1 /*- 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 */ 19 20 /* 21 * This file contains a high-performance replacement for the socket-based 22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 23 * all features of sockets, but does do everything that pipes normally 24 * do. 25 */ 26 27 /* 28 * This code has two modes of operation, a small write mode and a large 29 * write mode. The small write mode acts like conventional pipes with 30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and 33 * the receiving process can copy it directly from the pages in the sending 34 * process. 35 * 36 * If the sending process receives a signal, it is possible that it will 37 * go away, and certainly its address space can change, because control 38 * is returned back to the user-mode side. In that case, the pipe code 39 * arranges to copy the buffer supplied by the user process, to a pageable 40 * kernel buffer, and the receiving process will grab the data from the 41 * pageable kernel buffer. Since signals don't happen all that often, 42 * the copy operation is normally eliminated. 43 * 44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 45 * happen for small transfers so that the system will not spend all of 46 * its time context switching. 47 * 48 * In order to limit the resource use of pipes, two sysctls exist: 49 * 50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 51 * address space available to us in pipe_map. This value is normally 52 * autotuned, but may also be loader tuned. 53 * 54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 55 * memory in use by pipes. 56 * 57 * Based on how large pipekva is relative to maxpipekva, the following 58 * will happen: 59 * 60 * 0% - 50%: 61 * New pipes are given 16K of memory backing, pipes may dynamically 62 * grow to as large as 64K where needed. 63 * 50% - 75%: 64 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 65 * existing pipes may NOT grow. 66 * 75% - 100%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes will be shrunk down to 4K whenever possible. 69 * 70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 72 * resize which MUST occur for reverse-direction pipes when they are 73 * first used. 74 * 75 * Additional information about the current state of pipes may be obtained 76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 77 * and kern.ipc.piperesizefail. 78 * 79 * Locking rules: There are two locks present here: A mutex, used via 80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 81 * the flag, as mutexes can not persist over uiomove. The mutex 82 * exists only to guard access to the flag, and is not in itself a 83 * locking mechanism. Also note that there is only a single mutex for 84 * both directions of a pipe. 85 * 86 * As pipelock() may have to sleep before it can acquire the flag, it 87 * is important to reread all data after a call to pipelock(); everything 88 * in the structure may have changed. 89 */ 90 91 #include <sys/cdefs.h> 92 __FBSDID("$FreeBSD$"); 93 94 #include "opt_mac.h" 95 96 #include <sys/param.h> 97 #include <sys/systm.h> 98 #include <sys/fcntl.h> 99 #include <sys/file.h> 100 #include <sys/filedesc.h> 101 #include <sys/filio.h> 102 #include <sys/kernel.h> 103 #include <sys/lock.h> 104 #include <sys/mac.h> 105 #include <sys/mutex.h> 106 #include <sys/ttycom.h> 107 #include <sys/stat.h> 108 #include <sys/malloc.h> 109 #include <sys/poll.h> 110 #include <sys/selinfo.h> 111 #include <sys/signalvar.h> 112 #include <sys/sysctl.h> 113 #include <sys/sysproto.h> 114 #include <sys/pipe.h> 115 #include <sys/proc.h> 116 #include <sys/vnode.h> 117 #include <sys/uio.h> 118 #include <sys/event.h> 119 120 #include <vm/vm.h> 121 #include <vm/vm_param.h> 122 #include <vm/vm_object.h> 123 #include <vm/vm_kern.h> 124 #include <vm/vm_extern.h> 125 #include <vm/pmap.h> 126 #include <vm/vm_map.h> 127 #include <vm/vm_page.h> 128 #include <vm/uma.h> 129 130 /* 131 * Use this define if you want to disable *fancy* VM things. Expect an 132 * approx 30% decrease in transfer rate. This could be useful for 133 * NetBSD or OpenBSD. 134 */ 135 /* #define PIPE_NODIRECT */ 136 137 /* 138 * interfaces to the outside world 139 */ 140 static fo_rdwr_t pipe_read; 141 static fo_rdwr_t pipe_write; 142 static fo_ioctl_t pipe_ioctl; 143 static fo_poll_t pipe_poll; 144 static fo_kqfilter_t pipe_kqfilter; 145 static fo_stat_t pipe_stat; 146 static fo_close_t pipe_close; 147 148 static struct fileops pipeops = { 149 .fo_read = pipe_read, 150 .fo_write = pipe_write, 151 .fo_ioctl = pipe_ioctl, 152 .fo_poll = pipe_poll, 153 .fo_kqfilter = pipe_kqfilter, 154 .fo_stat = pipe_stat, 155 .fo_close = pipe_close, 156 .fo_flags = DFLAG_PASSABLE 157 }; 158 159 static void filt_pipedetach(struct knote *kn); 160 static int filt_piperead(struct knote *kn, long hint); 161 static int filt_pipewrite(struct knote *kn, long hint); 162 163 static struct filterops pipe_rfiltops = 164 { 1, NULL, filt_pipedetach, filt_piperead }; 165 static struct filterops pipe_wfiltops = 166 { 1, NULL, filt_pipedetach, filt_pipewrite }; 167 168 /* 169 * Default pipe buffer size(s), this can be kind-of large now because pipe 170 * space is pageable. The pipe code will try to maintain locality of 171 * reference for performance reasons, so small amounts of outstanding I/O 172 * will not wipe the cache. 173 */ 174 #define MINPIPESIZE (PIPE_SIZE/3) 175 #define MAXPIPESIZE (2*PIPE_SIZE/3) 176 177 static int amountpipes; 178 static int amountpipekva; 179 static int pipefragretry; 180 static int pipeallocfail; 181 static int piperesizefail; 182 static int piperesizeallowed = 1; 183 184 SYSCTL_DECL(_kern_ipc); 185 186 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, 187 &maxpipekva, 0, "Pipe KVA limit"); 188 SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD, 189 &amountpipes, 0, "Current # of pipes"); 190 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 191 &amountpipekva, 0, "Pipe KVA usage"); 192 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 193 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 194 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 195 &pipeallocfail, 0, "Pipe allocation failures"); 196 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 197 &piperesizefail, 0, "Pipe resize failures"); 198 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 199 &piperesizeallowed, 0, "Pipe resizing allowed"); 200 201 static void pipeinit(void *dummy __unused); 202 static void pipeclose(struct pipe *cpipe); 203 static void pipe_free_kmem(struct pipe *cpipe); 204 static int pipe_create(struct pipe *pipe, int backing); 205 static __inline int pipelock(struct pipe *cpipe, int catch); 206 static __inline void pipeunlock(struct pipe *cpipe); 207 static __inline void pipeselwakeup(struct pipe *cpipe); 208 #ifndef PIPE_NODIRECT 209 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 210 static void pipe_destroy_write_buffer(struct pipe *wpipe); 211 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 212 static void pipe_clone_write_buffer(struct pipe *wpipe); 213 #endif 214 static int pipespace(struct pipe *cpipe, int size); 215 static int pipespace_new(struct pipe *cpipe, int size); 216 217 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 218 static void pipe_zone_dtor(void *mem, int size, void *arg); 219 static int pipe_zone_init(void *mem, int size, int flags); 220 static void pipe_zone_fini(void *mem, int size); 221 222 static uma_zone_t pipe_zone; 223 224 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 225 226 static void 227 pipeinit(void *dummy __unused) 228 { 229 230 pipe_zone = uma_zcreate("PIPE", sizeof(struct pipepair), 231 pipe_zone_ctor, pipe_zone_dtor, pipe_zone_init, pipe_zone_fini, 232 UMA_ALIGN_PTR, 0); 233 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 234 } 235 236 static int 237 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 238 { 239 struct pipepair *pp; 240 struct pipe *rpipe, *wpipe; 241 242 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 243 244 pp = (struct pipepair *)mem; 245 246 /* 247 * We zero both pipe endpoints to make sure all the kmem pointers 248 * are NULL, flag fields are zero'd, etc. We timestamp both 249 * endpoints with the same time. 250 */ 251 rpipe = &pp->pp_rpipe; 252 bzero(rpipe, sizeof(*rpipe)); 253 vfs_timestamp(&rpipe->pipe_ctime); 254 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 255 256 wpipe = &pp->pp_wpipe; 257 bzero(wpipe, sizeof(*wpipe)); 258 wpipe->pipe_ctime = rpipe->pipe_ctime; 259 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 260 261 rpipe->pipe_peer = wpipe; 262 rpipe->pipe_pair = pp; 263 wpipe->pipe_peer = rpipe; 264 wpipe->pipe_pair = pp; 265 266 /* 267 * Mark both endpoints as present; they will later get free'd 268 * one at a time. When both are free'd, then the whole pair 269 * is released. 270 */ 271 rpipe->pipe_present = 1; 272 wpipe->pipe_present = 1; 273 274 /* 275 * Eventually, the MAC Framework may initialize the label 276 * in ctor or init, but for now we do it elswhere to avoid 277 * blocking in ctor or init. 278 */ 279 pp->pp_label = NULL; 280 281 atomic_add_int(&amountpipes, 2); 282 return (0); 283 } 284 285 static void 286 pipe_zone_dtor(void *mem, int size, void *arg) 287 { 288 struct pipepair *pp; 289 290 KASSERT(size == sizeof(*pp), ("pipe_zone_dtor: wrong size")); 291 292 pp = (struct pipepair *)mem; 293 294 atomic_subtract_int(&amountpipes, 2); 295 } 296 297 static int 298 pipe_zone_init(void *mem, int size, int flags) 299 { 300 struct pipepair *pp; 301 302 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 303 304 pp = (struct pipepair *)mem; 305 306 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 307 return (0); 308 } 309 310 static void 311 pipe_zone_fini(void *mem, int size) 312 { 313 struct pipepair *pp; 314 315 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 316 317 pp = (struct pipepair *)mem; 318 319 mtx_destroy(&pp->pp_mtx); 320 } 321 322 /* 323 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, 324 * let the zone pick up the pieces via pipeclose(). 325 */ 326 327 /* ARGSUSED */ 328 int 329 pipe(td, uap) 330 struct thread *td; 331 struct pipe_args /* { 332 int dummy; 333 } */ *uap; 334 { 335 struct filedesc *fdp = td->td_proc->p_fd; 336 struct file *rf, *wf; 337 struct pipepair *pp; 338 struct pipe *rpipe, *wpipe; 339 int fd, error; 340 341 pp = uma_zalloc(pipe_zone, M_WAITOK); 342 #ifdef MAC 343 /* 344 * The MAC label is shared between the connected endpoints. As a 345 * result mac_init_pipe() and mac_create_pipe() are called once 346 * for the pair, and not on the endpoints. 347 */ 348 mac_init_pipe(pp); 349 mac_create_pipe(td->td_ucred, pp); 350 #endif 351 rpipe = &pp->pp_rpipe; 352 wpipe = &pp->pp_wpipe; 353 354 knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe), NULL, NULL, 355 NULL); 356 knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe), NULL, NULL, 357 NULL); 358 359 /* Only the forward direction pipe is backed by default */ 360 if (pipe_create(rpipe, 1) || pipe_create(wpipe, 0)) { 361 pipeclose(rpipe); 362 pipeclose(wpipe); 363 return (ENFILE); 364 } 365 366 rpipe->pipe_state |= PIPE_DIRECTOK; 367 wpipe->pipe_state |= PIPE_DIRECTOK; 368 369 error = falloc(td, &rf, &fd); 370 if (error) { 371 pipeclose(rpipe); 372 pipeclose(wpipe); 373 return (error); 374 } 375 /* An extra reference on `rf' has been held for us by falloc(). */ 376 td->td_retval[0] = fd; 377 378 /* 379 * Warning: once we've gotten past allocation of the fd for the 380 * read-side, we can only drop the read side via fdrop() in order 381 * to avoid races against processes which manage to dup() the read 382 * side while we are blocked trying to allocate the write side. 383 */ 384 FILE_LOCK(rf); 385 rf->f_flag = FREAD | FWRITE; 386 rf->f_type = DTYPE_PIPE; 387 rf->f_data = rpipe; 388 rf->f_ops = &pipeops; 389 FILE_UNLOCK(rf); 390 error = falloc(td, &wf, &fd); 391 if (error) { 392 fdclose(fdp, rf, td->td_retval[0], td); 393 fdrop(rf, td); 394 /* rpipe has been closed by fdrop(). */ 395 pipeclose(wpipe); 396 return (error); 397 } 398 /* An extra reference on `wf' has been held for us by falloc(). */ 399 FILE_LOCK(wf); 400 wf->f_flag = FREAD | FWRITE; 401 wf->f_type = DTYPE_PIPE; 402 wf->f_data = wpipe; 403 wf->f_ops = &pipeops; 404 FILE_UNLOCK(wf); 405 fdrop(wf, td); 406 td->td_retval[1] = fd; 407 fdrop(rf, td); 408 409 return (0); 410 } 411 412 /* 413 * Allocate kva for pipe circular buffer, the space is pageable 414 * This routine will 'realloc' the size of a pipe safely, if it fails 415 * it will retain the old buffer. 416 * If it fails it will return ENOMEM. 417 */ 418 static int 419 pipespace_new(cpipe, size) 420 struct pipe *cpipe; 421 int size; 422 { 423 caddr_t buffer; 424 int error, cnt, firstseg; 425 static int curfail = 0; 426 static struct timeval lastfail; 427 428 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 429 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 430 ("pipespace: resize of direct writes not allowed")); 431 retry: 432 cnt = cpipe->pipe_buffer.cnt; 433 if (cnt > size) 434 size = cnt; 435 436 size = round_page(size); 437 buffer = (caddr_t) vm_map_min(pipe_map); 438 439 error = vm_map_find(pipe_map, NULL, 0, 440 (vm_offset_t *) &buffer, size, 1, 441 VM_PROT_ALL, VM_PROT_ALL, 0); 442 if (error != KERN_SUCCESS) { 443 if ((cpipe->pipe_buffer.buffer == NULL) && 444 (size > SMALL_PIPE_SIZE)) { 445 size = SMALL_PIPE_SIZE; 446 pipefragretry++; 447 goto retry; 448 } 449 if (cpipe->pipe_buffer.buffer == NULL) { 450 pipeallocfail++; 451 if (ppsratecheck(&lastfail, &curfail, 1)) 452 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 453 } else { 454 piperesizefail++; 455 } 456 return (ENOMEM); 457 } 458 459 /* copy data, then free old resources if we're resizing */ 460 if (cnt > 0) { 461 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 462 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 463 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 464 buffer, firstseg); 465 if ((cnt - firstseg) > 0) 466 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 467 cpipe->pipe_buffer.in); 468 } else { 469 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 470 buffer, cnt); 471 } 472 } 473 pipe_free_kmem(cpipe); 474 cpipe->pipe_buffer.buffer = buffer; 475 cpipe->pipe_buffer.size = size; 476 cpipe->pipe_buffer.in = cnt; 477 cpipe->pipe_buffer.out = 0; 478 cpipe->pipe_buffer.cnt = cnt; 479 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size); 480 return (0); 481 } 482 483 /* 484 * Wrapper for pipespace_new() that performs locking assertions. 485 */ 486 static int 487 pipespace(cpipe, size) 488 struct pipe *cpipe; 489 int size; 490 { 491 492 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 493 ("Unlocked pipe passed to pipespace")); 494 return (pipespace_new(cpipe, size)); 495 } 496 497 /* 498 * lock a pipe for I/O, blocking other access 499 */ 500 static __inline int 501 pipelock(cpipe, catch) 502 struct pipe *cpipe; 503 int catch; 504 { 505 int error; 506 507 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 508 while (cpipe->pipe_state & PIPE_LOCKFL) { 509 cpipe->pipe_state |= PIPE_LWANT; 510 error = msleep(cpipe, PIPE_MTX(cpipe), 511 catch ? (PRIBIO | PCATCH) : PRIBIO, 512 "pipelk", 0); 513 if (error != 0) 514 return (error); 515 } 516 cpipe->pipe_state |= PIPE_LOCKFL; 517 return (0); 518 } 519 520 /* 521 * unlock a pipe I/O lock 522 */ 523 static __inline void 524 pipeunlock(cpipe) 525 struct pipe *cpipe; 526 { 527 528 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 529 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 530 ("Unlocked pipe passed to pipeunlock")); 531 cpipe->pipe_state &= ~PIPE_LOCKFL; 532 if (cpipe->pipe_state & PIPE_LWANT) { 533 cpipe->pipe_state &= ~PIPE_LWANT; 534 wakeup(cpipe); 535 } 536 } 537 538 static __inline void 539 pipeselwakeup(cpipe) 540 struct pipe *cpipe; 541 { 542 543 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 544 if (cpipe->pipe_state & PIPE_SEL) { 545 cpipe->pipe_state &= ~PIPE_SEL; 546 selwakeuppri(&cpipe->pipe_sel, PSOCK); 547 } 548 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 549 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 550 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 551 } 552 553 /* 554 * Initialize and allocate VM and memory for pipe. The structure 555 * will start out zero'd from the ctor, so we just manage the kmem. 556 */ 557 static int 558 pipe_create(pipe, backing) 559 struct pipe *pipe; 560 int backing; 561 { 562 int error; 563 564 if (backing) { 565 if (amountpipekva > maxpipekva / 2) 566 error = pipespace_new(pipe, SMALL_PIPE_SIZE); 567 else 568 error = pipespace_new(pipe, PIPE_SIZE); 569 } else { 570 /* If we're not backing this pipe, no need to do anything. */ 571 error = 0; 572 } 573 return (error); 574 } 575 576 /* ARGSUSED */ 577 static int 578 pipe_read(fp, uio, active_cred, flags, td) 579 struct file *fp; 580 struct uio *uio; 581 struct ucred *active_cred; 582 struct thread *td; 583 int flags; 584 { 585 struct pipe *rpipe = fp->f_data; 586 int error; 587 int nread = 0; 588 u_int size; 589 590 PIPE_LOCK(rpipe); 591 ++rpipe->pipe_busy; 592 error = pipelock(rpipe, 1); 593 if (error) 594 goto unlocked_error; 595 596 #ifdef MAC 597 error = mac_check_pipe_read(active_cred, rpipe->pipe_pair); 598 if (error) 599 goto locked_error; 600 #endif 601 if (amountpipekva > (3 * maxpipekva) / 4) { 602 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 603 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 604 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 605 (piperesizeallowed == 1)) { 606 PIPE_UNLOCK(rpipe); 607 pipespace(rpipe, SMALL_PIPE_SIZE); 608 PIPE_LOCK(rpipe); 609 } 610 } 611 612 while (uio->uio_resid) { 613 /* 614 * normal pipe buffer receive 615 */ 616 if (rpipe->pipe_buffer.cnt > 0) { 617 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 618 if (size > rpipe->pipe_buffer.cnt) 619 size = rpipe->pipe_buffer.cnt; 620 if (size > (u_int) uio->uio_resid) 621 size = (u_int) uio->uio_resid; 622 623 PIPE_UNLOCK(rpipe); 624 error = uiomove( 625 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 626 size, uio); 627 PIPE_LOCK(rpipe); 628 if (error) 629 break; 630 631 rpipe->pipe_buffer.out += size; 632 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 633 rpipe->pipe_buffer.out = 0; 634 635 rpipe->pipe_buffer.cnt -= size; 636 637 /* 638 * If there is no more to read in the pipe, reset 639 * its pointers to the beginning. This improves 640 * cache hit stats. 641 */ 642 if (rpipe->pipe_buffer.cnt == 0) { 643 rpipe->pipe_buffer.in = 0; 644 rpipe->pipe_buffer.out = 0; 645 } 646 nread += size; 647 #ifndef PIPE_NODIRECT 648 /* 649 * Direct copy, bypassing a kernel buffer. 650 */ 651 } else if ((size = rpipe->pipe_map.cnt) && 652 (rpipe->pipe_state & PIPE_DIRECTW)) { 653 if (size > (u_int) uio->uio_resid) 654 size = (u_int) uio->uio_resid; 655 656 PIPE_UNLOCK(rpipe); 657 error = uiomove_fromphys(rpipe->pipe_map.ms, 658 rpipe->pipe_map.pos, size, uio); 659 PIPE_LOCK(rpipe); 660 if (error) 661 break; 662 nread += size; 663 rpipe->pipe_map.pos += size; 664 rpipe->pipe_map.cnt -= size; 665 if (rpipe->pipe_map.cnt == 0) { 666 rpipe->pipe_state &= ~PIPE_DIRECTW; 667 wakeup(rpipe); 668 } 669 #endif 670 } else { 671 /* 672 * detect EOF condition 673 * read returns 0 on EOF, no need to set error 674 */ 675 if (rpipe->pipe_state & PIPE_EOF) 676 break; 677 678 /* 679 * If the "write-side" has been blocked, wake it up now. 680 */ 681 if (rpipe->pipe_state & PIPE_WANTW) { 682 rpipe->pipe_state &= ~PIPE_WANTW; 683 wakeup(rpipe); 684 } 685 686 /* 687 * Break if some data was read. 688 */ 689 if (nread > 0) 690 break; 691 692 /* 693 * Unlock the pipe buffer for our remaining processing. 694 * We will either break out with an error or we will 695 * sleep and relock to loop. 696 */ 697 pipeunlock(rpipe); 698 699 /* 700 * Handle non-blocking mode operation or 701 * wait for more data. 702 */ 703 if (fp->f_flag & FNONBLOCK) { 704 error = EAGAIN; 705 } else { 706 rpipe->pipe_state |= PIPE_WANTR; 707 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 708 PRIBIO | PCATCH, 709 "piperd", 0)) == 0) 710 error = pipelock(rpipe, 1); 711 } 712 if (error) 713 goto unlocked_error; 714 } 715 } 716 #ifdef MAC 717 locked_error: 718 #endif 719 pipeunlock(rpipe); 720 721 /* XXX: should probably do this before getting any locks. */ 722 if (error == 0) 723 vfs_timestamp(&rpipe->pipe_atime); 724 unlocked_error: 725 --rpipe->pipe_busy; 726 727 /* 728 * PIPE_WANT processing only makes sense if pipe_busy is 0. 729 */ 730 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 731 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 732 wakeup(rpipe); 733 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 734 /* 735 * Handle write blocking hysteresis. 736 */ 737 if (rpipe->pipe_state & PIPE_WANTW) { 738 rpipe->pipe_state &= ~PIPE_WANTW; 739 wakeup(rpipe); 740 } 741 } 742 743 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 744 pipeselwakeup(rpipe); 745 746 PIPE_UNLOCK(rpipe); 747 return (error); 748 } 749 750 #ifndef PIPE_NODIRECT 751 /* 752 * Map the sending processes' buffer into kernel space and wire it. 753 * This is similar to a physical write operation. 754 */ 755 static int 756 pipe_build_write_buffer(wpipe, uio) 757 struct pipe *wpipe; 758 struct uio *uio; 759 { 760 pmap_t pmap; 761 u_int size; 762 int i, j; 763 vm_offset_t addr, endaddr; 764 765 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 766 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 767 ("Clone attempt on non-direct write pipe!")); 768 769 size = (u_int) uio->uio_iov->iov_len; 770 if (size > wpipe->pipe_buffer.size) 771 size = wpipe->pipe_buffer.size; 772 773 pmap = vmspace_pmap(curproc->p_vmspace); 774 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size); 775 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base); 776 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) { 777 /* 778 * vm_fault_quick() can sleep. Consequently, 779 * vm_page_lock_queue() and vm_page_unlock_queue() 780 * should not be performed outside of this loop. 781 */ 782 race: 783 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) { 784 vm_page_lock_queues(); 785 for (j = 0; j < i; j++) 786 vm_page_unhold(wpipe->pipe_map.ms[j]); 787 vm_page_unlock_queues(); 788 return (EFAULT); 789 } 790 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr, 791 VM_PROT_READ); 792 if (wpipe->pipe_map.ms[i] == NULL) 793 goto race; 794 } 795 796 /* 797 * set up the control block 798 */ 799 wpipe->pipe_map.npages = i; 800 wpipe->pipe_map.pos = 801 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 802 wpipe->pipe_map.cnt = size; 803 804 /* 805 * and update the uio data 806 */ 807 808 uio->uio_iov->iov_len -= size; 809 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 810 if (uio->uio_iov->iov_len == 0) 811 uio->uio_iov++; 812 uio->uio_resid -= size; 813 uio->uio_offset += size; 814 return (0); 815 } 816 817 /* 818 * unmap and unwire the process buffer 819 */ 820 static void 821 pipe_destroy_write_buffer(wpipe) 822 struct pipe *wpipe; 823 { 824 int i; 825 826 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 827 vm_page_lock_queues(); 828 for (i = 0; i < wpipe->pipe_map.npages; i++) { 829 vm_page_unhold(wpipe->pipe_map.ms[i]); 830 } 831 vm_page_unlock_queues(); 832 wpipe->pipe_map.npages = 0; 833 } 834 835 /* 836 * In the case of a signal, the writing process might go away. This 837 * code copies the data into the circular buffer so that the source 838 * pages can be freed without loss of data. 839 */ 840 static void 841 pipe_clone_write_buffer(wpipe) 842 struct pipe *wpipe; 843 { 844 struct uio uio; 845 struct iovec iov; 846 int size; 847 int pos; 848 849 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 850 size = wpipe->pipe_map.cnt; 851 pos = wpipe->pipe_map.pos; 852 853 wpipe->pipe_buffer.in = size; 854 wpipe->pipe_buffer.out = 0; 855 wpipe->pipe_buffer.cnt = size; 856 wpipe->pipe_state &= ~PIPE_DIRECTW; 857 858 PIPE_UNLOCK(wpipe); 859 iov.iov_base = wpipe->pipe_buffer.buffer; 860 iov.iov_len = size; 861 uio.uio_iov = &iov; 862 uio.uio_iovcnt = 1; 863 uio.uio_offset = 0; 864 uio.uio_resid = size; 865 uio.uio_segflg = UIO_SYSSPACE; 866 uio.uio_rw = UIO_READ; 867 uio.uio_td = curthread; 868 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 869 PIPE_LOCK(wpipe); 870 pipe_destroy_write_buffer(wpipe); 871 } 872 873 /* 874 * This implements the pipe buffer write mechanism. Note that only 875 * a direct write OR a normal pipe write can be pending at any given time. 876 * If there are any characters in the pipe buffer, the direct write will 877 * be deferred until the receiving process grabs all of the bytes from 878 * the pipe buffer. Then the direct mapping write is set-up. 879 */ 880 static int 881 pipe_direct_write(wpipe, uio) 882 struct pipe *wpipe; 883 struct uio *uio; 884 { 885 int error; 886 887 retry: 888 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 889 error = pipelock(wpipe, 1); 890 if (wpipe->pipe_state & PIPE_EOF) 891 error = EPIPE; 892 if (error) { 893 pipeunlock(wpipe); 894 goto error1; 895 } 896 while (wpipe->pipe_state & PIPE_DIRECTW) { 897 if (wpipe->pipe_state & PIPE_WANTR) { 898 wpipe->pipe_state &= ~PIPE_WANTR; 899 wakeup(wpipe); 900 } 901 wpipe->pipe_state |= PIPE_WANTW; 902 pipeunlock(wpipe); 903 error = msleep(wpipe, PIPE_MTX(wpipe), 904 PRIBIO | PCATCH, "pipdww", 0); 905 if (error) 906 goto error1; 907 else 908 goto retry; 909 } 910 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 911 if (wpipe->pipe_buffer.cnt > 0) { 912 if (wpipe->pipe_state & PIPE_WANTR) { 913 wpipe->pipe_state &= ~PIPE_WANTR; 914 wakeup(wpipe); 915 } 916 wpipe->pipe_state |= PIPE_WANTW; 917 pipeunlock(wpipe); 918 error = msleep(wpipe, PIPE_MTX(wpipe), 919 PRIBIO | PCATCH, "pipdwc", 0); 920 if (error) 921 goto error1; 922 else 923 goto retry; 924 } 925 926 wpipe->pipe_state |= PIPE_DIRECTW; 927 928 PIPE_UNLOCK(wpipe); 929 error = pipe_build_write_buffer(wpipe, uio); 930 PIPE_LOCK(wpipe); 931 if (error) { 932 wpipe->pipe_state &= ~PIPE_DIRECTW; 933 pipeunlock(wpipe); 934 goto error1; 935 } 936 937 error = 0; 938 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 939 if (wpipe->pipe_state & PIPE_EOF) { 940 pipe_destroy_write_buffer(wpipe); 941 pipeselwakeup(wpipe); 942 pipeunlock(wpipe); 943 error = EPIPE; 944 goto error1; 945 } 946 if (wpipe->pipe_state & PIPE_WANTR) { 947 wpipe->pipe_state &= ~PIPE_WANTR; 948 wakeup(wpipe); 949 } 950 pipeselwakeup(wpipe); 951 pipeunlock(wpipe); 952 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 953 "pipdwt", 0); 954 pipelock(wpipe, 0); 955 } 956 957 if (wpipe->pipe_state & PIPE_EOF) 958 error = EPIPE; 959 if (wpipe->pipe_state & PIPE_DIRECTW) { 960 /* 961 * this bit of trickery substitutes a kernel buffer for 962 * the process that might be going away. 963 */ 964 pipe_clone_write_buffer(wpipe); 965 } else { 966 pipe_destroy_write_buffer(wpipe); 967 } 968 pipeunlock(wpipe); 969 return (error); 970 971 error1: 972 wakeup(wpipe); 973 return (error); 974 } 975 #endif 976 977 static int 978 pipe_write(fp, uio, active_cred, flags, td) 979 struct file *fp; 980 struct uio *uio; 981 struct ucred *active_cred; 982 struct thread *td; 983 int flags; 984 { 985 int error = 0; 986 int desiredsize, orig_resid; 987 struct pipe *wpipe, *rpipe; 988 989 rpipe = fp->f_data; 990 wpipe = rpipe->pipe_peer; 991 992 PIPE_LOCK(rpipe); 993 error = pipelock(wpipe, 1); 994 if (error) { 995 PIPE_UNLOCK(rpipe); 996 return (error); 997 } 998 /* 999 * detect loss of pipe read side, issue SIGPIPE if lost. 1000 */ 1001 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1002 pipeunlock(wpipe); 1003 PIPE_UNLOCK(rpipe); 1004 return (EPIPE); 1005 } 1006 #ifdef MAC 1007 error = mac_check_pipe_write(active_cred, wpipe->pipe_pair); 1008 if (error) { 1009 pipeunlock(wpipe); 1010 PIPE_UNLOCK(rpipe); 1011 return (error); 1012 } 1013 #endif 1014 ++wpipe->pipe_busy; 1015 1016 /* Choose a larger size if it's advantageous */ 1017 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1018 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1019 if (piperesizeallowed != 1) 1020 break; 1021 if (amountpipekva > maxpipekva / 2) 1022 break; 1023 if (desiredsize == BIG_PIPE_SIZE) 1024 break; 1025 desiredsize = desiredsize * 2; 1026 } 1027 1028 /* Choose a smaller size if we're in a OOM situation */ 1029 if ((amountpipekva > (3 * maxpipekva) / 4) && 1030 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 1031 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1032 (piperesizeallowed == 1)) 1033 desiredsize = SMALL_PIPE_SIZE; 1034 1035 /* Resize if the above determined that a new size was necessary */ 1036 if ((desiredsize != wpipe->pipe_buffer.size) && 1037 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1038 PIPE_UNLOCK(wpipe); 1039 pipespace(wpipe, desiredsize); 1040 PIPE_LOCK(wpipe); 1041 } 1042 if (wpipe->pipe_buffer.size == 0) { 1043 /* 1044 * This can only happen for reverse direction use of pipes 1045 * in a complete OOM situation. 1046 */ 1047 error = ENOMEM; 1048 --wpipe->pipe_busy; 1049 pipeunlock(wpipe); 1050 PIPE_UNLOCK(wpipe); 1051 return (error); 1052 } 1053 1054 pipeunlock(wpipe); 1055 1056 orig_resid = uio->uio_resid; 1057 1058 while (uio->uio_resid) { 1059 int space; 1060 1061 pipelock(wpipe, 0); 1062 if (wpipe->pipe_state & PIPE_EOF) { 1063 pipeunlock(wpipe); 1064 error = EPIPE; 1065 break; 1066 } 1067 #ifndef PIPE_NODIRECT 1068 /* 1069 * If the transfer is large, we can gain performance if 1070 * we do process-to-process copies directly. 1071 * If the write is non-blocking, we don't use the 1072 * direct write mechanism. 1073 * 1074 * The direct write mechanism will detect the reader going 1075 * away on us. 1076 */ 1077 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 1078 (wpipe->pipe_buffer.size >= PIPE_MINDIRECT) && 1079 (fp->f_flag & FNONBLOCK) == 0) { 1080 pipeunlock(wpipe); 1081 error = pipe_direct_write(wpipe, uio); 1082 if (error) 1083 break; 1084 continue; 1085 } 1086 #endif 1087 1088 /* 1089 * Pipe buffered writes cannot be coincidental with 1090 * direct writes. We wait until the currently executing 1091 * direct write is completed before we start filling the 1092 * pipe buffer. We break out if a signal occurs or the 1093 * reader goes away. 1094 */ 1095 if (wpipe->pipe_state & PIPE_DIRECTW) { 1096 if (wpipe->pipe_state & PIPE_WANTR) { 1097 wpipe->pipe_state &= ~PIPE_WANTR; 1098 wakeup(wpipe); 1099 } 1100 pipeunlock(wpipe); 1101 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1102 "pipbww", 0); 1103 if (error) 1104 break; 1105 else 1106 continue; 1107 } 1108 1109 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1110 1111 /* Writes of size <= PIPE_BUF must be atomic. */ 1112 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1113 space = 0; 1114 1115 if (space > 0) { 1116 int size; /* Transfer size */ 1117 int segsize; /* first segment to transfer */ 1118 1119 /* 1120 * Transfer size is minimum of uio transfer 1121 * and free space in pipe buffer. 1122 */ 1123 if (space > uio->uio_resid) 1124 size = uio->uio_resid; 1125 else 1126 size = space; 1127 /* 1128 * First segment to transfer is minimum of 1129 * transfer size and contiguous space in 1130 * pipe buffer. If first segment to transfer 1131 * is less than the transfer size, we've got 1132 * a wraparound in the buffer. 1133 */ 1134 segsize = wpipe->pipe_buffer.size - 1135 wpipe->pipe_buffer.in; 1136 if (segsize > size) 1137 segsize = size; 1138 1139 /* Transfer first segment */ 1140 1141 PIPE_UNLOCK(rpipe); 1142 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1143 segsize, uio); 1144 PIPE_LOCK(rpipe); 1145 1146 if (error == 0 && segsize < size) { 1147 KASSERT(wpipe->pipe_buffer.in + segsize == 1148 wpipe->pipe_buffer.size, 1149 ("Pipe buffer wraparound disappeared")); 1150 /* 1151 * Transfer remaining part now, to 1152 * support atomic writes. Wraparound 1153 * happened. 1154 */ 1155 1156 PIPE_UNLOCK(rpipe); 1157 error = uiomove( 1158 &wpipe->pipe_buffer.buffer[0], 1159 size - segsize, uio); 1160 PIPE_LOCK(rpipe); 1161 } 1162 if (error == 0) { 1163 wpipe->pipe_buffer.in += size; 1164 if (wpipe->pipe_buffer.in >= 1165 wpipe->pipe_buffer.size) { 1166 KASSERT(wpipe->pipe_buffer.in == 1167 size - segsize + 1168 wpipe->pipe_buffer.size, 1169 ("Expected wraparound bad")); 1170 wpipe->pipe_buffer.in = size - segsize; 1171 } 1172 1173 wpipe->pipe_buffer.cnt += size; 1174 KASSERT(wpipe->pipe_buffer.cnt <= 1175 wpipe->pipe_buffer.size, 1176 ("Pipe buffer overflow")); 1177 } 1178 pipeunlock(wpipe); 1179 } else { 1180 /* 1181 * If the "read-side" has been blocked, wake it up now. 1182 */ 1183 if (wpipe->pipe_state & PIPE_WANTR) { 1184 wpipe->pipe_state &= ~PIPE_WANTR; 1185 wakeup(wpipe); 1186 } 1187 1188 /* 1189 * don't block on non-blocking I/O 1190 */ 1191 if (fp->f_flag & FNONBLOCK) { 1192 error = EAGAIN; 1193 pipeunlock(wpipe); 1194 break; 1195 } 1196 1197 /* 1198 * We have no more space and have something to offer, 1199 * wake up select/poll. 1200 */ 1201 pipeselwakeup(wpipe); 1202 1203 wpipe->pipe_state |= PIPE_WANTW; 1204 pipeunlock(wpipe); 1205 error = msleep(wpipe, PIPE_MTX(rpipe), 1206 PRIBIO | PCATCH, "pipewr", 0); 1207 if (error != 0) 1208 break; 1209 } 1210 } 1211 1212 pipelock(wpipe, 0); 1213 --wpipe->pipe_busy; 1214 1215 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1216 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1217 wakeup(wpipe); 1218 } else if (wpipe->pipe_buffer.cnt > 0) { 1219 /* 1220 * If we have put any characters in the buffer, we wake up 1221 * the reader. 1222 */ 1223 if (wpipe->pipe_state & PIPE_WANTR) { 1224 wpipe->pipe_state &= ~PIPE_WANTR; 1225 wakeup(wpipe); 1226 } 1227 } 1228 1229 /* 1230 * Don't return EPIPE if I/O was successful 1231 */ 1232 if ((wpipe->pipe_buffer.cnt == 0) && 1233 (uio->uio_resid == 0) && 1234 (error == EPIPE)) { 1235 error = 0; 1236 } 1237 1238 if (error == 0) 1239 vfs_timestamp(&wpipe->pipe_mtime); 1240 1241 /* 1242 * We have something to offer, 1243 * wake up select/poll. 1244 */ 1245 if (wpipe->pipe_buffer.cnt) 1246 pipeselwakeup(wpipe); 1247 1248 pipeunlock(wpipe); 1249 PIPE_UNLOCK(rpipe); 1250 return (error); 1251 } 1252 1253 /* 1254 * we implement a very minimal set of ioctls for compatibility with sockets. 1255 */ 1256 static int 1257 pipe_ioctl(fp, cmd, data, active_cred, td) 1258 struct file *fp; 1259 u_long cmd; 1260 void *data; 1261 struct ucred *active_cred; 1262 struct thread *td; 1263 { 1264 struct pipe *mpipe = fp->f_data; 1265 int error; 1266 1267 PIPE_LOCK(mpipe); 1268 1269 #ifdef MAC 1270 error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1271 if (error) { 1272 PIPE_UNLOCK(mpipe); 1273 return (error); 1274 } 1275 #endif 1276 1277 error = 0; 1278 switch (cmd) { 1279 1280 case FIONBIO: 1281 break; 1282 1283 case FIOASYNC: 1284 if (*(int *)data) { 1285 mpipe->pipe_state |= PIPE_ASYNC; 1286 } else { 1287 mpipe->pipe_state &= ~PIPE_ASYNC; 1288 } 1289 break; 1290 1291 case FIONREAD: 1292 if (mpipe->pipe_state & PIPE_DIRECTW) 1293 *(int *)data = mpipe->pipe_map.cnt; 1294 else 1295 *(int *)data = mpipe->pipe_buffer.cnt; 1296 break; 1297 1298 case FIOSETOWN: 1299 PIPE_UNLOCK(mpipe); 1300 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1301 goto out_unlocked; 1302 1303 case FIOGETOWN: 1304 *(int *)data = fgetown(&mpipe->pipe_sigio); 1305 break; 1306 1307 /* This is deprecated, FIOSETOWN should be used instead. */ 1308 case TIOCSPGRP: 1309 PIPE_UNLOCK(mpipe); 1310 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1311 goto out_unlocked; 1312 1313 /* This is deprecated, FIOGETOWN should be used instead. */ 1314 case TIOCGPGRP: 1315 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1316 break; 1317 1318 default: 1319 error = ENOTTY; 1320 break; 1321 } 1322 PIPE_UNLOCK(mpipe); 1323 out_unlocked: 1324 return (error); 1325 } 1326 1327 static int 1328 pipe_poll(fp, events, active_cred, td) 1329 struct file *fp; 1330 int events; 1331 struct ucred *active_cred; 1332 struct thread *td; 1333 { 1334 struct pipe *rpipe = fp->f_data; 1335 struct pipe *wpipe; 1336 int revents = 0; 1337 #ifdef MAC 1338 int error; 1339 #endif 1340 1341 wpipe = rpipe->pipe_peer; 1342 PIPE_LOCK(rpipe); 1343 #ifdef MAC 1344 error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair); 1345 if (error) 1346 goto locked_error; 1347 #endif 1348 if (events & (POLLIN | POLLRDNORM)) 1349 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1350 (rpipe->pipe_buffer.cnt > 0) || 1351 (rpipe->pipe_state & PIPE_EOF)) 1352 revents |= events & (POLLIN | POLLRDNORM); 1353 1354 if (events & (POLLOUT | POLLWRNORM)) 1355 if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) || 1356 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1357 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1358 revents |= events & (POLLOUT | POLLWRNORM); 1359 1360 if ((rpipe->pipe_state & PIPE_EOF) || 1361 (!wpipe->pipe_present) || 1362 (wpipe->pipe_state & PIPE_EOF)) 1363 revents |= POLLHUP; 1364 1365 if (revents == 0) { 1366 if (events & (POLLIN | POLLRDNORM)) { 1367 selrecord(td, &rpipe->pipe_sel); 1368 rpipe->pipe_state |= PIPE_SEL; 1369 } 1370 1371 if (events & (POLLOUT | POLLWRNORM)) { 1372 selrecord(td, &wpipe->pipe_sel); 1373 wpipe->pipe_state |= PIPE_SEL; 1374 } 1375 } 1376 #ifdef MAC 1377 locked_error: 1378 #endif 1379 PIPE_UNLOCK(rpipe); 1380 1381 return (revents); 1382 } 1383 1384 /* 1385 * We shouldn't need locks here as we're doing a read and this should 1386 * be a natural race. 1387 */ 1388 static int 1389 pipe_stat(fp, ub, active_cred, td) 1390 struct file *fp; 1391 struct stat *ub; 1392 struct ucred *active_cred; 1393 struct thread *td; 1394 { 1395 struct pipe *pipe = fp->f_data; 1396 #ifdef MAC 1397 int error; 1398 1399 PIPE_LOCK(pipe); 1400 error = mac_check_pipe_stat(active_cred, pipe->pipe_pair); 1401 PIPE_UNLOCK(pipe); 1402 if (error) 1403 return (error); 1404 #endif 1405 bzero(ub, sizeof(*ub)); 1406 ub->st_mode = S_IFIFO; 1407 ub->st_blksize = PAGE_SIZE; 1408 if (pipe->pipe_state & PIPE_DIRECTW) 1409 ub->st_size = pipe->pipe_map.cnt; 1410 else 1411 ub->st_size = pipe->pipe_buffer.cnt; 1412 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1413 ub->st_atimespec = pipe->pipe_atime; 1414 ub->st_mtimespec = pipe->pipe_mtime; 1415 ub->st_ctimespec = pipe->pipe_ctime; 1416 ub->st_uid = fp->f_cred->cr_uid; 1417 ub->st_gid = fp->f_cred->cr_gid; 1418 /* 1419 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1420 * XXX (st_dev, st_ino) should be unique. 1421 */ 1422 return (0); 1423 } 1424 1425 /* ARGSUSED */ 1426 static int 1427 pipe_close(fp, td) 1428 struct file *fp; 1429 struct thread *td; 1430 { 1431 struct pipe *cpipe = fp->f_data; 1432 1433 fp->f_ops = &badfileops; 1434 fp->f_data = NULL; 1435 funsetown(&cpipe->pipe_sigio); 1436 pipeclose(cpipe); 1437 return (0); 1438 } 1439 1440 static void 1441 pipe_free_kmem(cpipe) 1442 struct pipe *cpipe; 1443 { 1444 1445 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1446 ("pipe_free_kmem: pipe mutex locked")); 1447 1448 if (cpipe->pipe_buffer.buffer != NULL) { 1449 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size); 1450 vm_map_remove(pipe_map, 1451 (vm_offset_t)cpipe->pipe_buffer.buffer, 1452 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1453 cpipe->pipe_buffer.buffer = NULL; 1454 } 1455 #ifndef PIPE_NODIRECT 1456 { 1457 cpipe->pipe_map.cnt = 0; 1458 cpipe->pipe_map.pos = 0; 1459 cpipe->pipe_map.npages = 0; 1460 } 1461 #endif 1462 } 1463 1464 /* 1465 * shutdown the pipe 1466 */ 1467 static void 1468 pipeclose(cpipe) 1469 struct pipe *cpipe; 1470 { 1471 struct pipepair *pp; 1472 struct pipe *ppipe; 1473 1474 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1475 1476 PIPE_LOCK(cpipe); 1477 pipelock(cpipe, 0); 1478 pp = cpipe->pipe_pair; 1479 1480 pipeselwakeup(cpipe); 1481 1482 /* 1483 * If the other side is blocked, wake it up saying that 1484 * we want to close it down. 1485 */ 1486 cpipe->pipe_state |= PIPE_EOF; 1487 while (cpipe->pipe_busy) { 1488 wakeup(cpipe); 1489 cpipe->pipe_state |= PIPE_WANT; 1490 pipeunlock(cpipe); 1491 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1492 pipelock(cpipe, 0); 1493 } 1494 1495 1496 /* 1497 * Disconnect from peer, if any. 1498 */ 1499 ppipe = cpipe->pipe_peer; 1500 if (ppipe->pipe_present != 0) { 1501 pipeselwakeup(ppipe); 1502 1503 ppipe->pipe_state |= PIPE_EOF; 1504 wakeup(ppipe); 1505 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1506 } 1507 1508 /* 1509 * Mark this endpoint as free. Release kmem resources. We 1510 * don't mark this endpoint as unused until we've finished 1511 * doing that, or the pipe might disappear out from under 1512 * us. 1513 */ 1514 PIPE_UNLOCK(cpipe); 1515 pipe_free_kmem(cpipe); 1516 PIPE_LOCK(cpipe); 1517 cpipe->pipe_present = 0; 1518 pipeunlock(cpipe); 1519 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1520 knlist_destroy(&cpipe->pipe_sel.si_note); 1521 1522 /* 1523 * If both endpoints are now closed, release the memory for the 1524 * pipe pair. If not, unlock. 1525 */ 1526 if (ppipe->pipe_present == 0) { 1527 PIPE_UNLOCK(cpipe); 1528 #ifdef MAC 1529 mac_destroy_pipe(pp); 1530 #endif 1531 uma_zfree(pipe_zone, cpipe->pipe_pair); 1532 } else 1533 PIPE_UNLOCK(cpipe); 1534 } 1535 1536 /*ARGSUSED*/ 1537 static int 1538 pipe_kqfilter(struct file *fp, struct knote *kn) 1539 { 1540 struct pipe *cpipe; 1541 1542 cpipe = kn->kn_fp->f_data; 1543 PIPE_LOCK(cpipe); 1544 switch (kn->kn_filter) { 1545 case EVFILT_READ: 1546 kn->kn_fop = &pipe_rfiltops; 1547 break; 1548 case EVFILT_WRITE: 1549 kn->kn_fop = &pipe_wfiltops; 1550 if (!cpipe->pipe_peer->pipe_present) { 1551 /* other end of pipe has been closed */ 1552 PIPE_UNLOCK(cpipe); 1553 return (EPIPE); 1554 } 1555 cpipe = cpipe->pipe_peer; 1556 break; 1557 default: 1558 PIPE_UNLOCK(cpipe); 1559 return (EINVAL); 1560 } 1561 1562 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1563 PIPE_UNLOCK(cpipe); 1564 return (0); 1565 } 1566 1567 static void 1568 filt_pipedetach(struct knote *kn) 1569 { 1570 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; 1571 1572 PIPE_LOCK(cpipe); 1573 if (kn->kn_filter == EVFILT_WRITE) { 1574 if (!cpipe->pipe_peer->pipe_present) { 1575 PIPE_UNLOCK(cpipe); 1576 return; 1577 } 1578 cpipe = cpipe->pipe_peer; 1579 } 1580 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1581 PIPE_UNLOCK(cpipe); 1582 } 1583 1584 /*ARGSUSED*/ 1585 static int 1586 filt_piperead(struct knote *kn, long hint) 1587 { 1588 struct pipe *rpipe = kn->kn_fp->f_data; 1589 struct pipe *wpipe = rpipe->pipe_peer; 1590 int ret; 1591 1592 PIPE_LOCK(rpipe); 1593 kn->kn_data = rpipe->pipe_buffer.cnt; 1594 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1595 kn->kn_data = rpipe->pipe_map.cnt; 1596 1597 if ((rpipe->pipe_state & PIPE_EOF) || 1598 (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1599 kn->kn_flags |= EV_EOF; 1600 PIPE_UNLOCK(rpipe); 1601 return (1); 1602 } 1603 ret = kn->kn_data > 0; 1604 PIPE_UNLOCK(rpipe); 1605 return ret; 1606 } 1607 1608 /*ARGSUSED*/ 1609 static int 1610 filt_pipewrite(struct knote *kn, long hint) 1611 { 1612 struct pipe *rpipe = kn->kn_fp->f_data; 1613 struct pipe *wpipe = rpipe->pipe_peer; 1614 1615 PIPE_LOCK(rpipe); 1616 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1617 kn->kn_data = 0; 1618 kn->kn_flags |= EV_EOF; 1619 PIPE_UNLOCK(rpipe); 1620 return (1); 1621 } 1622 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1623 if (wpipe->pipe_state & PIPE_DIRECTW) 1624 kn->kn_data = 0; 1625 1626 PIPE_UNLOCK(rpipe); 1627 return (kn->kn_data >= PIPE_BUF); 1628 } 1629