1 /* 2 * Copyright (c) 1996 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Absolutely no warranty of function or purpose is made by the author 15 * John S. Dyson. 16 * 4. Modifications may be freely made to this file if the above conditions 17 * are met. 18 */ 19 20 /* 21 * This file contains a high-performance replacement for the socket-based 22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 23 * all features of sockets, but does do everything that pipes normally 24 * do. 25 */ 26 27 /* 28 * This code has two modes of operation, a small write mode and a large 29 * write mode. The small write mode acts like conventional pipes with 30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the 31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT 32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and 33 * the receiving process can copy it directly from the pages in the sending 34 * process. 35 * 36 * If the sending process receives a signal, it is possible that it will 37 * go away, and certainly its address space can change, because control 38 * is returned back to the user-mode side. In that case, the pipe code 39 * arranges to copy the buffer supplied by the user process, to a pageable 40 * kernel buffer, and the receiving process will grab the data from the 41 * pageable kernel buffer. Since signals don't happen all that often, 42 * the copy operation is normally eliminated. 43 * 44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will 45 * happen for small transfers so that the system will not spend all of 46 * its time context switching. 47 * 48 * In order to limit the resource use of pipes, two sysctls exist: 49 * 50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable 51 * address space available to us in pipe_map. This value is normally 52 * autotuned, but may also be loader tuned. 53 * 54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of 55 * memory in use by pipes. 56 * 57 * Based on how large pipekva is relative to maxpipekva, the following 58 * will happen: 59 * 60 * 0% - 50%: 61 * New pipes are given 16K of memory backing, pipes may dynamically 62 * grow to as large as 64K where needed. 63 * 50% - 75%: 64 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 65 * existing pipes may NOT grow. 66 * 75% - 100%: 67 * New pipes are given 4K (or PAGE_SIZE) of memory backing, 68 * existing pipes will be shrunk down to 4K whenever possible. 69 * 70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If 71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE 72 * resize which MUST occur for reverse-direction pipes when they are 73 * first used. 74 * 75 * Additional information about the current state of pipes may be obtained 76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, 77 * and kern.ipc.piperesizefail. 78 * 79 * Locking rules: There are two locks present here: A mutex, used via 80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via 81 * the flag, as mutexes can not persist over uiomove. The mutex 82 * exists only to guard access to the flag, and is not in itself a 83 * locking mechanism. Also note that there is only a single mutex for 84 * both directions of a pipe. 85 * 86 * As pipelock() may have to sleep before it can acquire the flag, it 87 * is important to reread all data after a call to pipelock(); everything 88 * in the structure may have changed. 89 */ 90 91 #include <sys/cdefs.h> 92 __FBSDID("$FreeBSD$"); 93 94 #include "opt_mac.h" 95 96 #include <sys/param.h> 97 #include <sys/systm.h> 98 #include <sys/fcntl.h> 99 #include <sys/file.h> 100 #include <sys/filedesc.h> 101 #include <sys/filio.h> 102 #include <sys/kernel.h> 103 #include <sys/lock.h> 104 #include <sys/mac.h> 105 #include <sys/mutex.h> 106 #include <sys/ttycom.h> 107 #include <sys/stat.h> 108 #include <sys/malloc.h> 109 #include <sys/poll.h> 110 #include <sys/selinfo.h> 111 #include <sys/signalvar.h> 112 #include <sys/sysctl.h> 113 #include <sys/sysproto.h> 114 #include <sys/pipe.h> 115 #include <sys/proc.h> 116 #include <sys/vnode.h> 117 #include <sys/uio.h> 118 #include <sys/event.h> 119 120 #include <vm/vm.h> 121 #include <vm/vm_param.h> 122 #include <vm/vm_object.h> 123 #include <vm/vm_kern.h> 124 #include <vm/vm_extern.h> 125 #include <vm/pmap.h> 126 #include <vm/vm_map.h> 127 #include <vm/vm_page.h> 128 #include <vm/uma.h> 129 130 /* 131 * Use this define if you want to disable *fancy* VM things. Expect an 132 * approx 30% decrease in transfer rate. This could be useful for 133 * NetBSD or OpenBSD. 134 */ 135 /* #define PIPE_NODIRECT */ 136 137 /* 138 * interfaces to the outside world 139 */ 140 static fo_rdwr_t pipe_read; 141 static fo_rdwr_t pipe_write; 142 static fo_ioctl_t pipe_ioctl; 143 static fo_poll_t pipe_poll; 144 static fo_kqfilter_t pipe_kqfilter; 145 static fo_stat_t pipe_stat; 146 static fo_close_t pipe_close; 147 148 static struct fileops pipeops = { 149 .fo_read = pipe_read, 150 .fo_write = pipe_write, 151 .fo_ioctl = pipe_ioctl, 152 .fo_poll = pipe_poll, 153 .fo_kqfilter = pipe_kqfilter, 154 .fo_stat = pipe_stat, 155 .fo_close = pipe_close, 156 .fo_flags = DFLAG_PASSABLE 157 }; 158 159 static void filt_pipedetach(struct knote *kn); 160 static int filt_piperead(struct knote *kn, long hint); 161 static int filt_pipewrite(struct knote *kn, long hint); 162 163 static struct filterops pipe_rfiltops = 164 { 1, NULL, filt_pipedetach, filt_piperead }; 165 static struct filterops pipe_wfiltops = 166 { 1, NULL, filt_pipedetach, filt_pipewrite }; 167 168 /* 169 * Default pipe buffer size(s), this can be kind-of large now because pipe 170 * space is pageable. The pipe code will try to maintain locality of 171 * reference for performance reasons, so small amounts of outstanding I/O 172 * will not wipe the cache. 173 */ 174 #define MINPIPESIZE (PIPE_SIZE/3) 175 #define MAXPIPESIZE (2*PIPE_SIZE/3) 176 177 static int amountpipes; 178 static int amountpipekva; 179 static int pipefragretry; 180 static int pipeallocfail; 181 static int piperesizefail; 182 static int piperesizeallowed = 1; 183 184 SYSCTL_DECL(_kern_ipc); 185 186 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, 187 &maxpipekva, 0, "Pipe KVA limit"); 188 SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD, 189 &amountpipes, 0, "Current # of pipes"); 190 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, 191 &amountpipekva, 0, "Pipe KVA usage"); 192 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, 193 &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); 194 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, 195 &pipeallocfail, 0, "Pipe allocation failures"); 196 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, 197 &piperesizefail, 0, "Pipe resize failures"); 198 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, 199 &piperesizeallowed, 0, "Pipe resizing allowed"); 200 201 static void pipeinit(void *dummy __unused); 202 static void pipeclose(struct pipe *cpipe); 203 static void pipe_free_kmem(struct pipe *cpipe); 204 static int pipe_create(struct pipe *pipe, int backing); 205 static __inline int pipelock(struct pipe *cpipe, int catch); 206 static __inline void pipeunlock(struct pipe *cpipe); 207 static __inline void pipeselwakeup(struct pipe *cpipe); 208 #ifndef PIPE_NODIRECT 209 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); 210 static void pipe_destroy_write_buffer(struct pipe *wpipe); 211 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); 212 static void pipe_clone_write_buffer(struct pipe *wpipe); 213 #endif 214 static int pipespace(struct pipe *cpipe, int size); 215 static int pipespace_new(struct pipe *cpipe, int size); 216 217 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); 218 static void pipe_zone_dtor(void *mem, int size, void *arg); 219 static int pipe_zone_init(void *mem, int size, int flags); 220 static void pipe_zone_fini(void *mem, int size); 221 222 static uma_zone_t pipe_zone; 223 224 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); 225 226 static void 227 pipeinit(void *dummy __unused) 228 { 229 230 pipe_zone = uma_zcreate("PIPE", sizeof(struct pipepair), 231 pipe_zone_ctor, pipe_zone_dtor, pipe_zone_init, pipe_zone_fini, 232 UMA_ALIGN_PTR, 0); 233 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); 234 } 235 236 static int 237 pipe_zone_ctor(void *mem, int size, void *arg, int flags) 238 { 239 struct pipepair *pp; 240 struct pipe *rpipe, *wpipe; 241 242 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); 243 244 pp = (struct pipepair *)mem; 245 246 /* 247 * We zero both pipe endpoints to make sure all the kmem pointers 248 * are NULL, flag fields are zero'd, etc. We timestamp both 249 * endpoints with the same time. 250 */ 251 rpipe = &pp->pp_rpipe; 252 bzero(rpipe, sizeof(*rpipe)); 253 vfs_timestamp(&rpipe->pipe_ctime); 254 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; 255 256 wpipe = &pp->pp_wpipe; 257 bzero(wpipe, sizeof(*wpipe)); 258 wpipe->pipe_ctime = rpipe->pipe_ctime; 259 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; 260 261 rpipe->pipe_peer = wpipe; 262 rpipe->pipe_pair = pp; 263 wpipe->pipe_peer = rpipe; 264 wpipe->pipe_pair = pp; 265 266 /* 267 * Mark both endpoints as present; they will later get free'd 268 * one at a time. When both are free'd, then the whole pair 269 * is released. 270 */ 271 rpipe->pipe_present = 1; 272 wpipe->pipe_present = 1; 273 274 /* 275 * Eventually, the MAC Framework may initialize the label 276 * in ctor or init, but for now we do it elswhere to avoid 277 * blocking in ctor or init. 278 */ 279 pp->pp_label = NULL; 280 281 atomic_add_int(&amountpipes, 2); 282 return (0); 283 } 284 285 static void 286 pipe_zone_dtor(void *mem, int size, void *arg) 287 { 288 struct pipepair *pp; 289 290 KASSERT(size == sizeof(*pp), ("pipe_zone_dtor: wrong size")); 291 292 pp = (struct pipepair *)mem; 293 294 atomic_subtract_int(&amountpipes, 2); 295 } 296 297 static int 298 pipe_zone_init(void *mem, int size, int flags) 299 { 300 struct pipepair *pp; 301 302 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); 303 304 pp = (struct pipepair *)mem; 305 306 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); 307 return (0); 308 } 309 310 static void 311 pipe_zone_fini(void *mem, int size) 312 { 313 struct pipepair *pp; 314 315 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); 316 317 pp = (struct pipepair *)mem; 318 319 mtx_destroy(&pp->pp_mtx); 320 } 321 322 /* 323 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, 324 * let the zone pick up the pieces via pipeclose(). 325 */ 326 327 /* ARGSUSED */ 328 int 329 pipe(td, uap) 330 struct thread *td; 331 struct pipe_args /* { 332 int dummy; 333 } */ *uap; 334 { 335 struct filedesc *fdp = td->td_proc->p_fd; 336 struct file *rf, *wf; 337 struct pipepair *pp; 338 struct pipe *rpipe, *wpipe; 339 int fd, error; 340 341 pp = uma_zalloc(pipe_zone, M_WAITOK); 342 #ifdef MAC 343 /* 344 * The MAC label is shared between the connected endpoints. As a 345 * result mac_init_pipe() and mac_create_pipe() are called once 346 * for the pair, and not on the endpoints. 347 */ 348 mac_init_pipe(pp); 349 mac_create_pipe(td->td_ucred, pp); 350 #endif 351 rpipe = &pp->pp_rpipe; 352 wpipe = &pp->pp_wpipe; 353 354 /* Only the forward direction pipe is backed by default */ 355 if (pipe_create(rpipe, 1) || pipe_create(wpipe, 0)) { 356 pipeclose(rpipe); 357 pipeclose(wpipe); 358 return (ENFILE); 359 } 360 361 rpipe->pipe_state |= PIPE_DIRECTOK; 362 wpipe->pipe_state |= PIPE_DIRECTOK; 363 364 error = falloc(td, &rf, &fd); 365 if (error) { 366 pipeclose(rpipe); 367 pipeclose(wpipe); 368 return (error); 369 } 370 /* An extra reference on `rf' has been held for us by falloc(). */ 371 td->td_retval[0] = fd; 372 373 /* 374 * Warning: once we've gotten past allocation of the fd for the 375 * read-side, we can only drop the read side via fdrop() in order 376 * to avoid races against processes which manage to dup() the read 377 * side while we are blocked trying to allocate the write side. 378 */ 379 FILE_LOCK(rf); 380 rf->f_flag = FREAD | FWRITE; 381 rf->f_type = DTYPE_PIPE; 382 rf->f_data = rpipe; 383 rf->f_ops = &pipeops; 384 FILE_UNLOCK(rf); 385 error = falloc(td, &wf, &fd); 386 if (error) { 387 fdclose(fdp, rf, td->td_retval[0], td); 388 fdrop(rf, td); 389 /* rpipe has been closed by fdrop(). */ 390 pipeclose(wpipe); 391 return (error); 392 } 393 /* An extra reference on `wf' has been held for us by falloc(). */ 394 FILE_LOCK(wf); 395 wf->f_flag = FREAD | FWRITE; 396 wf->f_type = DTYPE_PIPE; 397 wf->f_data = wpipe; 398 wf->f_ops = &pipeops; 399 FILE_UNLOCK(wf); 400 fdrop(wf, td); 401 td->td_retval[1] = fd; 402 fdrop(rf, td); 403 404 return (0); 405 } 406 407 /* 408 * Allocate kva for pipe circular buffer, the space is pageable 409 * This routine will 'realloc' the size of a pipe safely, if it fails 410 * it will retain the old buffer. 411 * If it fails it will return ENOMEM. 412 */ 413 static int 414 pipespace_new(cpipe, size) 415 struct pipe *cpipe; 416 int size; 417 { 418 caddr_t buffer; 419 int error, cnt, firstseg; 420 static int curfail = 0; 421 static struct timeval lastfail; 422 423 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); 424 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), 425 ("pipespace: resize of direct writes not allowed")); 426 retry: 427 cnt = cpipe->pipe_buffer.cnt; 428 if (cnt > size) 429 size = cnt; 430 431 size = round_page(size); 432 buffer = (caddr_t) vm_map_min(pipe_map); 433 434 error = vm_map_find(pipe_map, NULL, 0, 435 (vm_offset_t *) &buffer, size, 1, 436 VM_PROT_ALL, VM_PROT_ALL, 0); 437 if (error != KERN_SUCCESS) { 438 if ((cpipe->pipe_buffer.buffer == NULL) && 439 (size > SMALL_PIPE_SIZE)) { 440 size = SMALL_PIPE_SIZE; 441 pipefragretry++; 442 goto retry; 443 } 444 if (cpipe->pipe_buffer.buffer == NULL) { 445 pipeallocfail++; 446 if (ppsratecheck(&lastfail, &curfail, 1)) 447 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); 448 } else { 449 piperesizefail++; 450 } 451 return (ENOMEM); 452 } 453 454 /* copy data, then free old resources if we're resizing */ 455 if (cnt > 0) { 456 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { 457 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; 458 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 459 buffer, firstseg); 460 if ((cnt - firstseg) > 0) 461 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], 462 cpipe->pipe_buffer.in); 463 } else { 464 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], 465 buffer, cnt); 466 } 467 } 468 pipe_free_kmem(cpipe); 469 cpipe->pipe_buffer.buffer = buffer; 470 cpipe->pipe_buffer.size = size; 471 cpipe->pipe_buffer.in = cnt; 472 cpipe->pipe_buffer.out = 0; 473 cpipe->pipe_buffer.cnt = cnt; 474 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size); 475 return (0); 476 } 477 478 /* 479 * Wrapper for pipespace_new() that performs locking assertions. 480 */ 481 static int 482 pipespace(cpipe, size) 483 struct pipe *cpipe; 484 int size; 485 { 486 487 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 488 ("Unlocked pipe passed to pipespace")); 489 return (pipespace_new(cpipe, size)); 490 } 491 492 /* 493 * lock a pipe for I/O, blocking other access 494 */ 495 static __inline int 496 pipelock(cpipe, catch) 497 struct pipe *cpipe; 498 int catch; 499 { 500 int error; 501 502 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 503 while (cpipe->pipe_state & PIPE_LOCKFL) { 504 cpipe->pipe_state |= PIPE_LWANT; 505 error = msleep(cpipe, PIPE_MTX(cpipe), 506 catch ? (PRIBIO | PCATCH) : PRIBIO, 507 "pipelk", 0); 508 if (error != 0) 509 return (error); 510 } 511 cpipe->pipe_state |= PIPE_LOCKFL; 512 return (0); 513 } 514 515 /* 516 * unlock a pipe I/O lock 517 */ 518 static __inline void 519 pipeunlock(cpipe) 520 struct pipe *cpipe; 521 { 522 523 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 524 KASSERT(cpipe->pipe_state & PIPE_LOCKFL, 525 ("Unlocked pipe passed to pipeunlock")); 526 cpipe->pipe_state &= ~PIPE_LOCKFL; 527 if (cpipe->pipe_state & PIPE_LWANT) { 528 cpipe->pipe_state &= ~PIPE_LWANT; 529 wakeup(cpipe); 530 } 531 } 532 533 static __inline void 534 pipeselwakeup(cpipe) 535 struct pipe *cpipe; 536 { 537 538 PIPE_LOCK_ASSERT(cpipe, MA_OWNED); 539 if (cpipe->pipe_state & PIPE_SEL) { 540 cpipe->pipe_state &= ~PIPE_SEL; 541 selwakeuppri(&cpipe->pipe_sel, PSOCK); 542 } 543 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) 544 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 545 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); 546 } 547 548 /* 549 * Initialize and allocate VM and memory for pipe. The structure 550 * will start out zero'd from the ctor, so we just manage the kmem. 551 */ 552 static int 553 pipe_create(pipe, backing) 554 struct pipe *pipe; 555 int backing; 556 { 557 int error; 558 559 if (backing) { 560 if (amountpipekva > maxpipekva / 2) 561 error = pipespace_new(pipe, SMALL_PIPE_SIZE); 562 else 563 error = pipespace_new(pipe, PIPE_SIZE); 564 } else { 565 /* If we're not backing this pipe, no need to do anything. */ 566 error = 0; 567 } 568 knlist_init(&pipe->pipe_sel.si_note, PIPE_MTX(pipe)); 569 return (error); 570 } 571 572 /* ARGSUSED */ 573 static int 574 pipe_read(fp, uio, active_cred, flags, td) 575 struct file *fp; 576 struct uio *uio; 577 struct ucred *active_cred; 578 struct thread *td; 579 int flags; 580 { 581 struct pipe *rpipe = fp->f_data; 582 int error; 583 int nread = 0; 584 u_int size; 585 586 PIPE_LOCK(rpipe); 587 ++rpipe->pipe_busy; 588 error = pipelock(rpipe, 1); 589 if (error) 590 goto unlocked_error; 591 592 #ifdef MAC 593 error = mac_check_pipe_read(active_cred, rpipe->pipe_pair); 594 if (error) 595 goto locked_error; 596 #endif 597 if (amountpipekva > (3 * maxpipekva) / 4) { 598 if (!(rpipe->pipe_state & PIPE_DIRECTW) && 599 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 600 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 601 (piperesizeallowed == 1)) { 602 PIPE_UNLOCK(rpipe); 603 pipespace(rpipe, SMALL_PIPE_SIZE); 604 PIPE_LOCK(rpipe); 605 } 606 } 607 608 while (uio->uio_resid) { 609 /* 610 * normal pipe buffer receive 611 */ 612 if (rpipe->pipe_buffer.cnt > 0) { 613 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 614 if (size > rpipe->pipe_buffer.cnt) 615 size = rpipe->pipe_buffer.cnt; 616 if (size > (u_int) uio->uio_resid) 617 size = (u_int) uio->uio_resid; 618 619 PIPE_UNLOCK(rpipe); 620 error = uiomove( 621 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 622 size, uio); 623 PIPE_LOCK(rpipe); 624 if (error) 625 break; 626 627 rpipe->pipe_buffer.out += size; 628 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 629 rpipe->pipe_buffer.out = 0; 630 631 rpipe->pipe_buffer.cnt -= size; 632 633 /* 634 * If there is no more to read in the pipe, reset 635 * its pointers to the beginning. This improves 636 * cache hit stats. 637 */ 638 if (rpipe->pipe_buffer.cnt == 0) { 639 rpipe->pipe_buffer.in = 0; 640 rpipe->pipe_buffer.out = 0; 641 } 642 nread += size; 643 #ifndef PIPE_NODIRECT 644 /* 645 * Direct copy, bypassing a kernel buffer. 646 */ 647 } else if ((size = rpipe->pipe_map.cnt) && 648 (rpipe->pipe_state & PIPE_DIRECTW)) { 649 if (size > (u_int) uio->uio_resid) 650 size = (u_int) uio->uio_resid; 651 652 PIPE_UNLOCK(rpipe); 653 error = uiomove_fromphys(rpipe->pipe_map.ms, 654 rpipe->pipe_map.pos, size, uio); 655 PIPE_LOCK(rpipe); 656 if (error) 657 break; 658 nread += size; 659 rpipe->pipe_map.pos += size; 660 rpipe->pipe_map.cnt -= size; 661 if (rpipe->pipe_map.cnt == 0) { 662 rpipe->pipe_state &= ~PIPE_DIRECTW; 663 wakeup(rpipe); 664 } 665 #endif 666 } else { 667 /* 668 * detect EOF condition 669 * read returns 0 on EOF, no need to set error 670 */ 671 if (rpipe->pipe_state & PIPE_EOF) 672 break; 673 674 /* 675 * If the "write-side" has been blocked, wake it up now. 676 */ 677 if (rpipe->pipe_state & PIPE_WANTW) { 678 rpipe->pipe_state &= ~PIPE_WANTW; 679 wakeup(rpipe); 680 } 681 682 /* 683 * Break if some data was read. 684 */ 685 if (nread > 0) 686 break; 687 688 /* 689 * Unlock the pipe buffer for our remaining processing. 690 * We will either break out with an error or we will 691 * sleep and relock to loop. 692 */ 693 pipeunlock(rpipe); 694 695 /* 696 * Handle non-blocking mode operation or 697 * wait for more data. 698 */ 699 if (fp->f_flag & FNONBLOCK) { 700 error = EAGAIN; 701 } else { 702 rpipe->pipe_state |= PIPE_WANTR; 703 if ((error = msleep(rpipe, PIPE_MTX(rpipe), 704 PRIBIO | PCATCH, 705 "piperd", 0)) == 0) 706 error = pipelock(rpipe, 1); 707 } 708 if (error) 709 goto unlocked_error; 710 } 711 } 712 #ifdef MAC 713 locked_error: 714 #endif 715 pipeunlock(rpipe); 716 717 /* XXX: should probably do this before getting any locks. */ 718 if (error == 0) 719 vfs_timestamp(&rpipe->pipe_atime); 720 unlocked_error: 721 --rpipe->pipe_busy; 722 723 /* 724 * PIPE_WANT processing only makes sense if pipe_busy is 0. 725 */ 726 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { 727 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); 728 wakeup(rpipe); 729 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { 730 /* 731 * Handle write blocking hysteresis. 732 */ 733 if (rpipe->pipe_state & PIPE_WANTW) { 734 rpipe->pipe_state &= ~PIPE_WANTW; 735 wakeup(rpipe); 736 } 737 } 738 739 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) 740 pipeselwakeup(rpipe); 741 742 PIPE_UNLOCK(rpipe); 743 return (error); 744 } 745 746 #ifndef PIPE_NODIRECT 747 /* 748 * Map the sending processes' buffer into kernel space and wire it. 749 * This is similar to a physical write operation. 750 */ 751 static int 752 pipe_build_write_buffer(wpipe, uio) 753 struct pipe *wpipe; 754 struct uio *uio; 755 { 756 pmap_t pmap; 757 u_int size; 758 int i, j; 759 vm_offset_t addr, endaddr; 760 761 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); 762 KASSERT(wpipe->pipe_state & PIPE_DIRECTW, 763 ("Clone attempt on non-direct write pipe!")); 764 765 size = (u_int) uio->uio_iov->iov_len; 766 if (size > wpipe->pipe_buffer.size) 767 size = wpipe->pipe_buffer.size; 768 769 pmap = vmspace_pmap(curproc->p_vmspace); 770 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size); 771 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base); 772 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) { 773 /* 774 * vm_fault_quick() can sleep. Consequently, 775 * vm_page_lock_queue() and vm_page_unlock_queue() 776 * should not be performed outside of this loop. 777 */ 778 race: 779 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) { 780 vm_page_lock_queues(); 781 for (j = 0; j < i; j++) 782 vm_page_unhold(wpipe->pipe_map.ms[j]); 783 vm_page_unlock_queues(); 784 return (EFAULT); 785 } 786 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr, 787 VM_PROT_READ); 788 if (wpipe->pipe_map.ms[i] == NULL) 789 goto race; 790 } 791 792 /* 793 * set up the control block 794 */ 795 wpipe->pipe_map.npages = i; 796 wpipe->pipe_map.pos = 797 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; 798 wpipe->pipe_map.cnt = size; 799 800 /* 801 * and update the uio data 802 */ 803 804 uio->uio_iov->iov_len -= size; 805 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; 806 if (uio->uio_iov->iov_len == 0) 807 uio->uio_iov++; 808 uio->uio_resid -= size; 809 uio->uio_offset += size; 810 return (0); 811 } 812 813 /* 814 * unmap and unwire the process buffer 815 */ 816 static void 817 pipe_destroy_write_buffer(wpipe) 818 struct pipe *wpipe; 819 { 820 int i; 821 822 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 823 vm_page_lock_queues(); 824 for (i = 0; i < wpipe->pipe_map.npages; i++) { 825 vm_page_unhold(wpipe->pipe_map.ms[i]); 826 } 827 vm_page_unlock_queues(); 828 wpipe->pipe_map.npages = 0; 829 } 830 831 /* 832 * In the case of a signal, the writing process might go away. This 833 * code copies the data into the circular buffer so that the source 834 * pages can be freed without loss of data. 835 */ 836 static void 837 pipe_clone_write_buffer(wpipe) 838 struct pipe *wpipe; 839 { 840 struct uio uio; 841 struct iovec iov; 842 int size; 843 int pos; 844 845 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 846 size = wpipe->pipe_map.cnt; 847 pos = wpipe->pipe_map.pos; 848 849 wpipe->pipe_buffer.in = size; 850 wpipe->pipe_buffer.out = 0; 851 wpipe->pipe_buffer.cnt = size; 852 wpipe->pipe_state &= ~PIPE_DIRECTW; 853 854 PIPE_UNLOCK(wpipe); 855 iov.iov_base = wpipe->pipe_buffer.buffer; 856 iov.iov_len = size; 857 uio.uio_iov = &iov; 858 uio.uio_iovcnt = 1; 859 uio.uio_offset = 0; 860 uio.uio_resid = size; 861 uio.uio_segflg = UIO_SYSSPACE; 862 uio.uio_rw = UIO_READ; 863 uio.uio_td = curthread; 864 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); 865 PIPE_LOCK(wpipe); 866 pipe_destroy_write_buffer(wpipe); 867 } 868 869 /* 870 * This implements the pipe buffer write mechanism. Note that only 871 * a direct write OR a normal pipe write can be pending at any given time. 872 * If there are any characters in the pipe buffer, the direct write will 873 * be deferred until the receiving process grabs all of the bytes from 874 * the pipe buffer. Then the direct mapping write is set-up. 875 */ 876 static int 877 pipe_direct_write(wpipe, uio) 878 struct pipe *wpipe; 879 struct uio *uio; 880 { 881 int error; 882 883 retry: 884 PIPE_LOCK_ASSERT(wpipe, MA_OWNED); 885 error = pipelock(wpipe, 1); 886 if (wpipe->pipe_state & PIPE_EOF) 887 error = EPIPE; 888 if (error) { 889 pipeunlock(wpipe); 890 goto error1; 891 } 892 while (wpipe->pipe_state & PIPE_DIRECTW) { 893 if (wpipe->pipe_state & PIPE_WANTR) { 894 wpipe->pipe_state &= ~PIPE_WANTR; 895 wakeup(wpipe); 896 } 897 wpipe->pipe_state |= PIPE_WANTW; 898 pipeunlock(wpipe); 899 error = msleep(wpipe, PIPE_MTX(wpipe), 900 PRIBIO | PCATCH, "pipdww", 0); 901 if (error) 902 goto error1; 903 else 904 goto retry; 905 } 906 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ 907 if (wpipe->pipe_buffer.cnt > 0) { 908 if (wpipe->pipe_state & PIPE_WANTR) { 909 wpipe->pipe_state &= ~PIPE_WANTR; 910 wakeup(wpipe); 911 } 912 wpipe->pipe_state |= PIPE_WANTW; 913 pipeunlock(wpipe); 914 error = msleep(wpipe, PIPE_MTX(wpipe), 915 PRIBIO | PCATCH, "pipdwc", 0); 916 if (error) 917 goto error1; 918 else 919 goto retry; 920 } 921 922 wpipe->pipe_state |= PIPE_DIRECTW; 923 924 PIPE_UNLOCK(wpipe); 925 error = pipe_build_write_buffer(wpipe, uio); 926 PIPE_LOCK(wpipe); 927 if (error) { 928 wpipe->pipe_state &= ~PIPE_DIRECTW; 929 pipeunlock(wpipe); 930 goto error1; 931 } 932 933 error = 0; 934 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { 935 if (wpipe->pipe_state & PIPE_EOF) { 936 pipe_destroy_write_buffer(wpipe); 937 pipeselwakeup(wpipe); 938 pipeunlock(wpipe); 939 error = EPIPE; 940 goto error1; 941 } 942 if (wpipe->pipe_state & PIPE_WANTR) { 943 wpipe->pipe_state &= ~PIPE_WANTR; 944 wakeup(wpipe); 945 } 946 pipeselwakeup(wpipe); 947 pipeunlock(wpipe); 948 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, 949 "pipdwt", 0); 950 pipelock(wpipe, 0); 951 } 952 953 if (wpipe->pipe_state & PIPE_EOF) 954 error = EPIPE; 955 if (wpipe->pipe_state & PIPE_DIRECTW) { 956 /* 957 * this bit of trickery substitutes a kernel buffer for 958 * the process that might be going away. 959 */ 960 pipe_clone_write_buffer(wpipe); 961 } else { 962 pipe_destroy_write_buffer(wpipe); 963 } 964 pipeunlock(wpipe); 965 return (error); 966 967 error1: 968 wakeup(wpipe); 969 return (error); 970 } 971 #endif 972 973 static int 974 pipe_write(fp, uio, active_cred, flags, td) 975 struct file *fp; 976 struct uio *uio; 977 struct ucred *active_cred; 978 struct thread *td; 979 int flags; 980 { 981 int error = 0; 982 int desiredsize, orig_resid; 983 struct pipe *wpipe, *rpipe; 984 985 rpipe = fp->f_data; 986 wpipe = rpipe->pipe_peer; 987 988 PIPE_LOCK(rpipe); 989 error = pipelock(wpipe, 1); 990 if (error) { 991 PIPE_UNLOCK(rpipe); 992 return (error); 993 } 994 /* 995 * detect loss of pipe read side, issue SIGPIPE if lost. 996 */ 997 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 998 pipeunlock(wpipe); 999 PIPE_UNLOCK(rpipe); 1000 return (EPIPE); 1001 } 1002 #ifdef MAC 1003 error = mac_check_pipe_write(active_cred, wpipe->pipe_pair); 1004 if (error) { 1005 pipeunlock(wpipe); 1006 PIPE_UNLOCK(rpipe); 1007 return (error); 1008 } 1009 #endif 1010 ++wpipe->pipe_busy; 1011 1012 /* Choose a larger size if it's advantageous */ 1013 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); 1014 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { 1015 if (piperesizeallowed != 1) 1016 break; 1017 if (amountpipekva > maxpipekva / 2) 1018 break; 1019 if (desiredsize == BIG_PIPE_SIZE) 1020 break; 1021 desiredsize = desiredsize * 2; 1022 } 1023 1024 /* Choose a smaller size if we're in a OOM situation */ 1025 if ((amountpipekva > (3 * maxpipekva) / 4) && 1026 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && 1027 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && 1028 (piperesizeallowed == 1)) 1029 desiredsize = SMALL_PIPE_SIZE; 1030 1031 /* Resize if the above determined that a new size was necessary */ 1032 if ((desiredsize != wpipe->pipe_buffer.size) && 1033 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { 1034 PIPE_UNLOCK(wpipe); 1035 pipespace(wpipe, desiredsize); 1036 PIPE_LOCK(wpipe); 1037 } 1038 if (wpipe->pipe_buffer.size == 0) { 1039 /* 1040 * This can only happen for reverse direction use of pipes 1041 * in a complete OOM situation. 1042 */ 1043 error = ENOMEM; 1044 --wpipe->pipe_busy; 1045 pipeunlock(wpipe); 1046 PIPE_UNLOCK(wpipe); 1047 return (error); 1048 } 1049 1050 pipeunlock(wpipe); 1051 1052 orig_resid = uio->uio_resid; 1053 1054 while (uio->uio_resid) { 1055 int space; 1056 1057 pipelock(wpipe, 0); 1058 if (wpipe->pipe_state & PIPE_EOF) { 1059 pipeunlock(wpipe); 1060 error = EPIPE; 1061 break; 1062 } 1063 #ifndef PIPE_NODIRECT 1064 /* 1065 * If the transfer is large, we can gain performance if 1066 * we do process-to-process copies directly. 1067 * If the write is non-blocking, we don't use the 1068 * direct write mechanism. 1069 * 1070 * The direct write mechanism will detect the reader going 1071 * away on us. 1072 */ 1073 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) && 1074 (wpipe->pipe_buffer.size >= PIPE_MINDIRECT) && 1075 (fp->f_flag & FNONBLOCK) == 0) { 1076 pipeunlock(wpipe); 1077 error = pipe_direct_write(wpipe, uio); 1078 if (error) 1079 break; 1080 continue; 1081 } 1082 #endif 1083 1084 /* 1085 * Pipe buffered writes cannot be coincidental with 1086 * direct writes. We wait until the currently executing 1087 * direct write is completed before we start filling the 1088 * pipe buffer. We break out if a signal occurs or the 1089 * reader goes away. 1090 */ 1091 if (wpipe->pipe_state & PIPE_DIRECTW) { 1092 if (wpipe->pipe_state & PIPE_WANTR) { 1093 wpipe->pipe_state &= ~PIPE_WANTR; 1094 wakeup(wpipe); 1095 } 1096 pipeunlock(wpipe); 1097 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, 1098 "pipbww", 0); 1099 if (error) 1100 break; 1101 else 1102 continue; 1103 } 1104 1105 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1106 1107 /* Writes of size <= PIPE_BUF must be atomic. */ 1108 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) 1109 space = 0; 1110 1111 if (space > 0) { 1112 int size; /* Transfer size */ 1113 int segsize; /* first segment to transfer */ 1114 1115 /* 1116 * Transfer size is minimum of uio transfer 1117 * and free space in pipe buffer. 1118 */ 1119 if (space > uio->uio_resid) 1120 size = uio->uio_resid; 1121 else 1122 size = space; 1123 /* 1124 * First segment to transfer is minimum of 1125 * transfer size and contiguous space in 1126 * pipe buffer. If first segment to transfer 1127 * is less than the transfer size, we've got 1128 * a wraparound in the buffer. 1129 */ 1130 segsize = wpipe->pipe_buffer.size - 1131 wpipe->pipe_buffer.in; 1132 if (segsize > size) 1133 segsize = size; 1134 1135 /* Transfer first segment */ 1136 1137 PIPE_UNLOCK(rpipe); 1138 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 1139 segsize, uio); 1140 PIPE_LOCK(rpipe); 1141 1142 if (error == 0 && segsize < size) { 1143 KASSERT(wpipe->pipe_buffer.in + segsize == 1144 wpipe->pipe_buffer.size, 1145 ("Pipe buffer wraparound disappeared")); 1146 /* 1147 * Transfer remaining part now, to 1148 * support atomic writes. Wraparound 1149 * happened. 1150 */ 1151 1152 PIPE_UNLOCK(rpipe); 1153 error = uiomove( 1154 &wpipe->pipe_buffer.buffer[0], 1155 size - segsize, uio); 1156 PIPE_LOCK(rpipe); 1157 } 1158 if (error == 0) { 1159 wpipe->pipe_buffer.in += size; 1160 if (wpipe->pipe_buffer.in >= 1161 wpipe->pipe_buffer.size) { 1162 KASSERT(wpipe->pipe_buffer.in == 1163 size - segsize + 1164 wpipe->pipe_buffer.size, 1165 ("Expected wraparound bad")); 1166 wpipe->pipe_buffer.in = size - segsize; 1167 } 1168 1169 wpipe->pipe_buffer.cnt += size; 1170 KASSERT(wpipe->pipe_buffer.cnt <= 1171 wpipe->pipe_buffer.size, 1172 ("Pipe buffer overflow")); 1173 } 1174 pipeunlock(wpipe); 1175 } else { 1176 /* 1177 * If the "read-side" has been blocked, wake it up now. 1178 */ 1179 if (wpipe->pipe_state & PIPE_WANTR) { 1180 wpipe->pipe_state &= ~PIPE_WANTR; 1181 wakeup(wpipe); 1182 } 1183 1184 /* 1185 * don't block on non-blocking I/O 1186 */ 1187 if (fp->f_flag & FNONBLOCK) { 1188 error = EAGAIN; 1189 pipeunlock(wpipe); 1190 break; 1191 } 1192 1193 /* 1194 * We have no more space and have something to offer, 1195 * wake up select/poll. 1196 */ 1197 pipeselwakeup(wpipe); 1198 1199 wpipe->pipe_state |= PIPE_WANTW; 1200 pipeunlock(wpipe); 1201 error = msleep(wpipe, PIPE_MTX(rpipe), 1202 PRIBIO | PCATCH, "pipewr", 0); 1203 if (error != 0) 1204 break; 1205 } 1206 } 1207 1208 pipelock(wpipe, 0); 1209 --wpipe->pipe_busy; 1210 1211 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { 1212 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); 1213 wakeup(wpipe); 1214 } else if (wpipe->pipe_buffer.cnt > 0) { 1215 /* 1216 * If we have put any characters in the buffer, we wake up 1217 * the reader. 1218 */ 1219 if (wpipe->pipe_state & PIPE_WANTR) { 1220 wpipe->pipe_state &= ~PIPE_WANTR; 1221 wakeup(wpipe); 1222 } 1223 } 1224 1225 /* 1226 * Don't return EPIPE if I/O was successful 1227 */ 1228 if ((wpipe->pipe_buffer.cnt == 0) && 1229 (uio->uio_resid == 0) && 1230 (error == EPIPE)) { 1231 error = 0; 1232 } 1233 1234 if (error == 0) 1235 vfs_timestamp(&wpipe->pipe_mtime); 1236 1237 /* 1238 * We have something to offer, 1239 * wake up select/poll. 1240 */ 1241 if (wpipe->pipe_buffer.cnt) 1242 pipeselwakeup(wpipe); 1243 1244 pipeunlock(wpipe); 1245 PIPE_UNLOCK(rpipe); 1246 return (error); 1247 } 1248 1249 /* 1250 * we implement a very minimal set of ioctls for compatibility with sockets. 1251 */ 1252 static int 1253 pipe_ioctl(fp, cmd, data, active_cred, td) 1254 struct file *fp; 1255 u_long cmd; 1256 void *data; 1257 struct ucred *active_cred; 1258 struct thread *td; 1259 { 1260 struct pipe *mpipe = fp->f_data; 1261 int error; 1262 1263 PIPE_LOCK(mpipe); 1264 1265 #ifdef MAC 1266 error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data); 1267 if (error) { 1268 PIPE_UNLOCK(mpipe); 1269 return (error); 1270 } 1271 #endif 1272 1273 error = 0; 1274 switch (cmd) { 1275 1276 case FIONBIO: 1277 break; 1278 1279 case FIOASYNC: 1280 if (*(int *)data) { 1281 mpipe->pipe_state |= PIPE_ASYNC; 1282 } else { 1283 mpipe->pipe_state &= ~PIPE_ASYNC; 1284 } 1285 break; 1286 1287 case FIONREAD: 1288 if (mpipe->pipe_state & PIPE_DIRECTW) 1289 *(int *)data = mpipe->pipe_map.cnt; 1290 else 1291 *(int *)data = mpipe->pipe_buffer.cnt; 1292 break; 1293 1294 case FIOSETOWN: 1295 PIPE_UNLOCK(mpipe); 1296 error = fsetown(*(int *)data, &mpipe->pipe_sigio); 1297 goto out_unlocked; 1298 1299 case FIOGETOWN: 1300 *(int *)data = fgetown(&mpipe->pipe_sigio); 1301 break; 1302 1303 /* This is deprecated, FIOSETOWN should be used instead. */ 1304 case TIOCSPGRP: 1305 PIPE_UNLOCK(mpipe); 1306 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); 1307 goto out_unlocked; 1308 1309 /* This is deprecated, FIOGETOWN should be used instead. */ 1310 case TIOCGPGRP: 1311 *(int *)data = -fgetown(&mpipe->pipe_sigio); 1312 break; 1313 1314 default: 1315 error = ENOTTY; 1316 break; 1317 } 1318 PIPE_UNLOCK(mpipe); 1319 out_unlocked: 1320 return (error); 1321 } 1322 1323 static int 1324 pipe_poll(fp, events, active_cred, td) 1325 struct file *fp; 1326 int events; 1327 struct ucred *active_cred; 1328 struct thread *td; 1329 { 1330 struct pipe *rpipe = fp->f_data; 1331 struct pipe *wpipe; 1332 int revents = 0; 1333 #ifdef MAC 1334 int error; 1335 #endif 1336 1337 wpipe = rpipe->pipe_peer; 1338 PIPE_LOCK(rpipe); 1339 #ifdef MAC 1340 error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair); 1341 if (error) 1342 goto locked_error; 1343 #endif 1344 if (events & (POLLIN | POLLRDNORM)) 1345 if ((rpipe->pipe_state & PIPE_DIRECTW) || 1346 (rpipe->pipe_buffer.cnt > 0) || 1347 (rpipe->pipe_state & PIPE_EOF)) 1348 revents |= events & (POLLIN | POLLRDNORM); 1349 1350 if (events & (POLLOUT | POLLWRNORM)) 1351 if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) || 1352 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && 1353 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) 1354 revents |= events & (POLLOUT | POLLWRNORM); 1355 1356 if ((rpipe->pipe_state & PIPE_EOF) || 1357 (!wpipe->pipe_present) || 1358 (wpipe->pipe_state & PIPE_EOF)) 1359 revents |= POLLHUP; 1360 1361 if (revents == 0) { 1362 if (events & (POLLIN | POLLRDNORM)) { 1363 selrecord(td, &rpipe->pipe_sel); 1364 rpipe->pipe_state |= PIPE_SEL; 1365 } 1366 1367 if (events & (POLLOUT | POLLWRNORM)) { 1368 selrecord(td, &wpipe->pipe_sel); 1369 wpipe->pipe_state |= PIPE_SEL; 1370 } 1371 } 1372 #ifdef MAC 1373 locked_error: 1374 #endif 1375 PIPE_UNLOCK(rpipe); 1376 1377 return (revents); 1378 } 1379 1380 /* 1381 * We shouldn't need locks here as we're doing a read and this should 1382 * be a natural race. 1383 */ 1384 static int 1385 pipe_stat(fp, ub, active_cred, td) 1386 struct file *fp; 1387 struct stat *ub; 1388 struct ucred *active_cred; 1389 struct thread *td; 1390 { 1391 struct pipe *pipe = fp->f_data; 1392 #ifdef MAC 1393 int error; 1394 1395 PIPE_LOCK(pipe); 1396 error = mac_check_pipe_stat(active_cred, pipe->pipe_pair); 1397 PIPE_UNLOCK(pipe); 1398 if (error) 1399 return (error); 1400 #endif 1401 bzero(ub, sizeof(*ub)); 1402 ub->st_mode = S_IFIFO; 1403 ub->st_blksize = PAGE_SIZE; 1404 if (pipe->pipe_state & PIPE_DIRECTW) 1405 ub->st_size = pipe->pipe_map.cnt; 1406 else 1407 ub->st_size = pipe->pipe_buffer.cnt; 1408 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 1409 ub->st_atimespec = pipe->pipe_atime; 1410 ub->st_mtimespec = pipe->pipe_mtime; 1411 ub->st_ctimespec = pipe->pipe_ctime; 1412 ub->st_uid = fp->f_cred->cr_uid; 1413 ub->st_gid = fp->f_cred->cr_gid; 1414 /* 1415 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 1416 * XXX (st_dev, st_ino) should be unique. 1417 */ 1418 return (0); 1419 } 1420 1421 /* ARGSUSED */ 1422 static int 1423 pipe_close(fp, td) 1424 struct file *fp; 1425 struct thread *td; 1426 { 1427 struct pipe *cpipe = fp->f_data; 1428 1429 fp->f_ops = &badfileops; 1430 fp->f_data = NULL; 1431 funsetown(&cpipe->pipe_sigio); 1432 pipeclose(cpipe); 1433 return (0); 1434 } 1435 1436 static void 1437 pipe_free_kmem(cpipe) 1438 struct pipe *cpipe; 1439 { 1440 1441 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), 1442 ("pipe_free_kmem: pipe mutex locked")); 1443 1444 if (cpipe->pipe_buffer.buffer != NULL) { 1445 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size); 1446 vm_map_remove(pipe_map, 1447 (vm_offset_t)cpipe->pipe_buffer.buffer, 1448 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); 1449 cpipe->pipe_buffer.buffer = NULL; 1450 } 1451 #ifndef PIPE_NODIRECT 1452 { 1453 cpipe->pipe_map.cnt = 0; 1454 cpipe->pipe_map.pos = 0; 1455 cpipe->pipe_map.npages = 0; 1456 } 1457 #endif 1458 } 1459 1460 /* 1461 * shutdown the pipe 1462 */ 1463 static void 1464 pipeclose(cpipe) 1465 struct pipe *cpipe; 1466 { 1467 struct pipepair *pp; 1468 struct pipe *ppipe; 1469 1470 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); 1471 1472 PIPE_LOCK(cpipe); 1473 pipelock(cpipe, 0); 1474 pp = cpipe->pipe_pair; 1475 1476 pipeselwakeup(cpipe); 1477 1478 /* 1479 * If the other side is blocked, wake it up saying that 1480 * we want to close it down. 1481 */ 1482 cpipe->pipe_state |= PIPE_EOF; 1483 while (cpipe->pipe_busy) { 1484 wakeup(cpipe); 1485 cpipe->pipe_state |= PIPE_WANT; 1486 pipeunlock(cpipe); 1487 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); 1488 pipelock(cpipe, 0); 1489 } 1490 1491 1492 /* 1493 * Disconnect from peer, if any. 1494 */ 1495 ppipe = cpipe->pipe_peer; 1496 if (ppipe->pipe_present != 0) { 1497 pipeselwakeup(ppipe); 1498 1499 ppipe->pipe_state |= PIPE_EOF; 1500 wakeup(ppipe); 1501 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); 1502 } 1503 1504 /* 1505 * Mark this endpoint as free. Release kmem resources. We 1506 * don't mark this endpoint as unused until we've finished 1507 * doing that, or the pipe might disappear out from under 1508 * us. 1509 */ 1510 PIPE_UNLOCK(cpipe); 1511 pipe_free_kmem(cpipe); 1512 PIPE_LOCK(cpipe); 1513 cpipe->pipe_present = 0; 1514 pipeunlock(cpipe); 1515 knlist_clear(&cpipe->pipe_sel.si_note, 1); 1516 knlist_destroy(&cpipe->pipe_sel.si_note); 1517 1518 /* 1519 * If both endpoints are now closed, release the memory for the 1520 * pipe pair. If not, unlock. 1521 */ 1522 if (ppipe->pipe_present == 0) { 1523 PIPE_UNLOCK(cpipe); 1524 #ifdef MAC 1525 mac_destroy_pipe(pp); 1526 #endif 1527 uma_zfree(pipe_zone, cpipe->pipe_pair); 1528 } else 1529 PIPE_UNLOCK(cpipe); 1530 } 1531 1532 /*ARGSUSED*/ 1533 static int 1534 pipe_kqfilter(struct file *fp, struct knote *kn) 1535 { 1536 struct pipe *cpipe; 1537 1538 cpipe = kn->kn_fp->f_data; 1539 PIPE_LOCK(cpipe); 1540 switch (kn->kn_filter) { 1541 case EVFILT_READ: 1542 kn->kn_fop = &pipe_rfiltops; 1543 break; 1544 case EVFILT_WRITE: 1545 kn->kn_fop = &pipe_wfiltops; 1546 if (!cpipe->pipe_peer->pipe_present) { 1547 /* other end of pipe has been closed */ 1548 PIPE_UNLOCK(cpipe); 1549 return (EPIPE); 1550 } 1551 cpipe = cpipe->pipe_peer; 1552 break; 1553 default: 1554 PIPE_UNLOCK(cpipe); 1555 return (EINVAL); 1556 } 1557 1558 knlist_add(&cpipe->pipe_sel.si_note, kn, 1); 1559 PIPE_UNLOCK(cpipe); 1560 return (0); 1561 } 1562 1563 static void 1564 filt_pipedetach(struct knote *kn) 1565 { 1566 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; 1567 1568 PIPE_LOCK(cpipe); 1569 if (kn->kn_filter == EVFILT_WRITE) { 1570 if (!cpipe->pipe_peer->pipe_present) { 1571 PIPE_UNLOCK(cpipe); 1572 return; 1573 } 1574 cpipe = cpipe->pipe_peer; 1575 } 1576 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); 1577 PIPE_UNLOCK(cpipe); 1578 } 1579 1580 /*ARGSUSED*/ 1581 static int 1582 filt_piperead(struct knote *kn, long hint) 1583 { 1584 struct pipe *rpipe = kn->kn_fp->f_data; 1585 struct pipe *wpipe = rpipe->pipe_peer; 1586 int ret; 1587 1588 PIPE_LOCK(rpipe); 1589 kn->kn_data = rpipe->pipe_buffer.cnt; 1590 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) 1591 kn->kn_data = rpipe->pipe_map.cnt; 1592 1593 if ((rpipe->pipe_state & PIPE_EOF) || 1594 (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1595 kn->kn_flags |= EV_EOF; 1596 PIPE_UNLOCK(rpipe); 1597 return (1); 1598 } 1599 ret = kn->kn_data > 0; 1600 PIPE_UNLOCK(rpipe); 1601 return ret; 1602 } 1603 1604 /*ARGSUSED*/ 1605 static int 1606 filt_pipewrite(struct knote *kn, long hint) 1607 { 1608 struct pipe *rpipe = kn->kn_fp->f_data; 1609 struct pipe *wpipe = rpipe->pipe_peer; 1610 1611 PIPE_LOCK(rpipe); 1612 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) { 1613 kn->kn_data = 0; 1614 kn->kn_flags |= EV_EOF; 1615 PIPE_UNLOCK(rpipe); 1616 return (1); 1617 } 1618 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 1619 if (wpipe->pipe_state & PIPE_DIRECTW) 1620 kn->kn_data = 0; 1621 1622 PIPE_UNLOCK(rpipe); 1623 return (kn->kn_data >= PIPE_BUF); 1624 } 1625