 struct pipe *cpipe; 422 int size; 423 { 424 caddr_t buffer; 425 int error, cnt, firstseg; 426 static int curfail = 0; 427 static struct timeval lastfail; 428 429 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 430 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 431 ("pipespace: resize of direct writes not allowed")); 432 retry: 433 cnt = cpipe->pipe_buffer.cnt; 434 if (cnt > size) 435 size = cnt; 436 437 size = round_page(size); 438 buffer = (caddr_t) vm_map_min(pipe_map); 439 440 error = vm_map_find(pipe_map, NULL, 0, 441 (vm_offset_t *) &buffer, size, 1, 442 VM_PROT_ALL, VM_PROT_ALL, 0); 443 if (error != KERN_SUCCESS) { 444 if ((cpipe->pipe_buffer.buffer == NULL) && 445 (size > SMALL_PIPE_SIZE)) { 446 size = SMALL_PIPE_SIZE; 447 pipefragretry++; 448 goto retry; 449 } 450 if (cpipe->pipe_buffer.buffer == NULL) { 451 pipeallocfail++; 452 if (ppsratecheck(&lastfail, &curfail, 1)) 453 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 454 } else { 455 piperesizefail++; 456 } 457 return (ENOMEM); 458 } 459 460 /* copy data, then free old resources if we're resizing */ 461 if (cnt > 0) { 462 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 463 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 464 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 465 buffer, firstseg); 466 if ((cnt - firstseg) > 0) 467 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 468 cpipe->pipe_buffer.in); 469 } else { 470 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 471 buffer, cnt); 472 } 473 } 474 pipe_free_kmem(cpipe); 475 cpipe->pipe_buffer.buffer = buffer; 476 cpipe->pipe_buffer.size = size; 477 cpipe->pipe_buffer.in = cnt; 478 cpipe->pipe_buffer.out = 0; 479 cpipe->pipe_buffer.cnt = cnt; 480 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size); 481 return (0); 482 } 483 484 /* 485 * Wrapper for pipespace_new() that performs locking assertions. 486 */ 487 static int 488 pipespace(cpipe, size) 489 struct pipe *cpipe; 490 int size; 491 { 492 493 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 494 ("Unlocked pipe passed to pipespace")); 495 return (pipespace_new(cpipe, size)); 496 } 497 498 /* 499 * lock a pipe for I/O, blocking other access 500 */ 501 static __inline int 502 pipelock(cpipe, catch) 503 struct pipe *cpipe; 504 int catch; 505 { 506 int error; 507 508 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 509 while (cpipe->pipe_state & PIPE_LOCKFL) { 510 cpipe->pipe_state |= PIPE_LWANT; 511 error = msleep(cpipe, PIPE_MTX(cpipe), 512 catch ? (PRIBIO | PCATCH) : PRIBIO, 513 "pipelk", 0); 514 if (error != 0) 515 return (error); 516 } 517 cpipe->pipe_state |= PIPE_LOCKFL; 518 return (0); 519 } 520 521 /* 522 * unlock a pipe I/O lock 523 */ 524 static __inline void 525 pipeunlock(cpipe) 526 struct pipe *cpipe; 527 { 528 529 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 530 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 531 ("Unlocked pipe passed to pipeunlock")); 532 cpipe->pipe_state &= ~PIPE_LOCKFL; 533 if (cpipe->pipe_state & PIPE_LWANT) { 534 cpipe->pipe_state &= ~PIPE_LWANT; 535 wakeup(cpipe); 536 } 537 } 538 539 static __inline void 540 pipeselwakeup(cpipe) 541 struct pipe *cpipe; 542 { 543 544 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 545 if (cpipe->pipe_state & PIPE_SEL) { 546 cpipe->pipe_state &= ~PIPE_SEL; 547 selwakeuppri(&cpipe->pipe_sel, PSOCK); 548 } 549 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 550 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 551 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 552 } 553 554 /* 555 * Initialize and allocate VM and memory for pipe. The structure 556 * will start out zero'd from the ctor, so we just manage the kmem. 557 */ 558 static int 559 pipe_create(pipe, backing) 560 struct pipe *pipe; 561 int backing; 562 { 563 int error; 564 565 if (backing) { 566 if (amountpipekva > maxpipekva / 2) 567 error = pipespace_new(pipe, SMALL_PIPE_SIZE); 568 else 569 error = pipespace_new(pipe, PIPE_SIZE); 570 } else { 571 /* If we're not backing this pipe, no need to do anything. */ 572 error = 0; 573 } 574 return (error); 575 } 576 577 /* ARGSUSED */ 578 static int 579 pipe_read(fp, uio, active_cred, flags, td) 580 struct file *fp; 581 struct uio *uio; 582 struct ucred *active_cred; 583 struct thread *td; 584 int flags; 585 { 586 struct pipe *rpipe = fp->f_data; 587 int error; 588 int nread = 0; 589 u_int size; 590 591 PIPE_LOCK(rpipe); 592 ++rpipe->pipe_busy; 593 error = pipelock(rpipe, 1); 594 if (error) 595 goto unlocked_error; 596 597 #ifdef MAC 598 error = mac_check_pipe_read(active_cred, rpipe->pipe_pair); 599 if (error) 600 goto locked_error; 601 #endif 602 if (amountpipekva > (3 * maxpipekva) / 4) { 603 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 604 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 605 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 606 (piperesizeallowed == 1)) { 607 PIPE_UNLOCK(rpipe); 608 pipespace(rpipe, SMALL_PIPE_SIZE); 609 PIPE_LOCK(rpipe); 610 } 611 } 612 613 while (uio->uio_resid) { 614 /* 615 * normal pipe buffer receive 616 */ 617 if (rpipe->pipe_buffer.cnt > 0) { 618 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 619 if (size > rpipe->pipe_buffer.cnt) 620 size = rpipe->pipe_buffer.cnt; 621 if (size > (u_int) uio->uio_resid) 622 size = (u_int) uio->uio_resid; 623 624 PIPE_UNLOCK(rpipe); 625 error = uiomove( 626 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 627 size, uio); 628 PIPE_LOCK(rpipe); 629 if (error) 630 break; 631 632 rpipe->pipe_buffer.out += size; 633 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 634 rpipe->pipe_buffer.out = 0; 635 636 rpipe->pipe_buffer.cnt -= size; 637 638 /* 639 * If there is no more to read in the pipe, reset 640 * its pointers to the beginning. This improves 641 * cache hit stats. 642 */ 643 if (rpipe->pipe_buffer.cnt == 0) { 644 rpipe->pipe_buffer.in = 0; 645 rpipe->pipe_buffer.out = 0; 646 } 647 nread += size; 648 #ifndef PIPE_NODIRECT 649 /* 650 * Direct copy, bypassing a kernel buffer. 651 */ 652 } else if ((size = rpipe->pipe_map.cnt) && 653 (rpipe->pipe_state & PIPE_DIRECTW)) { 654 if (size > (u_int) uio->uio_resid) 655 size = (u_int) uio->uio_resid; 656 657 PIPE_UNLOCK(rpipe); 658 error = uiomove_fromphys(rpipe->pipe_map.ms, 659 rpipe->pipe_map.pos, size, uio); 660 PIPE_LOCK(rpipe); 661 if (error) 662 break; 663 nread += size; 664 rpipe->pipe_map.pos += size; 665 rpipe->pipe_map.cnt -= size; 666 if (rpipe->pipe_map.cnt == 0) { 667 rpipe->pipe_state &= ~PIPE_DIRECTW; 668 wakeup(rpipe); 669 } 670 #endif 671 } else { 672 /* 673 * detect EOF condition 674 * read returns 0 on EOF, no need to set error 675 */ 676 if (rpipe->pipe_state & PIPE_EOF) 677 break; 678 679 /* 680 * If the "write-side" has been blocked, wake it up now. 681 */ 682 if (rpipe->pipe_state & PIPE_WANTW) { 683 rpipe->pipe_state &= ~PIPE_WANTW; 684 wakeup(rpipe); 685 } 686 687 /* 688 * Break if some data was read. 689 */ 690 if (nread > 0) 691 break; 692 693 /* 694 * Unlock the pipe buffer for our remaining processing. 695 * We will either break out with an error or we will 696 * sleep and relock to loop. 697 */ 698 pipeunlock(rpipe); 699 700 /* 701 * Handle non-blocking mode operation or 702 * wait for more data. 703 */ 704 if (fp->f_flag & FNONBLOCK) { 705 error = EAGAIN; 706 } else { 707 rpipe->pipe_state |= PIPE_WANTR; 708 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 709 PRIBIO | PCATCH, 710 "piperd", 0)) == 0) 711 error = pipelock(rpipe, 1); 712 } 713 if (error) 714 goto unlocked_error; 715 } 716 } 717 #ifdef MAC 718 locked_error: 719 #endif 720 pipeunlock(rpipe); 721 722 /* XXX: should probably do this before getting any locks. */ 723 if (error == 0) 724 vfs_timestamp(&rpipe->pipe_atime); 725 unlocked_error: 726 --rpipe->pipe_busy; 727 728 /* 729 * PIPE_WANT processing only makes sense if pipe_busy is 0. 730 */ 731 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 732 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 733 wakeup(rpipe); 734 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 735 /* 736 * Handle write blocking hysteresis. 737 */ 738 if (rpipe->pipe_state & PIPE_WANTW) { 739 rpipe->pipe_state &= ~PIPE_WANTW; 740 wakeup(rpipe); 741 } 742 } 743 744 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 745 pipeselwakeup(rpipe); 746 747 PIPE_UNLOCK(rpipe); 748 return (error); 749 } 750 751 #ifndef PIPE_NODIRECT 752 /* 753 * Map the sending processes' buffer into kernel space and wire it. 754 * This is similar to a physical write operation. 755 */ 756 static int 757 pipe_build_write_buffer(wpipe, uio) 758 struct pipe *wpipe; 759 struct uio *uio; 760 { 761 pmap_t pmap; 762 u_int size; 763 int i, j; 764 vm_offset_t addr, endaddr; 765 766 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 767 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 768 ("Clone attempt on non-direct write pipe!")); 769 770 size = (u_int) uio->uio_iov->iov_len; 771 if (size > wpipe->pipe_buffer.size) 772 size = wpipe->pipe_buffer.size; 773 774 pmap = vmspace_pmap(curproc->p_vmspace); 775 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size); 776 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base); 777 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) { 778 /* 779 * vm_fault_quick() can sleep. Consequently, 780 * vm_page_lock_queue() and vm_page_unlock_queue() 781 * should not be performed outside of this loop. 782 */ 783 race: 784 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) { 785 vm_page_lock_queues(); 786 for (j = 0; j < i; j++) 787 vm_page_unhold(wpipe->pipe_map.ms[j]); 788 vm_page_unlock_queues(); 789 return (EFAULT); 790 } 791 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr, 792 VM_PROT_READ); 793 if (wpipe->pipe_map.ms[i] == NULL) 794 goto race; 795 } 796 797 /* 798 * set up the control block 799 */ 800 wpipe->pipe_map.npages = i; 801 wpipe->pipe_map.pos = 802 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 803 wpipe->pipe_map.cnt = size; 804 805 /* 806 * and update the uio data 807 */ 808 809 uio->uio_iov->iov_len -= size; 810 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 811 if (uio->uio_iov->iov_len == 0) 812 uio->uio_iov++; 813 uio->uio_resid -= size; 814 uio->uio_offset += size; 815 return (0); 816 } 817 818 /* 819 * unmap and unwire the process buffer 820 */ 821 static void 822 pipe_destroy_write_buffer(wpipe) 823 struct pipe *wpipe; 824 { 825 int i; 826 827 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 828 vm_page_lock_queues(); 829 for (i = 0; i < wpipe->pipe_map.npages; i++) { 830 vm_page_unhold(wpipe->pipe_map.ms[i]); 831 } 832 vm_page_unlock_queues(); 833 wpipe->pipe_map.npages = 0; 834 } 835 836 /* 837 * In the case of a signal, the writing process might go away. This 838 * code copies the data into the circular buffer so that the source 839 * pages can be freed without loss of data. 840 */ 841 static void 842 pipe_clone_write_buffer(wpipe) 843 struct pipe *wpipe; 844 { 845 struct uio uio; 846 struct iovec iov; 847 int size; 848 int pos; 849 850 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 851 size = wpipe->pipe_map.cnt; 852 pos = wpipe->pipe_map.pos; 853 854 wpipe->pipe_buffer.in = size; 855 wpipe->pipe_buffer.out = 0; 856 wpipe->pipe_buffer.cnt = size; 857 wpipe->pipe_state &= ~PIPE_DIRECTW; 858 859 PIPE_UNLOCK(wpipe); 860 iov.iov_base = wpipe->pipe_buffer.buffer; 861 iov.iov_len = size; 862 uio.uio_iov = &iov; 863 uio.uio_iovcnt = 1; 864 uio.uio_offset = 0; 865 uio.uio_resid = size; 866 uio.uio_segflg = UIO_SYSSPACE; 867 uio.uio_rw = UIO_READ; 868 uio.uio_td = curthread; 869 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 870 PIPE_LOCK(wpipe); 871 pipe_destroy_write_buffer(wpipe); 872 } 873 874 /* 875 * This implements the pipe buffer write mechanism. Note that only 876 * a direct write OR a normal pipe write can be pending at any given time. 877 * If there are any characters in the pipe buffer, the direct write will 878 * be deferred until the receiving process grabs all of the bytes from 879 * the pipe buffer. Then the direct mapping write is set-up. 880 */ 881 static int 882 pipe_direct_write(wpipe, uio) 883 struct pipe *wpipe; 884 struct uio *uio; 885 { 886 int error; 887 888 retry: 889 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 890 error = pipelock(wpipe, 1); 891 if (wpipe->pipe_state & PIPE_EOF) 892 error = EPIPE; 893 if (error) { 894 pipeunlock(wpipe); 895 goto error1; 896 } 897 while (wpipe->pipe_state & PIPE_DIRECTW) { 898 if (wpipe->pipe_state & PIPE_WANTR) { 899 wpipe->pipe_state &= ~PIPE_WANTR; 900 wakeup(wpipe); 901 } 902 wpipe->pipe_state |= PIPE_WANTW; 903 pipeunlock(wpipe); 904 error = msleep(wpipe, PIPE_MTX(wpipe), 905 PRIBIO | PCATCH, "pipdww", 0); 906 if (error) 907 goto error1; 908 else 909 goto retry; 910 } 911 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 912 if (wpipe->pipe_buffer.cnt > 0) { 913 if (wpipe->pipe_state & PIPE_WANTR) { 914 wpipe->pipe_state &= ~PIPE_WANTR; 915 wakeup(wpipe); 916 } 917 wpipe->pipe_state |= PIPE_WANTW; 918 pipeunlock(wpipe); 919 error = msleep(wpipe, PIPE_MTX(wpipe), 920 PRIBIO | PCATCH, "pipdwc", 0); 921 if (error) 922 goto error1; 923 else 924 goto retry; 925 } 926 927 wpipe->pipe_state |= PIPE_DIRECTW; 928 929 PIPE_UNLOCK(wpipe); 930 error = pipe_build_write_buffer(wpipe, uio); 931 PIPE_LOCK(wpipe); 932 if (error) { 933 wpipe->pipe_state &= ~PIPE_DIRECTW; 934 pipeunlock(wpipe); 935 goto error1; 936 } 937 938 error = 0; 939 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 940 if (wpipe->pipe_state & PIPE_EOF) { 941 pipe_destroy_write_buffer(wpipe); 942 pipeselwakeup(wpipe); 943 pipeunlock(wpipe); 944 error = EPIPE; 945 goto error1; 946 } 947 if (wpipe->pipe_state & PIPE_WANTR) { 948 wpipe->pipe_state &= ~PIPE_WANTR; 949 wakeup(wpipe); 950 } 951 pipeselwakeup(wpipe); 952 pipeunlock(wpipe); 953 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 954 "pipdwt", 0); 955 pipelock(wpipe, 0); 956 } 957 958 if (wpipe->pipe_state & PIPE_EOF) 959 error = EPIPE; 960 if (wpipe->pipe_state & PIPE_DIRECTW) { 961 /* 962 * this bit of trickery substitutes a kernel buffer for 963 * the process that might be going away. 964 */ 965 pipe_clone_write_buffer(wpipe); 966 } else { 967 pipe_destroy_write_buffer(wpipe); 968 } 969 pipeunlock(wpipe); 970 return (error); 971 972 error1: 973 wakeup(wpipe); 974 return (error); 975 } 976 #endif 977 978 static int 979 pipe_write(fp, uio, active_cred, flags, td) 980 struct file *fp; 981 struct uio *uio; 982 struct ucred *active_cred; 983 struct thread *td; 984 int flags; 985 { 986 int error = 0; 987 int desiredsize, orig_resid; 988 struct pipe *wpipe, *rpipe; 989 990 rpipe = fp->f_data; 991 wpipe = rpipe->pipe_peer; 992 993 PIPE_LOCK(rpipe); 994 error = pipelock(wpipe, 1); 995 if (error) { 996 PIPE_UNLOCK(rpipe); 997 return (error); 998 } 999 /* 1000 * detect loss of pipe read side, issue SIGPIPE if lost. 1001 */ 1002 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1003 pipeunlock(wpipe); 1004 PIPE_UNLOCK(rpipe); 1005 return (EPIPE); 1006 } 1007 #ifdef MAC 1008 error = mac_check_pipe_write(active_cred, wpipe->pipe_pair); 1009 if (error) { 1010 pipeunlock(wpipe); 1011 PIPE_UNLOCK(rpipe); 1012 return (error); 1013 } 1014 #endif 1015 ++wpipe->pipe_busy; 1016 1017 /* Choose a larger size if it's advantageous */ 1018 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1019 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1020 if (piperesizeallowed != 1) 1021 break; 1022 if (amountpipekva > maxpipekva / 2) 1023 break; 1024 if (desiredsize == BIG_PIPE_SIZE) 1025 break; 1026 desiredsize = desiredsize * 2; 1027 } 1028 1029 /* Choose a smaller size if we're in a OOM situation */ 1030 if ((amountpipekva > (3 * maxpipekva) / 4) && 1031 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 1032 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1033 (piperesizeallowed == 1)) 1034 desiredsize = SMALL_PIPE_SIZE; 1035 1036 /* Resize if the above determined that a new size was necessary */ 1037 if ((desiredsize != wpipe->pipe_buffer.size) && 1038 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1039 PIPE_UNLOCK(wpipe); 1040 pipespace(wpipe, desiredsize); 1041 PIPE_LOCK(wpipe); 1042 } 1043 if (wpipe->pipe_buffer.size == 0) { 1044 /* 1045 * This can only happen for reverse direction use of pipes 1046 * in a complete OOM situation. 1047 */ 1048 error = ENOMEM; 1049 --wpipe->pipe_busy; 1050 pipeunlock(wpipe); 1051 PIPE_UNLOCK(wpipe); 1052 return (error); 1053 } 1054 1055 pipeunlock(wpipe); 1056 1057 orig_resid = uio->uio_resid; 1058 1059 while (uio->uio_resid) { 1060 int space; 1061 1062 pipelock(wpipe, 0); 1063 if (wpipe->pipe_state & PIPE_EOF) { 1064 pipeunlock(wpipe); 1065 error = EPIPE; 1066 break; 1067 } 1068 #ifndef PIPE_NODIRECT 1069 /* 1070 * If the transfer is large, we can gain performance if 1071 * we do process-to-process copies directly. 1072 * If the write is non-blocking, we don't use the 1073 * direct write mechanism. 1074 * 1075 * The direct write mechanism will detect the reader going 1076 * away on us. 1077 */ 1078 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 1079 (wpipe->pipe_buffer.size >= PIPE_MINDIRECT) && 1080 (fp->f_flag & FNONBLOCK) == 0) { 1081 pipeunlock(wpipe); 1082 error = pipe_direct_write(wpipe, uio); 1083 if (error) 1084 break; 1085 continue; 1086 } 1087 #endif 1088 1089 /* 1090 * Pipe buffered writes cannot be coincidental with 1091 * direct writes. We wait until the currently executing 1092 * direct write is completed before we start filling the 1093 * pipe buffer. We break out if a signal occurs or the 1094 * reader goes away. 1095 */ 1096 if (wpipe->pipe_state & PIPE_DIRECTW) { 1097 if (wpipe->pipe_state & PIPE_WANTR) { 1098 wpipe->pipe_state &= ~PIPE_WANTR; 1099 wakeup(wpipe); 1100 } 1101 pipeunlock(wpipe); 1102 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1103 "pipbww", 0); 1104 if (error) 1105 break; 1106 else 1107 continue; 1108 } 1109 1110 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1111 1112 /* Writes of size <= PIPE_BUF must be atomic. */ 1113 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1114 space = 0; 1115 1116 if (space > 0) { 1117 int size; /* Transfer size */ 1118 int segsize; /* first segment to transfer */ 1119 1120 /* 1121 * Transfer size is minimum of uio transfer 1122 * and free space in pipe buffer. 1123 */ 1124 if (space > uio->uio_resid) 1125 size = uio->uio_resid; 1126 else 1127 size = space; 1128 /* 1129 * First segment to transfer is minimum of 1130 * transfer size and contiguous space in 1131 * pipe buffer. If first segment to transfer 1132 * is less than the transfer size, we've got 1133 * a wraparound in the buffer. 1134 */ 1135 segsize = wpipe->pipe_buffer.size - 1136 wpipe->pipe_buffer.in; 1137 if (segsize > size) 1138 segsize = size; 1139 1140 /* Transfer first segment */ 1141 1142 PIPE_UNLOCK(rpipe); 1143 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1144 segsize, uio); 1145 PIPE_LOCK(rpipe); 1146 1147 if (error == 0 && segsize < size) { 1148 KASSERT(wpipe->pipe_buffer.in + segsize == 1149 wpipe->pipe_buffer.size, 1150 ("Pipe buffer wraparound disappeared")); 1151 /* 1152 * Transfer remaining part now, to 1153 * support atomic writes. Wraparound 1154 * happened. 1155 */ 1156 1157 PIPE_UNLOCK(rpipe); 1158 error = uiomove( 1159 &wpipe->pipe_buffer.buffer[0], 1160 size - segsize, uio); 1161 PIPE_LOCK(rpipe); 1162 } 1163 if (error == 0) { 1164 wpipe->pipe_buffer.in += size; 1165 if (wpipe->pipe_buffer.in >= 1166 wpipe->pipe_buffer.size) { 1167 KASSERT(wpipe->pipe_buffer.in == 1168 size - segsize + 1169 wpipe->pipe_buffer.size, 1170 ("Expected wraparound bad")); 1171 wpipe->pipe_buffer.in = size - segsize; 1172 } 1173 1174 wpipe->pipe_buffer.cnt += size; 1175 KASSERT(wpipe->pipe_buffer.cnt <= 1176 wpipe->pipe_buffer.size, 1177 ("Pipe buffer overflow")); 1178 } 1179 pipeunlock(wpipe); 1180 if (error != 0) 1181 break; 1182 } else { 1183 /* 1184 * If the "read-side" has been blocked, wake it up now. 1185 */ 1186 if (wpipe->pipe_state & PIPE_WANTR) { 1187 wpipe->pipe_state &= ~PIPE_WANTR; 1188 wakeup(wpipe); 1189 } 1190 1191 /* 1192 * don't block on non-blocking I/O 1193 */ 1194 if (fp->f_flag & FNONBLOCK) { 1195 error = EAGAIN; 1196 pipeunlock(wpipe); 1197 break; 1198 } 1199 1200 /* 1201 * We have no more space and have something to offer, 1202 * wake up select/poll. 1203 */ 1204 pipeselwakeup(wpipe); 1205 1206 wpipe->pipe_state |= PIPE_WANTW; 1207 pipeunlock(wpipe); 1208 error = msleep(wpipe, PIPE_MTX(rpipe), 1209 PRIBIO | PCATCH, "pipewr", 0); 1210 if (error != 0) 1211 break; 1212 } 1213 } 1214 1215 pipelock(wpipe, 0); 1216 --wpipe->pipe_busy; 1217 1218 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1219 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1220 wakeup(wpipe); 1221 } else if (wpipe->pipe_buffer.cnt > 0) { 1222 /* 1223 * If we have put any characters in the buffer, we wake up 1224 * the reader. 1225 */ 1226 if (wpipe->pipe_state & PIPE_WANTR) { 1227 wpipe->pipe_state &= ~PIPE_WANTR; 1228 wakeup(wpipe); 1229 } 1230 } 1231 1232 /* 1233 * Don't return EPIPE if I/O was successful 1234 */ 1235 if ((wpipe->pipe_buffer.cnt == 0) && 1236 (uio->uio_resid == 0) && 1237 (error == EPIPE)) { 1238 error = 0; 1239 } 1240 1241 if (error == 0) 1242 vfs_timestamp(&wpipe->pipe_mtime); 1243 1244 /* 1245 * We have something to offer, 1246 * wake up select/poll. 1247 */ 1248 if (wpipe->pipe_buffer.cnt) 1249 pipeselwakeup(wpipe); 1250 1251 pipeunlock(wpipe); 1252 PIPE_UNLOCK(rpipe); 1253 return (error); 1254 } 1255 1256 /* 1257 * we implement a very minimal set of ioctls for compatibility with sockets. 1258 */ 1259 static int 1260 pipe_ioctl(fp, cmd, data, active_cred, td) 1261 struct file *fp; 1262 u_long cmd; 1263 void *data; 1264 struct ucred *active_cred; 1265 struct thread *td; 1266 { 1267 struct pipe *mpipe = fp->f_data; 1268 int error; 1269 1270 PIPE_LOCK(mpipe); 1271 1272 #ifdef MAC 1273 error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1274 if (error) { 1275 PIPE_UNLOCK(mpipe); 1276 return (error); 1277 } 1278 #endif 1279 1280 error = 0; 1281 switch (cmd) { 1282 1283 case FIONBIO: 1284 break; 1285 1286 case FIOASYNC: 1287 if (*(int *)data) { 1288 mpipe->pipe_state |= PIPE_ASYNC; 1289 } else { 1290 mpipe->pipe_state &= ~PIPE_ASYNC; 1291 } 1292 break; 1293 1294 case FIONREAD: 1295 if (mpipe->pipe_state & PIPE_DIRECTW) 1296 *(int *)data = mpipe->pipe_map.cnt; 1297 else 1298 *(int *)data = mpipe->pipe_buffer.cnt; 1299 break; 1300 1301 case FIOSETOWN: 1302 PIPE_UNLOCK(mpipe); 1303 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1304 goto out_unlocked; 1305 1306 case FIOGETOWN: 1307 *(int *)data = fgetown(&mpipe->pipe_sigio); 1308 break; 1309 1310 /* This is deprecated, FIOSETOWN should be used instead. */ 1311 case TIOCSPGRP: 1312 PIPE_UNLOCK(mpipe); 1313 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1314 goto out_unlocked; 1315 1316 /* This is deprecated, FIOGETOWN should be used instead. */ 1317 case TIOCGPGRP: 1318 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1319 break; 1320 1321 default: 1322 error = ENOTTY; 1323 break; 1324 } 1325 PIPE_UNLOCK(mpipe); 1326 out_unlocked: 1327 return (error); 1328 } 1329 1330 static int 1331 pipe_poll(fp, events, active_cred, td) 1332 struct file *fp; 1333 int events; 1334 struct ucred *active_cred; 1335 struct thread *td; 1336 { 1337 struct pipe *rpipe = fp->f_data; 1338 struct pipe *wpipe; 1339 int revents = 0; 1340 #ifdef MAC 1341 int error; 1342 #endif 1343 1344 wpipe = rpipe->pipe_peer; 1345 PIPE_LOCK(rpipe); 1346 #ifdef MAC 1347 error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair); 1348 if (error) 1349 goto locked_error; 1350 #endif 1351 if (events & (POLLIN | POLLRDNORM)) 1352 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1353 (rpipe->pipe_buffer.cnt > 0) || 1354 (rpipe->pipe_state & PIPE_EOF)) 1355 revents |= events & (POLLIN | POLLRDNORM); 1356 1357 if (events & (POLLOUT | POLLWRNORM)) 1358 if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) || 1359 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1360 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1361 revents |= events & (POLLOUT | POLLWRNORM); 1362 1363 if ((rpipe->pipe_state & PIPE_EOF) || 1364 (!wpipe->pipe_present) || 1365 (wpipe->pipe_state & PIPE_EOF)) 1366 revents |= POLLHUP; 1367 1368 if (revents == 0) { 1369 if (events & (POLLIN | POLLRDNORM)) { 1370 selrecord(td, &rpipe->pipe_sel); 1371 rpipe->pipe_state |= PIPE_SEL; 1372 } 1373 1374 if (events & (POLLOUT | POLLWRNORM)) { 1375 selrecord(td, &wpipe->pipe_sel); 1376 wpipe->pipe_state |= PIPE_SEL; 1377 } 1378 } 1379 #ifdef MAC 1380 locked_error: 1381 #endif 1382 PIPE_UNLOCK(rpipe); 1383 1384 return (revents); 1385 } 1386 1387 /* 1388 * We shouldn't need locks here as we're doing a read and this should 1389 * be a natural race. 1390 */ 1391 static int 1392 pipe_stat(fp, ub, active_cred, td) 1393 struct file *fp; 1394 struct stat *ub; 1395 struct ucred *active_cred; 1396 struct thread *td; 1397 { 1398 struct pipe *pipe = fp->f_data; 1399 #ifdef MAC 1400 int error; 1401 1402 PIPE_LOCK(pipe); 1403 error = mac_check_pipe_stat(active_cred, pipe->pipe_pair); 1404 PIPE_UNLOCK(pipe); 1405 if (error) 1406 return (error); 1407 #endif 1408 bzero(ub, sizeof(*ub)); 1409 ub->st_mode = S_IFIFO; 1410 ub->st_blksize = PAGE_SIZE; 1411 if (pipe->pipe_state & PIPE_DIRECTW) 1412 ub->st_size = pipe->pipe_map.cnt; 1413 else 1414 ub->st_size = pipe->pipe_buffer.cnt; 1415 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1416 ub->st_atimespec = pipe->pipe_atime; 1417 ub->st_mtimespec = pipe->pipe_mtime; 1418 ub->st_ctimespec = pipe->pipe_ctime; 1419 ub->st_uid = fp->f_cred->cr_uid; 1420 ub->st_gid = fp->f_cred->cr_gid; 1421 /* 1422 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1423 * XXX (st_dev, st_ino) should be unique. 1424 */ 1425 return (0); 1426 } 1427 1428 /* ARGSUSED */ 1429 static int 1430 pipe_close(fp, td) 1431 struct file *fp; 1432 struct thread *td; 1433 { 1434 struct pipe *cpipe = fp->f_data; 1435 1436 fp->f_ops = &badfileops; 1437 fp->f_data = NULL; 1438 funsetown(&cpipe->pipe_sigio); 1439 pipeclose(cpipe); 1440 return (0); 1441 } 1442 1443 static void 1444 pipe_free_kmem(cpipe) 1445 struct pipe *cpipe; 1446 { 1447 1448 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1449 ("pipe_free_kmem: pipe mutex locked")); 1450 1451 if (cpipe->pipe_buffer.buffer != NULL) { 1452 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size); 1453 vm_map_remove(pipe_map, 1454 (vm_offset_t)cpipe->pipe_buffer.buffer, 1455 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1456 cpipe->pipe_buffer.buffer = NULL; 1457 } 1458 #ifndef PIPE_NODIRECT 1459 { 1460 cpipe->pipe_map.cnt = 0; 1461 cpipe->pipe_map.pos = 0; 1462 cpipe->pipe_map.npages = 0; 1463 } 1464 #endif 1465 } 1466 1467 /* 1468 * shutdown the pipe 1469 */ 1470 static void 1471 pipeclose(cpipe) 1472 struct pipe *cpipe; 1473 { 1474 struct pipepair *pp; 1475 struct pipe *ppipe; 1476 1477 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1478 1479 PIPE_LOCK(cpipe); 1480 pipelock(cpipe, 0); 1481 pp = cpipe->pipe_pair; 1482 1483 pipeselwakeup(cpipe); 1484 1485 /* 1486 * If the other side is blocked, wake it up saying that 1487 * we want to close it down. 1488 */ 1489 cpipe->pipe_state |= PIPE_EOF; 1490 while (cpipe->pipe_busy) { 1491 wakeup(cpipe); 1492 cpipe->pipe_state |= PIPE_WANT; 1493 pipeunlock(cpipe); 1494 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1495 pipelock(cpipe, 0); 1496 } 1497 1498 1499 /* 1500 * Disconnect from peer, if any. 1501 */ 1502 ppipe = cpipe->pipe_peer; 1503 if (ppipe->pipe_present != 0) { 1504 pipeselwakeup(ppipe); 1505 1506 ppipe->pipe_state |= PIPE_EOF; 1507 wakeup(ppipe); 1508 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1509 } 1510 1511 /* 1512 * Mark this endpoint as free. Release kmem resources. We 1513 * don't mark this endpoint as unused until we've finished 1514 * doing that, or the pipe might disappear out from under 1515 * us. 1516 */ 1517 PIPE_UNLOCK(cpipe); 1518 pipe_free_kmem(cpipe); 1519 PIPE_LOCK(cpipe); 1520 cpipe->pipe_present = 0; 1521 pipeunlock(cpipe); 1522 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1523 knlist_destroy(&cpipe->pipe_sel.si_note); 1524 1525 /* 1526 * If both endpoints are now closed, release the memory for the 1527 * pipe pair. If not, unlock. 1528 */ 1529 if (ppipe->pipe_present == 0) { 1530 PIPE_UNLOCK(cpipe); 1531 #ifdef MAC 1532 mac_destroy_pipe(pp); 1533 #endif 1534 uma_zfree(pipe_zone, cpipe->pipe_pair); 1535 } else 1536 PIPE_UNLOCK(cpipe); 1537 } 1538 1539 /*ARGSUSED*/ 1540 static int 1541 pipe_kqfilter(struct file *fp, struct knote *kn) 1542 { 1543 struct pipe *cpipe; 1544 1545 cpipe = kn->kn_fp->f_data; 1546 PIPE_LOCK(cpipe); 1547 switch (kn->kn_filter) { 1548 case EVFILT_READ: 1549 kn->kn_fop = &pipe_rfiltops; 1550 break; 1551 case EVFILT_WRITE: 1552 kn->kn_fop = &pipe_wfiltops; 1553 if (!cpipe->pipe_peer->pipe_present) { 1554 /* other end of pipe has been closed */ 1555 PIPE_UNLOCK(cpipe); 1556 return (EPIPE); 1557 } 1558 cpipe = cpipe->pipe_peer; 1559 break; 1560 default: 1561 PIPE_UNLOCK(cpipe); 1562 return (EINVAL); 1563 } 1564 1565 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1566 PIPE_UNLOCK(cpipe); 1567 return (0); 1568 } 1569 1570 static void 1571 filt_pipedetach(struct knote *kn) 1572 { 1573 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; 1574 1575 PIPE_LOCK(cpipe); 1576 if (kn->kn_filter == EVFILT_WRITE) { 1577 if (!cpipe->pipe_peer->pipe_present) { 1578 PIPE_UNLOCK(cpipe); 1579 return; 1580 } 1581 cpipe = cpipe->pipe_peer; 1582 } 1583 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1584 PIPE_UNLOCK(cpipe); 1585 } 1586 1587 /*ARGSUSED*/ 1588 static int 1589 filt_piperead(struct knote *kn, long hint) 1590 { 1591 struct pipe *rpipe = kn->kn_fp->f_data; 1592 struct pipe *wpipe = rpipe->pipe_peer; 1593 int ret; 1594 1595 PIPE_LOCK(rpipe); 1596 kn->kn_data = rpipe->pipe_buffer.cnt; 1597 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1598 kn->kn_data = rpipe->pipe_map.cnt; 1599 1600 if ((rpipe->pipe_state & PIPE_EOF) || 1601 (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1602 kn->kn_flags |= EV_EOF; 1603 PIPE_UNLOCK(rpipe); 1604 return (1); 1605 } 1606 ret = kn->kn_data > 0; 1607 PIPE_UNLOCK(rpipe); 1608 return ret; 1609 } 1610 1611 /*ARGSUSED*/ 1612 static int 1613 filt_pipewrite(struct knote *kn, long hint) 1614 { 1615 struct pipe *rpipe = kn->kn_fp->f_data; 1616 struct pipe *wpipe = rpipe->pipe_peer; 1617 1618 PIPE_LOCK(rpipe); 1619 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1620 kn->kn_data = 0; 1621 kn->kn_flags |= EV_EOF; 1622 PIPE_UNLOCK(rpipe); 1623 return (1); 1624 } 1625 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1626 if (wpipe->pipe_state & PIPE_DIRECTW) 1627 kn->kn_data = 0; 1628 1629 PIPE_UNLOCK(rpipe); 1630 return (kn->kn_data >= PIPE_BUF); 1631 } 1632