1 /* 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 * 19 * $FreeBSD$ 20 */ 21 22 /* 23 * This file contains a high-performance replacement for the socket-based 24 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 25 * all features of sockets, but does do everything that pipes normally 26 * do. 27 */ 28 29 /* 30 * This code has two modes of operation, a small write mode and a large 31 * write mode. The small write mode acts like conventional pipes with 32 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 33 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 34 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and 35 * the receiving process can copy it directly from the pages in the sending 36 * process. 37 * 38 * If the sending process receives a signal, it is possible that it will 39 * go away, and certainly its address space can change, because control 40 * is returned back to the user-mode side. In that case, the pipe code 41 * arranges to copy the buffer supplied by the user process, to a pageable 42 * kernel buffer, and the receiving process will grab the data from the 43 * pageable kernel buffer. Since signals don't happen all that often, 44 * the copy operation is normally eliminated. 45 * 46 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 47 * happen for small transfers so that the system will not spend all of 48 * its time context switching. PIPE_SIZE is constrained by the 49 * amount of kernel virtual memory. 50 */ 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/fcntl.h> 55 #include <sys/file.h> 56 #include <sys/filedesc.h> 57 #include <sys/filio.h> 58 #include <sys/kernel.h> 59 #include <sys/lock.h> 60 #include <sys/mutex.h> 61 #include <sys/ttycom.h> 62 #include <sys/stat.h> 63 #include <sys/malloc.h> 64 #include <sys/poll.h> 65 #include <sys/selinfo.h> 66 #include <sys/signalvar.h> 67 #include <sys/sysproto.h> 68 #include <sys/pipe.h> 69 #include <sys/proc.h> 70 #include <sys/vnode.h> 71 #include <sys/uio.h> 72 #include <sys/event.h> 73 74 #include <vm/vm.h> 75 #include <vm/vm_param.h> 76 #include <vm/vm_object.h> 77 #include <vm/vm_kern.h> 78 #include <vm/vm_extern.h> 79 #include <vm/pmap.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_page.h> 82 #include <vm/uma.h> 83 84 /* 85 * Use this define if you want to disable *fancy* VM things. Expect an 86 * approx 30% decrease in transfer rate. This could be useful for 87 * NetBSD or OpenBSD. 88 */ 89 /* #define PIPE_NODIRECT */ 90 91 /* 92 * interfaces to the outside world 93 */ 94 static int pipe_read(struct file *fp, struct uio *uio, 95 struct ucred *cred, int flags, struct thread *td); 96 static int pipe_write(struct file *fp, struct uio *uio, 97 struct ucred *cred, int flags, struct thread *td); 98 static int pipe_close(struct file *fp, struct thread *td); 99 static int pipe_poll(struct file *fp, int events, struct ucred *cred, 100 struct thread *td); 101 static int pipe_kqfilter(struct file *fp, struct knote *kn); 102 static int pipe_stat(struct file *fp, struct stat *sb, struct thread *td); 103 static int pipe_ioctl(struct file *fp, u_long cmd, void *data, 104 struct thread *td); 105 106 static struct fileops pipeops = { 107 pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter, 108 pipe_stat, pipe_close 109 }; 110 111 static void filt_pipedetach(struct knote *kn); 112 static int filt_piperead(struct knote *kn, long hint); 113 static int filt_pipewrite(struct knote *kn, long hint); 114 115 static struct filterops pipe_rfiltops = 116 { 1, NULL, filt_pipedetach, filt_piperead }; 117 static struct filterops pipe_wfiltops = 118 { 1, NULL, filt_pipedetach, filt_pipewrite }; 119 120 #define PIPE_GET_GIANT(pipe) \ 121 do { \ 122 KASSERT(((pipe)->pipe_state & PIPE_LOCKFL) != 0, \ 123 ("%s:%d PIPE_GET_GIANT: line pipe not locked", \ 124 __FILE__, __LINE__)); \ 125 PIPE_UNLOCK(pipe); \ 126 mtx_lock(&Giant); \ 127 } while (0) 128 129 #define PIPE_DROP_GIANT(pipe) \ 130 do { \ 131 mtx_unlock(&Giant); \ 132 PIPE_LOCK(pipe); \ 133 } while (0) 134 135 /* 136 * Default pipe buffer size(s), this can be kind-of large now because pipe 137 * space is pageable. The pipe code will try to maintain locality of 138 * reference for performance reasons, so small amounts of outstanding I/O 139 * will not wipe the cache. 140 */ 141 #define MINPIPESIZE (PIPE_SIZE/3) 142 #define MAXPIPESIZE (2*PIPE_SIZE/3) 143 144 /* 145 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but 146 * is there so that on large systems, we don't exhaust it. 147 */ 148 #define MAXPIPEKVA (8*1024*1024) 149 150 /* 151 * Limit for direct transfers, we cannot, of course limit 152 * the amount of kva for pipes in general though. 153 */ 154 #define LIMITPIPEKVA (16*1024*1024) 155 156 /* 157 * Limit the number of "big" pipes 158 */ 159 #define LIMITBIGPIPES 32 160 static int nbigpipe; 161 162 static int amountpipekva; 163 164 static void pipeinit(void *dummy __unused); 165 static void pipeclose(struct pipe *cpipe); 166 static void pipe_free_kmem(struct pipe *cpipe); 167 static int pipe_create(struct pipe **cpipep); 168 static __inline int pipelock(struct pipe *cpipe, int catch); 169 static __inline void pipeunlock(struct pipe *cpipe); 170 static __inline void pipeselwakeup(struct pipe *cpipe); 171 #ifndef PIPE_NODIRECT 172 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 173 static void pipe_destroy_write_buffer(struct pipe *wpipe); 174 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 175 static void pipe_clone_write_buffer(struct pipe *wpipe); 176 #endif 177 static int pipespace(struct pipe *cpipe, int size); 178 179 static uma_zone_t pipe_zone; 180 181 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 182 183 static void 184 pipeinit(void *dummy __unused) 185 { 186 pipe_zone = uma_zcreate("PIPE", sizeof(struct pipe), NULL, 187 NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 188 } 189 190 /* 191 * The pipe system call for the DTYPE_PIPE type of pipes 192 */ 193 194 /* ARGSUSED */ 195 int 196 pipe(td, uap) 197 struct thread *td; 198 struct pipe_args /* { 199 int dummy; 200 } */ *uap; 201 { 202 struct filedesc *fdp = td->td_proc->p_fd; 203 struct file *rf, *wf; 204 struct pipe *rpipe, *wpipe; 205 struct mtx *pmtx; 206 int fd, error; 207 208 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 209 210 pmtx = malloc(sizeof(*pmtx), M_TEMP, M_WAITOK | M_ZERO); 211 212 rpipe = wpipe = NULL; 213 if (pipe_create(&rpipe) || pipe_create(&wpipe)) { 214 pipeclose(rpipe); 215 pipeclose(wpipe); 216 free(pmtx, M_TEMP); 217 return (ENFILE); 218 } 219 220 rpipe->pipe_state |= PIPE_DIRECTOK; 221 wpipe->pipe_state |= PIPE_DIRECTOK; 222 223 error = falloc(td, &rf, &fd); 224 if (error) { 225 pipeclose(rpipe); 226 pipeclose(wpipe); 227 free(pmtx, M_TEMP); 228 return (error); 229 } 230 fhold(rf); 231 td->td_retval[0] = fd; 232 233 /* 234 * Warning: once we've gotten past allocation of the fd for the 235 * read-side, we can only drop the read side via fdrop() in order 236 * to avoid races against processes which manage to dup() the read 237 * side while we are blocked trying to allocate the write side. 238 */ 239 FILE_LOCK(rf); 240 rf->f_flag = FREAD | FWRITE; 241 rf->f_type = DTYPE_PIPE; 242 rf->f_data = (caddr_t)rpipe; 243 rf->f_ops = &pipeops; 244 FILE_UNLOCK(rf); 245 error = falloc(td, &wf, &fd); 246 if (error) { 247 FILEDESC_LOCK(fdp); 248 if (fdp->fd_ofiles[td->td_retval[0]] == rf) { 249 fdp->fd_ofiles[td->td_retval[0]] = NULL; 250 FILEDESC_UNLOCK(fdp); 251 fdrop(rf, td); 252 } else 253 FILEDESC_UNLOCK(fdp); 254 fdrop(rf, td); 255 /* rpipe has been closed by fdrop(). */ 256 pipeclose(wpipe); 257 free(pmtx, M_TEMP); 258 return (error); 259 } 260 FILE_LOCK(wf); 261 wf->f_flag = FREAD | FWRITE; 262 wf->f_type = DTYPE_PIPE; 263 wf->f_data = (caddr_t)wpipe; 264 wf->f_ops = &pipeops; 265 FILE_UNLOCK(wf); 266 td->td_retval[1] = fd; 267 rpipe->pipe_peer = wpipe; 268 wpipe->pipe_peer = rpipe; 269 mtx_init(pmtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 270 rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx; 271 fdrop(rf, td); 272 273 return (0); 274 } 275 276 /* 277 * Allocate kva for pipe circular buffer, the space is pageable 278 * This routine will 'realloc' the size of a pipe safely, if it fails 279 * it will retain the old buffer. 280 * If it fails it will return ENOMEM. 281 */ 282 static int 283 pipespace(cpipe, size) 284 struct pipe *cpipe; 285 int size; 286 { 287 struct vm_object *object; 288 caddr_t buffer; 289 int npages, error; 290 291 GIANT_REQUIRED; 292 KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)), 293 ("pipespace: pipe mutex locked")); 294 295 npages = round_page(size)/PAGE_SIZE; 296 /* 297 * Create an object, I don't like the idea of paging to/from 298 * kernel_object. 299 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems. 300 */ 301 object = vm_object_allocate(OBJT_DEFAULT, npages); 302 buffer = (caddr_t) vm_map_min(kernel_map); 303 304 /* 305 * Insert the object into the kernel map, and allocate kva for it. 306 * The map entry is, by default, pageable. 307 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems. 308 */ 309 error = vm_map_find(kernel_map, object, 0, 310 (vm_offset_t *) &buffer, size, 1, 311 VM_PROT_ALL, VM_PROT_ALL, 0); 312 313 if (error != KERN_SUCCESS) { 314 vm_object_deallocate(object); 315 return (ENOMEM); 316 } 317 318 /* free old resources if we're resizing */ 319 pipe_free_kmem(cpipe); 320 cpipe->pipe_buffer.object = object; 321 cpipe->pipe_buffer.buffer = buffer; 322 cpipe->pipe_buffer.size = size; 323 cpipe->pipe_buffer.in = 0; 324 cpipe->pipe_buffer.out = 0; 325 cpipe->pipe_buffer.cnt = 0; 326 amountpipekva += cpipe->pipe_buffer.size; 327 return (0); 328 } 329 330 /* 331 * initialize and allocate VM and memory for pipe 332 */ 333 static int 334 pipe_create(cpipep) 335 struct pipe **cpipep; 336 { 337 struct pipe *cpipe; 338 int error; 339 340 *cpipep = uma_zalloc(pipe_zone, M_WAITOK); 341 if (*cpipep == NULL) 342 return (ENOMEM); 343 344 cpipe = *cpipep; 345 346 /* so pipespace()->pipe_free_kmem() doesn't follow junk pointer */ 347 cpipe->pipe_buffer.object = NULL; 348 #ifndef PIPE_NODIRECT 349 cpipe->pipe_map.kva = NULL; 350 #endif 351 /* 352 * protect so pipeclose() doesn't follow a junk pointer 353 * if pipespace() fails. 354 */ 355 bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel)); 356 cpipe->pipe_state = 0; 357 cpipe->pipe_peer = NULL; 358 cpipe->pipe_busy = 0; 359 360 #ifndef PIPE_NODIRECT 361 /* 362 * pipe data structure initializations to support direct pipe I/O 363 */ 364 cpipe->pipe_map.cnt = 0; 365 cpipe->pipe_map.kva = 0; 366 cpipe->pipe_map.pos = 0; 367 cpipe->pipe_map.npages = 0; 368 /* cpipe->pipe_map.ms[] = invalid */ 369 #endif 370 371 cpipe->pipe_mtxp = NULL; /* avoid pipespace assertion */ 372 error = pipespace(cpipe, PIPE_SIZE); 373 if (error) 374 return (error); 375 376 vfs_timestamp(&cpipe->pipe_ctime); 377 cpipe->pipe_atime = cpipe->pipe_ctime; 378 cpipe->pipe_mtime = cpipe->pipe_ctime; 379 380 return (0); 381 } 382 383 384 /* 385 * lock a pipe for I/O, blocking other access 386 */ 387 static __inline int 388 pipelock(cpipe, catch) 389 struct pipe *cpipe; 390 int catch; 391 { 392 int error; 393 394 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 395 while (cpipe->pipe_state & PIPE_LOCKFL) { 396 cpipe->pipe_state |= PIPE_LWANT; 397 error = msleep(cpipe, PIPE_MTX(cpipe), 398 catch ? (PRIBIO | PCATCH) : PRIBIO, 399 "pipelk", 0); 400 if (error != 0) 401 return (error); 402 } 403 cpipe->pipe_state |= PIPE_LOCKFL; 404 return (0); 405 } 406 407 /* 408 * unlock a pipe I/O lock 409 */ 410 static __inline void 411 pipeunlock(cpipe) 412 struct pipe *cpipe; 413 { 414 415 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 416 cpipe->pipe_state &= ~PIPE_LOCKFL; 417 if (cpipe->pipe_state & PIPE_LWANT) { 418 cpipe->pipe_state &= ~PIPE_LWANT; 419 wakeup(cpipe); 420 } 421 } 422 423 static __inline void 424 pipeselwakeup(cpipe) 425 struct pipe *cpipe; 426 { 427 428 if (cpipe->pipe_state & PIPE_SEL) { 429 cpipe->pipe_state &= ~PIPE_SEL; 430 selwakeup(&cpipe->pipe_sel); 431 } 432 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 433 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 434 KNOTE(&cpipe->pipe_sel.si_note, 0); 435 } 436 437 /* ARGSUSED */ 438 static int 439 pipe_read(fp, uio, cred, flags, td) 440 struct file *fp; 441 struct uio *uio; 442 struct ucred *cred; 443 struct thread *td; 444 int flags; 445 { 446 struct pipe *rpipe = (struct pipe *) fp->f_data; 447 int error; 448 int nread = 0; 449 u_int size; 450 451 PIPE_LOCK(rpipe); 452 ++rpipe->pipe_busy; 453 error = pipelock(rpipe, 1); 454 if (error) 455 goto unlocked_error; 456 457 while (uio->uio_resid) { 458 /* 459 * normal pipe buffer receive 460 */ 461 if (rpipe->pipe_buffer.cnt > 0) { 462 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 463 if (size > rpipe->pipe_buffer.cnt) 464 size = rpipe->pipe_buffer.cnt; 465 if (size > (u_int) uio->uio_resid) 466 size = (u_int) uio->uio_resid; 467 468 PIPE_UNLOCK(rpipe); 469 error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 470 size, uio); 471 PIPE_LOCK(rpipe); 472 if (error) 473 break; 474 475 rpipe->pipe_buffer.out += size; 476 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 477 rpipe->pipe_buffer.out = 0; 478 479 rpipe->pipe_buffer.cnt -= size; 480 481 /* 482 * If there is no more to read in the pipe, reset 483 * its pointers to the beginning. This improves 484 * cache hit stats. 485 */ 486 if (rpipe->pipe_buffer.cnt == 0) { 487 rpipe->pipe_buffer.in = 0; 488 rpipe->pipe_buffer.out = 0; 489 } 490 nread += size; 491 #ifndef PIPE_NODIRECT 492 /* 493 * Direct copy, bypassing a kernel buffer. 494 */ 495 } else if ((size = rpipe->pipe_map.cnt) && 496 (rpipe->pipe_state & PIPE_DIRECTW)) { 497 caddr_t va; 498 if (size > (u_int) uio->uio_resid) 499 size = (u_int) uio->uio_resid; 500 501 va = (caddr_t) rpipe->pipe_map.kva + 502 rpipe->pipe_map.pos; 503 PIPE_UNLOCK(rpipe); 504 error = uiomove(va, size, uio); 505 PIPE_LOCK(rpipe); 506 if (error) 507 break; 508 nread += size; 509 rpipe->pipe_map.pos += size; 510 rpipe->pipe_map.cnt -= size; 511 if (rpipe->pipe_map.cnt == 0) { 512 rpipe->pipe_state &= ~PIPE_DIRECTW; 513 wakeup(rpipe); 514 } 515 #endif 516 } else { 517 /* 518 * detect EOF condition 519 * read returns 0 on EOF, no need to set error 520 */ 521 if (rpipe->pipe_state & PIPE_EOF) 522 break; 523 524 /* 525 * If the "write-side" has been blocked, wake it up now. 526 */ 527 if (rpipe->pipe_state & PIPE_WANTW) { 528 rpipe->pipe_state &= ~PIPE_WANTW; 529 wakeup(rpipe); 530 } 531 532 /* 533 * Break if some data was read. 534 */ 535 if (nread > 0) 536 break; 537 538 /* 539 * Unlock the pipe buffer for our remaining processing. We 540 * will either break out with an error or we will sleep and 541 * relock to loop. 542 */ 543 pipeunlock(rpipe); 544 545 /* 546 * Handle non-blocking mode operation or 547 * wait for more data. 548 */ 549 if (fp->f_flag & FNONBLOCK) { 550 error = EAGAIN; 551 } else { 552 rpipe->pipe_state |= PIPE_WANTR; 553 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 554 PRIBIO | PCATCH, 555 "piperd", 0)) == 0) 556 error = pipelock(rpipe, 1); 557 } 558 if (error) 559 goto unlocked_error; 560 } 561 } 562 pipeunlock(rpipe); 563 564 /* XXX: should probably do this before getting any locks. */ 565 if (error == 0) 566 vfs_timestamp(&rpipe->pipe_atime); 567 unlocked_error: 568 --rpipe->pipe_busy; 569 570 /* 571 * PIPE_WANT processing only makes sense if pipe_busy is 0. 572 */ 573 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 574 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 575 wakeup(rpipe); 576 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 577 /* 578 * Handle write blocking hysteresis. 579 */ 580 if (rpipe->pipe_state & PIPE_WANTW) { 581 rpipe->pipe_state &= ~PIPE_WANTW; 582 wakeup(rpipe); 583 } 584 } 585 586 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 587 pipeselwakeup(rpipe); 588 589 PIPE_UNLOCK(rpipe); 590 return (error); 591 } 592 593 #ifndef PIPE_NODIRECT 594 /* 595 * Map the sending processes' buffer into kernel space and wire it. 596 * This is similar to a physical write operation. 597 */ 598 static int 599 pipe_build_write_buffer(wpipe, uio) 600 struct pipe *wpipe; 601 struct uio *uio; 602 { 603 u_int size; 604 int i; 605 vm_offset_t addr, endaddr, paddr; 606 607 GIANT_REQUIRED; 608 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 609 610 size = (u_int) uio->uio_iov->iov_len; 611 if (size > wpipe->pipe_buffer.size) 612 size = wpipe->pipe_buffer.size; 613 614 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size); 615 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base); 616 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) { 617 vm_page_t m; 618 619 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 || 620 (paddr = pmap_extract(vmspace_pmap(curproc->p_vmspace), 621 addr)) == 0) { 622 int j; 623 624 for (j = 0; j < i; j++) 625 vm_page_unwire(wpipe->pipe_map.ms[j], 1); 626 return (EFAULT); 627 } 628 629 m = PHYS_TO_VM_PAGE(paddr); 630 vm_page_wire(m); 631 wpipe->pipe_map.ms[i] = m; 632 } 633 634 /* 635 * set up the control block 636 */ 637 wpipe->pipe_map.npages = i; 638 wpipe->pipe_map.pos = 639 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 640 wpipe->pipe_map.cnt = size; 641 642 /* 643 * and map the buffer 644 */ 645 if (wpipe->pipe_map.kva == 0) { 646 /* 647 * We need to allocate space for an extra page because the 648 * address range might (will) span pages at times. 649 */ 650 wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map, 651 wpipe->pipe_buffer.size + PAGE_SIZE); 652 amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE; 653 } 654 pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms, 655 wpipe->pipe_map.npages); 656 657 /* 658 * and update the uio data 659 */ 660 661 uio->uio_iov->iov_len -= size; 662 uio->uio_iov->iov_base += size; 663 if (uio->uio_iov->iov_len == 0) 664 uio->uio_iov++; 665 uio->uio_resid -= size; 666 uio->uio_offset += size; 667 return (0); 668 } 669 670 /* 671 * unmap and unwire the process buffer 672 */ 673 static void 674 pipe_destroy_write_buffer(wpipe) 675 struct pipe *wpipe; 676 { 677 int i; 678 679 GIANT_REQUIRED; 680 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 681 682 if (wpipe->pipe_map.kva) { 683 pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages); 684 685 if (amountpipekva > MAXPIPEKVA) { 686 vm_offset_t kva = wpipe->pipe_map.kva; 687 wpipe->pipe_map.kva = 0; 688 kmem_free(kernel_map, kva, 689 wpipe->pipe_buffer.size + PAGE_SIZE); 690 amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE; 691 } 692 } 693 for (i = 0; i < wpipe->pipe_map.npages; i++) 694 vm_page_unwire(wpipe->pipe_map.ms[i], 1); 695 wpipe->pipe_map.npages = 0; 696 } 697 698 /* 699 * In the case of a signal, the writing process might go away. This 700 * code copies the data into the circular buffer so that the source 701 * pages can be freed without loss of data. 702 */ 703 static void 704 pipe_clone_write_buffer(wpipe) 705 struct pipe *wpipe; 706 { 707 int size; 708 int pos; 709 710 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 711 size = wpipe->pipe_map.cnt; 712 pos = wpipe->pipe_map.pos; 713 714 wpipe->pipe_buffer.in = size; 715 wpipe->pipe_buffer.out = 0; 716 wpipe->pipe_buffer.cnt = size; 717 wpipe->pipe_state &= ~PIPE_DIRECTW; 718 719 PIPE_GET_GIANT(wpipe); 720 bcopy((caddr_t) wpipe->pipe_map.kva + pos, 721 (caddr_t) wpipe->pipe_buffer.buffer, size); 722 pipe_destroy_write_buffer(wpipe); 723 PIPE_DROP_GIANT(wpipe); 724 } 725 726 /* 727 * This implements the pipe buffer write mechanism. Note that only 728 * a direct write OR a normal pipe write can be pending at any given time. 729 * If there are any characters in the pipe buffer, the direct write will 730 * be deferred until the receiving process grabs all of the bytes from 731 * the pipe buffer. Then the direct mapping write is set-up. 732 */ 733 static int 734 pipe_direct_write(wpipe, uio) 735 struct pipe *wpipe; 736 struct uio *uio; 737 { 738 int error; 739 740 retry: 741 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 742 while (wpipe->pipe_state & PIPE_DIRECTW) { 743 if (wpipe->pipe_state & PIPE_WANTR) { 744 wpipe->pipe_state &= ~PIPE_WANTR; 745 wakeup(wpipe); 746 } 747 wpipe->pipe_state |= PIPE_WANTW; 748 error = msleep(wpipe, PIPE_MTX(wpipe), 749 PRIBIO | PCATCH, "pipdww", 0); 750 if (error) 751 goto error1; 752 if (wpipe->pipe_state & PIPE_EOF) { 753 error = EPIPE; 754 goto error1; 755 } 756 } 757 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 758 if (wpipe->pipe_buffer.cnt > 0) { 759 if (wpipe->pipe_state & PIPE_WANTR) { 760 wpipe->pipe_state &= ~PIPE_WANTR; 761 wakeup(wpipe); 762 } 763 764 wpipe->pipe_state |= PIPE_WANTW; 765 error = msleep(wpipe, PIPE_MTX(wpipe), 766 PRIBIO | PCATCH, "pipdwc", 0); 767 if (error) 768 goto error1; 769 if (wpipe->pipe_state & PIPE_EOF) { 770 error = EPIPE; 771 goto error1; 772 } 773 goto retry; 774 } 775 776 wpipe->pipe_state |= PIPE_DIRECTW; 777 778 pipelock(wpipe, 0); 779 PIPE_GET_GIANT(wpipe); 780 error = pipe_build_write_buffer(wpipe, uio); 781 PIPE_DROP_GIANT(wpipe); 782 pipeunlock(wpipe); 783 if (error) { 784 wpipe->pipe_state &= ~PIPE_DIRECTW; 785 goto error1; 786 } 787 788 error = 0; 789 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 790 if (wpipe->pipe_state & PIPE_EOF) { 791 pipelock(wpipe, 0); 792 PIPE_GET_GIANT(wpipe); 793 pipe_destroy_write_buffer(wpipe); 794 PIPE_DROP_GIANT(wpipe); 795 pipeunlock(wpipe); 796 pipeselwakeup(wpipe); 797 error = EPIPE; 798 goto error1; 799 } 800 if (wpipe->pipe_state & PIPE_WANTR) { 801 wpipe->pipe_state &= ~PIPE_WANTR; 802 wakeup(wpipe); 803 } 804 pipeselwakeup(wpipe); 805 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 806 "pipdwt", 0); 807 } 808 809 pipelock(wpipe,0); 810 if (wpipe->pipe_state & PIPE_DIRECTW) { 811 /* 812 * this bit of trickery substitutes a kernel buffer for 813 * the process that might be going away. 814 */ 815 pipe_clone_write_buffer(wpipe); 816 } else { 817 PIPE_GET_GIANT(wpipe); 818 pipe_destroy_write_buffer(wpipe); 819 PIPE_DROP_GIANT(wpipe); 820 } 821 pipeunlock(wpipe); 822 return (error); 823 824 error1: 825 wakeup(wpipe); 826 return (error); 827 } 828 #endif 829 830 static int 831 pipe_write(fp, uio, cred, flags, td) 832 struct file *fp; 833 struct uio *uio; 834 struct ucred *cred; 835 struct thread *td; 836 int flags; 837 { 838 int error = 0; 839 int orig_resid; 840 struct pipe *wpipe, *rpipe; 841 842 rpipe = (struct pipe *) fp->f_data; 843 wpipe = rpipe->pipe_peer; 844 845 PIPE_LOCK(rpipe); 846 /* 847 * detect loss of pipe read side, issue SIGPIPE if lost. 848 */ 849 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 850 PIPE_UNLOCK(rpipe); 851 return (EPIPE); 852 } 853 ++wpipe->pipe_busy; 854 855 /* 856 * If it is advantageous to resize the pipe buffer, do 857 * so. 858 */ 859 if ((uio->uio_resid > PIPE_SIZE) && 860 (nbigpipe < LIMITBIGPIPES) && 861 (wpipe->pipe_state & PIPE_DIRECTW) == 0 && 862 (wpipe->pipe_buffer.size <= PIPE_SIZE) && 863 (wpipe->pipe_buffer.cnt == 0)) { 864 865 if ((error = pipelock(wpipe,1)) == 0) { 866 PIPE_GET_GIANT(wpipe); 867 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0) 868 nbigpipe++; 869 PIPE_DROP_GIANT(wpipe); 870 pipeunlock(wpipe); 871 } 872 } 873 874 /* 875 * If an early error occured unbusy and return, waking up any pending 876 * readers. 877 */ 878 if (error) { 879 --wpipe->pipe_busy; 880 if ((wpipe->pipe_busy == 0) && 881 (wpipe->pipe_state & PIPE_WANT)) { 882 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 883 wakeup(wpipe); 884 } 885 PIPE_UNLOCK(rpipe); 886 return(error); 887 } 888 889 KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone")); 890 891 orig_resid = uio->uio_resid; 892 893 while (uio->uio_resid) { 894 int space; 895 896 #ifndef PIPE_NODIRECT 897 /* 898 * If the transfer is large, we can gain performance if 899 * we do process-to-process copies directly. 900 * If the write is non-blocking, we don't use the 901 * direct write mechanism. 902 * 903 * The direct write mechanism will detect the reader going 904 * away on us. 905 */ 906 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 907 (fp->f_flag & FNONBLOCK) == 0 && 908 (wpipe->pipe_map.kva || (amountpipekva < LIMITPIPEKVA)) && 909 (uio->uio_iov->iov_len >= PIPE_MINDIRECT)) { 910 error = pipe_direct_write( wpipe, uio); 911 if (error) 912 break; 913 continue; 914 } 915 #endif 916 917 /* 918 * Pipe buffered writes cannot be coincidental with 919 * direct writes. We wait until the currently executing 920 * direct write is completed before we start filling the 921 * pipe buffer. We break out if a signal occurs or the 922 * reader goes away. 923 */ 924 retrywrite: 925 while (wpipe->pipe_state & PIPE_DIRECTW) { 926 if (wpipe->pipe_state & PIPE_WANTR) { 927 wpipe->pipe_state &= ~PIPE_WANTR; 928 wakeup(wpipe); 929 } 930 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 931 "pipbww", 0); 932 if (wpipe->pipe_state & PIPE_EOF) 933 break; 934 if (error) 935 break; 936 } 937 if (wpipe->pipe_state & PIPE_EOF) { 938 error = EPIPE; 939 break; 940 } 941 942 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 943 944 /* Writes of size <= PIPE_BUF must be atomic. */ 945 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 946 space = 0; 947 948 if (space > 0 && (wpipe->pipe_buffer.cnt < PIPE_SIZE)) { 949 if ((error = pipelock(wpipe,1)) == 0) { 950 int size; /* Transfer size */ 951 int segsize; /* first segment to transfer */ 952 953 /* 954 * It is possible for a direct write to 955 * slip in on us... handle it here... 956 */ 957 if (wpipe->pipe_state & PIPE_DIRECTW) { 958 pipeunlock(wpipe); 959 goto retrywrite; 960 } 961 /* 962 * If a process blocked in uiomove, our 963 * value for space might be bad. 964 * 965 * XXX will we be ok if the reader has gone 966 * away here? 967 */ 968 if (space > wpipe->pipe_buffer.size - 969 wpipe->pipe_buffer.cnt) { 970 pipeunlock(wpipe); 971 goto retrywrite; 972 } 973 974 /* 975 * Transfer size is minimum of uio transfer 976 * and free space in pipe buffer. 977 */ 978 if (space > uio->uio_resid) 979 size = uio->uio_resid; 980 else 981 size = space; 982 /* 983 * First segment to transfer is minimum of 984 * transfer size and contiguous space in 985 * pipe buffer. If first segment to transfer 986 * is less than the transfer size, we've got 987 * a wraparound in the buffer. 988 */ 989 segsize = wpipe->pipe_buffer.size - 990 wpipe->pipe_buffer.in; 991 if (segsize > size) 992 segsize = size; 993 994 /* Transfer first segment */ 995 996 PIPE_UNLOCK(rpipe); 997 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 998 segsize, uio); 999 PIPE_LOCK(rpipe); 1000 1001 if (error == 0 && segsize < size) { 1002 /* 1003 * Transfer remaining part now, to 1004 * support atomic writes. Wraparound 1005 * happened. 1006 */ 1007 if (wpipe->pipe_buffer.in + segsize != 1008 wpipe->pipe_buffer.size) 1009 panic("Expected pipe buffer wraparound disappeared"); 1010 1011 PIPE_UNLOCK(rpipe); 1012 error = uiomove(&wpipe->pipe_buffer.buffer[0], 1013 size - segsize, uio); 1014 PIPE_LOCK(rpipe); 1015 } 1016 if (error == 0) { 1017 wpipe->pipe_buffer.in += size; 1018 if (wpipe->pipe_buffer.in >= 1019 wpipe->pipe_buffer.size) { 1020 if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size) 1021 panic("Expected wraparound bad"); 1022 wpipe->pipe_buffer.in = size - segsize; 1023 } 1024 1025 wpipe->pipe_buffer.cnt += size; 1026 if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size) 1027 panic("Pipe buffer overflow"); 1028 1029 } 1030 pipeunlock(wpipe); 1031 } 1032 if (error) 1033 break; 1034 1035 } else { 1036 /* 1037 * If the "read-side" has been blocked, wake it up now. 1038 */ 1039 if (wpipe->pipe_state & PIPE_WANTR) { 1040 wpipe->pipe_state &= ~PIPE_WANTR; 1041 wakeup(wpipe); 1042 } 1043 1044 /* 1045 * don't block on non-blocking I/O 1046 */ 1047 if (fp->f_flag & FNONBLOCK) { 1048 error = EAGAIN; 1049 break; 1050 } 1051 1052 /* 1053 * We have no more space and have something to offer, 1054 * wake up select/poll. 1055 */ 1056 pipeselwakeup(wpipe); 1057 1058 wpipe->pipe_state |= PIPE_WANTW; 1059 error = msleep(wpipe, PIPE_MTX(rpipe), 1060 PRIBIO | PCATCH, "pipewr", 0); 1061 if (error != 0) 1062 break; 1063 /* 1064 * If read side wants to go away, we just issue a signal 1065 * to ourselves. 1066 */ 1067 if (wpipe->pipe_state & PIPE_EOF) { 1068 error = EPIPE; 1069 break; 1070 } 1071 } 1072 } 1073 1074 --wpipe->pipe_busy; 1075 1076 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1077 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1078 wakeup(wpipe); 1079 } else if (wpipe->pipe_buffer.cnt > 0) { 1080 /* 1081 * If we have put any characters in the buffer, we wake up 1082 * the reader. 1083 */ 1084 if (wpipe->pipe_state & PIPE_WANTR) { 1085 wpipe->pipe_state &= ~PIPE_WANTR; 1086 wakeup(wpipe); 1087 } 1088 } 1089 1090 /* 1091 * Don't return EPIPE if I/O was successful 1092 */ 1093 if ((wpipe->pipe_buffer.cnt == 0) && 1094 (uio->uio_resid == 0) && 1095 (error == EPIPE)) { 1096 error = 0; 1097 } 1098 1099 if (error == 0) 1100 vfs_timestamp(&wpipe->pipe_mtime); 1101 1102 /* 1103 * We have something to offer, 1104 * wake up select/poll. 1105 */ 1106 if (wpipe->pipe_buffer.cnt) 1107 pipeselwakeup(wpipe); 1108 1109 PIPE_UNLOCK(rpipe); 1110 return (error); 1111 } 1112 1113 /* 1114 * we implement a very minimal set of ioctls for compatibility with sockets. 1115 */ 1116 int 1117 pipe_ioctl(fp, cmd, data, td) 1118 struct file *fp; 1119 u_long cmd; 1120 void *data; 1121 struct thread *td; 1122 { 1123 struct pipe *mpipe = (struct pipe *)fp->f_data; 1124 1125 switch (cmd) { 1126 1127 case FIONBIO: 1128 return (0); 1129 1130 case FIOASYNC: 1131 PIPE_LOCK(mpipe); 1132 if (*(int *)data) { 1133 mpipe->pipe_state |= PIPE_ASYNC; 1134 } else { 1135 mpipe->pipe_state &= ~PIPE_ASYNC; 1136 } 1137 PIPE_UNLOCK(mpipe); 1138 return (0); 1139 1140 case FIONREAD: 1141 PIPE_LOCK(mpipe); 1142 if (mpipe->pipe_state & PIPE_DIRECTW) 1143 *(int *)data = mpipe->pipe_map.cnt; 1144 else 1145 *(int *)data = mpipe->pipe_buffer.cnt; 1146 PIPE_UNLOCK(mpipe); 1147 return (0); 1148 1149 case FIOSETOWN: 1150 return (fsetown(*(int *)data, &mpipe->pipe_sigio)); 1151 1152 case FIOGETOWN: 1153 *(int *)data = fgetown(mpipe->pipe_sigio); 1154 return (0); 1155 1156 /* This is deprecated, FIOSETOWN should be used instead. */ 1157 case TIOCSPGRP: 1158 return (fsetown(-(*(int *)data), &mpipe->pipe_sigio)); 1159 1160 /* This is deprecated, FIOGETOWN should be used instead. */ 1161 case TIOCGPGRP: 1162 *(int *)data = -fgetown(mpipe->pipe_sigio); 1163 return (0); 1164 1165 } 1166 return (ENOTTY); 1167 } 1168 1169 int 1170 pipe_poll(fp, events, cred, td) 1171 struct file *fp; 1172 int events; 1173 struct ucred *cred; 1174 struct thread *td; 1175 { 1176 struct pipe *rpipe = (struct pipe *)fp->f_data; 1177 struct pipe *wpipe; 1178 int revents = 0; 1179 1180 wpipe = rpipe->pipe_peer; 1181 PIPE_LOCK(rpipe); 1182 if (events & (POLLIN | POLLRDNORM)) 1183 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1184 (rpipe->pipe_buffer.cnt > 0) || 1185 (rpipe->pipe_state & PIPE_EOF)) 1186 revents |= events & (POLLIN | POLLRDNORM); 1187 1188 if (events & (POLLOUT | POLLWRNORM)) 1189 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) || 1190 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1191 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1192 revents |= events & (POLLOUT | POLLWRNORM); 1193 1194 if ((rpipe->pipe_state & PIPE_EOF) || 1195 (wpipe == NULL) || 1196 (wpipe->pipe_state & PIPE_EOF)) 1197 revents |= POLLHUP; 1198 1199 if (revents == 0) { 1200 if (events & (POLLIN | POLLRDNORM)) { 1201 selrecord(td, &rpipe->pipe_sel); 1202 rpipe->pipe_state |= PIPE_SEL; 1203 } 1204 1205 if (events & (POLLOUT | POLLWRNORM)) { 1206 selrecord(td, &wpipe->pipe_sel); 1207 wpipe->pipe_state |= PIPE_SEL; 1208 } 1209 } 1210 PIPE_UNLOCK(rpipe); 1211 1212 return (revents); 1213 } 1214 1215 /* 1216 * We shouldn't need locks here as we're doing a read and this should 1217 * be a natural race. 1218 */ 1219 static int 1220 pipe_stat(fp, ub, td) 1221 struct file *fp; 1222 struct stat *ub; 1223 struct thread *td; 1224 { 1225 struct pipe *pipe = (struct pipe *)fp->f_data; 1226 1227 bzero((caddr_t)ub, sizeof(*ub)); 1228 ub->st_mode = S_IFIFO; 1229 ub->st_blksize = pipe->pipe_buffer.size; 1230 ub->st_size = pipe->pipe_buffer.cnt; 1231 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1232 ub->st_atimespec = pipe->pipe_atime; 1233 ub->st_mtimespec = pipe->pipe_mtime; 1234 ub->st_ctimespec = pipe->pipe_ctime; 1235 ub->st_uid = fp->f_cred->cr_uid; 1236 ub->st_gid = fp->f_cred->cr_gid; 1237 /* 1238 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1239 * XXX (st_dev, st_ino) should be unique. 1240 */ 1241 return (0); 1242 } 1243 1244 /* ARGSUSED */ 1245 static int 1246 pipe_close(fp, td) 1247 struct file *fp; 1248 struct thread *td; 1249 { 1250 struct pipe *cpipe = (struct pipe *)fp->f_data; 1251 1252 fp->f_ops = &badfileops; 1253 fp->f_data = NULL; 1254 funsetown(&cpipe->pipe_sigio); 1255 pipeclose(cpipe); 1256 return (0); 1257 } 1258 1259 static void 1260 pipe_free_kmem(cpipe) 1261 struct pipe *cpipe; 1262 { 1263 1264 GIANT_REQUIRED; 1265 KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)), 1266 ("pipespace: pipe mutex locked")); 1267 1268 if (cpipe->pipe_buffer.buffer != NULL) { 1269 if (cpipe->pipe_buffer.size > PIPE_SIZE) 1270 --nbigpipe; 1271 amountpipekva -= cpipe->pipe_buffer.size; 1272 kmem_free(kernel_map, 1273 (vm_offset_t)cpipe->pipe_buffer.buffer, 1274 cpipe->pipe_buffer.size); 1275 cpipe->pipe_buffer.buffer = NULL; 1276 } 1277 #ifndef PIPE_NODIRECT 1278 if (cpipe->pipe_map.kva != NULL) { 1279 amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE; 1280 kmem_free(kernel_map, 1281 cpipe->pipe_map.kva, 1282 cpipe->pipe_buffer.size + PAGE_SIZE); 1283 cpipe->pipe_map.cnt = 0; 1284 cpipe->pipe_map.kva = 0; 1285 cpipe->pipe_map.pos = 0; 1286 cpipe->pipe_map.npages = 0; 1287 } 1288 #endif 1289 } 1290 1291 /* 1292 * shutdown the pipe 1293 */ 1294 static void 1295 pipeclose(cpipe) 1296 struct pipe *cpipe; 1297 { 1298 struct pipe *ppipe; 1299 int hadpeer; 1300 1301 if (cpipe == NULL) 1302 return; 1303 1304 hadpeer = 0; 1305 1306 /* partially created pipes won't have a valid mutex. */ 1307 if (PIPE_MTX(cpipe) != NULL) 1308 PIPE_LOCK(cpipe); 1309 1310 pipeselwakeup(cpipe); 1311 1312 /* 1313 * If the other side is blocked, wake it up saying that 1314 * we want to close it down. 1315 */ 1316 while (cpipe->pipe_busy) { 1317 wakeup(cpipe); 1318 cpipe->pipe_state |= PIPE_WANT | PIPE_EOF; 1319 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1320 } 1321 1322 /* 1323 * Disconnect from peer 1324 */ 1325 if ((ppipe = cpipe->pipe_peer) != NULL) { 1326 hadpeer++; 1327 pipeselwakeup(ppipe); 1328 1329 ppipe->pipe_state |= PIPE_EOF; 1330 wakeup(ppipe); 1331 KNOTE(&ppipe->pipe_sel.si_note, 0); 1332 ppipe->pipe_peer = NULL; 1333 } 1334 /* 1335 * free resources 1336 */ 1337 if (PIPE_MTX(cpipe) != NULL) { 1338 PIPE_UNLOCK(cpipe); 1339 if (!hadpeer) { 1340 mtx_destroy(PIPE_MTX(cpipe)); 1341 free(PIPE_MTX(cpipe), M_TEMP); 1342 } 1343 } 1344 mtx_lock(&Giant); 1345 pipe_free_kmem(cpipe); 1346 uma_zfree(pipe_zone, cpipe); 1347 mtx_unlock(&Giant); 1348 } 1349 1350 /*ARGSUSED*/ 1351 static int 1352 pipe_kqfilter(struct file *fp, struct knote *kn) 1353 { 1354 struct pipe *cpipe; 1355 1356 cpipe = (struct pipe *)kn->kn_fp->f_data; 1357 switch (kn->kn_filter) { 1358 case EVFILT_READ: 1359 kn->kn_fop = &pipe_rfiltops; 1360 break; 1361 case EVFILT_WRITE: 1362 kn->kn_fop = &pipe_wfiltops; 1363 cpipe = cpipe->pipe_peer; 1364 break; 1365 default: 1366 return (1); 1367 } 1368 kn->kn_hook = (caddr_t)cpipe; 1369 1370 PIPE_LOCK(cpipe); 1371 SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext); 1372 PIPE_UNLOCK(cpipe); 1373 return (0); 1374 } 1375 1376 static void 1377 filt_pipedetach(struct knote *kn) 1378 { 1379 struct pipe *cpipe = (struct pipe *)kn->kn_hook; 1380 1381 PIPE_LOCK(cpipe); 1382 SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext); 1383 PIPE_UNLOCK(cpipe); 1384 } 1385 1386 /*ARGSUSED*/ 1387 static int 1388 filt_piperead(struct knote *kn, long hint) 1389 { 1390 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; 1391 struct pipe *wpipe = rpipe->pipe_peer; 1392 1393 PIPE_LOCK(rpipe); 1394 kn->kn_data = rpipe->pipe_buffer.cnt; 1395 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1396 kn->kn_data = rpipe->pipe_map.cnt; 1397 1398 if ((rpipe->pipe_state & PIPE_EOF) || 1399 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1400 kn->kn_flags |= EV_EOF; 1401 PIPE_UNLOCK(rpipe); 1402 return (1); 1403 } 1404 PIPE_UNLOCK(rpipe); 1405 return (kn->kn_data > 0); 1406 } 1407 1408 /*ARGSUSED*/ 1409 static int 1410 filt_pipewrite(struct knote *kn, long hint) 1411 { 1412 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; 1413 struct pipe *wpipe = rpipe->pipe_peer; 1414 1415 PIPE_LOCK(rpipe); 1416 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) { 1417 kn->kn_data = 0; 1418 kn->kn_flags |= EV_EOF; 1419 PIPE_UNLOCK(rpipe); 1420 return (1); 1421 } 1422 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1423 if (wpipe->pipe_state & PIPE_DIRECTW) 1424 kn->kn_data = 0; 1425 1426 PIPE_UNLOCK(rpipe); 1427 return (kn->kn_data >= PIPE_BUF); 1428 } 1429