1 /*- 2 * Copyright (c) 1996 John S. Dyson 3 * Copyright (c) 2012 Giovanni Trematerra 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice immediately at the beginning of the file, without modification, 11 * this list of conditions, and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Absolutely no warranty of function or purpose is made by the author 16 * John S. Dyson. 17 * 4. Modifications may be freely made to this file if the above conditions 18 * are met. 19 */ 20 21 /* 22 * This file contains a high-performance replacement for the socket-based 23 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 24 * all features of sockets, but does do everything that pipes normally 25 * do. 26 */ 27 28 /* 29 * This code has two modes of operation, a small write mode and a large 30 * write mode. The small write mode acts like conventional pipes with 31 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 32 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 33 * and PIPE_SIZE in size, the sending process pins the underlying pages in 34 * memory, and the receiving process copies directly from these pinned pages 35 * in the sending process. 36 * 37 * If the sending process receives a signal, it is possible that it will 38 * go away, and certainly its address space can change, because control 39 * is returned back to the user-mode side. In that case, the pipe code 40 * arranges to copy the buffer supplied by the user process, to a pageable 41 * kernel buffer, and the receiving process will grab the data from the 42 * pageable kernel buffer. Since signals don't happen all that often, 43 * the copy operation is normally eliminated. 44 * 45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 46 * happen for small transfers so that the system will not spend all of 47 * its time context switching. 48 * 49 * In order to limit the resource use of pipes, two sysctls exist: 50 * 51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 52 * address space available to us in pipe_map. This value is normally 53 * autotuned, but may also be loader tuned. 54 * 55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 56 * memory in use by pipes. 57 * 58 * Based on how large pipekva is relative to maxpipekva, the following 59 * will happen: 60 * 61 * 0% - 50%: 62 * New pipes are given 16K of memory backing, pipes may dynamically 63 * grow to as large as 64K where needed. 64 * 50% - 75%: 65 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 66 * existing pipes may NOT grow. 67 * 75% - 100%: 68 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 69 * existing pipes will be shrunk down to 4K whenever possible. 70 * 71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 72 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 73 * resize which MUST occur for reverse-direction pipes when they are 74 * first used. 75 * 76 * Additional information about the current state of pipes may be obtained 77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 78 * and kern.ipc.piperesizefail. 79 * 80 * Locking rules: There are two locks present here: A mutex, used via 81 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 82 * the flag, as mutexes can not persist over uiomove. The mutex 83 * exists only to guard access to the flag, and is not in itself a 84 * locking mechanism. Also note that there is only a single mutex for 85 * both directions of a pipe. 86 * 87 * As pipelock() may have to sleep before it can acquire the flag, it 88 * is important to reread all data after a call to pipelock(); everything 89 * in the structure may have changed. 90 */ 91 92 #include <sys/cdefs.h> 93 __FBSDID("$FreeBSD$"); 94 95 #include <sys/param.h> 96 #include <sys/systm.h> 97 #include <sys/conf.h> 98 #include <sys/fcntl.h> 99 #include <sys/file.h> 100 #include <sys/filedesc.h> 101 #include <sys/filio.h> 102 #include <sys/kernel.h> 103 #include <sys/lock.h> 104 #include <sys/mutex.h> 105 #include <sys/ttycom.h> 106 #include <sys/stat.h> 107 #include <sys/malloc.h> 108 #include <sys/poll.h> 109 #include <sys/selinfo.h> 110 #include <sys/signalvar.h> 111 #include <sys/syscallsubr.h> 112 #include <sys/sysctl.h> 113 #include <sys/sysproto.h> 114 #include <sys/pipe.h> 115 #include <sys/proc.h> 116 #include <sys/vnode.h> 117 #include <sys/uio.h> 118 #include <sys/event.h> 119 120 #include <security/mac/mac_framework.h> 121 122 #include <vm/vm.h> 123 #include <vm/vm_param.h> 124 #include <vm/vm_object.h> 125 #include <vm/vm_kern.h> 126 #include <vm/vm_extern.h> 127 #include <vm/pmap.h> 128 #include <vm/vm_map.h> 129 #include <vm/vm_page.h> 130 #include <vm/uma.h> 131 132 /* 133 * Use this define if you want to disable *fancy* VM things. Expect an 134 * approx 30% decrease in transfer rate. This could be useful for 135 * NetBSD or OpenBSD. 136 */ 137 /* #define PIPE_NODIRECT */ 138 139 #define PIPE_PEER(pipe) \ 140 (((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer)) 141 142 /* 143 * interfaces to the outside world 144 */ 145 static fo_rdwr_t pipe_read; 146 static fo_rdwr_t pipe_write; 147 static fo_truncate_t pipe_truncate; 148 static fo_ioctl_t pipe_ioctl; 149 static fo_poll_t pipe_poll; 150 static fo_kqfilter_t pipe_kqfilter; 151 static fo_stat_t pipe_stat; 152 static fo_close_t pipe_close; 153 static fo_chmod_t pipe_chmod; 154 static fo_chown_t pipe_chown; 155 156 struct fileops pipeops = { 157 .fo_read = pipe_read, 158 .fo_write = pipe_write, 159 .fo_truncate = pipe_truncate, 160 .fo_ioctl = pipe_ioctl, 161 .fo_poll = pipe_poll, 162 .fo_kqfilter = pipe_kqfilter, 163 .fo_stat = pipe_stat, 164 .fo_close = pipe_close, 165 .fo_chmod = pipe_chmod, 166 .fo_chown = pipe_chown, 167 .fo_flags = DFLAG_PASSABLE 168 }; 169 170 static void filt_pipedetach(struct knote *kn); 171 static void filt_pipedetach_notsup(struct knote *kn); 172 static int filt_pipenotsup(struct knote *kn, long hint); 173 static int filt_piperead(struct knote *kn, long hint); 174 static int filt_pipewrite(struct knote *kn, long hint); 175 176 static struct filterops pipe_nfiltops = { 177 .f_isfd = 1, 178 .f_detach = filt_pipedetach_notsup, 179 .f_event = filt_pipenotsup 180 }; 181 static struct filterops pipe_rfiltops = { 182 .f_isfd = 1, 183 .f_detach = filt_pipedetach, 184 .f_event = filt_piperead 185 }; 186 static struct filterops pipe_wfiltops = { 187 .f_isfd = 1, 188 .f_detach = filt_pipedetach, 189 .f_event = filt_pipewrite 190 }; 191 192 /* 193 * Default pipe buffer size(s), this can be kind-of large now because pipe 194 * space is pageable. The pipe code will try to maintain locality of 195 * reference for performance reasons, so small amounts of outstanding I/O 196 * will not wipe the cache. 197 */ 198 #define MINPIPESIZE (PIPE_SIZE/3) 199 #define MAXPIPESIZE (2*PIPE_SIZE/3) 200 201 static long amountpipekva; 202 static int pipefragretry; 203 static int pipeallocfail; 204 static int piperesizefail; 205 static int piperesizeallowed = 1; 206 207 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, 208 &maxpipekva, 0, "Pipe KVA limit"); 209 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 210 &amountpipekva, 0, "Pipe KVA usage"); 211 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 212 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 213 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 214 &pipeallocfail, 0, "Pipe allocation failures"); 215 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 216 &piperesizefail, 0, "Pipe resize failures"); 217 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 218 &piperesizeallowed, 0, "Pipe resizing allowed"); 219 220 static void pipeinit(void *dummy __unused); 221 static void pipeclose(struct pipe *cpipe); 222 static void pipe_free_kmem(struct pipe *cpipe); 223 static int pipe_create(struct pipe *pipe, int backing); 224 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp); 225 static __inline int pipelock(struct pipe *cpipe, int catch); 226 static __inline void pipeunlock(struct pipe *cpipe); 227 static __inline void pipeselwakeup(struct pipe *cpipe); 228 #ifndef PIPE_NODIRECT 229 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 230 static void pipe_destroy_write_buffer(struct pipe *wpipe); 231 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 232 static void pipe_clone_write_buffer(struct pipe *wpipe); 233 #endif 234 static int pipespace(struct pipe *cpipe, int size); 235 static int pipespace_new(struct pipe *cpipe, int size); 236 237 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 238 static int pipe_zone_init(void *mem, int size, int flags); 239 static void pipe_zone_fini(void *mem, int size); 240 241 static uma_zone_t pipe_zone; 242 static struct unrhdr *pipeino_unr; 243 static dev_t pipedev_ino; 244 245 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 246 247 static void 248 pipeinit(void *dummy __unused) 249 { 250 251 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair), 252 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini, 253 UMA_ALIGN_PTR, 0); 254 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 255 pipeino_unr = new_unrhdr(1, INT32_MAX, NULL); 256 KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized")); 257 pipedev_ino = devfs_alloc_cdp_inode(); 258 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized")); 259 } 260 261 static int 262 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 263 { 264 struct pipepair *pp; 265 struct pipe *rpipe, *wpipe; 266 267 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 268 269 pp = (struct pipepair *)mem; 270 271 /* 272 * We zero both pipe endpoints to make sure all the kmem pointers 273 * are NULL, flag fields are zero'd, etc. We timestamp both 274 * endpoints with the same time. 275 */ 276 rpipe = &pp->pp_rpipe; 277 bzero(rpipe, sizeof(*rpipe)); 278 vfs_timestamp(&rpipe->pipe_ctime); 279 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 280 281 wpipe = &pp->pp_wpipe; 282 bzero(wpipe, sizeof(*wpipe)); 283 wpipe->pipe_ctime = rpipe->pipe_ctime; 284 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 285 286 rpipe->pipe_peer = wpipe; 287 rpipe->pipe_pair = pp; 288 wpipe->pipe_peer = rpipe; 289 wpipe->pipe_pair = pp; 290 291 /* 292 * Mark both endpoints as present; they will later get free'd 293 * one at a time. When both are free'd, then the whole pair 294 * is released. 295 */ 296 rpipe->pipe_present = PIPE_ACTIVE; 297 wpipe->pipe_present = PIPE_ACTIVE; 298 299 /* 300 * Eventually, the MAC Framework may initialize the label 301 * in ctor or init, but for now we do it elswhere to avoid 302 * blocking in ctor or init. 303 */ 304 pp->pp_label = NULL; 305 306 return (0); 307 } 308 309 static int 310 pipe_zone_init(void *mem, int size, int flags) 311 { 312 struct pipepair *pp; 313 314 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 315 316 pp = (struct pipepair *)mem; 317 318 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 319 return (0); 320 } 321 322 static void 323 pipe_zone_fini(void *mem, int size) 324 { 325 struct pipepair *pp; 326 327 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 328 329 pp = (struct pipepair *)mem; 330 331 mtx_destroy(&pp->pp_mtx); 332 } 333 334 static int 335 pipe_paircreate(struct thread *td, struct pipepair **p_pp) 336 { 337 struct pipepair *pp; 338 struct pipe *rpipe, *wpipe; 339 int error; 340 341 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK); 342 #ifdef MAC 343 /* 344 * The MAC label is shared between the connected endpoints. As a 345 * result mac_pipe_init() and mac_pipe_create() are called once 346 * for the pair, and not on the endpoints. 347 */ 348 mac_pipe_init(pp); 349 mac_pipe_create(td->td_ucred, pp); 350 #endif 351 rpipe = &pp->pp_rpipe; 352 wpipe = &pp->pp_wpipe; 353 354 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe)); 355 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe)); 356 357 /* Only the forward direction pipe is backed by default */ 358 if ((error = pipe_create(rpipe, 1)) != 0 || 359 (error = pipe_create(wpipe, 0)) != 0) { 360 pipeclose(rpipe); 361 pipeclose(wpipe); 362 return (error); 363 } 364 365 rpipe->pipe_state |= PIPE_DIRECTOK; 366 wpipe->pipe_state |= PIPE_DIRECTOK; 367 return (0); 368 } 369 370 int 371 pipe_named_ctor(struct pipe **ppipe, struct thread *td) 372 { 373 struct pipepair *pp; 374 int error; 375 376 error = pipe_paircreate(td, &pp); 377 if (error != 0) 378 return (error); 379 pp->pp_rpipe.pipe_state |= PIPE_NAMED; 380 *ppipe = &pp->pp_rpipe; 381 return (0); 382 } 383 384 void 385 pipe_dtor(struct pipe *dpipe) 386 { 387 ino_t ino; 388 389 ino = dpipe->pipe_ino; 390 funsetown(&dpipe->pipe_sigio); 391 pipeclose(dpipe); 392 if (dpipe->pipe_state & PIPE_NAMED) { 393 dpipe = dpipe->pipe_peer; 394 funsetown(&dpipe->pipe_sigio); 395 pipeclose(dpipe); 396 } 397 if (ino != 0 && ino != (ino_t)-1) 398 free_unr(pipeino_unr, ino); 399 } 400 401 /* 402 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let 403 * the zone pick up the pieces via pipeclose(). 404 */ 405 int 406 kern_pipe(struct thread *td, int fildes[2]) 407 { 408 struct filedesc *fdp; 409 struct file *rf, *wf; 410 struct pipe *rpipe, *wpipe; 411 struct pipepair *pp; 412 int fd, error; 413 414 fdp = td->td_proc->p_fd; 415 error = pipe_paircreate(td, &pp); 416 if (error != 0) 417 return (error); 418 rpipe = &pp->pp_rpipe; 419 wpipe = &pp->pp_wpipe; 420 error = falloc(td, &rf, &fd, 0); 421 if (error) { 422 pipeclose(rpipe); 423 pipeclose(wpipe); 424 return (error); 425 } 426 /* An extra reference on `rf' has been held for us by falloc(). */ 427 fildes[0] = fd; 428 429 /* 430 * Warning: once we've gotten past allocation of the fd for the 431 * read-side, we can only drop the read side via fdrop() in order 432 * to avoid races against processes which manage to dup() the read 433 * side while we are blocked trying to allocate the write side. 434 */ 435 finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops); 436 error = falloc(td, &wf, &fd, 0); 437 if (error) { 438 fdclose(fdp, rf, fildes[0], td); 439 fdrop(rf, td); 440 /* rpipe has been closed by fdrop(). */ 441 pipeclose(wpipe); 442 return (error); 443 } 444 /* An extra reference on `wf' has been held for us by falloc(). */ 445 finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops); 446 fdrop(wf, td); 447 fildes[1] = fd; 448 fdrop(rf, td); 449 450 return (0); 451 } 452 453 /* ARGSUSED */ 454 int 455 sys_pipe(struct thread *td, struct pipe_args *uap) 456 { 457 int error; 458 int fildes[2]; 459 460 error = kern_pipe(td, fildes); 461 if (error) 462 return (error); 463 464 td->td_retval[0] = fildes[0]; 465 td->td_retval[1] = fildes[1]; 466 467 return (0); 468 } 469 470 /* 471 * Allocate kva for pipe circular buffer, the space is pageable 472 * This routine will 'realloc' the size of a pipe safely, if it fails 473 * it will retain the old buffer. 474 * If it fails it will return ENOMEM. 475 */ 476 static int 477 pipespace_new(cpipe, size) 478 struct pipe *cpipe; 479 int size; 480 { 481 caddr_t buffer; 482 int error, cnt, firstseg; 483 static int curfail = 0; 484 static struct timeval lastfail; 485 486 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 487 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 488 ("pipespace: resize of direct writes not allowed")); 489 retry: 490 cnt = cpipe->pipe_buffer.cnt; 491 if (cnt > size) 492 size = cnt; 493 494 size = round_page(size); 495 buffer = (caddr_t) vm_map_min(pipe_map); 496 497 error = vm_map_find(pipe_map, NULL, 0, 498 (vm_offset_t *) &buffer, size, 1, 499 VM_PROT_ALL, VM_PROT_ALL, 0); 500 if (error != KERN_SUCCESS) { 501 if ((cpipe->pipe_buffer.buffer == NULL) && 502 (size > SMALL_PIPE_SIZE)) { 503 size = SMALL_PIPE_SIZE; 504 pipefragretry++; 505 goto retry; 506 } 507 if (cpipe->pipe_buffer.buffer == NULL) { 508 pipeallocfail++; 509 if (ppsratecheck(&lastfail, &curfail, 1)) 510 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 511 } else { 512 piperesizefail++; 513 } 514 return (ENOMEM); 515 } 516 517 /* copy data, then free old resources if we're resizing */ 518 if (cnt > 0) { 519 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 520 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 521 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 522 buffer, firstseg); 523 if ((cnt - firstseg) > 0) 524 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 525 cpipe->pipe_buffer.in); 526 } else { 527 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 528 buffer, cnt); 529 } 530 } 531 pipe_free_kmem(cpipe); 532 cpipe->pipe_buffer.buffer = buffer; 533 cpipe->pipe_buffer.size = size; 534 cpipe->pipe_buffer.in = cnt; 535 cpipe->pipe_buffer.out = 0; 536 cpipe->pipe_buffer.cnt = cnt; 537 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size); 538 return (0); 539 } 540 541 /* 542 * Wrapper for pipespace_new() that performs locking assertions. 543 */ 544 static int 545 pipespace(cpipe, size) 546 struct pipe *cpipe; 547 int size; 548 { 549 550 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 551 ("Unlocked pipe passed to pipespace")); 552 return (pipespace_new(cpipe, size)); 553 } 554 555 /* 556 * lock a pipe for I/O, blocking other access 557 */ 558 static __inline int 559 pipelock(cpipe, catch) 560 struct pipe *cpipe; 561 int catch; 562 { 563 int error; 564 565 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 566 while (cpipe->pipe_state & PIPE_LOCKFL) { 567 cpipe->pipe_state |= PIPE_LWANT; 568 error = msleep(cpipe, PIPE_MTX(cpipe), 569 catch ? (PRIBIO | PCATCH) : PRIBIO, 570 "pipelk", 0); 571 if (error != 0) 572 return (error); 573 } 574 cpipe->pipe_state |= PIPE_LOCKFL; 575 return (0); 576 } 577 578 /* 579 * unlock a pipe I/O lock 580 */ 581 static __inline void 582 pipeunlock(cpipe) 583 struct pipe *cpipe; 584 { 585 586 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 587 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 588 ("Unlocked pipe passed to pipeunlock")); 589 cpipe->pipe_state &= ~PIPE_LOCKFL; 590 if (cpipe->pipe_state & PIPE_LWANT) { 591 cpipe->pipe_state &= ~PIPE_LWANT; 592 wakeup(cpipe); 593 } 594 } 595 596 static __inline void 597 pipeselwakeup(cpipe) 598 struct pipe *cpipe; 599 { 600 601 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 602 if (cpipe->pipe_state & PIPE_SEL) { 603 selwakeuppri(&cpipe->pipe_sel, PSOCK); 604 if (!SEL_WAITING(&cpipe->pipe_sel)) 605 cpipe->pipe_state &= ~PIPE_SEL; 606 } 607 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 608 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 609 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 610 } 611 612 /* 613 * Initialize and allocate VM and memory for pipe. The structure 614 * will start out zero'd from the ctor, so we just manage the kmem. 615 */ 616 static int 617 pipe_create(pipe, backing) 618 struct pipe *pipe; 619 int backing; 620 { 621 int error; 622 623 if (backing) { 624 if (amountpipekva > maxpipekva / 2) 625 error = pipespace_new(pipe, SMALL_PIPE_SIZE); 626 else 627 error = pipespace_new(pipe, PIPE_SIZE); 628 } else { 629 /* If we're not backing this pipe, no need to do anything. */ 630 error = 0; 631 } 632 pipe->pipe_ino = -1; 633 return (error); 634 } 635 636 /* ARGSUSED */ 637 static int 638 pipe_read(fp, uio, active_cred, flags, td) 639 struct file *fp; 640 struct uio *uio; 641 struct ucred *active_cred; 642 struct thread *td; 643 int flags; 644 { 645 struct pipe *rpipe; 646 int error; 647 int nread = 0; 648 int size; 649 650 rpipe = fp->f_data; 651 PIPE_LOCK(rpipe); 652 ++rpipe->pipe_busy; 653 error = pipelock(rpipe, 1); 654 if (error) 655 goto unlocked_error; 656 657 #ifdef MAC 658 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair); 659 if (error) 660 goto locked_error; 661 #endif 662 if (amountpipekva > (3 * maxpipekva) / 4) { 663 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 664 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 665 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 666 (piperesizeallowed == 1)) { 667 PIPE_UNLOCK(rpipe); 668 pipespace(rpipe, SMALL_PIPE_SIZE); 669 PIPE_LOCK(rpipe); 670 } 671 } 672 673 while (uio->uio_resid) { 674 /* 675 * normal pipe buffer receive 676 */ 677 if (rpipe->pipe_buffer.cnt > 0) { 678 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 679 if (size > rpipe->pipe_buffer.cnt) 680 size = rpipe->pipe_buffer.cnt; 681 if (size > uio->uio_resid) 682 size = uio->uio_resid; 683 684 PIPE_UNLOCK(rpipe); 685 error = uiomove( 686 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 687 size, uio); 688 PIPE_LOCK(rpipe); 689 if (error) 690 break; 691 692 rpipe->pipe_buffer.out += size; 693 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 694 rpipe->pipe_buffer.out = 0; 695 696 rpipe->pipe_buffer.cnt -= size; 697 698 /* 699 * If there is no more to read in the pipe, reset 700 * its pointers to the beginning. This improves 701 * cache hit stats. 702 */ 703 if (rpipe->pipe_buffer.cnt == 0) { 704 rpipe->pipe_buffer.in = 0; 705 rpipe->pipe_buffer.out = 0; 706 } 707 nread += size; 708 #ifndef PIPE_NODIRECT 709 /* 710 * Direct copy, bypassing a kernel buffer. 711 */ 712 } else if ((size = rpipe->pipe_map.cnt) && 713 (rpipe->pipe_state & PIPE_DIRECTW)) { 714 if (size > uio->uio_resid) 715 size = (u_int) uio->uio_resid; 716 717 PIPE_UNLOCK(rpipe); 718 error = uiomove_fromphys(rpipe->pipe_map.ms, 719 rpipe->pipe_map.pos, size, uio); 720 PIPE_LOCK(rpipe); 721 if (error) 722 break; 723 nread += size; 724 rpipe->pipe_map.pos += size; 725 rpipe->pipe_map.cnt -= size; 726 if (rpipe->pipe_map.cnt == 0) { 727 rpipe->pipe_state &= ~PIPE_DIRECTW; 728 wakeup(rpipe); 729 } 730 #endif 731 } else { 732 /* 733 * detect EOF condition 734 * read returns 0 on EOF, no need to set error 735 */ 736 if (rpipe->pipe_state & PIPE_EOF) 737 break; 738 739 /* 740 * If the "write-side" has been blocked, wake it up now. 741 */ 742 if (rpipe->pipe_state & PIPE_WANTW) { 743 rpipe->pipe_state &= ~PIPE_WANTW; 744 wakeup(rpipe); 745 } 746 747 /* 748 * Break if some data was read. 749 */ 750 if (nread > 0) 751 break; 752 753 /* 754 * Unlock the pipe buffer for our remaining processing. 755 * We will either break out with an error or we will 756 * sleep and relock to loop. 757 */ 758 pipeunlock(rpipe); 759 760 /* 761 * Handle non-blocking mode operation or 762 * wait for more data. 763 */ 764 if (fp->f_flag & FNONBLOCK) { 765 error = EAGAIN; 766 } else { 767 rpipe->pipe_state |= PIPE_WANTR; 768 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 769 PRIBIO | PCATCH, 770 "piperd", 0)) == 0) 771 error = pipelock(rpipe, 1); 772 } 773 if (error) 774 goto unlocked_error; 775 } 776 } 777 #ifdef MAC 778 locked_error: 779 #endif 780 pipeunlock(rpipe); 781 782 /* XXX: should probably do this before getting any locks. */ 783 if (error == 0) 784 vfs_timestamp(&rpipe->pipe_atime); 785 unlocked_error: 786 --rpipe->pipe_busy; 787 788 /* 789 * PIPE_WANT processing only makes sense if pipe_busy is 0. 790 */ 791 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 792 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 793 wakeup(rpipe); 794 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 795 /* 796 * Handle write blocking hysteresis. 797 */ 798 if (rpipe->pipe_state & PIPE_WANTW) { 799 rpipe->pipe_state &= ~PIPE_WANTW; 800 wakeup(rpipe); 801 } 802 } 803 804 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 805 pipeselwakeup(rpipe); 806 807 PIPE_UNLOCK(rpipe); 808 return (error); 809 } 810 811 #ifndef PIPE_NODIRECT 812 /* 813 * Map the sending processes' buffer into kernel space and wire it. 814 * This is similar to a physical write operation. 815 */ 816 static int 817 pipe_build_write_buffer(wpipe, uio) 818 struct pipe *wpipe; 819 struct uio *uio; 820 { 821 u_int size; 822 int i; 823 824 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 825 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 826 ("Clone attempt on non-direct write pipe!")); 827 828 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size) 829 size = wpipe->pipe_buffer.size; 830 else 831 size = uio->uio_iov->iov_len; 832 833 if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 834 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ, 835 wpipe->pipe_map.ms, PIPENPAGES)) < 0) 836 return (EFAULT); 837 838 /* 839 * set up the control block 840 */ 841 wpipe->pipe_map.npages = i; 842 wpipe->pipe_map.pos = 843 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 844 wpipe->pipe_map.cnt = size; 845 846 /* 847 * and update the uio data 848 */ 849 850 uio->uio_iov->iov_len -= size; 851 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 852 if (uio->uio_iov->iov_len == 0) 853 uio->uio_iov++; 854 uio->uio_resid -= size; 855 uio->uio_offset += size; 856 return (0); 857 } 858 859 /* 860 * unmap and unwire the process buffer 861 */ 862 static void 863 pipe_destroy_write_buffer(wpipe) 864 struct pipe *wpipe; 865 { 866 867 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 868 vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages); 869 wpipe->pipe_map.npages = 0; 870 } 871 872 /* 873 * In the case of a signal, the writing process might go away. This 874 * code copies the data into the circular buffer so that the source 875 * pages can be freed without loss of data. 876 */ 877 static void 878 pipe_clone_write_buffer(wpipe) 879 struct pipe *wpipe; 880 { 881 struct uio uio; 882 struct iovec iov; 883 int size; 884 int pos; 885 886 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 887 size = wpipe->pipe_map.cnt; 888 pos = wpipe->pipe_map.pos; 889 890 wpipe->pipe_buffer.in = size; 891 wpipe->pipe_buffer.out = 0; 892 wpipe->pipe_buffer.cnt = size; 893 wpipe->pipe_state &= ~PIPE_DIRECTW; 894 895 PIPE_UNLOCK(wpipe); 896 iov.iov_base = wpipe->pipe_buffer.buffer; 897 iov.iov_len = size; 898 uio.uio_iov = &iov; 899 uio.uio_iovcnt = 1; 900 uio.uio_offset = 0; 901 uio.uio_resid = size; 902 uio.uio_segflg = UIO_SYSSPACE; 903 uio.uio_rw = UIO_READ; 904 uio.uio_td = curthread; 905 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 906 PIPE_LOCK(wpipe); 907 pipe_destroy_write_buffer(wpipe); 908 } 909 910 /* 911 * This implements the pipe buffer write mechanism. Note that only 912 * a direct write OR a normal pipe write can be pending at any given time. 913 * If there are any characters in the pipe buffer, the direct write will 914 * be deferred until the receiving process grabs all of the bytes from 915 * the pipe buffer. Then the direct mapping write is set-up. 916 */ 917 static int 918 pipe_direct_write(wpipe, uio) 919 struct pipe *wpipe; 920 struct uio *uio; 921 { 922 int error; 923 924 retry: 925 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 926 error = pipelock(wpipe, 1); 927 if (wpipe->pipe_state & PIPE_EOF) 928 error = EPIPE; 929 if (error) { 930 pipeunlock(wpipe); 931 goto error1; 932 } 933 while (wpipe->pipe_state & PIPE_DIRECTW) { 934 if (wpipe->pipe_state & PIPE_WANTR) { 935 wpipe->pipe_state &= ~PIPE_WANTR; 936 wakeup(wpipe); 937 } 938 pipeselwakeup(wpipe); 939 wpipe->pipe_state |= PIPE_WANTW; 940 pipeunlock(wpipe); 941 error = msleep(wpipe, PIPE_MTX(wpipe), 942 PRIBIO | PCATCH, "pipdww", 0); 943 if (error) 944 goto error1; 945 else 946 goto retry; 947 } 948 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 949 if (wpipe->pipe_buffer.cnt > 0) { 950 if (wpipe->pipe_state & PIPE_WANTR) { 951 wpipe->pipe_state &= ~PIPE_WANTR; 952 wakeup(wpipe); 953 } 954 pipeselwakeup(wpipe); 955 wpipe->pipe_state |= PIPE_WANTW; 956 pipeunlock(wpipe); 957 error = msleep(wpipe, PIPE_MTX(wpipe), 958 PRIBIO | PCATCH, "pipdwc", 0); 959 if (error) 960 goto error1; 961 else 962 goto retry; 963 } 964 965 wpipe->pipe_state |= PIPE_DIRECTW; 966 967 PIPE_UNLOCK(wpipe); 968 error = pipe_build_write_buffer(wpipe, uio); 969 PIPE_LOCK(wpipe); 970 if (error) { 971 wpipe->pipe_state &= ~PIPE_DIRECTW; 972 pipeunlock(wpipe); 973 goto error1; 974 } 975 976 error = 0; 977 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 978 if (wpipe->pipe_state & PIPE_EOF) { 979 pipe_destroy_write_buffer(wpipe); 980 pipeselwakeup(wpipe); 981 pipeunlock(wpipe); 982 error = EPIPE; 983 goto error1; 984 } 985 if (wpipe->pipe_state & PIPE_WANTR) { 986 wpipe->pipe_state &= ~PIPE_WANTR; 987 wakeup(wpipe); 988 } 989 pipeselwakeup(wpipe); 990 pipeunlock(wpipe); 991 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 992 "pipdwt", 0); 993 pipelock(wpipe, 0); 994 } 995 996 if (wpipe->pipe_state & PIPE_EOF) 997 error = EPIPE; 998 if (wpipe->pipe_state & PIPE_DIRECTW) { 999 /* 1000 * this bit of trickery substitutes a kernel buffer for 1001 * the process that might be going away. 1002 */ 1003 pipe_clone_write_buffer(wpipe); 1004 } else { 1005 pipe_destroy_write_buffer(wpipe); 1006 } 1007 pipeunlock(wpipe); 1008 return (error); 1009 1010 error1: 1011 wakeup(wpipe); 1012 return (error); 1013 } 1014 #endif 1015 1016 static int 1017 pipe_write(fp, uio, active_cred, flags, td) 1018 struct file *fp; 1019 struct uio *uio; 1020 struct ucred *active_cred; 1021 struct thread *td; 1022 int flags; 1023 { 1024 int error = 0; 1025 int desiredsize; 1026 ssize_t orig_resid; 1027 struct pipe *wpipe, *rpipe; 1028 1029 rpipe = fp->f_data; 1030 wpipe = PIPE_PEER(rpipe); 1031 PIPE_LOCK(rpipe); 1032 error = pipelock(wpipe, 1); 1033 if (error) { 1034 PIPE_UNLOCK(rpipe); 1035 return (error); 1036 } 1037 /* 1038 * detect loss of pipe read side, issue SIGPIPE if lost. 1039 */ 1040 if (wpipe->pipe_present != PIPE_ACTIVE || 1041 (wpipe->pipe_state & PIPE_EOF)) { 1042 pipeunlock(wpipe); 1043 PIPE_UNLOCK(rpipe); 1044 return (EPIPE); 1045 } 1046 #ifdef MAC 1047 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair); 1048 if (error) { 1049 pipeunlock(wpipe); 1050 PIPE_UNLOCK(rpipe); 1051 return (error); 1052 } 1053 #endif 1054 ++wpipe->pipe_busy; 1055 1056 /* Choose a larger size if it's advantageous */ 1057 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1058 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1059 if (piperesizeallowed != 1) 1060 break; 1061 if (amountpipekva > maxpipekva / 2) 1062 break; 1063 if (desiredsize == BIG_PIPE_SIZE) 1064 break; 1065 desiredsize = desiredsize * 2; 1066 } 1067 1068 /* Choose a smaller size if we're in a OOM situation */ 1069 if ((amountpipekva > (3 * maxpipekva) / 4) && 1070 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 1071 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1072 (piperesizeallowed == 1)) 1073 desiredsize = SMALL_PIPE_SIZE; 1074 1075 /* Resize if the above determined that a new size was necessary */ 1076 if ((desiredsize != wpipe->pipe_buffer.size) && 1077 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1078 PIPE_UNLOCK(wpipe); 1079 pipespace(wpipe, desiredsize); 1080 PIPE_LOCK(wpipe); 1081 } 1082 if (wpipe->pipe_buffer.size == 0) { 1083 /* 1084 * This can only happen for reverse direction use of pipes 1085 * in a complete OOM situation. 1086 */ 1087 error = ENOMEM; 1088 --wpipe->pipe_busy; 1089 pipeunlock(wpipe); 1090 PIPE_UNLOCK(wpipe); 1091 return (error); 1092 } 1093 1094 pipeunlock(wpipe); 1095 1096 orig_resid = uio->uio_resid; 1097 1098 while (uio->uio_resid) { 1099 int space; 1100 1101 pipelock(wpipe, 0); 1102 if (wpipe->pipe_state & PIPE_EOF) { 1103 pipeunlock(wpipe); 1104 error = EPIPE; 1105 break; 1106 } 1107 #ifndef PIPE_NODIRECT 1108 /* 1109 * If the transfer is large, we can gain performance if 1110 * we do process-to-process copies directly. 1111 * If the write is non-blocking, we don't use the 1112 * direct write mechanism. 1113 * 1114 * The direct write mechanism will detect the reader going 1115 * away on us. 1116 */ 1117 if (uio->uio_segflg == UIO_USERSPACE && 1118 uio->uio_iov->iov_len >= PIPE_MINDIRECT && 1119 wpipe->pipe_buffer.size >= PIPE_MINDIRECT && 1120 (fp->f_flag & FNONBLOCK) == 0) { 1121 pipeunlock(wpipe); 1122 error = pipe_direct_write(wpipe, uio); 1123 if (error) 1124 break; 1125 continue; 1126 } 1127 #endif 1128 1129 /* 1130 * Pipe buffered writes cannot be coincidental with 1131 * direct writes. We wait until the currently executing 1132 * direct write is completed before we start filling the 1133 * pipe buffer. We break out if a signal occurs or the 1134 * reader goes away. 1135 */ 1136 if (wpipe->pipe_state & PIPE_DIRECTW) { 1137 if (wpipe->pipe_state & PIPE_WANTR) { 1138 wpipe->pipe_state &= ~PIPE_WANTR; 1139 wakeup(wpipe); 1140 } 1141 pipeselwakeup(wpipe); 1142 wpipe->pipe_state |= PIPE_WANTW; 1143 pipeunlock(wpipe); 1144 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1145 "pipbww", 0); 1146 if (error) 1147 break; 1148 else 1149 continue; 1150 } 1151 1152 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1153 1154 /* Writes of size <= PIPE_BUF must be atomic. */ 1155 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1156 space = 0; 1157 1158 if (space > 0) { 1159 int size; /* Transfer size */ 1160 int segsize; /* first segment to transfer */ 1161 1162 /* 1163 * Transfer size is minimum of uio transfer 1164 * and free space in pipe buffer. 1165 */ 1166 if (space > uio->uio_resid) 1167 size = uio->uio_resid; 1168 else 1169 size = space; 1170 /* 1171 * First segment to transfer is minimum of 1172 * transfer size and contiguous space in 1173 * pipe buffer. If first segment to transfer 1174 * is less than the transfer size, we've got 1175 * a wraparound in the buffer. 1176 */ 1177 segsize = wpipe->pipe_buffer.size - 1178 wpipe->pipe_buffer.in; 1179 if (segsize > size) 1180 segsize = size; 1181 1182 /* Transfer first segment */ 1183 1184 PIPE_UNLOCK(rpipe); 1185 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1186 segsize, uio); 1187 PIPE_LOCK(rpipe); 1188 1189 if (error == 0 && segsize < size) { 1190 KASSERT(wpipe->pipe_buffer.in + segsize == 1191 wpipe->pipe_buffer.size, 1192 ("Pipe buffer wraparound disappeared")); 1193 /* 1194 * Transfer remaining part now, to 1195 * support atomic writes. Wraparound 1196 * happened. 1197 */ 1198 1199 PIPE_UNLOCK(rpipe); 1200 error = uiomove( 1201 &wpipe->pipe_buffer.buffer[0], 1202 size - segsize, uio); 1203 PIPE_LOCK(rpipe); 1204 } 1205 if (error == 0) { 1206 wpipe->pipe_buffer.in += size; 1207 if (wpipe->pipe_buffer.in >= 1208 wpipe->pipe_buffer.size) { 1209 KASSERT(wpipe->pipe_buffer.in == 1210 size - segsize + 1211 wpipe->pipe_buffer.size, 1212 ("Expected wraparound bad")); 1213 wpipe->pipe_buffer.in = size - segsize; 1214 } 1215 1216 wpipe->pipe_buffer.cnt += size; 1217 KASSERT(wpipe->pipe_buffer.cnt <= 1218 wpipe->pipe_buffer.size, 1219 ("Pipe buffer overflow")); 1220 } 1221 pipeunlock(wpipe); 1222 if (error != 0) 1223 break; 1224 } else { 1225 /* 1226 * If the "read-side" has been blocked, wake it up now. 1227 */ 1228 if (wpipe->pipe_state & PIPE_WANTR) { 1229 wpipe->pipe_state &= ~PIPE_WANTR; 1230 wakeup(wpipe); 1231 } 1232 1233 /* 1234 * don't block on non-blocking I/O 1235 */ 1236 if (fp->f_flag & FNONBLOCK) { 1237 error = EAGAIN; 1238 pipeunlock(wpipe); 1239 break; 1240 } 1241 1242 /* 1243 * We have no more space and have something to offer, 1244 * wake up select/poll. 1245 */ 1246 pipeselwakeup(wpipe); 1247 1248 wpipe->pipe_state |= PIPE_WANTW; 1249 pipeunlock(wpipe); 1250 error = msleep(wpipe, PIPE_MTX(rpipe), 1251 PRIBIO | PCATCH, "pipewr", 0); 1252 if (error != 0) 1253 break; 1254 } 1255 } 1256 1257 pipelock(wpipe, 0); 1258 --wpipe->pipe_busy; 1259 1260 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1261 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1262 wakeup(wpipe); 1263 } else if (wpipe->pipe_buffer.cnt > 0) { 1264 /* 1265 * If we have put any characters in the buffer, we wake up 1266 * the reader. 1267 */ 1268 if (wpipe->pipe_state & PIPE_WANTR) { 1269 wpipe->pipe_state &= ~PIPE_WANTR; 1270 wakeup(wpipe); 1271 } 1272 } 1273 1274 /* 1275 * Don't return EPIPE if I/O was successful 1276 */ 1277 if ((wpipe->pipe_buffer.cnt == 0) && 1278 (uio->uio_resid == 0) && 1279 (error == EPIPE)) { 1280 error = 0; 1281 } 1282 1283 if (error == 0) 1284 vfs_timestamp(&wpipe->pipe_mtime); 1285 1286 /* 1287 * We have something to offer, 1288 * wake up select/poll. 1289 */ 1290 if (wpipe->pipe_buffer.cnt) 1291 pipeselwakeup(wpipe); 1292 1293 pipeunlock(wpipe); 1294 PIPE_UNLOCK(rpipe); 1295 return (error); 1296 } 1297 1298 /* ARGSUSED */ 1299 static int 1300 pipe_truncate(fp, length, active_cred, td) 1301 struct file *fp; 1302 off_t length; 1303 struct ucred *active_cred; 1304 struct thread *td; 1305 { 1306 1307 /* For named pipes call the vnode operation. */ 1308 if (fp->f_vnode != NULL) 1309 return (vnops.fo_truncate(fp, length, active_cred, td)); 1310 return (EINVAL); 1311 } 1312 1313 /* 1314 * we implement a very minimal set of ioctls for compatibility with sockets. 1315 */ 1316 static int 1317 pipe_ioctl(fp, cmd, data, active_cred, td) 1318 struct file *fp; 1319 u_long cmd; 1320 void *data; 1321 struct ucred *active_cred; 1322 struct thread *td; 1323 { 1324 struct pipe *mpipe = fp->f_data; 1325 int error; 1326 1327 PIPE_LOCK(mpipe); 1328 1329 #ifdef MAC 1330 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1331 if (error) { 1332 PIPE_UNLOCK(mpipe); 1333 return (error); 1334 } 1335 #endif 1336 1337 error = 0; 1338 switch (cmd) { 1339 1340 case FIONBIO: 1341 break; 1342 1343 case FIOASYNC: 1344 if (*(int *)data) { 1345 mpipe->pipe_state |= PIPE_ASYNC; 1346 } else { 1347 mpipe->pipe_state &= ~PIPE_ASYNC; 1348 } 1349 break; 1350 1351 case FIONREAD: 1352 if (!(fp->f_flag & FREAD)) { 1353 *(int *)data = 0; 1354 PIPE_UNLOCK(mpipe); 1355 return (0); 1356 } 1357 if (mpipe->pipe_state & PIPE_DIRECTW) 1358 *(int *)data = mpipe->pipe_map.cnt; 1359 else 1360 *(int *)data = mpipe->pipe_buffer.cnt; 1361 break; 1362 1363 case FIOSETOWN: 1364 PIPE_UNLOCK(mpipe); 1365 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1366 goto out_unlocked; 1367 1368 case FIOGETOWN: 1369 *(int *)data = fgetown(&mpipe->pipe_sigio); 1370 break; 1371 1372 /* This is deprecated, FIOSETOWN should be used instead. */ 1373 case TIOCSPGRP: 1374 PIPE_UNLOCK(mpipe); 1375 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1376 goto out_unlocked; 1377 1378 /* This is deprecated, FIOGETOWN should be used instead. */ 1379 case TIOCGPGRP: 1380 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1381 break; 1382 1383 default: 1384 error = ENOTTY; 1385 break; 1386 } 1387 PIPE_UNLOCK(mpipe); 1388 out_unlocked: 1389 return (error); 1390 } 1391 1392 static int 1393 pipe_poll(fp, events, active_cred, td) 1394 struct file *fp; 1395 int events; 1396 struct ucred *active_cred; 1397 struct thread *td; 1398 { 1399 struct pipe *rpipe; 1400 struct pipe *wpipe; 1401 int levents, revents; 1402 #ifdef MAC 1403 int error; 1404 #endif 1405 1406 revents = 0; 1407 rpipe = fp->f_data; 1408 wpipe = PIPE_PEER(rpipe); 1409 PIPE_LOCK(rpipe); 1410 #ifdef MAC 1411 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair); 1412 if (error) 1413 goto locked_error; 1414 #endif 1415 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) 1416 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1417 (rpipe->pipe_buffer.cnt > 0)) 1418 revents |= events & (POLLIN | POLLRDNORM); 1419 1420 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) 1421 if (wpipe->pipe_present != PIPE_ACTIVE || 1422 (wpipe->pipe_state & PIPE_EOF) || 1423 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1424 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF || 1425 wpipe->pipe_buffer.size == 0))) 1426 revents |= events & (POLLOUT | POLLWRNORM); 1427 1428 levents = events & 1429 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND); 1430 if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents && 1431 rpipe->pipe_state & PIPE_SAMEWGEN) 1432 events |= POLLINIGNEOF; 1433 1434 if ((events & POLLINIGNEOF) == 0) { 1435 if (rpipe->pipe_state & PIPE_EOF) { 1436 revents |= (events & (POLLIN | POLLRDNORM)); 1437 if (wpipe->pipe_present != PIPE_ACTIVE || 1438 (wpipe->pipe_state & PIPE_EOF)) 1439 revents |= POLLHUP; 1440 } 1441 } 1442 1443 if (revents == 0) { 1444 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) { 1445 selrecord(td, &rpipe->pipe_sel); 1446 if (SEL_WAITING(&rpipe->pipe_sel)) 1447 rpipe->pipe_state |= PIPE_SEL; 1448 } 1449 1450 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) { 1451 selrecord(td, &wpipe->pipe_sel); 1452 if (SEL_WAITING(&wpipe->pipe_sel)) 1453 wpipe->pipe_state |= PIPE_SEL; 1454 } 1455 } 1456 #ifdef MAC 1457 locked_error: 1458 #endif 1459 PIPE_UNLOCK(rpipe); 1460 1461 return (revents); 1462 } 1463 1464 /* 1465 * We shouldn't need locks here as we're doing a read and this should 1466 * be a natural race. 1467 */ 1468 static int 1469 pipe_stat(fp, ub, active_cred, td) 1470 struct file *fp; 1471 struct stat *ub; 1472 struct ucred *active_cred; 1473 struct thread *td; 1474 { 1475 struct pipe *pipe; 1476 int new_unr; 1477 #ifdef MAC 1478 int error; 1479 #endif 1480 1481 pipe = fp->f_data; 1482 PIPE_LOCK(pipe); 1483 #ifdef MAC 1484 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair); 1485 if (error) { 1486 PIPE_UNLOCK(pipe); 1487 return (error); 1488 } 1489 #endif 1490 1491 /* For named pipes ask the underlying filesystem. */ 1492 if (pipe->pipe_state & PIPE_NAMED) { 1493 PIPE_UNLOCK(pipe); 1494 return (vnops.fo_stat(fp, ub, active_cred, td)); 1495 } 1496 1497 /* 1498 * Lazily allocate an inode number for the pipe. Most pipe 1499 * users do not call fstat(2) on the pipe, which means that 1500 * postponing the inode allocation until it is must be 1501 * returned to userland is useful. If alloc_unr failed, 1502 * assign st_ino zero instead of returning an error. 1503 * Special pipe_ino values: 1504 * -1 - not yet initialized; 1505 * 0 - alloc_unr failed, return 0 as st_ino forever. 1506 */ 1507 if (pipe->pipe_ino == (ino_t)-1) { 1508 new_unr = alloc_unr(pipeino_unr); 1509 if (new_unr != -1) 1510 pipe->pipe_ino = new_unr; 1511 else 1512 pipe->pipe_ino = 0; 1513 } 1514 PIPE_UNLOCK(pipe); 1515 1516 bzero(ub, sizeof(*ub)); 1517 ub->st_mode = S_IFIFO; 1518 ub->st_blksize = PAGE_SIZE; 1519 if (pipe->pipe_state & PIPE_DIRECTW) 1520 ub->st_size = pipe->pipe_map.cnt; 1521 else 1522 ub->st_size = pipe->pipe_buffer.cnt; 1523 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1524 ub->st_atim = pipe->pipe_atime; 1525 ub->st_mtim = pipe->pipe_mtime; 1526 ub->st_ctim = pipe->pipe_ctime; 1527 ub->st_uid = fp->f_cred->cr_uid; 1528 ub->st_gid = fp->f_cred->cr_gid; 1529 ub->st_dev = pipedev_ino; 1530 ub->st_ino = pipe->pipe_ino; 1531 /* 1532 * Left as 0: st_nlink, st_rdev, st_flags, st_gen. 1533 */ 1534 return (0); 1535 } 1536 1537 /* ARGSUSED */ 1538 static int 1539 pipe_close(fp, td) 1540 struct file *fp; 1541 struct thread *td; 1542 { 1543 1544 if (fp->f_vnode != NULL) 1545 return vnops.fo_close(fp, td); 1546 fp->f_ops = &badfileops; 1547 pipe_dtor(fp->f_data); 1548 fp->f_data = NULL; 1549 return (0); 1550 } 1551 1552 static int 1553 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td) 1554 { 1555 struct pipe *cpipe; 1556 int error; 1557 1558 cpipe = fp->f_data; 1559 if (cpipe->pipe_state & PIPE_NAMED) 1560 error = vn_chmod(fp, mode, active_cred, td); 1561 else 1562 error = invfo_chmod(fp, mode, active_cred, td); 1563 return (error); 1564 } 1565 1566 static int 1567 pipe_chown(fp, uid, gid, active_cred, td) 1568 struct file *fp; 1569 uid_t uid; 1570 gid_t gid; 1571 struct ucred *active_cred; 1572 struct thread *td; 1573 { 1574 struct pipe *cpipe; 1575 int error; 1576 1577 cpipe = fp->f_data; 1578 if (cpipe->pipe_state & PIPE_NAMED) 1579 error = vn_chown(fp, uid, gid, active_cred, td); 1580 else 1581 error = invfo_chown(fp, uid, gid, active_cred, td); 1582 return (error); 1583 } 1584 1585 static void 1586 pipe_free_kmem(cpipe) 1587 struct pipe *cpipe; 1588 { 1589 1590 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1591 ("pipe_free_kmem: pipe mutex locked")); 1592 1593 if (cpipe->pipe_buffer.buffer != NULL) { 1594 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size); 1595 vm_map_remove(pipe_map, 1596 (vm_offset_t)cpipe->pipe_buffer.buffer, 1597 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1598 cpipe->pipe_buffer.buffer = NULL; 1599 } 1600 #ifndef PIPE_NODIRECT 1601 { 1602 cpipe->pipe_map.cnt = 0; 1603 cpipe->pipe_map.pos = 0; 1604 cpipe->pipe_map.npages = 0; 1605 } 1606 #endif 1607 } 1608 1609 /* 1610 * shutdown the pipe 1611 */ 1612 static void 1613 pipeclose(cpipe) 1614 struct pipe *cpipe; 1615 { 1616 struct pipepair *pp; 1617 struct pipe *ppipe; 1618 1619 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1620 1621 PIPE_LOCK(cpipe); 1622 pipelock(cpipe, 0); 1623 pp = cpipe->pipe_pair; 1624 1625 pipeselwakeup(cpipe); 1626 1627 /* 1628 * If the other side is blocked, wake it up saying that 1629 * we want to close it down. 1630 */ 1631 cpipe->pipe_state |= PIPE_EOF; 1632 while (cpipe->pipe_busy) { 1633 wakeup(cpipe); 1634 cpipe->pipe_state |= PIPE_WANT; 1635 pipeunlock(cpipe); 1636 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1637 pipelock(cpipe, 0); 1638 } 1639 1640 1641 /* 1642 * Disconnect from peer, if any. 1643 */ 1644 ppipe = cpipe->pipe_peer; 1645 if (ppipe->pipe_present == PIPE_ACTIVE) { 1646 pipeselwakeup(ppipe); 1647 1648 ppipe->pipe_state |= PIPE_EOF; 1649 wakeup(ppipe); 1650 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1651 } 1652 1653 /* 1654 * Mark this endpoint as free. Release kmem resources. We 1655 * don't mark this endpoint as unused until we've finished 1656 * doing that, or the pipe might disappear out from under 1657 * us. 1658 */ 1659 PIPE_UNLOCK(cpipe); 1660 pipe_free_kmem(cpipe); 1661 PIPE_LOCK(cpipe); 1662 cpipe->pipe_present = PIPE_CLOSING; 1663 pipeunlock(cpipe); 1664 1665 /* 1666 * knlist_clear() may sleep dropping the PIPE_MTX. Set the 1667 * PIPE_FINALIZED, that allows other end to free the 1668 * pipe_pair, only after the knotes are completely dismantled. 1669 */ 1670 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1671 cpipe->pipe_present = PIPE_FINALIZED; 1672 seldrain(&cpipe->pipe_sel); 1673 knlist_destroy(&cpipe->pipe_sel.si_note); 1674 1675 /* 1676 * If both endpoints are now closed, release the memory for the 1677 * pipe pair. If not, unlock. 1678 */ 1679 if (ppipe->pipe_present == PIPE_FINALIZED) { 1680 PIPE_UNLOCK(cpipe); 1681 #ifdef MAC 1682 mac_pipe_destroy(pp); 1683 #endif 1684 uma_zfree(pipe_zone, cpipe->pipe_pair); 1685 } else 1686 PIPE_UNLOCK(cpipe); 1687 } 1688 1689 /*ARGSUSED*/ 1690 static int 1691 pipe_kqfilter(struct file *fp, struct knote *kn) 1692 { 1693 struct pipe *cpipe; 1694 1695 /* 1696 * If a filter is requested that is not supported by this file 1697 * descriptor, don't return an error, but also don't ever generate an 1698 * event. 1699 */ 1700 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) { 1701 kn->kn_fop = &pipe_nfiltops; 1702 return (0); 1703 } 1704 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) { 1705 kn->kn_fop = &pipe_nfiltops; 1706 return (0); 1707 } 1708 cpipe = fp->f_data; 1709 PIPE_LOCK(cpipe); 1710 switch (kn->kn_filter) { 1711 case EVFILT_READ: 1712 kn->kn_fop = &pipe_rfiltops; 1713 break; 1714 case EVFILT_WRITE: 1715 kn->kn_fop = &pipe_wfiltops; 1716 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) { 1717 /* other end of pipe has been closed */ 1718 PIPE_UNLOCK(cpipe); 1719 return (EPIPE); 1720 } 1721 cpipe = PIPE_PEER(cpipe); 1722 break; 1723 default: 1724 PIPE_UNLOCK(cpipe); 1725 return (EINVAL); 1726 } 1727 1728 kn->kn_hook = cpipe; 1729 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1730 PIPE_UNLOCK(cpipe); 1731 return (0); 1732 } 1733 1734 static void 1735 filt_pipedetach(struct knote *kn) 1736 { 1737 struct pipe *cpipe = kn->kn_hook; 1738 1739 PIPE_LOCK(cpipe); 1740 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1741 PIPE_UNLOCK(cpipe); 1742 } 1743 1744 /*ARGSUSED*/ 1745 static int 1746 filt_piperead(struct knote *kn, long hint) 1747 { 1748 struct pipe *rpipe = kn->kn_hook; 1749 struct pipe *wpipe = rpipe->pipe_peer; 1750 int ret; 1751 1752 PIPE_LOCK(rpipe); 1753 kn->kn_data = rpipe->pipe_buffer.cnt; 1754 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1755 kn->kn_data = rpipe->pipe_map.cnt; 1756 1757 if ((rpipe->pipe_state & PIPE_EOF) || 1758 wpipe->pipe_present != PIPE_ACTIVE || 1759 (wpipe->pipe_state & PIPE_EOF)) { 1760 kn->kn_flags |= EV_EOF; 1761 PIPE_UNLOCK(rpipe); 1762 return (1); 1763 } 1764 ret = kn->kn_data > 0; 1765 PIPE_UNLOCK(rpipe); 1766 return ret; 1767 } 1768 1769 /*ARGSUSED*/ 1770 static int 1771 filt_pipewrite(struct knote *kn, long hint) 1772 { 1773 struct pipe *wpipe; 1774 1775 wpipe = kn->kn_hook; 1776 PIPE_LOCK(wpipe); 1777 if (wpipe->pipe_present != PIPE_ACTIVE || 1778 (wpipe->pipe_state & PIPE_EOF)) { 1779 kn->kn_data = 0; 1780 kn->kn_flags |= EV_EOF; 1781 PIPE_UNLOCK(wpipe); 1782 return (1); 1783 } 1784 kn->kn_data = (wpipe->pipe_buffer.size > 0) ? 1785 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF; 1786 if (wpipe->pipe_state & PIPE_DIRECTW) 1787 kn->kn_data = 0; 1788 1789 PIPE_UNLOCK(wpipe); 1790 return (kn->kn_data >= PIPE_BUF); 1791 } 1792 1793 static void 1794 filt_pipedetach_notsup(struct knote *kn) 1795 { 1796 1797 } 1798 1799 static int 1800 filt_pipenotsup(struct knote *kn, long hint) 1801 { 1802 1803 return (0); 1804 } 1805