1 /*- 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 */ 19 20 /* 21 * This file contains a high-performance replacement for the socket-based 22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 23 * all features of sockets, but does do everything that pipes normally 24 * do. 25 */ 26 27 /* 28 * This code has two modes of operation, a small write mode and a large 29 * write mode. The small write mode acts like conventional pipes with 30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and 33 * the receiving process can copy it directly from the pages in the sending 34 * process. 35 * 36 * If the sending process receives a signal, it is possible that it will 37 * go away, and certainly its address space can change, because control 38 * is returned back to the user-mode side. In that case, the pipe code 39 * arranges to copy the buffer supplied by the user process, to a pageable 40 * kernel buffer, and the receiving process will grab the data from the 41 * pageable kernel buffer. Since signals don't happen all that often, 42 * the copy operation is normally eliminated. 43 * 44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 45 * happen for small transfers so that the system will not spend all of 46 * its time context switching. 47 * 48 * In order to limit the resource use of pipes, two sysctls exist: 49 * 50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 51 * address space available to us in pipe_map. This value is normally 52 * autotuned, but may also be loader tuned. 53 * 54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 55 * memory in use by pipes. 56 * 57 * Based on how large pipekva is relative to maxpipekva, the following 58 * will happen: 59 * 60 * 0% - 50%: 61 * New pipes are given 16K of memory backing, pipes may dynamically 62 * grow to as large as 64K where needed. 63 * 50% - 75%: 64 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 65 * existing pipes may NOT grow. 66 * 75% - 100%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes will be shrunk down to 4K whenever possible. 69 * 70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 72 * resize which MUST occur for reverse-direction pipes when they are 73 * first used. 74 * 75 * Additional information about the current state of pipes may be obtained 76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 77 * and kern.ipc.piperesizefail. 78 * 79 * Locking rules: There are two locks present here: A mutex, used via 80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 81 * the flag, as mutexes can not persist over uiomove. The mutex 82 * exists only to guard access to the flag, and is not in itself a 83 * locking mechanism. Also note that there is only a single mutex for 84 * both directions of a pipe. 85 * 86 * As pipelock() may have to sleep before it can acquire the flag, it 87 * is important to reread all data after a call to pipelock(); everything 88 * in the structure may have changed. 89 */ 90 91 #include <sys/cdefs.h> 92 __FBSDID("$FreeBSD$"); 93 94 #include "opt_mac.h" 95 96 #include <sys/param.h> 97 #include <sys/systm.h> 98 #include <sys/fcntl.h> 99 #include <sys/file.h> 100 #include <sys/filedesc.h> 101 #include <sys/filio.h> 102 #include <sys/kernel.h> 103 #include <sys/lock.h> 104 #include <sys/mutex.h> 105 #include <sys/ttycom.h> 106 #include <sys/stat.h> 107 #include <sys/malloc.h> 108 #include <sys/poll.h> 109 #include <sys/selinfo.h> 110 #include <sys/signalvar.h> 111 #include <sys/syscallsubr.h> 112 #include <sys/sysctl.h> 113 #include <sys/sysproto.h> 114 #include <sys/pipe.h> 115 #include <sys/proc.h> 116 #include <sys/vnode.h> 117 #include <sys/uio.h> 118 #include <sys/event.h> 119 120 #include <security/mac/mac_framework.h> 121 122 #include <vm/vm.h> 123 #include <vm/vm_param.h> 124 #include <vm/vm_object.h> 125 #include <vm/vm_kern.h> 126 #include <vm/vm_extern.h> 127 #include <vm/pmap.h> 128 #include <vm/vm_map.h> 129 #include <vm/vm_page.h> 130 #include <vm/uma.h> 131 132 /* 133 * Use this define if you want to disable *fancy* VM things. Expect an 134 * approx 30% decrease in transfer rate. This could be useful for 135 * NetBSD or OpenBSD. 136 */ 137 /* #define PIPE_NODIRECT */ 138 139 /* 140 * interfaces to the outside world 141 */ 142 static fo_rdwr_t pipe_read; 143 static fo_rdwr_t pipe_write; 144 static fo_truncate_t pipe_truncate; 145 static fo_ioctl_t pipe_ioctl; 146 static fo_poll_t pipe_poll; 147 static fo_kqfilter_t pipe_kqfilter; 148 static fo_stat_t pipe_stat; 149 static fo_close_t pipe_close; 150 151 static struct fileops pipeops = { 152 .fo_read = pipe_read, 153 .fo_write = pipe_write, 154 .fo_truncate = pipe_truncate, 155 .fo_ioctl = pipe_ioctl, 156 .fo_poll = pipe_poll, 157 .fo_kqfilter = pipe_kqfilter, 158 .fo_stat = pipe_stat, 159 .fo_close = pipe_close, 160 .fo_flags = DFLAG_PASSABLE 161 }; 162 163 static void filt_pipedetach(struct knote *kn); 164 static int filt_piperead(struct knote *kn, long hint); 165 static int filt_pipewrite(struct knote *kn, long hint); 166 167 static struct filterops pipe_rfiltops = 168 { 1, NULL, filt_pipedetach, filt_piperead }; 169 static struct filterops pipe_wfiltops = 170 { 1, NULL, filt_pipedetach, filt_pipewrite }; 171 172 /* 173 * Default pipe buffer size(s), this can be kind-of large now because pipe 174 * space is pageable. The pipe code will try to maintain locality of 175 * reference for performance reasons, so small amounts of outstanding I/O 176 * will not wipe the cache. 177 */ 178 #define MINPIPESIZE (PIPE_SIZE/3) 179 #define MAXPIPESIZE (2*PIPE_SIZE/3) 180 181 static int amountpipekva; 182 static int pipefragretry; 183 static int pipeallocfail; 184 static int piperesizefail; 185 static int piperesizeallowed = 1; 186 187 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, 188 &maxpipekva, 0, "Pipe KVA limit"); 189 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 190 &amountpipekva, 0, "Pipe KVA usage"); 191 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 192 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 193 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 194 &pipeallocfail, 0, "Pipe allocation failures"); 195 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 196 &piperesizefail, 0, "Pipe resize failures"); 197 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 198 &piperesizeallowed, 0, "Pipe resizing allowed"); 199 200 static void pipeinit(void *dummy __unused); 201 static void pipeclose(struct pipe *cpipe); 202 static void pipe_free_kmem(struct pipe *cpipe); 203 static int pipe_create(struct pipe *pipe, int backing); 204 static __inline int pipelock(struct pipe *cpipe, int catch); 205 static __inline void pipeunlock(struct pipe *cpipe); 206 static __inline void pipeselwakeup(struct pipe *cpipe); 207 #ifndef PIPE_NODIRECT 208 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 209 static void pipe_destroy_write_buffer(struct pipe *wpipe); 210 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 211 static void pipe_clone_write_buffer(struct pipe *wpipe); 212 #endif 213 static int pipespace(struct pipe *cpipe, int size); 214 static int pipespace_new(struct pipe *cpipe, int size); 215 216 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 217 static int pipe_zone_init(void *mem, int size, int flags); 218 static void pipe_zone_fini(void *mem, int size); 219 220 static uma_zone_t pipe_zone; 221 222 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 223 224 static void 225 pipeinit(void *dummy __unused) 226 { 227 228 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair), 229 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini, 230 UMA_ALIGN_PTR, 0); 231 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 232 } 233 234 static int 235 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 236 { 237 struct pipepair *pp; 238 struct pipe *rpipe, *wpipe; 239 240 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 241 242 pp = (struct pipepair *)mem; 243 244 /* 245 * We zero both pipe endpoints to make sure all the kmem pointers 246 * are NULL, flag fields are zero'd, etc. We timestamp both 247 * endpoints with the same time. 248 */ 249 rpipe = &pp->pp_rpipe; 250 bzero(rpipe, sizeof(*rpipe)); 251 vfs_timestamp(&rpipe->pipe_ctime); 252 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 253 254 wpipe = &pp->pp_wpipe; 255 bzero(wpipe, sizeof(*wpipe)); 256 wpipe->pipe_ctime = rpipe->pipe_ctime; 257 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 258 259 rpipe->pipe_peer = wpipe; 260 rpipe->pipe_pair = pp; 261 wpipe->pipe_peer = rpipe; 262 wpipe->pipe_pair = pp; 263 264 /* 265 * Mark both endpoints as present; they will later get free'd 266 * one at a time. When both are free'd, then the whole pair 267 * is released. 268 */ 269 rpipe->pipe_present = PIPE_ACTIVE; 270 wpipe->pipe_present = PIPE_ACTIVE; 271 272 /* 273 * Eventually, the MAC Framework may initialize the label 274 * in ctor or init, but for now we do it elswhere to avoid 275 * blocking in ctor or init. 276 */ 277 pp->pp_label = NULL; 278 279 return (0); 280 } 281 282 static int 283 pipe_zone_init(void *mem, int size, int flags) 284 { 285 struct pipepair *pp; 286 287 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 288 289 pp = (struct pipepair *)mem; 290 291 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 292 return (0); 293 } 294 295 static void 296 pipe_zone_fini(void *mem, int size) 297 { 298 struct pipepair *pp; 299 300 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 301 302 pp = (struct pipepair *)mem; 303 304 mtx_destroy(&pp->pp_mtx); 305 } 306 307 /* 308 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let 309 * the zone pick up the pieces via pipeclose(). 310 */ 311 int 312 kern_pipe(struct thread *td, int fildes[2]) 313 { 314 struct filedesc *fdp = td->td_proc->p_fd; 315 struct file *rf, *wf; 316 struct pipepair *pp; 317 struct pipe *rpipe, *wpipe; 318 int fd, error; 319 320 pp = uma_zalloc(pipe_zone, M_WAITOK); 321 #ifdef MAC 322 /* 323 * The MAC label is shared between the connected endpoints. As a 324 * result mac_pipe_init() and mac_pipe_create() are called once 325 * for the pair, and not on the endpoints. 326 */ 327 mac_pipe_init(pp); 328 mac_pipe_create(td->td_ucred, pp); 329 #endif 330 rpipe = &pp->pp_rpipe; 331 wpipe = &pp->pp_wpipe; 332 333 knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe), NULL, NULL, 334 NULL); 335 knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe), NULL, NULL, 336 NULL); 337 338 /* Only the forward direction pipe is backed by default */ 339 if ((error = pipe_create(rpipe, 1)) != 0 || 340 (error = pipe_create(wpipe, 0)) != 0) { 341 pipeclose(rpipe); 342 pipeclose(wpipe); 343 return (error); 344 } 345 346 rpipe->pipe_state |= PIPE_DIRECTOK; 347 wpipe->pipe_state |= PIPE_DIRECTOK; 348 349 error = falloc(td, &rf, &fd); 350 if (error) { 351 pipeclose(rpipe); 352 pipeclose(wpipe); 353 return (error); 354 } 355 /* An extra reference on `rf' has been held for us by falloc(). */ 356 fildes[0] = fd; 357 358 /* 359 * Warning: once we've gotten past allocation of the fd for the 360 * read-side, we can only drop the read side via fdrop() in order 361 * to avoid races against processes which manage to dup() the read 362 * side while we are blocked trying to allocate the write side. 363 */ 364 finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops); 365 error = falloc(td, &wf, &fd); 366 if (error) { 367 fdclose(fdp, rf, fildes[0], td); 368 fdrop(rf, td); 369 /* rpipe has been closed by fdrop(). */ 370 pipeclose(wpipe); 371 return (error); 372 } 373 /* An extra reference on `wf' has been held for us by falloc(). */ 374 finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops); 375 fdrop(wf, td); 376 fildes[1] = fd; 377 fdrop(rf, td); 378 379 return (0); 380 } 381 382 /* ARGSUSED */ 383 int 384 pipe(struct thread *td, struct pipe_args *uap) 385 { 386 int error; 387 int fildes[2]; 388 389 error = kern_pipe(td, fildes); 390 if (error) 391 return (error); 392 393 td->td_retval[0] = fildes[0]; 394 td->td_retval[1] = fildes[1]; 395 396 return (0); 397 } 398 399 /* 400 * Allocate kva for pipe circular buffer, the space is pageable 401 * This routine will 'realloc' the size of a pipe safely, if it fails 402 * it will retain the old buffer. 403 * If it fails it will return ENOMEM. 404 */ 405 static int 406 pipespace_new(cpipe, size) 407 struct pipe *cpipe; 408 int size; 409 { 410 caddr_t buffer; 411 int error, cnt, firstseg; 412 static int curfail = 0; 413 static struct timeval lastfail; 414 415 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 416 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 417 ("pipespace: resize of direct writes not allowed")); 418 retry: 419 cnt = cpipe->pipe_buffer.cnt; 420 if (cnt > size) 421 size = cnt; 422 423 size = round_page(size); 424 buffer = (caddr_t) vm_map_min(pipe_map); 425 426 error = vm_map_find(pipe_map, NULL, 0, 427 (vm_offset_t *) &buffer, size, 1, 428 VM_PROT_ALL, VM_PROT_ALL, 0); 429 if (error != KERN_SUCCESS) { 430 if ((cpipe->pipe_buffer.buffer == NULL) && 431 (size > SMALL_PIPE_SIZE)) { 432 size = SMALL_PIPE_SIZE; 433 pipefragretry++; 434 goto retry; 435 } 436 if (cpipe->pipe_buffer.buffer == NULL) { 437 pipeallocfail++; 438 if (ppsratecheck(&lastfail, &curfail, 1)) 439 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 440 } else { 441 piperesizefail++; 442 } 443 return (ENOMEM); 444 } 445 446 /* copy data, then free old resources if we're resizing */ 447 if (cnt > 0) { 448 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 449 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 450 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 451 buffer, firstseg); 452 if ((cnt - firstseg) > 0) 453 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 454 cpipe->pipe_buffer.in); 455 } else { 456 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 457 buffer, cnt); 458 } 459 } 460 pipe_free_kmem(cpipe); 461 cpipe->pipe_buffer.buffer = buffer; 462 cpipe->pipe_buffer.size = size; 463 cpipe->pipe_buffer.in = cnt; 464 cpipe->pipe_buffer.out = 0; 465 cpipe->pipe_buffer.cnt = cnt; 466 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size); 467 return (0); 468 } 469 470 /* 471 * Wrapper for pipespace_new() that performs locking assertions. 472 */ 473 static int 474 pipespace(cpipe, size) 475 struct pipe *cpipe; 476 int size; 477 { 478 479 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 480 ("Unlocked pipe passed to pipespace")); 481 return (pipespace_new(cpipe, size)); 482 } 483 484 /* 485 * lock a pipe for I/O, blocking other access 486 */ 487 static __inline int 488 pipelock(cpipe, catch) 489 struct pipe *cpipe; 490 int catch; 491 { 492 int error; 493 494 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 495 while (cpipe->pipe_state & PIPE_LOCKFL) { 496 cpipe->pipe_state |= PIPE_LWANT; 497 error = msleep(cpipe, PIPE_MTX(cpipe), 498 catch ? (PRIBIO | PCATCH) : PRIBIO, 499 "pipelk", 0); 500 if (error != 0) 501 return (error); 502 } 503 cpipe->pipe_state |= PIPE_LOCKFL; 504 return (0); 505 } 506 507 /* 508 * unlock a pipe I/O lock 509 */ 510 static __inline void 511 pipeunlock(cpipe) 512 struct pipe *cpipe; 513 { 514 515 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 516 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 517 ("Unlocked pipe passed to pipeunlock")); 518 cpipe->pipe_state &= ~PIPE_LOCKFL; 519 if (cpipe->pipe_state & PIPE_LWANT) { 520 cpipe->pipe_state &= ~PIPE_LWANT; 521 wakeup(cpipe); 522 } 523 } 524 525 static __inline void 526 pipeselwakeup(cpipe) 527 struct pipe *cpipe; 528 { 529 530 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 531 if (cpipe->pipe_state & PIPE_SEL) { 532 selwakeuppri(&cpipe->pipe_sel, PSOCK); 533 if (!SEL_WAITING(&cpipe->pipe_sel)) 534 cpipe->pipe_state &= ~PIPE_SEL; 535 } 536 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 537 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 538 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 539 } 540 541 /* 542 * Initialize and allocate VM and memory for pipe. The structure 543 * will start out zero'd from the ctor, so we just manage the kmem. 544 */ 545 static int 546 pipe_create(pipe, backing) 547 struct pipe *pipe; 548 int backing; 549 { 550 int error; 551 552 if (backing) { 553 if (amountpipekva > maxpipekva / 2) 554 error = pipespace_new(pipe, SMALL_PIPE_SIZE); 555 else 556 error = pipespace_new(pipe, PIPE_SIZE); 557 } else { 558 /* If we're not backing this pipe, no need to do anything. */ 559 error = 0; 560 } 561 return (error); 562 } 563 564 /* ARGSUSED */ 565 static int 566 pipe_read(fp, uio, active_cred, flags, td) 567 struct file *fp; 568 struct uio *uio; 569 struct ucred *active_cred; 570 struct thread *td; 571 int flags; 572 { 573 struct pipe *rpipe = fp->f_data; 574 int error; 575 int nread = 0; 576 u_int size; 577 578 PIPE_LOCK(rpipe); 579 ++rpipe->pipe_busy; 580 error = pipelock(rpipe, 1); 581 if (error) 582 goto unlocked_error; 583 584 #ifdef MAC 585 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair); 586 if (error) 587 goto locked_error; 588 #endif 589 if (amountpipekva > (3 * maxpipekva) / 4) { 590 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 591 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 592 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 593 (piperesizeallowed == 1)) { 594 PIPE_UNLOCK(rpipe); 595 pipespace(rpipe, SMALL_PIPE_SIZE); 596 PIPE_LOCK(rpipe); 597 } 598 } 599 600 while (uio->uio_resid) { 601 /* 602 * normal pipe buffer receive 603 */ 604 if (rpipe->pipe_buffer.cnt > 0) { 605 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 606 if (size > rpipe->pipe_buffer.cnt) 607 size = rpipe->pipe_buffer.cnt; 608 if (size > (u_int) uio->uio_resid) 609 size = (u_int) uio->uio_resid; 610 611 PIPE_UNLOCK(rpipe); 612 error = uiomove( 613 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 614 size, uio); 615 PIPE_LOCK(rpipe); 616 if (error) 617 break; 618 619 rpipe->pipe_buffer.out += size; 620 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 621 rpipe->pipe_buffer.out = 0; 622 623 rpipe->pipe_buffer.cnt -= size; 624 625 /* 626 * If there is no more to read in the pipe, reset 627 * its pointers to the beginning. This improves 628 * cache hit stats. 629 */ 630 if (rpipe->pipe_buffer.cnt == 0) { 631 rpipe->pipe_buffer.in = 0; 632 rpipe->pipe_buffer.out = 0; 633 } 634 nread += size; 635 #ifndef PIPE_NODIRECT 636 /* 637 * Direct copy, bypassing a kernel buffer. 638 */ 639 } else if ((size = rpipe->pipe_map.cnt) && 640 (rpipe->pipe_state & PIPE_DIRECTW)) { 641 if (size > (u_int) uio->uio_resid) 642 size = (u_int) uio->uio_resid; 643 644 PIPE_UNLOCK(rpipe); 645 error = uiomove_fromphys(rpipe->pipe_map.ms, 646 rpipe->pipe_map.pos, size, uio); 647 PIPE_LOCK(rpipe); 648 if (error) 649 break; 650 nread += size; 651 rpipe->pipe_map.pos += size; 652 rpipe->pipe_map.cnt -= size; 653 if (rpipe->pipe_map.cnt == 0) { 654 rpipe->pipe_state &= ~PIPE_DIRECTW; 655 wakeup(rpipe); 656 } 657 #endif 658 } else { 659 /* 660 * detect EOF condition 661 * read returns 0 on EOF, no need to set error 662 */ 663 if (rpipe->pipe_state & PIPE_EOF) 664 break; 665 666 /* 667 * If the "write-side" has been blocked, wake it up now. 668 */ 669 if (rpipe->pipe_state & PIPE_WANTW) { 670 rpipe->pipe_state &= ~PIPE_WANTW; 671 wakeup(rpipe); 672 } 673 674 /* 675 * Break if some data was read. 676 */ 677 if (nread > 0) 678 break; 679 680 /* 681 * Unlock the pipe buffer for our remaining processing. 682 * We will either break out with an error or we will 683 * sleep and relock to loop. 684 */ 685 pipeunlock(rpipe); 686 687 /* 688 * Handle non-blocking mode operation or 689 * wait for more data. 690 */ 691 if (fp->f_flag & FNONBLOCK) { 692 error = EAGAIN; 693 } else { 694 rpipe->pipe_state |= PIPE_WANTR; 695 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 696 PRIBIO | PCATCH, 697 "piperd", 0)) == 0) 698 error = pipelock(rpipe, 1); 699 } 700 if (error) 701 goto unlocked_error; 702 } 703 } 704 #ifdef MAC 705 locked_error: 706 #endif 707 pipeunlock(rpipe); 708 709 /* XXX: should probably do this before getting any locks. */ 710 if (error == 0) 711 vfs_timestamp(&rpipe->pipe_atime); 712 unlocked_error: 713 --rpipe->pipe_busy; 714 715 /* 716 * PIPE_WANT processing only makes sense if pipe_busy is 0. 717 */ 718 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 719 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 720 wakeup(rpipe); 721 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 722 /* 723 * Handle write blocking hysteresis. 724 */ 725 if (rpipe->pipe_state & PIPE_WANTW) { 726 rpipe->pipe_state &= ~PIPE_WANTW; 727 wakeup(rpipe); 728 } 729 } 730 731 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 732 pipeselwakeup(rpipe); 733 734 PIPE_UNLOCK(rpipe); 735 return (error); 736 } 737 738 #ifndef PIPE_NODIRECT 739 /* 740 * Map the sending processes' buffer into kernel space and wire it. 741 * This is similar to a physical write operation. 742 */ 743 static int 744 pipe_build_write_buffer(wpipe, uio) 745 struct pipe *wpipe; 746 struct uio *uio; 747 { 748 pmap_t pmap; 749 u_int size; 750 int i, j; 751 vm_offset_t addr, endaddr; 752 753 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 754 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 755 ("Clone attempt on non-direct write pipe!")); 756 757 size = (u_int) uio->uio_iov->iov_len; 758 if (size > wpipe->pipe_buffer.size) 759 size = wpipe->pipe_buffer.size; 760 761 pmap = vmspace_pmap(curproc->p_vmspace); 762 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size); 763 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base); 764 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) { 765 /* 766 * vm_fault_quick() can sleep. Consequently, 767 * vm_page_lock_queue() and vm_page_unlock_queue() 768 * should not be performed outside of this loop. 769 */ 770 race: 771 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) { 772 vm_page_lock_queues(); 773 for (j = 0; j < i; j++) 774 vm_page_unhold(wpipe->pipe_map.ms[j]); 775 vm_page_unlock_queues(); 776 return (EFAULT); 777 } 778 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr, 779 VM_PROT_READ); 780 if (wpipe->pipe_map.ms[i] == NULL) 781 goto race; 782 } 783 784 /* 785 * set up the control block 786 */ 787 wpipe->pipe_map.npages = i; 788 wpipe->pipe_map.pos = 789 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 790 wpipe->pipe_map.cnt = size; 791 792 /* 793 * and update the uio data 794 */ 795 796 uio->uio_iov->iov_len -= size; 797 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 798 if (uio->uio_iov->iov_len == 0) 799 uio->uio_iov++; 800 uio->uio_resid -= size; 801 uio->uio_offset += size; 802 return (0); 803 } 804 805 /* 806 * unmap and unwire the process buffer 807 */ 808 static void 809 pipe_destroy_write_buffer(wpipe) 810 struct pipe *wpipe; 811 { 812 int i; 813 814 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 815 vm_page_lock_queues(); 816 for (i = 0; i < wpipe->pipe_map.npages; i++) { 817 vm_page_unhold(wpipe->pipe_map.ms[i]); 818 } 819 vm_page_unlock_queues(); 820 wpipe->pipe_map.npages = 0; 821 } 822 823 /* 824 * In the case of a signal, the writing process might go away. This 825 * code copies the data into the circular buffer so that the source 826 * pages can be freed without loss of data. 827 */ 828 static void 829 pipe_clone_write_buffer(wpipe) 830 struct pipe *wpipe; 831 { 832 struct uio uio; 833 struct iovec iov; 834 int size; 835 int pos; 836 837 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 838 size = wpipe->pipe_map.cnt; 839 pos = wpipe->pipe_map.pos; 840 841 wpipe->pipe_buffer.in = size; 842 wpipe->pipe_buffer.out = 0; 843 wpipe->pipe_buffer.cnt = size; 844 wpipe->pipe_state &= ~PIPE_DIRECTW; 845 846 PIPE_UNLOCK(wpipe); 847 iov.iov_base = wpipe->pipe_buffer.buffer; 848 iov.iov_len = size; 849 uio.uio_iov = &iov; 850 uio.uio_iovcnt = 1; 851 uio.uio_offset = 0; 852 uio.uio_resid = size; 853 uio.uio_segflg = UIO_SYSSPACE; 854 uio.uio_rw = UIO_READ; 855 uio.uio_td = curthread; 856 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 857 PIPE_LOCK(wpipe); 858 pipe_destroy_write_buffer(wpipe); 859 } 860 861 /* 862 * This implements the pipe buffer write mechanism. Note that only 863 * a direct write OR a normal pipe write can be pending at any given time. 864 * If there are any characters in the pipe buffer, the direct write will 865 * be deferred until the receiving process grabs all of the bytes from 866 * the pipe buffer. Then the direct mapping write is set-up. 867 */ 868 static int 869 pipe_direct_write(wpipe, uio) 870 struct pipe *wpipe; 871 struct uio *uio; 872 { 873 int error; 874 875 retry: 876 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 877 error = pipelock(wpipe, 1); 878 if (wpipe->pipe_state & PIPE_EOF) 879 error = EPIPE; 880 if (error) { 881 pipeunlock(wpipe); 882 goto error1; 883 } 884 while (wpipe->pipe_state & PIPE_DIRECTW) { 885 if (wpipe->pipe_state & PIPE_WANTR) { 886 wpipe->pipe_state &= ~PIPE_WANTR; 887 wakeup(wpipe); 888 } 889 pipeselwakeup(wpipe); 890 wpipe->pipe_state |= PIPE_WANTW; 891 pipeunlock(wpipe); 892 error = msleep(wpipe, PIPE_MTX(wpipe), 893 PRIBIO | PCATCH, "pipdww", 0); 894 if (error) 895 goto error1; 896 else 897 goto retry; 898 } 899 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 900 if (wpipe->pipe_buffer.cnt > 0) { 901 if (wpipe->pipe_state & PIPE_WANTR) { 902 wpipe->pipe_state &= ~PIPE_WANTR; 903 wakeup(wpipe); 904 } 905 pipeselwakeup(wpipe); 906 wpipe->pipe_state |= PIPE_WANTW; 907 pipeunlock(wpipe); 908 error = msleep(wpipe, PIPE_MTX(wpipe), 909 PRIBIO | PCATCH, "pipdwc", 0); 910 if (error) 911 goto error1; 912 else 913 goto retry; 914 } 915 916 wpipe->pipe_state |= PIPE_DIRECTW; 917 918 PIPE_UNLOCK(wpipe); 919 error = pipe_build_write_buffer(wpipe, uio); 920 PIPE_LOCK(wpipe); 921 if (error) { 922 wpipe->pipe_state &= ~PIPE_DIRECTW; 923 pipeunlock(wpipe); 924 goto error1; 925 } 926 927 error = 0; 928 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 929 if (wpipe->pipe_state & PIPE_EOF) { 930 pipe_destroy_write_buffer(wpipe); 931 pipeselwakeup(wpipe); 932 pipeunlock(wpipe); 933 error = EPIPE; 934 goto error1; 935 } 936 if (wpipe->pipe_state & PIPE_WANTR) { 937 wpipe->pipe_state &= ~PIPE_WANTR; 938 wakeup(wpipe); 939 } 940 pipeselwakeup(wpipe); 941 pipeunlock(wpipe); 942 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 943 "pipdwt", 0); 944 pipelock(wpipe, 0); 945 } 946 947 if (wpipe->pipe_state & PIPE_EOF) 948 error = EPIPE; 949 if (wpipe->pipe_state & PIPE_DIRECTW) { 950 /* 951 * this bit of trickery substitutes a kernel buffer for 952 * the process that might be going away. 953 */ 954 pipe_clone_write_buffer(wpipe); 955 } else { 956 pipe_destroy_write_buffer(wpipe); 957 } 958 pipeunlock(wpipe); 959 return (error); 960 961 error1: 962 wakeup(wpipe); 963 return (error); 964 } 965 #endif 966 967 static int 968 pipe_write(fp, uio, active_cred, flags, td) 969 struct file *fp; 970 struct uio *uio; 971 struct ucred *active_cred; 972 struct thread *td; 973 int flags; 974 { 975 int error = 0; 976 int desiredsize, orig_resid; 977 struct pipe *wpipe, *rpipe; 978 979 rpipe = fp->f_data; 980 wpipe = rpipe->pipe_peer; 981 982 PIPE_LOCK(rpipe); 983 error = pipelock(wpipe, 1); 984 if (error) { 985 PIPE_UNLOCK(rpipe); 986 return (error); 987 } 988 /* 989 * detect loss of pipe read side, issue SIGPIPE if lost. 990 */ 991 if (wpipe->pipe_present != PIPE_ACTIVE || 992 (wpipe->pipe_state & PIPE_EOF)) { 993 pipeunlock(wpipe); 994 PIPE_UNLOCK(rpipe); 995 return (EPIPE); 996 } 997 #ifdef MAC 998 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair); 999 if (error) { 1000 pipeunlock(wpipe); 1001 PIPE_UNLOCK(rpipe); 1002 return (error); 1003 } 1004 #endif 1005 ++wpipe->pipe_busy; 1006 1007 /* Choose a larger size if it's advantageous */ 1008 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1009 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1010 if (piperesizeallowed != 1) 1011 break; 1012 if (amountpipekva > maxpipekva / 2) 1013 break; 1014 if (desiredsize == BIG_PIPE_SIZE) 1015 break; 1016 desiredsize = desiredsize * 2; 1017 } 1018 1019 /* Choose a smaller size if we're in a OOM situation */ 1020 if ((amountpipekva > (3 * maxpipekva) / 4) && 1021 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 1022 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1023 (piperesizeallowed == 1)) 1024 desiredsize = SMALL_PIPE_SIZE; 1025 1026 /* Resize if the above determined that a new size was necessary */ 1027 if ((desiredsize != wpipe->pipe_buffer.size) && 1028 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1029 PIPE_UNLOCK(wpipe); 1030 pipespace(wpipe, desiredsize); 1031 PIPE_LOCK(wpipe); 1032 } 1033 if (wpipe->pipe_buffer.size == 0) { 1034 /* 1035 * This can only happen for reverse direction use of pipes 1036 * in a complete OOM situation. 1037 */ 1038 error = ENOMEM; 1039 --wpipe->pipe_busy; 1040 pipeunlock(wpipe); 1041 PIPE_UNLOCK(wpipe); 1042 return (error); 1043 } 1044 1045 pipeunlock(wpipe); 1046 1047 orig_resid = uio->uio_resid; 1048 1049 while (uio->uio_resid) { 1050 int space; 1051 1052 pipelock(wpipe, 0); 1053 if (wpipe->pipe_state & PIPE_EOF) { 1054 pipeunlock(wpipe); 1055 error = EPIPE; 1056 break; 1057 } 1058 #ifndef PIPE_NODIRECT 1059 /* 1060 * If the transfer is large, we can gain performance if 1061 * we do process-to-process copies directly. 1062 * If the write is non-blocking, we don't use the 1063 * direct write mechanism. 1064 * 1065 * The direct write mechanism will detect the reader going 1066 * away on us. 1067 */ 1068 if (uio->uio_segflg == UIO_USERSPACE && 1069 uio->uio_iov->iov_len >= PIPE_MINDIRECT && 1070 wpipe->pipe_buffer.size >= PIPE_MINDIRECT && 1071 (fp->f_flag & FNONBLOCK) == 0) { 1072 pipeunlock(wpipe); 1073 error = pipe_direct_write(wpipe, uio); 1074 if (error) 1075 break; 1076 continue; 1077 } 1078 #endif 1079 1080 /* 1081 * Pipe buffered writes cannot be coincidental with 1082 * direct writes. We wait until the currently executing 1083 * direct write is completed before we start filling the 1084 * pipe buffer. We break out if a signal occurs or the 1085 * reader goes away. 1086 */ 1087 if (wpipe->pipe_state & PIPE_DIRECTW) { 1088 if (wpipe->pipe_state & PIPE_WANTR) { 1089 wpipe->pipe_state &= ~PIPE_WANTR; 1090 wakeup(wpipe); 1091 } 1092 pipeselwakeup(wpipe); 1093 wpipe->pipe_state |= PIPE_WANTW; 1094 pipeunlock(wpipe); 1095 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1096 "pipbww", 0); 1097 if (error) 1098 break; 1099 else 1100 continue; 1101 } 1102 1103 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1104 1105 /* Writes of size <= PIPE_BUF must be atomic. */ 1106 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1107 space = 0; 1108 1109 if (space > 0) { 1110 int size; /* Transfer size */ 1111 int segsize; /* first segment to transfer */ 1112 1113 /* 1114 * Transfer size is minimum of uio transfer 1115 * and free space in pipe buffer. 1116 */ 1117 if (space > uio->uio_resid) 1118 size = uio->uio_resid; 1119 else 1120 size = space; 1121 /* 1122 * First segment to transfer is minimum of 1123 * transfer size and contiguous space in 1124 * pipe buffer. If first segment to transfer 1125 * is less than the transfer size, we've got 1126 * a wraparound in the buffer. 1127 */ 1128 segsize = wpipe->pipe_buffer.size - 1129 wpipe->pipe_buffer.in; 1130 if (segsize > size) 1131 segsize = size; 1132 1133 /* Transfer first segment */ 1134 1135 PIPE_UNLOCK(rpipe); 1136 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1137 segsize, uio); 1138 PIPE_LOCK(rpipe); 1139 1140 if (error == 0 && segsize < size) { 1141 KASSERT(wpipe->pipe_buffer.in + segsize == 1142 wpipe->pipe_buffer.size, 1143 ("Pipe buffer wraparound disappeared")); 1144 /* 1145 * Transfer remaining part now, to 1146 * support atomic writes. Wraparound 1147 * happened. 1148 */ 1149 1150 PIPE_UNLOCK(rpipe); 1151 error = uiomove( 1152 &wpipe->pipe_buffer.buffer[0], 1153 size - segsize, uio); 1154 PIPE_LOCK(rpipe); 1155 } 1156 if (error == 0) { 1157 wpipe->pipe_buffer.in += size; 1158 if (wpipe->pipe_buffer.in >= 1159 wpipe->pipe_buffer.size) { 1160 KASSERT(wpipe->pipe_buffer.in == 1161 size - segsize + 1162 wpipe->pipe_buffer.size, 1163 ("Expected wraparound bad")); 1164 wpipe->pipe_buffer.in = size - segsize; 1165 } 1166 1167 wpipe->pipe_buffer.cnt += size; 1168 KASSERT(wpipe->pipe_buffer.cnt <= 1169 wpipe->pipe_buffer.size, 1170 ("Pipe buffer overflow")); 1171 } 1172 pipeunlock(wpipe); 1173 if (error != 0) 1174 break; 1175 } else { 1176 /* 1177 * If the "read-side" has been blocked, wake it up now. 1178 */ 1179 if (wpipe->pipe_state & PIPE_WANTR) { 1180 wpipe->pipe_state &= ~PIPE_WANTR; 1181 wakeup(wpipe); 1182 } 1183 1184 /* 1185 * don't block on non-blocking I/O 1186 */ 1187 if (fp->f_flag & FNONBLOCK) { 1188 error = EAGAIN; 1189 pipeunlock(wpipe); 1190 break; 1191 } 1192 1193 /* 1194 * We have no more space and have something to offer, 1195 * wake up select/poll. 1196 */ 1197 pipeselwakeup(wpipe); 1198 1199 wpipe->pipe_state |= PIPE_WANTW; 1200 pipeunlock(wpipe); 1201 error = msleep(wpipe, PIPE_MTX(rpipe), 1202 PRIBIO | PCATCH, "pipewr", 0); 1203 if (error != 0) 1204 break; 1205 } 1206 } 1207 1208 pipelock(wpipe, 0); 1209 --wpipe->pipe_busy; 1210 1211 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1212 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1213 wakeup(wpipe); 1214 } else if (wpipe->pipe_buffer.cnt > 0) { 1215 /* 1216 * If we have put any characters in the buffer, we wake up 1217 * the reader. 1218 */ 1219 if (wpipe->pipe_state & PIPE_WANTR) { 1220 wpipe->pipe_state &= ~PIPE_WANTR; 1221 wakeup(wpipe); 1222 } 1223 } 1224 1225 /* 1226 * Don't return EPIPE if I/O was successful 1227 */ 1228 if ((wpipe->pipe_buffer.cnt == 0) && 1229 (uio->uio_resid == 0) && 1230 (error == EPIPE)) { 1231 error = 0; 1232 } 1233 1234 if (error == 0) 1235 vfs_timestamp(&wpipe->pipe_mtime); 1236 1237 /* 1238 * We have something to offer, 1239 * wake up select/poll. 1240 */ 1241 if (wpipe->pipe_buffer.cnt) 1242 pipeselwakeup(wpipe); 1243 1244 pipeunlock(wpipe); 1245 PIPE_UNLOCK(rpipe); 1246 return (error); 1247 } 1248 1249 /* ARGSUSED */ 1250 static int 1251 pipe_truncate(fp, length, active_cred, td) 1252 struct file *fp; 1253 off_t length; 1254 struct ucred *active_cred; 1255 struct thread *td; 1256 { 1257 1258 return (EINVAL); 1259 } 1260 1261 /* 1262 * we implement a very minimal set of ioctls for compatibility with sockets. 1263 */ 1264 static int 1265 pipe_ioctl(fp, cmd, data, active_cred, td) 1266 struct file *fp; 1267 u_long cmd; 1268 void *data; 1269 struct ucred *active_cred; 1270 struct thread *td; 1271 { 1272 struct pipe *mpipe = fp->f_data; 1273 int error; 1274 1275 PIPE_LOCK(mpipe); 1276 1277 #ifdef MAC 1278 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1279 if (error) { 1280 PIPE_UNLOCK(mpipe); 1281 return (error); 1282 } 1283 #endif 1284 1285 error = 0; 1286 switch (cmd) { 1287 1288 case FIONBIO: 1289 break; 1290 1291 case FIOASYNC: 1292 if (*(int *)data) { 1293 mpipe->pipe_state |= PIPE_ASYNC; 1294 } else { 1295 mpipe->pipe_state &= ~PIPE_ASYNC; 1296 } 1297 break; 1298 1299 case FIONREAD: 1300 if (mpipe->pipe_state & PIPE_DIRECTW) 1301 *(int *)data = mpipe->pipe_map.cnt; 1302 else 1303 *(int *)data = mpipe->pipe_buffer.cnt; 1304 break; 1305 1306 case FIOSETOWN: 1307 PIPE_UNLOCK(mpipe); 1308 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1309 goto out_unlocked; 1310 1311 case FIOGETOWN: 1312 *(int *)data = fgetown(&mpipe->pipe_sigio); 1313 break; 1314 1315 /* This is deprecated, FIOSETOWN should be used instead. */ 1316 case TIOCSPGRP: 1317 PIPE_UNLOCK(mpipe); 1318 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1319 goto out_unlocked; 1320 1321 /* This is deprecated, FIOGETOWN should be used instead. */ 1322 case TIOCGPGRP: 1323 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1324 break; 1325 1326 default: 1327 error = ENOTTY; 1328 break; 1329 } 1330 PIPE_UNLOCK(mpipe); 1331 out_unlocked: 1332 return (error); 1333 } 1334 1335 static int 1336 pipe_poll(fp, events, active_cred, td) 1337 struct file *fp; 1338 int events; 1339 struct ucred *active_cred; 1340 struct thread *td; 1341 { 1342 struct pipe *rpipe = fp->f_data; 1343 struct pipe *wpipe; 1344 int revents = 0; 1345 #ifdef MAC 1346 int error; 1347 #endif 1348 1349 wpipe = rpipe->pipe_peer; 1350 PIPE_LOCK(rpipe); 1351 #ifdef MAC 1352 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair); 1353 if (error) 1354 goto locked_error; 1355 #endif 1356 if (events & (POLLIN | POLLRDNORM)) 1357 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1358 (rpipe->pipe_buffer.cnt > 0) || 1359 (rpipe->pipe_state & PIPE_EOF)) 1360 revents |= events & (POLLIN | POLLRDNORM); 1361 1362 if (events & (POLLOUT | POLLWRNORM)) 1363 if (wpipe->pipe_present != PIPE_ACTIVE || 1364 (wpipe->pipe_state & PIPE_EOF) || 1365 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1366 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1367 revents |= events & (POLLOUT | POLLWRNORM); 1368 1369 if ((rpipe->pipe_state & PIPE_EOF) || 1370 wpipe->pipe_present != PIPE_ACTIVE || 1371 (wpipe->pipe_state & PIPE_EOF)) 1372 revents |= POLLHUP; 1373 1374 if (revents == 0) { 1375 if (events & (POLLIN | POLLRDNORM)) { 1376 selrecord(td, &rpipe->pipe_sel); 1377 if (SEL_WAITING(&rpipe->pipe_sel)) 1378 rpipe->pipe_state |= PIPE_SEL; 1379 } 1380 1381 if (events & (POLLOUT | POLLWRNORM)) { 1382 selrecord(td, &wpipe->pipe_sel); 1383 if (SEL_WAITING(&wpipe->pipe_sel)) 1384 wpipe->pipe_state |= PIPE_SEL; 1385 } 1386 } 1387 #ifdef MAC 1388 locked_error: 1389 #endif 1390 PIPE_UNLOCK(rpipe); 1391 1392 return (revents); 1393 } 1394 1395 /* 1396 * We shouldn't need locks here as we're doing a read and this should 1397 * be a natural race. 1398 */ 1399 static int 1400 pipe_stat(fp, ub, active_cred, td) 1401 struct file *fp; 1402 struct stat *ub; 1403 struct ucred *active_cred; 1404 struct thread *td; 1405 { 1406 struct pipe *pipe = fp->f_data; 1407 #ifdef MAC 1408 int error; 1409 1410 PIPE_LOCK(pipe); 1411 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair); 1412 PIPE_UNLOCK(pipe); 1413 if (error) 1414 return (error); 1415 #endif 1416 bzero(ub, sizeof(*ub)); 1417 ub->st_mode = S_IFIFO; 1418 ub->st_blksize = PAGE_SIZE; 1419 if (pipe->pipe_state & PIPE_DIRECTW) 1420 ub->st_size = pipe->pipe_map.cnt; 1421 else 1422 ub->st_size = pipe->pipe_buffer.cnt; 1423 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1424 ub->st_atimespec = pipe->pipe_atime; 1425 ub->st_mtimespec = pipe->pipe_mtime; 1426 ub->st_ctimespec = pipe->pipe_ctime; 1427 ub->st_uid = fp->f_cred->cr_uid; 1428 ub->st_gid = fp->f_cred->cr_gid; 1429 /* 1430 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1431 * XXX (st_dev, st_ino) should be unique. 1432 */ 1433 return (0); 1434 } 1435 1436 /* ARGSUSED */ 1437 static int 1438 pipe_close(fp, td) 1439 struct file *fp; 1440 struct thread *td; 1441 { 1442 struct pipe *cpipe = fp->f_data; 1443 1444 fp->f_ops = &badfileops; 1445 fp->f_data = NULL; 1446 funsetown(&cpipe->pipe_sigio); 1447 pipeclose(cpipe); 1448 return (0); 1449 } 1450 1451 static void 1452 pipe_free_kmem(cpipe) 1453 struct pipe *cpipe; 1454 { 1455 1456 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1457 ("pipe_free_kmem: pipe mutex locked")); 1458 1459 if (cpipe->pipe_buffer.buffer != NULL) { 1460 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size); 1461 vm_map_remove(pipe_map, 1462 (vm_offset_t)cpipe->pipe_buffer.buffer, 1463 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1464 cpipe->pipe_buffer.buffer = NULL; 1465 } 1466 #ifndef PIPE_NODIRECT 1467 { 1468 cpipe->pipe_map.cnt = 0; 1469 cpipe->pipe_map.pos = 0; 1470 cpipe->pipe_map.npages = 0; 1471 } 1472 #endif 1473 } 1474 1475 /* 1476 * shutdown the pipe 1477 */ 1478 static void 1479 pipeclose(cpipe) 1480 struct pipe *cpipe; 1481 { 1482 struct pipepair *pp; 1483 struct pipe *ppipe; 1484 1485 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1486 1487 PIPE_LOCK(cpipe); 1488 pipelock(cpipe, 0); 1489 pp = cpipe->pipe_pair; 1490 1491 pipeselwakeup(cpipe); 1492 1493 /* 1494 * If the other side is blocked, wake it up saying that 1495 * we want to close it down. 1496 */ 1497 cpipe->pipe_state |= PIPE_EOF; 1498 while (cpipe->pipe_busy) { 1499 wakeup(cpipe); 1500 cpipe->pipe_state |= PIPE_WANT; 1501 pipeunlock(cpipe); 1502 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1503 pipelock(cpipe, 0); 1504 } 1505 1506 1507 /* 1508 * Disconnect from peer, if any. 1509 */ 1510 ppipe = cpipe->pipe_peer; 1511 if (ppipe->pipe_present == PIPE_ACTIVE) { 1512 pipeselwakeup(ppipe); 1513 1514 ppipe->pipe_state |= PIPE_EOF; 1515 wakeup(ppipe); 1516 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1517 } 1518 1519 /* 1520 * Mark this endpoint as free. Release kmem resources. We 1521 * don't mark this endpoint as unused until we've finished 1522 * doing that, or the pipe might disappear out from under 1523 * us. 1524 */ 1525 PIPE_UNLOCK(cpipe); 1526 pipe_free_kmem(cpipe); 1527 PIPE_LOCK(cpipe); 1528 cpipe->pipe_present = PIPE_CLOSING; 1529 pipeunlock(cpipe); 1530 1531 /* 1532 * knlist_clear() may sleep dropping the PIPE_MTX. Set the 1533 * PIPE_FINALIZED, that allows other end to free the 1534 * pipe_pair, only after the knotes are completely dismantled. 1535 */ 1536 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1537 cpipe->pipe_present = PIPE_FINALIZED; 1538 knlist_destroy(&cpipe->pipe_sel.si_note); 1539 1540 /* 1541 * If both endpoints are now closed, release the memory for the 1542 * pipe pair. If not, unlock. 1543 */ 1544 if (ppipe->pipe_present == PIPE_FINALIZED) { 1545 PIPE_UNLOCK(cpipe); 1546 #ifdef MAC 1547 mac_pipe_destroy(pp); 1548 #endif 1549 uma_zfree(pipe_zone, cpipe->pipe_pair); 1550 } else 1551 PIPE_UNLOCK(cpipe); 1552 } 1553 1554 /*ARGSUSED*/ 1555 static int 1556 pipe_kqfilter(struct file *fp, struct knote *kn) 1557 { 1558 struct pipe *cpipe; 1559 1560 cpipe = kn->kn_fp->f_data; 1561 PIPE_LOCK(cpipe); 1562 switch (kn->kn_filter) { 1563 case EVFILT_READ: 1564 kn->kn_fop = &pipe_rfiltops; 1565 break; 1566 case EVFILT_WRITE: 1567 kn->kn_fop = &pipe_wfiltops; 1568 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) { 1569 /* other end of pipe has been closed */ 1570 PIPE_UNLOCK(cpipe); 1571 return (EPIPE); 1572 } 1573 cpipe = cpipe->pipe_peer; 1574 break; 1575 default: 1576 PIPE_UNLOCK(cpipe); 1577 return (EINVAL); 1578 } 1579 1580 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1581 PIPE_UNLOCK(cpipe); 1582 return (0); 1583 } 1584 1585 static void 1586 filt_pipedetach(struct knote *kn) 1587 { 1588 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; 1589 1590 PIPE_LOCK(cpipe); 1591 if (kn->kn_filter == EVFILT_WRITE) 1592 cpipe = cpipe->pipe_peer; 1593 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1594 PIPE_UNLOCK(cpipe); 1595 } 1596 1597 /*ARGSUSED*/ 1598 static int 1599 filt_piperead(struct knote *kn, long hint) 1600 { 1601 struct pipe *rpipe = kn->kn_fp->f_data; 1602 struct pipe *wpipe = rpipe->pipe_peer; 1603 int ret; 1604 1605 PIPE_LOCK(rpipe); 1606 kn->kn_data = rpipe->pipe_buffer.cnt; 1607 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1608 kn->kn_data = rpipe->pipe_map.cnt; 1609 1610 if ((rpipe->pipe_state & PIPE_EOF) || 1611 wpipe->pipe_present != PIPE_ACTIVE || 1612 (wpipe->pipe_state & PIPE_EOF)) { 1613 kn->kn_flags |= EV_EOF; 1614 PIPE_UNLOCK(rpipe); 1615 return (1); 1616 } 1617 ret = kn->kn_data > 0; 1618 PIPE_UNLOCK(rpipe); 1619 return ret; 1620 } 1621 1622 /*ARGSUSED*/ 1623 static int 1624 filt_pipewrite(struct knote *kn, long hint) 1625 { 1626 struct pipe *rpipe = kn->kn_fp->f_data; 1627 struct pipe *wpipe = rpipe->pipe_peer; 1628 1629 PIPE_LOCK(rpipe); 1630 if (wpipe->pipe_present != PIPE_ACTIVE || 1631 (wpipe->pipe_state & PIPE_EOF)) { 1632 kn->kn_data = 0; 1633 kn->kn_flags |= EV_EOF; 1634 PIPE_UNLOCK(rpipe); 1635 return (1); 1636 } 1637 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1638 if (wpipe->pipe_state & PIPE_DIRECTW) 1639 kn->kn_data = 0; 1640 1641 PIPE_UNLOCK(rpipe); 1642 return (kn->kn_data >= PIPE_BUF); 1643 } 1644