1 /*- 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 */ 19 20 /* 21 * This file contains a high-performance replacement for the socket-based 22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 23 * all features of sockets, but does do everything that pipes normally 24 * do. 25 */ 26 27 /* 28 * This code has two modes of operation, a small write mode and a large 29 * write mode. The small write mode acts like conventional pipes with 30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and 33 * the receiving process can copy it directly from the pages in the sending 34 * process. 35 * 36 * If the sending process receives a signal, it is possible that it will 37 * go away, and certainly its address space can change, because control 38 * is returned back to the user-mode side. In that case, the pipe code 39 * arranges to copy the buffer supplied by the user process, to a pageable 40 * kernel buffer, and the receiving process will grab the data from the 41 * pageable kernel buffer. Since signals don't happen all that often, 42 * the copy operation is normally eliminated. 43 * 44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 45 * happen for small transfers so that the system will not spend all of 46 * its time context switching. 47 * 48 * In order to limit the resource use of pipes, two sysctls exist: 49 * 50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 51 * address space available to us in pipe_map. This value is normally 52 * autotuned, but may also be loader tuned. 53 * 54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 55 * memory in use by pipes. 56 * 57 * Based on how large pipekva is relative to maxpipekva, the following 58 * will happen: 59 * 60 * 0% - 50%: 61 * New pipes are given 16K of memory backing, pipes may dynamically 62 * grow to as large as 64K where needed. 63 * 50% - 75%: 64 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 65 * existing pipes may NOT grow. 66 * 75% - 100%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes will be shrunk down to 4K whenever possible. 69 * 70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 72 * resize which MUST occur for reverse-direction pipes when they are 73 * first used. 74 * 75 * Additional information about the current state of pipes may be obtained 76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 77 * and kern.ipc.piperesizefail. 78 * 79 * Locking rules: There are two locks present here: A mutex, used via 80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 81 * the flag, as mutexes can not persist over uiomove. The mutex 82 * exists only to guard access to the flag, and is not in itself a 83 * locking mechanism. Also note that there is only a single mutex for 84 * both directions of a pipe. 85 * 86 * As pipelock() may have to sleep before it can acquire the flag, it 87 * is important to reread all data after a call to pipelock(); everything 88 * in the structure may have changed. 89 */ 90 91 #include <sys/cdefs.h> 92 __FBSDID("$FreeBSD$"); 93 94 #include "opt_mac.h" 95 96 #include <sys/param.h> 97 #include <sys/systm.h> 98 #include <sys/fcntl.h> 99 #include <sys/file.h> 100 #include <sys/filedesc.h> 101 #include <sys/filio.h> 102 #include <sys/kernel.h> 103 #include <sys/lock.h> 104 #include <sys/mutex.h> 105 #include <sys/ttycom.h> 106 #include <sys/stat.h> 107 #include <sys/malloc.h> 108 #include <sys/poll.h> 109 #include <sys/selinfo.h> 110 #include <sys/signalvar.h> 111 #include <sys/sysctl.h> 112 #include <sys/sysproto.h> 113 #include <sys/pipe.h> 114 #include <sys/proc.h> 115 #include <sys/vnode.h> 116 #include <sys/uio.h> 117 #include <sys/event.h> 118 119 #include <security/mac/mac_framework.h> 120 121 #include <vm/vm.h> 122 #include <vm/vm_param.h> 123 #include <vm/vm_object.h> 124 #include <vm/vm_kern.h> 125 #include <vm/vm_extern.h> 126 #include <vm/pmap.h> 127 #include <vm/vm_map.h> 128 #include <vm/vm_page.h> 129 #include <vm/uma.h> 130 131 /* 132 * Use this define if you want to disable *fancy* VM things. Expect an 133 * approx 30% decrease in transfer rate. This could be useful for 134 * NetBSD or OpenBSD. 135 */ 136 /* #define PIPE_NODIRECT */ 137 138 /* 139 * interfaces to the outside world 140 */ 141 static fo_rdwr_t pipe_read; 142 static fo_rdwr_t pipe_write; 143 static fo_ioctl_t pipe_ioctl; 144 static fo_poll_t pipe_poll; 145 static fo_kqfilter_t pipe_kqfilter; 146 static fo_stat_t pipe_stat; 147 static fo_close_t pipe_close; 148 149 static struct fileops pipeops = { 150 .fo_read = pipe_read, 151 .fo_write = pipe_write, 152 .fo_ioctl = pipe_ioctl, 153 .fo_poll = pipe_poll, 154 .fo_kqfilter = pipe_kqfilter, 155 .fo_stat = pipe_stat, 156 .fo_close = pipe_close, 157 .fo_flags = DFLAG_PASSABLE 158 }; 159 160 static void filt_pipedetach(struct knote *kn); 161 static int filt_piperead(struct knote *kn, long hint); 162 static int filt_pipewrite(struct knote *kn, long hint); 163 164 static struct filterops pipe_rfiltops = 165 { 1, NULL, filt_pipedetach, filt_piperead }; 166 static struct filterops pipe_wfiltops = 167 { 1, NULL, filt_pipedetach, filt_pipewrite }; 168 169 /* 170 * Default pipe buffer size(s), this can be kind-of large now because pipe 171 * space is pageable. The pipe code will try to maintain locality of 172 * reference for performance reasons, so small amounts of outstanding I/O 173 * will not wipe the cache. 174 */ 175 #define MINPIPESIZE (PIPE_SIZE/3) 176 #define MAXPIPESIZE (2*PIPE_SIZE/3) 177 178 static int amountpipes; 179 static int amountpipekva; 180 static int pipefragretry; 181 static int pipeallocfail; 182 static int piperesizefail; 183 static int piperesizeallowed = 1; 184 185 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, 186 &maxpipekva, 0, "Pipe KVA limit"); 187 SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD, 188 &amountpipes, 0, "Current # of pipes"); 189 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 190 &amountpipekva, 0, "Pipe KVA usage"); 191 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 192 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 193 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 194 &pipeallocfail, 0, "Pipe allocation failures"); 195 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 196 &piperesizefail, 0, "Pipe resize failures"); 197 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 198 &piperesizeallowed, 0, "Pipe resizing allowed"); 199 200 static void pipeinit(void *dummy __unused); 201 static void pipeclose(struct pipe *cpipe); 202 static void pipe_free_kmem(struct pipe *cpipe); 203 static int pipe_create(struct pipe *pipe, int backing); 204 static __inline int pipelock(struct pipe *cpipe, int catch); 205 static __inline void pipeunlock(struct pipe *cpipe); 206 static __inline void pipeselwakeup(struct pipe *cpipe); 207 #ifndef PIPE_NODIRECT 208 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 209 static void pipe_destroy_write_buffer(struct pipe *wpipe); 210 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 211 static void pipe_clone_write_buffer(struct pipe *wpipe); 212 #endif 213 static int pipespace(struct pipe *cpipe, int size); 214 static int pipespace_new(struct pipe *cpipe, int size); 215 216 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 217 static void pipe_zone_dtor(void *mem, int size, void *arg); 218 static int pipe_zone_init(void *mem, int size, int flags); 219 static void pipe_zone_fini(void *mem, int size); 220 221 static uma_zone_t pipe_zone; 222 223 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 224 225 static void 226 pipeinit(void *dummy __unused) 227 { 228 229 pipe_zone = uma_zcreate("PIPE", sizeof(struct pipepair), 230 pipe_zone_ctor, pipe_zone_dtor, pipe_zone_init, pipe_zone_fini, 231 UMA_ALIGN_PTR, 0); 232 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 233 } 234 235 static int 236 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 237 { 238 struct pipepair *pp; 239 struct pipe *rpipe, *wpipe; 240 241 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 242 243 pp = (struct pipepair *)mem; 244 245 /* 246 * We zero both pipe endpoints to make sure all the kmem pointers 247 * are NULL, flag fields are zero'd, etc. We timestamp both 248 * endpoints with the same time. 249 */ 250 rpipe = &pp->pp_rpipe; 251 bzero(rpipe, sizeof(*rpipe)); 252 vfs_timestamp(&rpipe->pipe_ctime); 253 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 254 255 wpipe = &pp->pp_wpipe; 256 bzero(wpipe, sizeof(*wpipe)); 257 wpipe->pipe_ctime = rpipe->pipe_ctime; 258 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 259 260 rpipe->pipe_peer = wpipe; 261 rpipe->pipe_pair = pp; 262 wpipe->pipe_peer = rpipe; 263 wpipe->pipe_pair = pp; 264 265 /* 266 * Mark both endpoints as present; they will later get free'd 267 * one at a time. When both are free'd, then the whole pair 268 * is released. 269 */ 270 rpipe->pipe_present = 1; 271 wpipe->pipe_present = 1; 272 273 /* 274 * Eventually, the MAC Framework may initialize the label 275 * in ctor or init, but for now we do it elswhere to avoid 276 * blocking in ctor or init. 277 */ 278 pp->pp_label = NULL; 279 280 atomic_add_int(&amountpipes, 2); 281 return (0); 282 } 283 284 static void 285 pipe_zone_dtor(void *mem, int size, void *arg) 286 { 287 struct pipepair *pp; 288 289 KASSERT(size == sizeof(*pp), ("pipe_zone_dtor: wrong size")); 290 291 pp = (struct pipepair *)mem; 292 293 atomic_subtract_int(&amountpipes, 2); 294 } 295 296 static int 297 pipe_zone_init(void *mem, int size, int flags) 298 { 299 struct pipepair *pp; 300 301 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 302 303 pp = (struct pipepair *)mem; 304 305 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 306 return (0); 307 } 308 309 static void 310 pipe_zone_fini(void *mem, int size) 311 { 312 struct pipepair *pp; 313 314 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 315 316 pp = (struct pipepair *)mem; 317 318 mtx_destroy(&pp->pp_mtx); 319 } 320 321 /* 322 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, 323 * let the zone pick up the pieces via pipeclose(). 324 */ 325 326 /* ARGSUSED */ 327 int 328 pipe(td, uap) 329 struct thread *td; 330 struct pipe_args /* { 331 int dummy; 332 } */ *uap; 333 { 334 struct filedesc *fdp = td->td_proc->p_fd; 335 struct file *rf, *wf; 336 struct pipepair *pp; 337 struct pipe *rpipe, *wpipe; 338 int fd, error; 339 340 pp = uma_zalloc(pipe_zone, M_WAITOK); 341 #ifdef MAC 342 /* 343 * The MAC label is shared between the connected endpoints. As a 344 * result mac_init_pipe() and mac_create_pipe() are called once 345 * for the pair, and not on the endpoints. 346 */ 347 mac_init_pipe(pp); 348 mac_create_pipe(td->td_ucred, pp); 349 #endif 350 rpipe = &pp->pp_rpipe; 351 wpipe = &pp->pp_wpipe; 352 353 knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe), NULL, NULL, 354 NULL); 355 knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe), NULL, NULL, 356 NULL); 357 358 /* Only the forward direction pipe is backed by default */ 359 if ((error = pipe_create(rpipe, 1)) != 0 || 360 (error = pipe_create(wpipe, 0)) != 0) { 361 pipeclose(rpipe); 362 pipeclose(wpipe); 363 return (error); 364 } 365 366 rpipe->pipe_state |= PIPE_DIRECTOK; 367 wpipe->pipe_state |= PIPE_DIRECTOK; 368 369 error = falloc(td, &rf, &fd); 370 if (error) { 371 pipeclose(rpipe); 372 pipeclose(wpipe); 373 return (error); 374 } 375 /* An extra reference on `rf' has been held for us by falloc(). */ 376 td->td_retval[0] = fd; 377 378 /* 379 * Warning: once we've gotten past allocation of the fd for the 380 * read-side, we can only drop the read side via fdrop() in order 381 * to avoid races against processes which manage to dup() the read 382 * side while we are blocked trying to allocate the write side. 383 */ 384 FILE_LOCK(rf); 385 rf->f_flag = FREAD | FWRITE; 386 rf->f_type = DTYPE_PIPE; 387 rf->f_data = rpipe; 388 rf->f_ops = &pipeops; 389 FILE_UNLOCK(rf); 390 error = falloc(td, &wf, &fd); 391 if (error) { 392 fdclose(fdp, rf, td->td_retval[0], td); 393 fdrop(rf, td); 394 /* rpipe has been closed by fdrop(). */ 395 pipeclose(wpipe); 396 return (error); 397 } 398 /* An extra reference on `wf' has been held for us by falloc(). */ 399 FILE_LOCK(wf); 400 wf->f_flag = FREAD | FWRITE; 401 wf->f_type = DTYPE_PIPE; 402 wf->f_data = wpipe; 403 wf->f_ops = &pipeops; 404 FILE_UNLOCK(wf); 405 fdrop(wf, td); 406 td->td_retval[1] = fd; 407 fdrop(rf, td); 408 409 return (0); 410 } 411 412 /* 413 * Allocate kva for pipe circular buffer, the space is pageable 414 * This routine will 'realloc' the size of a pipe safely, if it fails 415 * it will retain the old buffer. 416 * If it fails it will return ENOMEM. 417 */ 418 static int 419 pipespace_new(cpipe, size) 420 struct pipe *cpipe; 421 int size; 422 { 423 caddr_t buffer; 424 int error, cnt, firstseg; 425 static int curfail = 0; 426 static struct timeval lastfail; 427 428 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 429 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 430 ("pipespace: resize of direct writes not allowed")); 431 retry: 432 cnt = cpipe->pipe_buffer.cnt; 433 if (cnt > size) 434 size = cnt; 435 436 size = round_page(size); 437 buffer = (caddr_t) vm_map_min(pipe_map); 438 439 error = vm_map_find(pipe_map, NULL, 0, 440 (vm_offset_t *) &buffer, size, 1, 441 VM_PROT_ALL, VM_PROT_ALL, 0); 442 if (error != KERN_SUCCESS) { 443 if ((cpipe->pipe_buffer.buffer == NULL) && 444 (size > SMALL_PIPE_SIZE)) { 445 size = SMALL_PIPE_SIZE; 446 pipefragretry++; 447 goto retry; 448 } 449 if (cpipe->pipe_buffer.buffer == NULL) { 450 pipeallocfail++; 451 if (ppsratecheck(&lastfail, &curfail, 1)) 452 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 453 } else { 454 piperesizefail++; 455 } 456 return (ENOMEM); 457 } 458 459 /* copy data, then free old resources if we're resizing */ 460 if (cnt > 0) { 461 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 462 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 463 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 464 buffer, firstseg); 465 if ((cnt - firstseg) > 0) 466 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 467 cpipe->pipe_buffer.in); 468 } else { 469 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 470 buffer, cnt); 471 } 472 } 473 pipe_free_kmem(cpipe); 474 cpipe->pipe_buffer.buffer = buffer; 475 cpipe->pipe_buffer.size = size; 476 cpipe->pipe_buffer.in = cnt; 477 cpipe->pipe_buffer.out = 0; 478 cpipe->pipe_buffer.cnt = cnt; 479 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size); 480 return (0); 481 } 482 483 /* 484 * Wrapper for pipespace_new() that performs locking assertions. 485 */ 486 static int 487 pipespace(cpipe, size) 488 struct pipe *cpipe; 489 int size; 490 { 491 492 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 493 ("Unlocked pipe passed to pipespace")); 494 return (pipespace_new(cpipe, size)); 495 } 496 497 /* 498 * lock a pipe for I/O, blocking other access 499 */ 500 static __inline int 501 pipelock(cpipe, catch) 502 struct pipe *cpipe; 503 int catch; 504 { 505 int error; 506 507 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 508 while (cpipe->pipe_state & PIPE_LOCKFL) { 509 cpipe->pipe_state |= PIPE_LWANT; 510 error = msleep(cpipe, PIPE_MTX(cpipe), 511 catch ? (PRIBIO | PCATCH) : PRIBIO, 512 "pipelk", 0); 513 if (error != 0) 514 return (error); 515 } 516 cpipe->pipe_state |= PIPE_LOCKFL; 517 return (0); 518 } 519 520 /* 521 * unlock a pipe I/O lock 522 */ 523 static __inline void 524 pipeunlock(cpipe) 525 struct pipe *cpipe; 526 { 527 528 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 529 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 530 ("Unlocked pipe passed to pipeunlock")); 531 cpipe->pipe_state &= ~PIPE_LOCKFL; 532 if (cpipe->pipe_state & PIPE_LWANT) { 533 cpipe->pipe_state &= ~PIPE_LWANT; 534 wakeup(cpipe); 535 } 536 } 537 538 static __inline void 539 pipeselwakeup(cpipe) 540 struct pipe *cpipe; 541 { 542 543 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 544 if (cpipe->pipe_state & PIPE_SEL) { 545 cpipe->pipe_state &= ~PIPE_SEL; 546 selwakeuppri(&cpipe->pipe_sel, PSOCK); 547 } 548 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 549 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 550 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 551 } 552 553 /* 554 * Initialize and allocate VM and memory for pipe. The structure 555 * will start out zero'd from the ctor, so we just manage the kmem. 556 */ 557 static int 558 pipe_create(pipe, backing) 559 struct pipe *pipe; 560 int backing; 561 { 562 int error; 563 564 if (backing) { 565 if (amountpipekva > maxpipekva / 2) 566 error = pipespace_new(pipe, SMALL_PIPE_SIZE); 567 else 568 error = pipespace_new(pipe, PIPE_SIZE); 569 } else { 570 /* If we're not backing this pipe, no need to do anything. */ 571 error = 0; 572 } 573 return (error); 574 } 575 576 /* ARGSUSED */ 577 static int 578 pipe_read(fp, uio, active_cred, flags, td) 579 struct file *fp; 580 struct uio *uio; 581 struct ucred *active_cred; 582 struct thread *td; 583 int flags; 584 { 585 struct pipe *rpipe = fp->f_data; 586 int error; 587 int nread = 0; 588 u_int size; 589 590 PIPE_LOCK(rpipe); 591 ++rpipe->pipe_busy; 592 error = pipelock(rpipe, 1); 593 if (error) 594 goto unlocked_error; 595 596 #ifdef MAC 597 error = mac_check_pipe_read(active_cred, rpipe->pipe_pair); 598 if (error) 599 goto locked_error; 600 #endif 601 if (amountpipekva > (3 * maxpipekva) / 4) { 602 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 603 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 604 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 605 (piperesizeallowed == 1)) { 606 PIPE_UNLOCK(rpipe); 607 pipespace(rpipe, SMALL_PIPE_SIZE); 608 PIPE_LOCK(rpipe); 609 } 610 } 611 612 while (uio->uio_resid) { 613 /* 614 * normal pipe buffer receive 615 */ 616 if (rpipe->pipe_buffer.cnt > 0) { 617 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 618 if (size > rpipe->pipe_buffer.cnt) 619 size = rpipe->pipe_buffer.cnt; 620 if (size > (u_int) uio->uio_resid) 621 size = (u_int) uio->uio_resid; 622 623 PIPE_UNLOCK(rpipe); 624 error = uiomove( 625 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 626 size, uio); 627 PIPE_LOCK(rpipe); 628 if (error) 629 break; 630 631 rpipe->pipe_buffer.out += size; 632 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 633 rpipe->pipe_buffer.out = 0; 634 635 rpipe->pipe_buffer.cnt -= size; 636 637 /* 638 * If there is no more to read in the pipe, reset 639 * its pointers to the beginning. This improves 640 * cache hit stats. 641 */ 642 if (rpipe->pipe_buffer.cnt == 0) { 643 rpipe->pipe_buffer.in = 0; 644 rpipe->pipe_buffer.out = 0; 645 } 646 nread += size; 647 #ifndef PIPE_NODIRECT 648 /* 649 * Direct copy, bypassing a kernel buffer. 650 */ 651 } else if ((size = rpipe->pipe_map.cnt) && 652 (rpipe->pipe_state & PIPE_DIRECTW)) { 653 if (size > (u_int) uio->uio_resid) 654 size = (u_int) uio->uio_resid; 655 656 PIPE_UNLOCK(rpipe); 657 error = uiomove_fromphys(rpipe->pipe_map.ms, 658 rpipe->pipe_map.pos, size, uio); 659 PIPE_LOCK(rpipe); 660 if (error) 661 break; 662 nread += size; 663 rpipe->pipe_map.pos += size; 664 rpipe->pipe_map.cnt -= size; 665 if (rpipe->pipe_map.cnt == 0) { 666 rpipe->pipe_state &= ~PIPE_DIRECTW; 667 wakeup(rpipe); 668 } 669 #endif 670 } else { 671 /* 672 * detect EOF condition 673 * read returns 0 on EOF, no need to set error 674 */ 675 if (rpipe->pipe_state & PIPE_EOF) 676 break; 677 678 /* 679 * If the "write-side" has been blocked, wake it up now. 680 */ 681 if (rpipe->pipe_state & PIPE_WANTW) { 682 rpipe->pipe_state &= ~PIPE_WANTW; 683 wakeup(rpipe); 684 } 685 686 /* 687 * Break if some data was read. 688 */ 689 if (nread > 0) 690 break; 691 692 /* 693 * Unlock the pipe buffer for our remaining processing. 694 * We will either break out with an error or we will 695 * sleep and relock to loop. 696 */ 697 pipeunlock(rpipe); 698 699 /* 700 * Handle non-blocking mode operation or 701 * wait for more data. 702 */ 703 if (fp->f_flag & FNONBLOCK) { 704 error = EAGAIN; 705 } else { 706 rpipe->pipe_state |= PIPE_WANTR; 707 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 708 PRIBIO | PCATCH, 709 "piperd", 0)) == 0) 710 error = pipelock(rpipe, 1); 711 } 712 if (error) 713 goto unlocked_error; 714 } 715 } 716 #ifdef MAC 717 locked_error: 718 #endif 719 pipeunlock(rpipe); 720 721 /* XXX: should probably do this before getting any locks. */ 722 if (error == 0) 723 vfs_timestamp(&rpipe->pipe_atime); 724 unlocked_error: 725 --rpipe->pipe_busy; 726 727 /* 728 * PIPE_WANT processing only makes sense if pipe_busy is 0. 729 */ 730 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 731 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 732 wakeup(rpipe); 733 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 734 /* 735 * Handle write blocking hysteresis. 736 */ 737 if (rpipe->pipe_state & PIPE_WANTW) { 738 rpipe->pipe_state &= ~PIPE_WANTW; 739 wakeup(rpipe); 740 } 741 } 742 743 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 744 pipeselwakeup(rpipe); 745 746 PIPE_UNLOCK(rpipe); 747 return (error); 748 } 749 750 #ifndef PIPE_NODIRECT 751 /* 752 * Map the sending processes' buffer into kernel space and wire it. 753 * This is similar to a physical write operation. 754 */ 755 static int 756 pipe_build_write_buffer(wpipe, uio) 757 struct pipe *wpipe; 758 struct uio *uio; 759 { 760 pmap_t pmap; 761 u_int size; 762 int i, j; 763 vm_offset_t addr, endaddr; 764 765 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 766 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 767 ("Clone attempt on non-direct write pipe!")); 768 769 size = (u_int) uio->uio_iov->iov_len; 770 if (size > wpipe->pipe_buffer.size) 771 size = wpipe->pipe_buffer.size; 772 773 pmap = vmspace_pmap(curproc->p_vmspace); 774 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size); 775 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base); 776 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) { 777 /* 778 * vm_fault_quick() can sleep. Consequently, 779 * vm_page_lock_queue() and vm_page_unlock_queue() 780 * should not be performed outside of this loop. 781 */ 782 race: 783 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) { 784 vm_page_lock_queues(); 785 for (j = 0; j < i; j++) 786 vm_page_unhold(wpipe->pipe_map.ms[j]); 787 vm_page_unlock_queues(); 788 return (EFAULT); 789 } 790 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr, 791 VM_PROT_READ); 792 if (wpipe->pipe_map.ms[i] == NULL) 793 goto race; 794 } 795 796 /* 797 * set up the control block 798 */ 799 wpipe->pipe_map.npages = i; 800 wpipe->pipe_map.pos = 801 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 802 wpipe->pipe_map.cnt = size; 803 804 /* 805 * and update the uio data 806 */ 807 808 uio->uio_iov->iov_len -= size; 809 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 810 if (uio->uio_iov->iov_len == 0) 811 uio->uio_iov++; 812 uio->uio_resid -= size; 813 uio->uio_offset += size; 814 return (0); 815 } 816 817 /* 818 * unmap and unwire the process buffer 819 */ 820 static void 821 pipe_destroy_write_buffer(wpipe) 822 struct pipe *wpipe; 823 { 824 int i; 825 826 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 827 vm_page_lock_queues(); 828 for (i = 0; i < wpipe->pipe_map.npages; i++) { 829 vm_page_unhold(wpipe->pipe_map.ms[i]); 830 } 831 vm_page_unlock_queues(); 832 wpipe->pipe_map.npages = 0; 833 } 834 835 /* 836 * In the case of a signal, the writing process might go away. This 837 * code copies the data into the circular buffer so that the source 838 * pages can be freed without loss of data. 839 */ 840 static void 841 pipe_clone_write_buffer(wpipe) 842 struct pipe *wpipe; 843 { 844 struct uio uio; 845 struct iovec iov; 846 int size; 847 int pos; 848 849 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 850 size = wpipe->pipe_map.cnt; 851 pos = wpipe->pipe_map.pos; 852 853 wpipe->pipe_buffer.in = size; 854 wpipe->pipe_buffer.out = 0; 855 wpipe->pipe_buffer.cnt = size; 856 wpipe->pipe_state &= ~PIPE_DIRECTW; 857 858 PIPE_UNLOCK(wpipe); 859 iov.iov_base = wpipe->pipe_buffer.buffer; 860 iov.iov_len = size; 861 uio.uio_iov = &iov; 862 uio.uio_iovcnt = 1; 863 uio.uio_offset = 0; 864 uio.uio_resid = size; 865 uio.uio_segflg = UIO_SYSSPACE; 866 uio.uio_rw = UIO_READ; 867 uio.uio_td = curthread; 868 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 869 PIPE_LOCK(wpipe); 870 pipe_destroy_write_buffer(wpipe); 871 } 872 873 /* 874 * This implements the pipe buffer write mechanism. Note that only 875 * a direct write OR a normal pipe write can be pending at any given time. 876 * If there are any characters in the pipe buffer, the direct write will 877 * be deferred until the receiving process grabs all of the bytes from 878 * the pipe buffer. Then the direct mapping write is set-up. 879 */ 880 static int 881 pipe_direct_write(wpipe, uio) 882 struct pipe *wpipe; 883 struct uio *uio; 884 { 885 int error; 886 887 retry: 888 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 889 error = pipelock(wpipe, 1); 890 if (wpipe->pipe_state & PIPE_EOF) 891 error = EPIPE; 892 if (error) { 893 pipeunlock(wpipe); 894 goto error1; 895 } 896 while (wpipe->pipe_state & PIPE_DIRECTW) { 897 if (wpipe->pipe_state & PIPE_WANTR) { 898 wpipe->pipe_state &= ~PIPE_WANTR; 899 wakeup(wpipe); 900 } 901 wpipe->pipe_state |= PIPE_WANTW; 902 pipeunlock(wpipe); 903 error = msleep(wpipe, PIPE_MTX(wpipe), 904 PRIBIO | PCATCH, "pipdww", 0); 905 if (error) 906 goto error1; 907 else 908 goto retry; 909 } 910 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 911 if (wpipe->pipe_buffer.cnt > 0) { 912 if (wpipe->pipe_state & PIPE_WANTR) { 913 wpipe->pipe_state &= ~PIPE_WANTR; 914 wakeup(wpipe); 915 } 916 wpipe->pipe_state |= PIPE_WANTW; 917 pipeunlock(wpipe); 918 error = msleep(wpipe, PIPE_MTX(wpipe), 919 PRIBIO | PCATCH, "pipdwc", 0); 920 if (error) 921 goto error1; 922 else 923 goto retry; 924 } 925 926 wpipe->pipe_state |= PIPE_DIRECTW; 927 928 PIPE_UNLOCK(wpipe); 929 error = pipe_build_write_buffer(wpipe, uio); 930 PIPE_LOCK(wpipe); 931 if (error) { 932 wpipe->pipe_state &= ~PIPE_DIRECTW; 933 pipeunlock(wpipe); 934 goto error1; 935 } 936 937 error = 0; 938 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 939 if (wpipe->pipe_state & PIPE_EOF) { 940 pipe_destroy_write_buffer(wpipe); 941 pipeselwakeup(wpipe); 942 pipeunlock(wpipe); 943 error = EPIPE; 944 goto error1; 945 } 946 if (wpipe->pipe_state & PIPE_WANTR) { 947 wpipe->pipe_state &= ~PIPE_WANTR; 948 wakeup(wpipe); 949 } 950 pipeselwakeup(wpipe); 951 pipeunlock(wpipe); 952 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 953 "pipdwt", 0); 954 pipelock(wpipe, 0); 955 } 956 957 if (wpipe->pipe_state & PIPE_EOF) 958 error = EPIPE; 959 if (wpipe->pipe_state & PIPE_DIRECTW) { 960 /* 961 * this bit of trickery substitutes a kernel buffer for 962 * the process that might be going away. 963 */ 964 pipe_clone_write_buffer(wpipe); 965 } else { 966 pipe_destroy_write_buffer(wpipe); 967 } 968 pipeunlock(wpipe); 969 return (error); 970 971 error1: 972 wakeup(wpipe); 973 return (error); 974 } 975 #endif 976 977 static int 978 pipe_write(fp, uio, active_cred, flags, td) 979 struct file *fp; 980 struct uio *uio; 981 struct ucred *active_cred; 982 struct thread *td; 983 int flags; 984 { 985 int error = 0; 986 int desiredsize, orig_resid; 987 struct pipe *wpipe, *rpipe; 988 989 rpipe = fp->f_data; 990 wpipe = rpipe->pipe_peer; 991 992 PIPE_LOCK(rpipe); 993 error = pipelock(wpipe, 1); 994 if (error) { 995 PIPE_UNLOCK(rpipe); 996 return (error); 997 } 998 /* 999 * detect loss of pipe read side, issue SIGPIPE if lost. 1000 */ 1001 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1002 pipeunlock(wpipe); 1003 PIPE_UNLOCK(rpipe); 1004 return (EPIPE); 1005 } 1006 #ifdef MAC 1007 error = mac_check_pipe_write(active_cred, wpipe->pipe_pair); 1008 if (error) { 1009 pipeunlock(wpipe); 1010 PIPE_UNLOCK(rpipe); 1011 return (error); 1012 } 1013 #endif 1014 ++wpipe->pipe_busy; 1015 1016 /* Choose a larger size if it's advantageous */ 1017 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1018 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1019 if (piperesizeallowed != 1) 1020 break; 1021 if (amountpipekva > maxpipekva / 2) 1022 break; 1023 if (desiredsize == BIG_PIPE_SIZE) 1024 break; 1025 desiredsize = desiredsize * 2; 1026 } 1027 1028 /* Choose a smaller size if we're in a OOM situation */ 1029 if ((amountpipekva > (3 * maxpipekva) / 4) && 1030 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 1031 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1032 (piperesizeallowed == 1)) 1033 desiredsize = SMALL_PIPE_SIZE; 1034 1035 /* Resize if the above determined that a new size was necessary */ 1036 if ((desiredsize != wpipe->pipe_buffer.size) && 1037 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1038 PIPE_UNLOCK(wpipe); 1039 pipespace(wpipe, desiredsize); 1040 PIPE_LOCK(wpipe); 1041 } 1042 if (wpipe->pipe_buffer.size == 0) { 1043 /* 1044 * This can only happen for reverse direction use of pipes 1045 * in a complete OOM situation. 1046 */ 1047 error = ENOMEM; 1048 --wpipe->pipe_busy; 1049 pipeunlock(wpipe); 1050 PIPE_UNLOCK(wpipe); 1051 return (error); 1052 } 1053 1054 pipeunlock(wpipe); 1055 1056 orig_resid = uio->uio_resid; 1057 1058 while (uio->uio_resid) { 1059 int space; 1060 1061 pipelock(wpipe, 0); 1062 if (wpipe->pipe_state & PIPE_EOF) { 1063 pipeunlock(wpipe); 1064 error = EPIPE; 1065 break; 1066 } 1067 #ifndef PIPE_NODIRECT 1068 /* 1069 * If the transfer is large, we can gain performance if 1070 * we do process-to-process copies directly. 1071 * If the write is non-blocking, we don't use the 1072 * direct write mechanism. 1073 * 1074 * The direct write mechanism will detect the reader going 1075 * away on us. 1076 */ 1077 if (uio->uio_segflg == UIO_USERSPACE && 1078 uio->uio_iov->iov_len >= PIPE_MINDIRECT && 1079 wpipe->pipe_buffer.size >= PIPE_MINDIRECT && 1080 (fp->f_flag & FNONBLOCK) == 0) { 1081 pipeunlock(wpipe); 1082 error = pipe_direct_write(wpipe, uio); 1083 if (error) 1084 break; 1085 continue; 1086 } 1087 #endif 1088 1089 /* 1090 * Pipe buffered writes cannot be coincidental with 1091 * direct writes. We wait until the currently executing 1092 * direct write is completed before we start filling the 1093 * pipe buffer. We break out if a signal occurs or the 1094 * reader goes away. 1095 */ 1096 if (wpipe->pipe_state & PIPE_DIRECTW) { 1097 if (wpipe->pipe_state & PIPE_WANTR) { 1098 wpipe->pipe_state &= ~PIPE_WANTR; 1099 wakeup(wpipe); 1100 } 1101 pipeunlock(wpipe); 1102 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1103 "pipbww", 0); 1104 if (error) 1105 break; 1106 else 1107 continue; 1108 } 1109 1110 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1111 1112 /* Writes of size <= PIPE_BUF must be atomic. */ 1113 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1114 space = 0; 1115 1116 if (space > 0) { 1117 int size; /* Transfer size */ 1118 int segsize; /* first segment to transfer */ 1119 1120 /* 1121 * Transfer size is minimum of uio transfer 1122 * and free space in pipe buffer. 1123 */ 1124 if (space > uio->uio_resid) 1125 size = uio->uio_resid; 1126 else 1127 size = space; 1128 /* 1129 * First segment to transfer is minimum of 1130 * transfer size and contiguous space in 1131 * pipe buffer. If first segment to transfer 1132 * is less than the transfer size, we've got 1133 * a wraparound in the buffer. 1134 */ 1135 segsize = wpipe->pipe_buffer.size - 1136 wpipe->pipe_buffer.in; 1137 if (segsize > size) 1138 segsize = size; 1139 1140 /* Transfer first segment */ 1141 1142 PIPE_UNLOCK(rpipe); 1143 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1144 segsize, uio); 1145 PIPE_LOCK(rpipe); 1146 1147 if (error == 0 && segsize < size) { 1148 KASSERT(wpipe->pipe_buffer.in + segsize == 1149 wpipe->pipe_buffer.size, 1150 ("Pipe buffer wraparound disappeared")); 1151 /* 1152 * Transfer remaining part now, to 1153 * support atomic writes. Wraparound 1154 * happened. 1155 */ 1156 1157 PIPE_UNLOCK(rpipe); 1158 error = uiomove( 1159 &wpipe->pipe_buffer.buffer[0], 1160 size - segsize, uio); 1161 PIPE_LOCK(rpipe); 1162 } 1163 if (error == 0) { 1164 wpipe->pipe_buffer.in += size; 1165 if (wpipe->pipe_buffer.in >= 1166 wpipe->pipe_buffer.size) { 1167 KASSERT(wpipe->pipe_buffer.in == 1168 size - segsize + 1169 wpipe->pipe_buffer.size, 1170 ("Expected wraparound bad")); 1171 wpipe->pipe_buffer.in = size - segsize; 1172 } 1173 1174 wpipe->pipe_buffer.cnt += size; 1175 KASSERT(wpipe->pipe_buffer.cnt <= 1176 wpipe->pipe_buffer.size, 1177 ("Pipe buffer overflow")); 1178 } 1179 pipeunlock(wpipe); 1180 if (error != 0) 1181 break; 1182 } else { 1183 /* 1184 * If the "read-side" has been blocked, wake it up now. 1185 */ 1186 if (wpipe->pipe_state & PIPE_WANTR) { 1187 wpipe->pipe_state &= ~PIPE_WANTR; 1188 wakeup(wpipe); 1189 } 1190 1191 /* 1192 * don't block on non-blocking I/O 1193 */ 1194 if (fp->f_flag & FNONBLOCK) { 1195 error = EAGAIN; 1196 pipeunlock(wpipe); 1197 break; 1198 } 1199 1200 /* 1201 * We have no more space and have something to offer, 1202 * wake up select/poll. 1203 */ 1204 pipeselwakeup(wpipe); 1205 1206 wpipe->pipe_state |= PIPE_WANTW; 1207 pipeunlock(wpipe); 1208 error = msleep(wpipe, PIPE_MTX(rpipe), 1209 PRIBIO | PCATCH, "pipewr", 0); 1210 if (error != 0) 1211 break; 1212 } 1213 } 1214 1215 pipelock(wpipe, 0); 1216 --wpipe->pipe_busy; 1217 1218 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1219 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1220 wakeup(wpipe); 1221 } else if (wpipe->pipe_buffer.cnt > 0) { 1222 /* 1223 * If we have put any characters in the buffer, we wake up 1224 * the reader. 1225 */ 1226 if (wpipe->pipe_state & PIPE_WANTR) { 1227 wpipe->pipe_state &= ~PIPE_WANTR; 1228 wakeup(wpipe); 1229 } 1230 } 1231 1232 /* 1233 * Don't return EPIPE if I/O was successful 1234 */ 1235 if ((wpipe->pipe_buffer.cnt == 0) && 1236 (uio->uio_resid == 0) && 1237 (error == EPIPE)) { 1238 error = 0; 1239 } 1240 1241 if (error == 0) 1242 vfs_timestamp(&wpipe->pipe_mtime); 1243 1244 /* 1245 * We have something to offer, 1246 * wake up select/poll. 1247 */ 1248 if (wpipe->pipe_buffer.cnt) 1249 pipeselwakeup(wpipe); 1250 1251 pipeunlock(wpipe); 1252 PIPE_UNLOCK(rpipe); 1253 return (error); 1254 } 1255 1256 /* 1257 * we implement a very minimal set of ioctls for compatibility with sockets. 1258 */ 1259 static int 1260 pipe_ioctl(fp, cmd, data, active_cred, td) 1261 struct file *fp; 1262 u_long cmd; 1263 void *data; 1264 struct ucred *active_cred; 1265 struct thread *td; 1266 { 1267 struct pipe *mpipe = fp->f_data; 1268 int error; 1269 1270 PIPE_LOCK(mpipe); 1271 1272 #ifdef MAC 1273 error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1274 if (error) { 1275 PIPE_UNLOCK(mpipe); 1276 return (error); 1277 } 1278 #endif 1279 1280 error = 0; 1281 switch (cmd) { 1282 1283 case FIONBIO: 1284 break; 1285 1286 case FIOASYNC: 1287 if (*(int *)data) { 1288 mpipe->pipe_state |= PIPE_ASYNC; 1289 } else { 1290 mpipe->pipe_state &= ~PIPE_ASYNC; 1291 } 1292 break; 1293 1294 case FIONREAD: 1295 if (mpipe->pipe_state & PIPE_DIRECTW) 1296 *(int *)data = mpipe->pipe_map.cnt; 1297 else 1298 *(int *)data = mpipe->pipe_buffer.cnt; 1299 break; 1300 1301 case FIOSETOWN: 1302 PIPE_UNLOCK(mpipe); 1303 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1304 goto out_unlocked; 1305 1306 case FIOGETOWN: 1307 *(int *)data = fgetown(&mpipe->pipe_sigio); 1308 break; 1309 1310 /* This is deprecated, FIOSETOWN should be used instead. */ 1311 case TIOCSPGRP: 1312 PIPE_UNLOCK(mpipe); 1313 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1314 goto out_unlocked; 1315 1316 /* This is deprecated, FIOGETOWN should be used instead. */ 1317 case TIOCGPGRP: 1318 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1319 break; 1320 1321 default: 1322 error = ENOTTY; 1323 break; 1324 } 1325 PIPE_UNLOCK(mpipe); 1326 out_unlocked: 1327 return (error); 1328 } 1329 1330 static int 1331 pipe_poll(fp, events, active_cred, td) 1332 struct file *fp; 1333 int events; 1334 struct ucred *active_cred; 1335 struct thread *td; 1336 { 1337 struct pipe *rpipe = fp->f_data; 1338 struct pipe *wpipe; 1339 int revents = 0; 1340 #ifdef MAC 1341 int error; 1342 #endif 1343 1344 wpipe = rpipe->pipe_peer; 1345 PIPE_LOCK(rpipe); 1346 #ifdef MAC 1347 error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair); 1348 if (error) 1349 goto locked_error; 1350 #endif 1351 if (events & (POLLIN | POLLRDNORM)) 1352 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1353 (rpipe->pipe_buffer.cnt > 0) || 1354 (rpipe->pipe_state & PIPE_EOF)) 1355 revents |= events & (POLLIN | POLLRDNORM); 1356 1357 if (events & (POLLOUT | POLLWRNORM)) 1358 if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) || 1359 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1360 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1361 revents |= events & (POLLOUT | POLLWRNORM); 1362 1363 if ((rpipe->pipe_state & PIPE_EOF) || 1364 (!wpipe->pipe_present) || 1365 (wpipe->pipe_state & PIPE_EOF)) 1366 revents |= POLLHUP; 1367 1368 if (revents == 0) { 1369 if (events & (POLLIN | POLLRDNORM)) { 1370 selrecord(td, &rpipe->pipe_sel); 1371 rpipe->pipe_state |= PIPE_SEL; 1372 } 1373 1374 if (events & (POLLOUT | POLLWRNORM)) { 1375 selrecord(td, &wpipe->pipe_sel); 1376 wpipe->pipe_state |= PIPE_SEL; 1377 } 1378 } 1379 #ifdef MAC 1380 locked_error: 1381 #endif 1382 PIPE_UNLOCK(rpipe); 1383 1384 return (revents); 1385 } 1386 1387 /* 1388 * We shouldn't need locks here as we're doing a read and this should 1389 * be a natural race. 1390 */ 1391 static int 1392 pipe_stat(fp, ub, active_cred, td) 1393 struct file *fp; 1394 struct stat *ub; 1395 struct ucred *active_cred; 1396 struct thread *td; 1397 { 1398 struct pipe *pipe = fp->f_data; 1399 #ifdef MAC 1400 int error; 1401 1402 PIPE_LOCK(pipe); 1403 error = mac_check_pipe_stat(active_cred, pipe->pipe_pair); 1404 PIPE_UNLOCK(pipe); 1405 if (error) 1406 return (error); 1407 #endif 1408 bzero(ub, sizeof(*ub)); 1409 ub->st_mode = S_IFIFO; 1410 ub->st_blksize = PAGE_SIZE; 1411 if (pipe->pipe_state & PIPE_DIRECTW) 1412 ub->st_size = pipe->pipe_map.cnt; 1413 else 1414 ub->st_size = pipe->pipe_buffer.cnt; 1415 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1416 ub->st_atimespec = pipe->pipe_atime; 1417 ub->st_mtimespec = pipe->pipe_mtime; 1418 ub->st_ctimespec = pipe->pipe_ctime; 1419 ub->st_uid = fp->f_cred->cr_uid; 1420 ub->st_gid = fp->f_cred->cr_gid; 1421 /* 1422 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1423 * XXX (st_dev, st_ino) should be unique. 1424 */ 1425 return (0); 1426 } 1427 1428 /* ARGSUSED */ 1429 static int 1430 pipe_close(fp, td) 1431 struct file *fp; 1432 struct thread *td; 1433 { 1434 struct pipe *cpipe = fp->f_data; 1435 1436 fp->f_ops = &badfileops; 1437 fp->f_data = NULL; 1438 funsetown(&cpipe->pipe_sigio); 1439 pipeclose(cpipe); 1440 return (0); 1441 } 1442 1443 static void 1444 pipe_free_kmem(cpipe) 1445 struct pipe *cpipe; 1446 { 1447 1448 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1449 ("pipe_free_kmem: pipe mutex locked")); 1450 1451 if (cpipe->pipe_buffer.buffer != NULL) { 1452 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size); 1453 vm_map_remove(pipe_map, 1454 (vm_offset_t)cpipe->pipe_buffer.buffer, 1455 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1456 cpipe->pipe_buffer.buffer = NULL; 1457 } 1458 #ifndef PIPE_NODIRECT 1459 { 1460 cpipe->pipe_map.cnt = 0; 1461 cpipe->pipe_map.pos = 0; 1462 cpipe->pipe_map.npages = 0; 1463 } 1464 #endif 1465 } 1466 1467 /* 1468 * shutdown the pipe 1469 */ 1470 static void 1471 pipeclose(cpipe) 1472 struct pipe *cpipe; 1473 { 1474 struct pipepair *pp; 1475 struct pipe *ppipe; 1476 1477 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1478 1479 PIPE_LOCK(cpipe); 1480 pipelock(cpipe, 0); 1481 pp = cpipe->pipe_pair; 1482 1483 pipeselwakeup(cpipe); 1484 1485 /* 1486 * If the other side is blocked, wake it up saying that 1487 * we want to close it down. 1488 */ 1489 cpipe->pipe_state |= PIPE_EOF; 1490 while (cpipe->pipe_busy) { 1491 wakeup(cpipe); 1492 cpipe->pipe_state |= PIPE_WANT; 1493 pipeunlock(cpipe); 1494 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1495 pipelock(cpipe, 0); 1496 } 1497 1498 1499 /* 1500 * Disconnect from peer, if any. 1501 */ 1502 ppipe = cpipe->pipe_peer; 1503 if (ppipe->pipe_present != 0) { 1504 pipeselwakeup(ppipe); 1505 1506 ppipe->pipe_state |= PIPE_EOF; 1507 wakeup(ppipe); 1508 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1509 } 1510 1511 /* 1512 * Mark this endpoint as free. Release kmem resources. We 1513 * don't mark this endpoint as unused until we've finished 1514 * doing that, or the pipe might disappear out from under 1515 * us. 1516 */ 1517 PIPE_UNLOCK(cpipe); 1518 pipe_free_kmem(cpipe); 1519 PIPE_LOCK(cpipe); 1520 cpipe->pipe_present = 0; 1521 pipeunlock(cpipe); 1522 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1523 knlist_destroy(&cpipe->pipe_sel.si_note); 1524 1525 /* 1526 * If both endpoints are now closed, release the memory for the 1527 * pipe pair. If not, unlock. 1528 */ 1529 if (ppipe->pipe_present == 0) { 1530 PIPE_UNLOCK(cpipe); 1531 #ifdef MAC 1532 mac_destroy_pipe(pp); 1533 #endif 1534 uma_zfree(pipe_zone, cpipe->pipe_pair); 1535 } else 1536 PIPE_UNLOCK(cpipe); 1537 } 1538 1539 /*ARGSUSED*/ 1540 static int 1541 pipe_kqfilter(struct file *fp, struct knote *kn) 1542 { 1543 struct pipe *cpipe; 1544 1545 cpipe = kn->kn_fp->f_data; 1546 PIPE_LOCK(cpipe); 1547 switch (kn->kn_filter) { 1548 case EVFILT_READ: 1549 kn->kn_fop = &pipe_rfiltops; 1550 break; 1551 case EVFILT_WRITE: 1552 kn->kn_fop = &pipe_wfiltops; 1553 if (!cpipe->pipe_peer->pipe_present) { 1554 /* other end of pipe has been closed */ 1555 PIPE_UNLOCK(cpipe); 1556 return (EPIPE); 1557 } 1558 cpipe = cpipe->pipe_peer; 1559 break; 1560 default: 1561 PIPE_UNLOCK(cpipe); 1562 return (EINVAL); 1563 } 1564 1565 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1566 PIPE_UNLOCK(cpipe); 1567 return (0); 1568 } 1569 1570 static void 1571 filt_pipedetach(struct knote *kn) 1572 { 1573 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; 1574 1575 PIPE_LOCK(cpipe); 1576 if (kn->kn_filter == EVFILT_WRITE) { 1577 if (!cpipe->pipe_peer->pipe_present) { 1578 PIPE_UNLOCK(cpipe); 1579 return; 1580 } 1581 cpipe = cpipe->pipe_peer; 1582 } 1583 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1584 PIPE_UNLOCK(cpipe); 1585 } 1586 1587 /*ARGSUSED*/ 1588 static int 1589 filt_piperead(struct knote *kn, long hint) 1590 { 1591 struct pipe *rpipe = kn->kn_fp->f_data; 1592 struct pipe *wpipe = rpipe->pipe_peer; 1593 int ret; 1594 1595 PIPE_LOCK(rpipe); 1596 kn->kn_data = rpipe->pipe_buffer.cnt; 1597 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1598 kn->kn_data = rpipe->pipe_map.cnt; 1599 1600 if ((rpipe->pipe_state & PIPE_EOF) || 1601 (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1602 kn->kn_flags |= EV_EOF; 1603 PIPE_UNLOCK(rpipe); 1604 return (1); 1605 } 1606 ret = kn->kn_data > 0; 1607 PIPE_UNLOCK(rpipe); 1608 return ret; 1609 } 1610 1611 /*ARGSUSED*/ 1612 static int 1613 filt_pipewrite(struct knote *kn, long hint) 1614 { 1615 struct pipe *rpipe = kn->kn_fp->f_data; 1616 struct pipe *wpipe = rpipe->pipe_peer; 1617 1618 PIPE_LOCK(rpipe); 1619 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1620 kn->kn_data = 0; 1621 kn->kn_flags |= EV_EOF; 1622 PIPE_UNLOCK(rpipe); 1623 return (1); 1624 } 1625 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1626 if (wpipe->pipe_state & PIPE_DIRECTW) 1627 kn->kn_data = 0; 1628 1629 PIPE_UNLOCK(rpipe); 1630 return (kn->kn_data >= PIPE_BUF); 1631 } 1632