1 /* 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 * 19 * $FreeBSD$ 20 */ 21 22 /* 23 * This file contains a high-performance replacement for the socket-based 24 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 25 * all features of sockets, but does do everything that pipes normally 26 * do. 27 */ 28 29 /* 30 * This code has two modes of operation, a small write mode and a large 31 * write mode. The small write mode acts like conventional pipes with 32 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 33 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 34 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and 35 * the receiving process can copy it directly from the pages in the sending 36 * process. 37 * 38 * If the sending process receives a signal, it is possible that it will 39 * go away, and certainly its address space can change, because control 40 * is returned back to the user-mode side. In that case, the pipe code 41 * arranges to copy the buffer supplied by the user process, to a pageable 42 * kernel buffer, and the receiving process will grab the data from the 43 * pageable kernel buffer. Since signals don't happen all that often, 44 * the copy operation is normally eliminated. 45 * 46 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 47 * happen for small transfers so that the system will not spend all of 48 * its time context switching. PIPE_SIZE is constrained by the 49 * amount of kernel virtual memory. 50 */ 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/proc.h> 55 #include <sys/fcntl.h> 56 #include <sys/file.h> 57 #include <sys/filedesc.h> 58 #include <sys/filio.h> 59 #include <sys/ttycom.h> 60 #include <sys/stat.h> 61 #include <sys/poll.h> 62 #include <sys/select.h> 63 #include <sys/signalvar.h> 64 #include <sys/sysproto.h> 65 #include <sys/pipe.h> 66 #include <sys/vnode.h> 67 #include <sys/uio.h> 68 #include <sys/event.h> 69 70 #include <vm/vm.h> 71 #include <vm/vm_param.h> 72 #include <sys/lock.h> 73 #include <vm/vm_object.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_extern.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_page.h> 79 #include <vm/vm_zone.h> 80 81 /* 82 * Use this define if you want to disable *fancy* VM things. Expect an 83 * approx 30% decrease in transfer rate. This could be useful for 84 * NetBSD or OpenBSD. 85 */ 86 /* #define PIPE_NODIRECT */ 87 88 /* 89 * interfaces to the outside world 90 */ 91 static int pipe_read __P((struct file *fp, struct uio *uio, 92 struct ucred *cred, int flags, struct proc *p)); 93 static int pipe_write __P((struct file *fp, struct uio *uio, 94 struct ucred *cred, int flags, struct proc *p)); 95 static int pipe_close __P((struct file *fp, struct proc *p)); 96 static int pipe_poll __P((struct file *fp, int events, struct ucred *cred, 97 struct proc *p)); 98 static int pipe_stat __P((struct file *fp, struct stat *sb, struct proc *p)); 99 static int pipe_ioctl __P((struct file *fp, u_long cmd, caddr_t data, struct proc *p)); 100 101 static struct fileops pipeops = 102 { pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_stat, pipe_close }; 103 104 static int filt_pipeattach(struct knote *kn); 105 static void filt_pipedetach(struct knote *kn); 106 static int filt_piperead(struct knote *kn, long hint); 107 static int filt_pipewrite(struct knote *kn, long hint); 108 109 struct filterops pipe_rwfiltops[] = { 110 { 1, filt_pipeattach, filt_pipedetach, filt_piperead }, 111 { 1, filt_pipeattach, filt_pipedetach, filt_pipewrite }, 112 }; 113 114 /* 115 * Default pipe buffer size(s), this can be kind-of large now because pipe 116 * space is pageable. The pipe code will try to maintain locality of 117 * reference for performance reasons, so small amounts of outstanding I/O 118 * will not wipe the cache. 119 */ 120 #define MINPIPESIZE (PIPE_SIZE/3) 121 #define MAXPIPESIZE (2*PIPE_SIZE/3) 122 123 /* 124 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but 125 * is there so that on large systems, we don't exhaust it. 126 */ 127 #define MAXPIPEKVA (8*1024*1024) 128 129 /* 130 * Limit for direct transfers, we cannot, of course limit 131 * the amount of kva for pipes in general though. 132 */ 133 #define LIMITPIPEKVA (16*1024*1024) 134 135 /* 136 * Limit the number of "big" pipes 137 */ 138 #define LIMITBIGPIPES 32 139 static int nbigpipe; 140 141 static int amountpipekva; 142 143 static void pipeclose __P((struct pipe *cpipe)); 144 static void pipeinit __P((struct pipe *cpipe)); 145 static __inline int pipelock __P((struct pipe *cpipe, int catch)); 146 static __inline void pipeunlock __P((struct pipe *cpipe)); 147 static __inline void pipeselwakeup __P((struct pipe *cpipe)); 148 #ifndef PIPE_NODIRECT 149 static int pipe_build_write_buffer __P((struct pipe *wpipe, struct uio *uio)); 150 static void pipe_destroy_write_buffer __P((struct pipe *wpipe)); 151 static int pipe_direct_write __P((struct pipe *wpipe, struct uio *uio)); 152 static void pipe_clone_write_buffer __P((struct pipe *wpipe)); 153 #endif 154 static void pipespace __P((struct pipe *cpipe)); 155 156 static vm_zone_t pipe_zone; 157 158 /* 159 * The pipe system call for the DTYPE_PIPE type of pipes 160 */ 161 162 /* ARGSUSED */ 163 int 164 pipe(p, uap) 165 struct proc *p; 166 struct pipe_args /* { 167 int dummy; 168 } */ *uap; 169 { 170 register struct filedesc *fdp = p->p_fd; 171 struct file *rf, *wf; 172 struct pipe *rpipe, *wpipe; 173 int fd, error; 174 175 if (pipe_zone == NULL) 176 pipe_zone = zinit("PIPE", sizeof (struct pipe), 0, 0, 4); 177 178 rpipe = zalloc( pipe_zone); 179 pipeinit(rpipe); 180 rpipe->pipe_state |= PIPE_DIRECTOK; 181 wpipe = zalloc( pipe_zone); 182 pipeinit(wpipe); 183 wpipe->pipe_state |= PIPE_DIRECTOK; 184 185 error = falloc(p, &rf, &fd); 186 if (error) 187 goto free2; 188 p->p_retval[0] = fd; 189 rf->f_flag = FREAD | FWRITE; 190 rf->f_type = DTYPE_PIPE; 191 rf->f_data = (caddr_t)rpipe; 192 rf->f_ops = &pipeops; 193 error = falloc(p, &wf, &fd); 194 if (error) 195 goto free3; 196 wf->f_flag = FREAD | FWRITE; 197 wf->f_type = DTYPE_PIPE; 198 wf->f_data = (caddr_t)wpipe; 199 wf->f_ops = &pipeops; 200 p->p_retval[1] = fd; 201 202 rpipe->pipe_peer = wpipe; 203 wpipe->pipe_peer = rpipe; 204 205 return (0); 206 free3: 207 fdp->fd_ofiles[p->p_retval[0]] = 0; 208 ffree(rf); 209 free2: 210 (void)pipeclose(wpipe); 211 (void)pipeclose(rpipe); 212 return (error); 213 } 214 215 /* 216 * Allocate kva for pipe circular buffer, the space is pageable 217 */ 218 static void 219 pipespace(cpipe) 220 struct pipe *cpipe; 221 { 222 int npages, error; 223 224 npages = round_page(cpipe->pipe_buffer.size)/PAGE_SIZE; 225 /* 226 * Create an object, I don't like the idea of paging to/from 227 * kernel_object. 228 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems. 229 */ 230 cpipe->pipe_buffer.object = vm_object_allocate(OBJT_DEFAULT, npages); 231 cpipe->pipe_buffer.buffer = (caddr_t) vm_map_min(kernel_map); 232 233 /* 234 * Insert the object into the kernel map, and allocate kva for it. 235 * The map entry is, by default, pageable. 236 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems. 237 */ 238 error = vm_map_find(kernel_map, cpipe->pipe_buffer.object, 0, 239 (vm_offset_t *) &cpipe->pipe_buffer.buffer, 240 cpipe->pipe_buffer.size, 1, 241 VM_PROT_ALL, VM_PROT_ALL, 0); 242 243 if (error != KERN_SUCCESS) 244 panic("pipeinit: cannot allocate pipe -- out of kvm -- code = %d", error); 245 amountpipekva += cpipe->pipe_buffer.size; 246 } 247 248 /* 249 * initialize and allocate VM and memory for pipe 250 */ 251 static void 252 pipeinit(cpipe) 253 struct pipe *cpipe; 254 { 255 256 cpipe->pipe_buffer.in = 0; 257 cpipe->pipe_buffer.out = 0; 258 cpipe->pipe_buffer.cnt = 0; 259 cpipe->pipe_buffer.size = PIPE_SIZE; 260 261 /* Buffer kva gets dynamically allocated */ 262 cpipe->pipe_buffer.buffer = NULL; 263 /* cpipe->pipe_buffer.object = invalid */ 264 265 cpipe->pipe_state = 0; 266 cpipe->pipe_peer = NULL; 267 cpipe->pipe_busy = 0; 268 vfs_timestamp(&cpipe->pipe_ctime); 269 cpipe->pipe_atime = cpipe->pipe_ctime; 270 cpipe->pipe_mtime = cpipe->pipe_ctime; 271 bzero(&cpipe->pipe_sel, sizeof cpipe->pipe_sel); 272 273 #ifndef PIPE_NODIRECT 274 /* 275 * pipe data structure initializations to support direct pipe I/O 276 */ 277 cpipe->pipe_map.cnt = 0; 278 cpipe->pipe_map.kva = 0; 279 cpipe->pipe_map.pos = 0; 280 cpipe->pipe_map.npages = 0; 281 /* cpipe->pipe_map.ms[] = invalid */ 282 #endif 283 } 284 285 286 /* 287 * lock a pipe for I/O, blocking other access 288 */ 289 static __inline int 290 pipelock(cpipe, catch) 291 struct pipe *cpipe; 292 int catch; 293 { 294 int error; 295 while (cpipe->pipe_state & PIPE_LOCK) { 296 cpipe->pipe_state |= PIPE_LWANT; 297 if ((error = tsleep( cpipe, 298 catch?(PRIBIO|PCATCH):PRIBIO, "pipelk", 0)) != 0) { 299 return error; 300 } 301 } 302 cpipe->pipe_state |= PIPE_LOCK; 303 return 0; 304 } 305 306 /* 307 * unlock a pipe I/O lock 308 */ 309 static __inline void 310 pipeunlock(cpipe) 311 struct pipe *cpipe; 312 { 313 cpipe->pipe_state &= ~PIPE_LOCK; 314 if (cpipe->pipe_state & PIPE_LWANT) { 315 cpipe->pipe_state &= ~PIPE_LWANT; 316 wakeup(cpipe); 317 } 318 } 319 320 static __inline void 321 pipeselwakeup(cpipe) 322 struct pipe *cpipe; 323 { 324 if (cpipe->pipe_state & PIPE_SEL) { 325 cpipe->pipe_state &= ~PIPE_SEL; 326 selwakeup(&cpipe->pipe_sel); 327 } 328 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 329 pgsigio(cpipe->pipe_sigio, SIGIO, 0); 330 KNOTE(&cpipe->pipe_sel.si_note, 0); 331 } 332 333 /* ARGSUSED */ 334 static int 335 pipe_read(fp, uio, cred, flags, p) 336 struct file *fp; 337 struct uio *uio; 338 struct ucred *cred; 339 struct proc *p; 340 int flags; 341 { 342 343 struct pipe *rpipe = (struct pipe *) fp->f_data; 344 int error; 345 int nread = 0; 346 u_int size; 347 348 ++rpipe->pipe_busy; 349 error = pipelock(rpipe, 1); 350 if (error) 351 goto unlocked_error; 352 353 while (uio->uio_resid) { 354 /* 355 * normal pipe buffer receive 356 */ 357 if (rpipe->pipe_buffer.cnt > 0) { 358 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 359 if (size > rpipe->pipe_buffer.cnt) 360 size = rpipe->pipe_buffer.cnt; 361 if (size > (u_int) uio->uio_resid) 362 size = (u_int) uio->uio_resid; 363 364 error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 365 size, uio); 366 if (error) { 367 break; 368 } 369 rpipe->pipe_buffer.out += size; 370 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 371 rpipe->pipe_buffer.out = 0; 372 373 rpipe->pipe_buffer.cnt -= size; 374 375 /* 376 * If there is no more to read in the pipe, reset 377 * its pointers to the beginning. This improves 378 * cache hit stats. 379 */ 380 if (rpipe->pipe_buffer.cnt == 0) { 381 rpipe->pipe_buffer.in = 0; 382 rpipe->pipe_buffer.out = 0; 383 } 384 nread += size; 385 #ifndef PIPE_NODIRECT 386 /* 387 * Direct copy, bypassing a kernel buffer. 388 */ 389 } else if ((size = rpipe->pipe_map.cnt) && 390 (rpipe->pipe_state & PIPE_DIRECTW)) { 391 caddr_t va; 392 if (size > (u_int) uio->uio_resid) 393 size = (u_int) uio->uio_resid; 394 395 va = (caddr_t) rpipe->pipe_map.kva + rpipe->pipe_map.pos; 396 error = uiomove(va, size, uio); 397 if (error) 398 break; 399 nread += size; 400 rpipe->pipe_map.pos += size; 401 rpipe->pipe_map.cnt -= size; 402 if (rpipe->pipe_map.cnt == 0) { 403 rpipe->pipe_state &= ~PIPE_DIRECTW; 404 wakeup(rpipe); 405 } 406 #endif 407 } else { 408 /* 409 * detect EOF condition 410 */ 411 if (rpipe->pipe_state & PIPE_EOF) { 412 /* XXX error = ? */ 413 break; 414 } 415 416 /* 417 * If the "write-side" has been blocked, wake it up now. 418 */ 419 if (rpipe->pipe_state & PIPE_WANTW) { 420 rpipe->pipe_state &= ~PIPE_WANTW; 421 wakeup(rpipe); 422 } 423 424 /* 425 * Break if some data was read. 426 */ 427 if (nread > 0) 428 break; 429 430 /* 431 * Unlock the pipe buffer for our remaining processing. We 432 * will either break out with an error or we will sleep and 433 * relock to loop. 434 */ 435 pipeunlock(rpipe); 436 437 /* 438 * Handle non-blocking mode operation or 439 * wait for more data. 440 */ 441 if (fp->f_flag & FNONBLOCK) 442 error = EAGAIN; 443 else { 444 rpipe->pipe_state |= PIPE_WANTR; 445 if ((error = tsleep(rpipe, PRIBIO|PCATCH, "piperd", 0)) == 0) 446 error = pipelock(rpipe, 1); 447 } 448 if (error) 449 goto unlocked_error; 450 } 451 } 452 pipeunlock(rpipe); 453 454 if (error == 0) 455 vfs_timestamp(&rpipe->pipe_atime); 456 unlocked_error: 457 --rpipe->pipe_busy; 458 459 /* 460 * PIPE_WANT processing only makes sense if pipe_busy is 0. 461 */ 462 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 463 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 464 wakeup(rpipe); 465 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 466 /* 467 * Handle write blocking hysteresis. 468 */ 469 if (rpipe->pipe_state & PIPE_WANTW) { 470 rpipe->pipe_state &= ~PIPE_WANTW; 471 wakeup(rpipe); 472 } 473 } 474 475 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 476 pipeselwakeup(rpipe); 477 478 return error; 479 } 480 481 #ifndef PIPE_NODIRECT 482 /* 483 * Map the sending processes' buffer into kernel space and wire it. 484 * This is similar to a physical write operation. 485 */ 486 static int 487 pipe_build_write_buffer(wpipe, uio) 488 struct pipe *wpipe; 489 struct uio *uio; 490 { 491 u_int size; 492 int i; 493 vm_offset_t addr, endaddr, paddr; 494 495 size = (u_int) uio->uio_iov->iov_len; 496 if (size > wpipe->pipe_buffer.size) 497 size = wpipe->pipe_buffer.size; 498 499 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size); 500 for(i = 0, addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base); 501 addr < endaddr; 502 addr += PAGE_SIZE, i+=1) { 503 504 vm_page_t m; 505 506 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 || 507 (paddr = pmap_kextract(addr)) == 0) { 508 int j; 509 for(j=0;j<i;j++) 510 vm_page_unwire(wpipe->pipe_map.ms[j], 1); 511 return EFAULT; 512 } 513 514 m = PHYS_TO_VM_PAGE(paddr); 515 vm_page_wire(m); 516 wpipe->pipe_map.ms[i] = m; 517 } 518 519 /* 520 * set up the control block 521 */ 522 wpipe->pipe_map.npages = i; 523 wpipe->pipe_map.pos = ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 524 wpipe->pipe_map.cnt = size; 525 526 /* 527 * and map the buffer 528 */ 529 if (wpipe->pipe_map.kva == 0) { 530 /* 531 * We need to allocate space for an extra page because the 532 * address range might (will) span pages at times. 533 */ 534 wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map, 535 wpipe->pipe_buffer.size + PAGE_SIZE); 536 amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE; 537 } 538 pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms, 539 wpipe->pipe_map.npages); 540 541 /* 542 * and update the uio data 543 */ 544 545 uio->uio_iov->iov_len -= size; 546 uio->uio_iov->iov_base += size; 547 if (uio->uio_iov->iov_len == 0) 548 uio->uio_iov++; 549 uio->uio_resid -= size; 550 uio->uio_offset += size; 551 return 0; 552 } 553 554 /* 555 * unmap and unwire the process buffer 556 */ 557 static void 558 pipe_destroy_write_buffer(wpipe) 559 struct pipe *wpipe; 560 { 561 int i; 562 if (wpipe->pipe_map.kva) { 563 pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages); 564 565 if (amountpipekva > MAXPIPEKVA) { 566 vm_offset_t kva = wpipe->pipe_map.kva; 567 wpipe->pipe_map.kva = 0; 568 kmem_free(kernel_map, kva, 569 wpipe->pipe_buffer.size + PAGE_SIZE); 570 amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE; 571 } 572 } 573 for (i=0;i<wpipe->pipe_map.npages;i++) 574 vm_page_unwire(wpipe->pipe_map.ms[i], 1); 575 } 576 577 /* 578 * In the case of a signal, the writing process might go away. This 579 * code copies the data into the circular buffer so that the source 580 * pages can be freed without loss of data. 581 */ 582 static void 583 pipe_clone_write_buffer(wpipe) 584 struct pipe *wpipe; 585 { 586 int size; 587 int pos; 588 589 size = wpipe->pipe_map.cnt; 590 pos = wpipe->pipe_map.pos; 591 bcopy((caddr_t) wpipe->pipe_map.kva+pos, 592 (caddr_t) wpipe->pipe_buffer.buffer, 593 size); 594 595 wpipe->pipe_buffer.in = size; 596 wpipe->pipe_buffer.out = 0; 597 wpipe->pipe_buffer.cnt = size; 598 wpipe->pipe_state &= ~PIPE_DIRECTW; 599 600 pipe_destroy_write_buffer(wpipe); 601 } 602 603 /* 604 * This implements the pipe buffer write mechanism. Note that only 605 * a direct write OR a normal pipe write can be pending at any given time. 606 * If there are any characters in the pipe buffer, the direct write will 607 * be deferred until the receiving process grabs all of the bytes from 608 * the pipe buffer. Then the direct mapping write is set-up. 609 */ 610 static int 611 pipe_direct_write(wpipe, uio) 612 struct pipe *wpipe; 613 struct uio *uio; 614 { 615 int error; 616 retry: 617 while (wpipe->pipe_state & PIPE_DIRECTW) { 618 if ( wpipe->pipe_state & PIPE_WANTR) { 619 wpipe->pipe_state &= ~PIPE_WANTR; 620 wakeup(wpipe); 621 } 622 wpipe->pipe_state |= PIPE_WANTW; 623 error = tsleep(wpipe, 624 PRIBIO|PCATCH, "pipdww", 0); 625 if (error) 626 goto error1; 627 if (wpipe->pipe_state & PIPE_EOF) { 628 error = EPIPE; 629 goto error1; 630 } 631 } 632 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 633 if (wpipe->pipe_buffer.cnt > 0) { 634 if ( wpipe->pipe_state & PIPE_WANTR) { 635 wpipe->pipe_state &= ~PIPE_WANTR; 636 wakeup(wpipe); 637 } 638 639 wpipe->pipe_state |= PIPE_WANTW; 640 error = tsleep(wpipe, 641 PRIBIO|PCATCH, "pipdwc", 0); 642 if (error) 643 goto error1; 644 if (wpipe->pipe_state & PIPE_EOF) { 645 error = EPIPE; 646 goto error1; 647 } 648 goto retry; 649 } 650 651 wpipe->pipe_state |= PIPE_DIRECTW; 652 653 error = pipe_build_write_buffer(wpipe, uio); 654 if (error) { 655 wpipe->pipe_state &= ~PIPE_DIRECTW; 656 goto error1; 657 } 658 659 error = 0; 660 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 661 if (wpipe->pipe_state & PIPE_EOF) { 662 pipelock(wpipe, 0); 663 pipe_destroy_write_buffer(wpipe); 664 pipeunlock(wpipe); 665 pipeselwakeup(wpipe); 666 error = EPIPE; 667 goto error1; 668 } 669 if (wpipe->pipe_state & PIPE_WANTR) { 670 wpipe->pipe_state &= ~PIPE_WANTR; 671 wakeup(wpipe); 672 } 673 pipeselwakeup(wpipe); 674 error = tsleep(wpipe, PRIBIO|PCATCH, "pipdwt", 0); 675 } 676 677 pipelock(wpipe,0); 678 if (wpipe->pipe_state & PIPE_DIRECTW) { 679 /* 680 * this bit of trickery substitutes a kernel buffer for 681 * the process that might be going away. 682 */ 683 pipe_clone_write_buffer(wpipe); 684 } else { 685 pipe_destroy_write_buffer(wpipe); 686 } 687 pipeunlock(wpipe); 688 return error; 689 690 error1: 691 wakeup(wpipe); 692 return error; 693 } 694 #endif 695 696 static int 697 pipe_write(fp, uio, cred, flags, p) 698 struct file *fp; 699 struct uio *uio; 700 struct ucred *cred; 701 struct proc *p; 702 int flags; 703 { 704 int error = 0; 705 int orig_resid; 706 707 struct pipe *wpipe, *rpipe; 708 709 rpipe = (struct pipe *) fp->f_data; 710 wpipe = rpipe->pipe_peer; 711 712 /* 713 * detect loss of pipe read side, issue SIGPIPE if lost. 714 */ 715 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 716 return EPIPE; 717 } 718 719 /* 720 * If it is advantageous to resize the pipe buffer, do 721 * so. 722 */ 723 if ((uio->uio_resid > PIPE_SIZE) && 724 (nbigpipe < LIMITBIGPIPES) && 725 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 726 (wpipe->pipe_buffer.size <= PIPE_SIZE) && 727 (wpipe->pipe_buffer.cnt == 0)) { 728 729 if (wpipe->pipe_buffer.buffer) { 730 amountpipekva -= wpipe->pipe_buffer.size; 731 kmem_free(kernel_map, 732 (vm_offset_t)wpipe->pipe_buffer.buffer, 733 wpipe->pipe_buffer.size); 734 } 735 736 #ifndef PIPE_NODIRECT 737 if (wpipe->pipe_map.kva) { 738 amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE; 739 kmem_free(kernel_map, 740 wpipe->pipe_map.kva, 741 wpipe->pipe_buffer.size + PAGE_SIZE); 742 } 743 #endif 744 745 wpipe->pipe_buffer.in = 0; 746 wpipe->pipe_buffer.out = 0; 747 wpipe->pipe_buffer.cnt = 0; 748 wpipe->pipe_buffer.size = BIG_PIPE_SIZE; 749 wpipe->pipe_buffer.buffer = NULL; 750 ++nbigpipe; 751 752 #ifndef PIPE_NODIRECT 753 wpipe->pipe_map.cnt = 0; 754 wpipe->pipe_map.kva = 0; 755 wpipe->pipe_map.pos = 0; 756 wpipe->pipe_map.npages = 0; 757 #endif 758 759 } 760 761 762 if( wpipe->pipe_buffer.buffer == NULL) { 763 if ((error = pipelock(wpipe,1)) == 0) { 764 pipespace(wpipe); 765 pipeunlock(wpipe); 766 } else { 767 return error; 768 } 769 } 770 771 ++wpipe->pipe_busy; 772 orig_resid = uio->uio_resid; 773 while (uio->uio_resid) { 774 int space; 775 #ifndef PIPE_NODIRECT 776 /* 777 * If the transfer is large, we can gain performance if 778 * we do process-to-process copies directly. 779 * If the write is non-blocking, we don't use the 780 * direct write mechanism. 781 * 782 * The direct write mechanism will detect the reader going 783 * away on us. 784 */ 785 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 786 (fp->f_flag & FNONBLOCK) == 0 && 787 (wpipe->pipe_map.kva || (amountpipekva < LIMITPIPEKVA)) && 788 (uio->uio_iov->iov_len >= PIPE_MINDIRECT)) { 789 error = pipe_direct_write( wpipe, uio); 790 if (error) { 791 break; 792 } 793 continue; 794 } 795 #endif 796 797 /* 798 * Pipe buffered writes cannot be coincidental with 799 * direct writes. We wait until the currently executing 800 * direct write is completed before we start filling the 801 * pipe buffer. We break out if a signal occurs or the 802 * reader goes away. 803 */ 804 retrywrite: 805 while (wpipe->pipe_state & PIPE_DIRECTW) { 806 if (wpipe->pipe_state & PIPE_WANTR) { 807 wpipe->pipe_state &= ~PIPE_WANTR; 808 wakeup(wpipe); 809 } 810 error = tsleep(wpipe, PRIBIO|PCATCH, "pipbww", 0); 811 if (wpipe->pipe_state & PIPE_EOF) 812 break; 813 if (error) 814 break; 815 } 816 if (wpipe->pipe_state & PIPE_EOF) { 817 error = EPIPE; 818 break; 819 } 820 821 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 822 823 /* Writes of size <= PIPE_BUF must be atomic. */ 824 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 825 space = 0; 826 827 if (space > 0 && (wpipe->pipe_buffer.cnt < PIPE_SIZE)) { 828 if ((error = pipelock(wpipe,1)) == 0) { 829 int size; /* Transfer size */ 830 int segsize; /* first segment to transfer */ 831 /* 832 * It is possible for a direct write to 833 * slip in on us... handle it here... 834 */ 835 if (wpipe->pipe_state & PIPE_DIRECTW) { 836 pipeunlock(wpipe); 837 goto retrywrite; 838 } 839 /* 840 * If a process blocked in uiomove, our 841 * value for space might be bad. 842 * 843 * XXX will we be ok if the reader has gone 844 * away here? 845 */ 846 if (space > wpipe->pipe_buffer.size - 847 wpipe->pipe_buffer.cnt) { 848 pipeunlock(wpipe); 849 goto retrywrite; 850 } 851 852 /* 853 * Transfer size is minimum of uio transfer 854 * and free space in pipe buffer. 855 */ 856 if (space > uio->uio_resid) 857 size = uio->uio_resid; 858 else 859 size = space; 860 /* 861 * First segment to transfer is minimum of 862 * transfer size and contiguous space in 863 * pipe buffer. If first segment to transfer 864 * is less than the transfer size, we've got 865 * a wraparound in the buffer. 866 */ 867 segsize = wpipe->pipe_buffer.size - 868 wpipe->pipe_buffer.in; 869 if (segsize > size) 870 segsize = size; 871 872 /* Transfer first segment */ 873 874 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 875 segsize, uio); 876 877 if (error == 0 && segsize < size) { 878 /* 879 * Transfer remaining part now, to 880 * support atomic writes. Wraparound 881 * happened. 882 */ 883 if (wpipe->pipe_buffer.in + segsize != 884 wpipe->pipe_buffer.size) 885 panic("Expected pipe buffer wraparound disappeared"); 886 887 error = uiomove(&wpipe->pipe_buffer.buffer[0], 888 size - segsize, uio); 889 } 890 if (error == 0) { 891 wpipe->pipe_buffer.in += size; 892 if (wpipe->pipe_buffer.in >= 893 wpipe->pipe_buffer.size) { 894 if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size) 895 panic("Expected wraparound bad"); 896 wpipe->pipe_buffer.in = size - segsize; 897 } 898 899 wpipe->pipe_buffer.cnt += size; 900 if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size) 901 panic("Pipe buffer overflow"); 902 903 } 904 pipeunlock(wpipe); 905 } 906 if (error) 907 break; 908 909 } else { 910 /* 911 * If the "read-side" has been blocked, wake it up now. 912 */ 913 if (wpipe->pipe_state & PIPE_WANTR) { 914 wpipe->pipe_state &= ~PIPE_WANTR; 915 wakeup(wpipe); 916 } 917 918 /* 919 * don't block on non-blocking I/O 920 */ 921 if (fp->f_flag & FNONBLOCK) { 922 error = EAGAIN; 923 break; 924 } 925 926 /* 927 * We have no more space and have something to offer, 928 * wake up select/poll. 929 */ 930 pipeselwakeup(wpipe); 931 932 wpipe->pipe_state |= PIPE_WANTW; 933 if ((error = tsleep(wpipe, (PRIBIO+1)|PCATCH, "pipewr", 0)) != 0) { 934 break; 935 } 936 /* 937 * If read side wants to go away, we just issue a signal 938 * to ourselves. 939 */ 940 if (wpipe->pipe_state & PIPE_EOF) { 941 error = EPIPE; 942 break; 943 } 944 } 945 } 946 947 --wpipe->pipe_busy; 948 if ((wpipe->pipe_busy == 0) && 949 (wpipe->pipe_state & PIPE_WANT)) { 950 wpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTR); 951 wakeup(wpipe); 952 } else if (wpipe->pipe_buffer.cnt > 0) { 953 /* 954 * If we have put any characters in the buffer, we wake up 955 * the reader. 956 */ 957 if (wpipe->pipe_state & PIPE_WANTR) { 958 wpipe->pipe_state &= ~PIPE_WANTR; 959 wakeup(wpipe); 960 } 961 } 962 963 /* 964 * Don't return EPIPE if I/O was successful 965 */ 966 if ((wpipe->pipe_buffer.cnt == 0) && 967 (uio->uio_resid == 0) && 968 (error == EPIPE)) 969 error = 0; 970 971 if (error == 0) 972 vfs_timestamp(&wpipe->pipe_mtime); 973 974 /* 975 * We have something to offer, 976 * wake up select/poll. 977 */ 978 if (wpipe->pipe_buffer.cnt) 979 pipeselwakeup(wpipe); 980 981 return error; 982 } 983 984 /* 985 * we implement a very minimal set of ioctls for compatibility with sockets. 986 */ 987 int 988 pipe_ioctl(fp, cmd, data, p) 989 struct file *fp; 990 u_long cmd; 991 register caddr_t data; 992 struct proc *p; 993 { 994 register struct pipe *mpipe = (struct pipe *)fp->f_data; 995 996 switch (cmd) { 997 998 case FIONBIO: 999 return (0); 1000 1001 case FIOASYNC: 1002 if (*(int *)data) { 1003 mpipe->pipe_state |= PIPE_ASYNC; 1004 } else { 1005 mpipe->pipe_state &= ~PIPE_ASYNC; 1006 } 1007 return (0); 1008 1009 case FIONREAD: 1010 if (mpipe->pipe_state & PIPE_DIRECTW) 1011 *(int *)data = mpipe->pipe_map.cnt; 1012 else 1013 *(int *)data = mpipe->pipe_buffer.cnt; 1014 return (0); 1015 1016 case FIOSETOWN: 1017 return (fsetown(*(int *)data, &mpipe->pipe_sigio)); 1018 1019 case FIOGETOWN: 1020 *(int *)data = fgetown(mpipe->pipe_sigio); 1021 return (0); 1022 1023 /* This is deprecated, FIOSETOWN should be used instead. */ 1024 case TIOCSPGRP: 1025 return (fsetown(-(*(int *)data), &mpipe->pipe_sigio)); 1026 1027 /* This is deprecated, FIOGETOWN should be used instead. */ 1028 case TIOCGPGRP: 1029 *(int *)data = -fgetown(mpipe->pipe_sigio); 1030 return (0); 1031 1032 } 1033 return (ENOTTY); 1034 } 1035 1036 int 1037 pipe_poll(fp, events, cred, p) 1038 struct file *fp; 1039 int events; 1040 struct ucred *cred; 1041 struct proc *p; 1042 { 1043 register struct pipe *rpipe = (struct pipe *)fp->f_data; 1044 struct pipe *wpipe; 1045 int revents = 0; 1046 1047 wpipe = rpipe->pipe_peer; 1048 if (events & (POLLIN | POLLRDNORM)) 1049 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1050 (rpipe->pipe_buffer.cnt > 0) || 1051 (rpipe->pipe_state & PIPE_EOF)) 1052 revents |= events & (POLLIN | POLLRDNORM); 1053 1054 if (events & (POLLOUT | POLLWRNORM)) 1055 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) || 1056 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1057 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1058 revents |= events & (POLLOUT | POLLWRNORM); 1059 1060 if ((rpipe->pipe_state & PIPE_EOF) || 1061 (wpipe == NULL) || 1062 (wpipe->pipe_state & PIPE_EOF)) 1063 revents |= POLLHUP; 1064 1065 if (revents == 0) { 1066 if (events & (POLLIN | POLLRDNORM)) { 1067 selrecord(p, &rpipe->pipe_sel); 1068 rpipe->pipe_state |= PIPE_SEL; 1069 } 1070 1071 if (events & (POLLOUT | POLLWRNORM)) { 1072 selrecord(p, &wpipe->pipe_sel); 1073 wpipe->pipe_state |= PIPE_SEL; 1074 } 1075 } 1076 1077 return (revents); 1078 } 1079 1080 static int 1081 pipe_stat(fp, ub, p) 1082 struct file *fp; 1083 struct stat *ub; 1084 struct proc *p; 1085 { 1086 struct pipe *pipe = (struct pipe *)fp->f_data; 1087 1088 bzero((caddr_t)ub, sizeof (*ub)); 1089 ub->st_mode = S_IFIFO; 1090 ub->st_blksize = pipe->pipe_buffer.size; 1091 ub->st_size = pipe->pipe_buffer.cnt; 1092 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1093 ub->st_atimespec = pipe->pipe_atime; 1094 ub->st_mtimespec = pipe->pipe_mtime; 1095 ub->st_ctimespec = pipe->pipe_ctime; 1096 /* 1097 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev, 1098 * st_flags, st_gen. 1099 * XXX (st_dev, st_ino) should be unique. 1100 */ 1101 return 0; 1102 } 1103 1104 /* ARGSUSED */ 1105 static int 1106 pipe_close(fp, p) 1107 struct file *fp; 1108 struct proc *p; 1109 { 1110 struct pipe *cpipe = (struct pipe *)fp->f_data; 1111 1112 fp->f_ops = &badfileops; 1113 fp->f_data = NULL; 1114 funsetown(cpipe->pipe_sigio); 1115 pipeclose(cpipe); 1116 return 0; 1117 } 1118 1119 /* 1120 * shutdown the pipe 1121 */ 1122 static void 1123 pipeclose(cpipe) 1124 struct pipe *cpipe; 1125 { 1126 struct pipe *ppipe; 1127 if (cpipe) { 1128 1129 pipeselwakeup(cpipe); 1130 1131 /* 1132 * If the other side is blocked, wake it up saying that 1133 * we want to close it down. 1134 */ 1135 while (cpipe->pipe_busy) { 1136 wakeup(cpipe); 1137 cpipe->pipe_state |= PIPE_WANT|PIPE_EOF; 1138 tsleep(cpipe, PRIBIO, "pipecl", 0); 1139 } 1140 1141 /* 1142 * Disconnect from peer 1143 */ 1144 if ((ppipe = cpipe->pipe_peer) != NULL) { 1145 pipeselwakeup(ppipe); 1146 1147 ppipe->pipe_state |= PIPE_EOF; 1148 wakeup(ppipe); 1149 ppipe->pipe_peer = NULL; 1150 } 1151 1152 /* 1153 * free resources 1154 */ 1155 if (cpipe->pipe_buffer.buffer) { 1156 if (cpipe->pipe_buffer.size > PIPE_SIZE) 1157 --nbigpipe; 1158 amountpipekva -= cpipe->pipe_buffer.size; 1159 kmem_free(kernel_map, 1160 (vm_offset_t)cpipe->pipe_buffer.buffer, 1161 cpipe->pipe_buffer.size); 1162 } 1163 #ifndef PIPE_NODIRECT 1164 if (cpipe->pipe_map.kva) { 1165 amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE; 1166 kmem_free(kernel_map, 1167 cpipe->pipe_map.kva, 1168 cpipe->pipe_buffer.size + PAGE_SIZE); 1169 } 1170 #endif 1171 zfree(pipe_zone, cpipe); 1172 } 1173 } 1174 1175 static int 1176 filt_pipeattach(struct knote *kn) 1177 { 1178 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; 1179 1180 SLIST_INSERT_HEAD(&rpipe->pipe_sel.si_note, kn, kn_selnext); 1181 return (0); 1182 } 1183 1184 static void 1185 filt_pipedetach(struct knote *kn) 1186 { 1187 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; 1188 1189 SLIST_REMOVE(&rpipe->pipe_sel.si_note, kn, knote, kn_selnext); 1190 } 1191 1192 /*ARGSUSED*/ 1193 static int 1194 filt_piperead(struct knote *kn, long hint) 1195 { 1196 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; 1197 struct pipe *wpipe = rpipe->pipe_peer; 1198 1199 kn->kn_data = rpipe->pipe_buffer.cnt; 1200 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1201 kn->kn_data = rpipe->pipe_map.cnt; 1202 1203 if ((rpipe->pipe_state & PIPE_EOF) || 1204 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1205 kn->kn_flags |= EV_EOF; 1206 return (1); 1207 } 1208 return (kn->kn_data > 0); 1209 } 1210 1211 /*ARGSUSED*/ 1212 static int 1213 filt_pipewrite(struct knote *kn, long hint) 1214 { 1215 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; 1216 struct pipe *wpipe = rpipe->pipe_peer; 1217 1218 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1219 kn->kn_data = 0; 1220 kn->kn_flags |= EV_EOF; 1221 return (1); 1222 } 1223 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1224 if ((wpipe->pipe_state & PIPE_DIRECTW) == 0) 1225 kn->kn_data = 0; 1226 1227 return (kn->kn_data >= PIPE_BUF); 1228 } 1229