xref: /freebsd/sys/kern/sys_pipe.c (revision 0572ccaa4543b0abef8ef81e384c1d04de9f3da1)
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * Copyright (c) 2012 Giovanni Trematerra
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice immediately at the beginning of the file, without modification,
11  *    this list of conditions, and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Absolutely no warranty of function or purpose is made by the author
16  *    John S. Dyson.
17  * 4. Modifications may be freely made to this file if the above conditions
18  *    are met.
19  */
20 
21 /*
22  * This file contains a high-performance replacement for the socket-based
23  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
24  * all features of sockets, but does do everything that pipes normally
25  * do.
26  */
27 
28 /*
29  * This code has two modes of operation, a small write mode and a large
30  * write mode.  The small write mode acts like conventional pipes with
31  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
32  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
33  * and PIPE_SIZE in size, the sending process pins the underlying pages in
34  * memory, and the receiving process copies directly from these pinned pages
35  * in the sending process.
36  *
37  * If the sending process receives a signal, it is possible that it will
38  * go away, and certainly its address space can change, because control
39  * is returned back to the user-mode side.  In that case, the pipe code
40  * arranges to copy the buffer supplied by the user process, to a pageable
41  * kernel buffer, and the receiving process will grab the data from the
42  * pageable kernel buffer.  Since signals don't happen all that often,
43  * the copy operation is normally eliminated.
44  *
45  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46  * happen for small transfers so that the system will not spend all of
47  * its time context switching.
48  *
49  * In order to limit the resource use of pipes, two sysctls exist:
50  *
51  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52  * address space available to us in pipe_map. This value is normally
53  * autotuned, but may also be loader tuned.
54  *
55  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56  * memory in use by pipes.
57  *
58  * Based on how large pipekva is relative to maxpipekva, the following
59  * will happen:
60  *
61  * 0% - 50%:
62  *     New pipes are given 16K of memory backing, pipes may dynamically
63  *     grow to as large as 64K where needed.
64  * 50% - 75%:
65  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
66  *     existing pipes may NOT grow.
67  * 75% - 100%:
68  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
69  *     existing pipes will be shrunk down to 4K whenever possible.
70  *
71  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
72  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73  * resize which MUST occur for reverse-direction pipes when they are
74  * first used.
75  *
76  * Additional information about the current state of pipes may be obtained
77  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78  * and kern.ipc.piperesizefail.
79  *
80  * Locking rules:  There are two locks present here:  A mutex, used via
81  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
82  * the flag, as mutexes can not persist over uiomove.  The mutex
83  * exists only to guard access to the flag, and is not in itself a
84  * locking mechanism.  Also note that there is only a single mutex for
85  * both directions of a pipe.
86  *
87  * As pipelock() may have to sleep before it can acquire the flag, it
88  * is important to reread all data after a call to pipelock(); everything
89  * in the structure may have changed.
90  */
91 
92 #include <sys/cdefs.h>
93 __FBSDID("$FreeBSD$");
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/conf.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mutex.h>
105 #include <sys/ttycom.h>
106 #include <sys/stat.h>
107 #include <sys/malloc.h>
108 #include <sys/poll.h>
109 #include <sys/selinfo.h>
110 #include <sys/signalvar.h>
111 #include <sys/syscallsubr.h>
112 #include <sys/sysctl.h>
113 #include <sys/sysproto.h>
114 #include <sys/pipe.h>
115 #include <sys/proc.h>
116 #include <sys/vnode.h>
117 #include <sys/uio.h>
118 #include <sys/event.h>
119 
120 #include <security/mac/mac_framework.h>
121 
122 #include <vm/vm.h>
123 #include <vm/vm_param.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_kern.h>
126 #include <vm/vm_extern.h>
127 #include <vm/pmap.h>
128 #include <vm/vm_map.h>
129 #include <vm/vm_page.h>
130 #include <vm/uma.h>
131 
132 /*
133  * Use this define if you want to disable *fancy* VM things.  Expect an
134  * approx 30% decrease in transfer rate.  This could be useful for
135  * NetBSD or OpenBSD.
136  */
137 /* #define PIPE_NODIRECT */
138 
139 #define PIPE_PEER(pipe)	\
140 	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
141 
142 /*
143  * interfaces to the outside world
144  */
145 static fo_rdwr_t	pipe_read;
146 static fo_rdwr_t	pipe_write;
147 static fo_truncate_t	pipe_truncate;
148 static fo_ioctl_t	pipe_ioctl;
149 static fo_poll_t	pipe_poll;
150 static fo_kqfilter_t	pipe_kqfilter;
151 static fo_stat_t	pipe_stat;
152 static fo_close_t	pipe_close;
153 static fo_chmod_t	pipe_chmod;
154 static fo_chown_t	pipe_chown;
155 
156 struct fileops pipeops = {
157 	.fo_read = pipe_read,
158 	.fo_write = pipe_write,
159 	.fo_truncate = pipe_truncate,
160 	.fo_ioctl = pipe_ioctl,
161 	.fo_poll = pipe_poll,
162 	.fo_kqfilter = pipe_kqfilter,
163 	.fo_stat = pipe_stat,
164 	.fo_close = pipe_close,
165 	.fo_chmod = pipe_chmod,
166 	.fo_chown = pipe_chown,
167 	.fo_sendfile = invfo_sendfile,
168 	.fo_flags = DFLAG_PASSABLE
169 };
170 
171 static void	filt_pipedetach(struct knote *kn);
172 static void	filt_pipedetach_notsup(struct knote *kn);
173 static int	filt_pipenotsup(struct knote *kn, long hint);
174 static int	filt_piperead(struct knote *kn, long hint);
175 static int	filt_pipewrite(struct knote *kn, long hint);
176 
177 static struct filterops pipe_nfiltops = {
178 	.f_isfd = 1,
179 	.f_detach = filt_pipedetach_notsup,
180 	.f_event = filt_pipenotsup
181 };
182 static struct filterops pipe_rfiltops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_pipedetach,
185 	.f_event = filt_piperead
186 };
187 static struct filterops pipe_wfiltops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_pipedetach,
190 	.f_event = filt_pipewrite
191 };
192 
193 /*
194  * Default pipe buffer size(s), this can be kind-of large now because pipe
195  * space is pageable.  The pipe code will try to maintain locality of
196  * reference for performance reasons, so small amounts of outstanding I/O
197  * will not wipe the cache.
198  */
199 #define MINPIPESIZE (PIPE_SIZE/3)
200 #define MAXPIPESIZE (2*PIPE_SIZE/3)
201 
202 static long amountpipekva;
203 static int pipefragretry;
204 static int pipeallocfail;
205 static int piperesizefail;
206 static int piperesizeallowed = 1;
207 
208 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
209 	   &maxpipekva, 0, "Pipe KVA limit");
210 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
211 	   &amountpipekva, 0, "Pipe KVA usage");
212 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
213 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
214 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
215 	  &pipeallocfail, 0, "Pipe allocation failures");
216 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
217 	  &piperesizefail, 0, "Pipe resize failures");
218 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
219 	  &piperesizeallowed, 0, "Pipe resizing allowed");
220 
221 static void pipeinit(void *dummy __unused);
222 static void pipeclose(struct pipe *cpipe);
223 static void pipe_free_kmem(struct pipe *cpipe);
224 static void pipe_create(struct pipe *pipe, int backing);
225 static void pipe_paircreate(struct thread *td, struct pipepair **p_pp);
226 static __inline int pipelock(struct pipe *cpipe, int catch);
227 static __inline void pipeunlock(struct pipe *cpipe);
228 #ifndef PIPE_NODIRECT
229 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
230 static void pipe_destroy_write_buffer(struct pipe *wpipe);
231 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
232 static void pipe_clone_write_buffer(struct pipe *wpipe);
233 #endif
234 static int pipespace(struct pipe *cpipe, int size);
235 static int pipespace_new(struct pipe *cpipe, int size);
236 
237 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
238 static int	pipe_zone_init(void *mem, int size, int flags);
239 static void	pipe_zone_fini(void *mem, int size);
240 
241 static uma_zone_t pipe_zone;
242 static struct unrhdr *pipeino_unr;
243 static dev_t pipedev_ino;
244 
245 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
246 
247 static void
248 pipeinit(void *dummy __unused)
249 {
250 
251 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
252 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
253 	    UMA_ALIGN_PTR, 0);
254 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
255 	pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
256 	KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
257 	pipedev_ino = devfs_alloc_cdp_inode();
258 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
259 }
260 
261 static int
262 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
263 {
264 	struct pipepair *pp;
265 	struct pipe *rpipe, *wpipe;
266 
267 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
268 
269 	pp = (struct pipepair *)mem;
270 
271 	/*
272 	 * We zero both pipe endpoints to make sure all the kmem pointers
273 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
274 	 * endpoints with the same time.
275 	 */
276 	rpipe = &pp->pp_rpipe;
277 	bzero(rpipe, sizeof(*rpipe));
278 	vfs_timestamp(&rpipe->pipe_ctime);
279 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
280 
281 	wpipe = &pp->pp_wpipe;
282 	bzero(wpipe, sizeof(*wpipe));
283 	wpipe->pipe_ctime = rpipe->pipe_ctime;
284 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
285 
286 	rpipe->pipe_peer = wpipe;
287 	rpipe->pipe_pair = pp;
288 	wpipe->pipe_peer = rpipe;
289 	wpipe->pipe_pair = pp;
290 
291 	/*
292 	 * Mark both endpoints as present; they will later get free'd
293 	 * one at a time.  When both are free'd, then the whole pair
294 	 * is released.
295 	 */
296 	rpipe->pipe_present = PIPE_ACTIVE;
297 	wpipe->pipe_present = PIPE_ACTIVE;
298 
299 	/*
300 	 * Eventually, the MAC Framework may initialize the label
301 	 * in ctor or init, but for now we do it elswhere to avoid
302 	 * blocking in ctor or init.
303 	 */
304 	pp->pp_label = NULL;
305 
306 	return (0);
307 }
308 
309 static int
310 pipe_zone_init(void *mem, int size, int flags)
311 {
312 	struct pipepair *pp;
313 
314 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
315 
316 	pp = (struct pipepair *)mem;
317 
318 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
319 	return (0);
320 }
321 
322 static void
323 pipe_zone_fini(void *mem, int size)
324 {
325 	struct pipepair *pp;
326 
327 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
328 
329 	pp = (struct pipepair *)mem;
330 
331 	mtx_destroy(&pp->pp_mtx);
332 }
333 
334 static void
335 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
336 {
337 	struct pipepair *pp;
338 	struct pipe *rpipe, *wpipe;
339 
340 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
341 #ifdef MAC
342 	/*
343 	 * The MAC label is shared between the connected endpoints.  As a
344 	 * result mac_pipe_init() and mac_pipe_create() are called once
345 	 * for the pair, and not on the endpoints.
346 	 */
347 	mac_pipe_init(pp);
348 	mac_pipe_create(td->td_ucred, pp);
349 #endif
350 	rpipe = &pp->pp_rpipe;
351 	wpipe = &pp->pp_wpipe;
352 
353 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
354 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
355 
356 	/* Only the forward direction pipe is backed by default */
357 	pipe_create(rpipe, 1);
358 	pipe_create(wpipe, 0);
359 
360 	rpipe->pipe_state |= PIPE_DIRECTOK;
361 	wpipe->pipe_state |= PIPE_DIRECTOK;
362 }
363 
364 void
365 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
366 {
367 	struct pipepair *pp;
368 
369 	pipe_paircreate(td, &pp);
370 	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
371 	*ppipe = &pp->pp_rpipe;
372 }
373 
374 void
375 pipe_dtor(struct pipe *dpipe)
376 {
377 	ino_t ino;
378 
379 	ino = dpipe->pipe_ino;
380 	funsetown(&dpipe->pipe_sigio);
381 	pipeclose(dpipe);
382 	if (dpipe->pipe_state & PIPE_NAMED) {
383 		dpipe = dpipe->pipe_peer;
384 		funsetown(&dpipe->pipe_sigio);
385 		pipeclose(dpipe);
386 	}
387 	if (ino != 0 && ino != (ino_t)-1)
388 		free_unr(pipeino_unr, ino);
389 }
390 
391 /*
392  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
393  * the zone pick up the pieces via pipeclose().
394  */
395 int
396 kern_pipe(struct thread *td, int fildes[2])
397 {
398 
399 	return (kern_pipe2(td, fildes, 0));
400 }
401 
402 int
403 kern_pipe2(struct thread *td, int fildes[2], int flags)
404 {
405 	struct filedesc *fdp;
406 	struct file *rf, *wf;
407 	struct pipe *rpipe, *wpipe;
408 	struct pipepair *pp;
409 	int fd, fflags, error;
410 
411 	fdp = td->td_proc->p_fd;
412 	pipe_paircreate(td, &pp);
413 	rpipe = &pp->pp_rpipe;
414 	wpipe = &pp->pp_wpipe;
415 	error = falloc(td, &rf, &fd, flags);
416 	if (error) {
417 		pipeclose(rpipe);
418 		pipeclose(wpipe);
419 		return (error);
420 	}
421 	/* An extra reference on `rf' has been held for us by falloc(). */
422 	fildes[0] = fd;
423 
424 	fflags = FREAD | FWRITE;
425 	if ((flags & O_NONBLOCK) != 0)
426 		fflags |= FNONBLOCK;
427 
428 	/*
429 	 * Warning: once we've gotten past allocation of the fd for the
430 	 * read-side, we can only drop the read side via fdrop() in order
431 	 * to avoid races against processes which manage to dup() the read
432 	 * side while we are blocked trying to allocate the write side.
433 	 */
434 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
435 	error = falloc(td, &wf, &fd, flags);
436 	if (error) {
437 		fdclose(fdp, rf, fildes[0], td);
438 		fdrop(rf, td);
439 		/* rpipe has been closed by fdrop(). */
440 		pipeclose(wpipe);
441 		return (error);
442 	}
443 	/* An extra reference on `wf' has been held for us by falloc(). */
444 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
445 	fdrop(wf, td);
446 	fildes[1] = fd;
447 	fdrop(rf, td);
448 
449 	return (0);
450 }
451 
452 /* ARGSUSED */
453 int
454 sys_pipe(struct thread *td, struct pipe_args *uap)
455 {
456 	int error;
457 	int fildes[2];
458 
459 	error = kern_pipe(td, fildes);
460 	if (error)
461 		return (error);
462 
463 	td->td_retval[0] = fildes[0];
464 	td->td_retval[1] = fildes[1];
465 
466 	return (0);
467 }
468 
469 int
470 sys_pipe2(struct thread *td, struct pipe2_args *uap)
471 {
472 	int error, fildes[2];
473 
474 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
475 		return (EINVAL);
476 	error = kern_pipe2(td, fildes, uap->flags);
477 	if (error)
478 		return (error);
479 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
480 	if (error) {
481 		(void)kern_close(td, fildes[0]);
482 		(void)kern_close(td, fildes[1]);
483 	}
484 	return (error);
485 }
486 
487 /*
488  * Allocate kva for pipe circular buffer, the space is pageable
489  * This routine will 'realloc' the size of a pipe safely, if it fails
490  * it will retain the old buffer.
491  * If it fails it will return ENOMEM.
492  */
493 static int
494 pipespace_new(cpipe, size)
495 	struct pipe *cpipe;
496 	int size;
497 {
498 	caddr_t buffer;
499 	int error, cnt, firstseg;
500 	static int curfail = 0;
501 	static struct timeval lastfail;
502 
503 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
504 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
505 		("pipespace: resize of direct writes not allowed"));
506 retry:
507 	cnt = cpipe->pipe_buffer.cnt;
508 	if (cnt > size)
509 		size = cnt;
510 
511 	size = round_page(size);
512 	buffer = (caddr_t) vm_map_min(pipe_map);
513 
514 	error = vm_map_find(pipe_map, NULL, 0,
515 		(vm_offset_t *) &buffer, size, 0, VMFS_ANY_SPACE,
516 		VM_PROT_ALL, VM_PROT_ALL, 0);
517 	if (error != KERN_SUCCESS) {
518 		if ((cpipe->pipe_buffer.buffer == NULL) &&
519 			(size > SMALL_PIPE_SIZE)) {
520 			size = SMALL_PIPE_SIZE;
521 			pipefragretry++;
522 			goto retry;
523 		}
524 		if (cpipe->pipe_buffer.buffer == NULL) {
525 			pipeallocfail++;
526 			if (ppsratecheck(&lastfail, &curfail, 1))
527 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
528 		} else {
529 			piperesizefail++;
530 		}
531 		return (ENOMEM);
532 	}
533 
534 	/* copy data, then free old resources if we're resizing */
535 	if (cnt > 0) {
536 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
537 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
538 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
539 				buffer, firstseg);
540 			if ((cnt - firstseg) > 0)
541 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
542 					cpipe->pipe_buffer.in);
543 		} else {
544 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
545 				buffer, cnt);
546 		}
547 	}
548 	pipe_free_kmem(cpipe);
549 	cpipe->pipe_buffer.buffer = buffer;
550 	cpipe->pipe_buffer.size = size;
551 	cpipe->pipe_buffer.in = cnt;
552 	cpipe->pipe_buffer.out = 0;
553 	cpipe->pipe_buffer.cnt = cnt;
554 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
555 	return (0);
556 }
557 
558 /*
559  * Wrapper for pipespace_new() that performs locking assertions.
560  */
561 static int
562 pipespace(cpipe, size)
563 	struct pipe *cpipe;
564 	int size;
565 {
566 
567 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
568 		("Unlocked pipe passed to pipespace"));
569 	return (pipespace_new(cpipe, size));
570 }
571 
572 /*
573  * lock a pipe for I/O, blocking other access
574  */
575 static __inline int
576 pipelock(cpipe, catch)
577 	struct pipe *cpipe;
578 	int catch;
579 {
580 	int error;
581 
582 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
583 	while (cpipe->pipe_state & PIPE_LOCKFL) {
584 		cpipe->pipe_state |= PIPE_LWANT;
585 		error = msleep(cpipe, PIPE_MTX(cpipe),
586 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
587 		    "pipelk", 0);
588 		if (error != 0)
589 			return (error);
590 	}
591 	cpipe->pipe_state |= PIPE_LOCKFL;
592 	return (0);
593 }
594 
595 /*
596  * unlock a pipe I/O lock
597  */
598 static __inline void
599 pipeunlock(cpipe)
600 	struct pipe *cpipe;
601 {
602 
603 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
604 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
605 		("Unlocked pipe passed to pipeunlock"));
606 	cpipe->pipe_state &= ~PIPE_LOCKFL;
607 	if (cpipe->pipe_state & PIPE_LWANT) {
608 		cpipe->pipe_state &= ~PIPE_LWANT;
609 		wakeup(cpipe);
610 	}
611 }
612 
613 void
614 pipeselwakeup(cpipe)
615 	struct pipe *cpipe;
616 {
617 
618 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
619 	if (cpipe->pipe_state & PIPE_SEL) {
620 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
621 		if (!SEL_WAITING(&cpipe->pipe_sel))
622 			cpipe->pipe_state &= ~PIPE_SEL;
623 	}
624 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
625 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
626 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
627 }
628 
629 /*
630  * Initialize and allocate VM and memory for pipe.  The structure
631  * will start out zero'd from the ctor, so we just manage the kmem.
632  */
633 static void
634 pipe_create(pipe, backing)
635 	struct pipe *pipe;
636 	int backing;
637 {
638 
639 	if (backing) {
640 		/*
641 		 * Note that these functions can fail if pipe map is exhausted
642 		 * (as a result of too many pipes created), but we ignore the
643 		 * error as it is not fatal and could be provoked by
644 		 * unprivileged users. The only consequence is worse performance
645 		 * with given pipe.
646 		 */
647 		if (amountpipekva > maxpipekva / 2)
648 			(void)pipespace_new(pipe, SMALL_PIPE_SIZE);
649 		else
650 			(void)pipespace_new(pipe, PIPE_SIZE);
651 	}
652 
653 	pipe->pipe_ino = -1;
654 }
655 
656 /* ARGSUSED */
657 static int
658 pipe_read(fp, uio, active_cred, flags, td)
659 	struct file *fp;
660 	struct uio *uio;
661 	struct ucred *active_cred;
662 	struct thread *td;
663 	int flags;
664 {
665 	struct pipe *rpipe;
666 	int error;
667 	int nread = 0;
668 	int size;
669 
670 	rpipe = fp->f_data;
671 	PIPE_LOCK(rpipe);
672 	++rpipe->pipe_busy;
673 	error = pipelock(rpipe, 1);
674 	if (error)
675 		goto unlocked_error;
676 
677 #ifdef MAC
678 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
679 	if (error)
680 		goto locked_error;
681 #endif
682 	if (amountpipekva > (3 * maxpipekva) / 4) {
683 		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
684 			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
685 			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
686 			(piperesizeallowed == 1)) {
687 			PIPE_UNLOCK(rpipe);
688 			pipespace(rpipe, SMALL_PIPE_SIZE);
689 			PIPE_LOCK(rpipe);
690 		}
691 	}
692 
693 	while (uio->uio_resid) {
694 		/*
695 		 * normal pipe buffer receive
696 		 */
697 		if (rpipe->pipe_buffer.cnt > 0) {
698 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
699 			if (size > rpipe->pipe_buffer.cnt)
700 				size = rpipe->pipe_buffer.cnt;
701 			if (size > uio->uio_resid)
702 				size = uio->uio_resid;
703 
704 			PIPE_UNLOCK(rpipe);
705 			error = uiomove(
706 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
707 			    size, uio);
708 			PIPE_LOCK(rpipe);
709 			if (error)
710 				break;
711 
712 			rpipe->pipe_buffer.out += size;
713 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
714 				rpipe->pipe_buffer.out = 0;
715 
716 			rpipe->pipe_buffer.cnt -= size;
717 
718 			/*
719 			 * If there is no more to read in the pipe, reset
720 			 * its pointers to the beginning.  This improves
721 			 * cache hit stats.
722 			 */
723 			if (rpipe->pipe_buffer.cnt == 0) {
724 				rpipe->pipe_buffer.in = 0;
725 				rpipe->pipe_buffer.out = 0;
726 			}
727 			nread += size;
728 #ifndef PIPE_NODIRECT
729 		/*
730 		 * Direct copy, bypassing a kernel buffer.
731 		 */
732 		} else if ((size = rpipe->pipe_map.cnt) &&
733 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
734 			if (size > uio->uio_resid)
735 				size = (u_int) uio->uio_resid;
736 
737 			PIPE_UNLOCK(rpipe);
738 			error = uiomove_fromphys(rpipe->pipe_map.ms,
739 			    rpipe->pipe_map.pos, size, uio);
740 			PIPE_LOCK(rpipe);
741 			if (error)
742 				break;
743 			nread += size;
744 			rpipe->pipe_map.pos += size;
745 			rpipe->pipe_map.cnt -= size;
746 			if (rpipe->pipe_map.cnt == 0) {
747 				rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
748 				wakeup(rpipe);
749 			}
750 #endif
751 		} else {
752 			/*
753 			 * detect EOF condition
754 			 * read returns 0 on EOF, no need to set error
755 			 */
756 			if (rpipe->pipe_state & PIPE_EOF)
757 				break;
758 
759 			/*
760 			 * If the "write-side" has been blocked, wake it up now.
761 			 */
762 			if (rpipe->pipe_state & PIPE_WANTW) {
763 				rpipe->pipe_state &= ~PIPE_WANTW;
764 				wakeup(rpipe);
765 			}
766 
767 			/*
768 			 * Break if some data was read.
769 			 */
770 			if (nread > 0)
771 				break;
772 
773 			/*
774 			 * Unlock the pipe buffer for our remaining processing.
775 			 * We will either break out with an error or we will
776 			 * sleep and relock to loop.
777 			 */
778 			pipeunlock(rpipe);
779 
780 			/*
781 			 * Handle non-blocking mode operation or
782 			 * wait for more data.
783 			 */
784 			if (fp->f_flag & FNONBLOCK) {
785 				error = EAGAIN;
786 			} else {
787 				rpipe->pipe_state |= PIPE_WANTR;
788 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
789 				    PRIBIO | PCATCH,
790 				    "piperd", 0)) == 0)
791 					error = pipelock(rpipe, 1);
792 			}
793 			if (error)
794 				goto unlocked_error;
795 		}
796 	}
797 #ifdef MAC
798 locked_error:
799 #endif
800 	pipeunlock(rpipe);
801 
802 	/* XXX: should probably do this before getting any locks. */
803 	if (error == 0)
804 		vfs_timestamp(&rpipe->pipe_atime);
805 unlocked_error:
806 	--rpipe->pipe_busy;
807 
808 	/*
809 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
810 	 */
811 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
812 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
813 		wakeup(rpipe);
814 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
815 		/*
816 		 * Handle write blocking hysteresis.
817 		 */
818 		if (rpipe->pipe_state & PIPE_WANTW) {
819 			rpipe->pipe_state &= ~PIPE_WANTW;
820 			wakeup(rpipe);
821 		}
822 	}
823 
824 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
825 		pipeselwakeup(rpipe);
826 
827 	PIPE_UNLOCK(rpipe);
828 	return (error);
829 }
830 
831 #ifndef PIPE_NODIRECT
832 /*
833  * Map the sending processes' buffer into kernel space and wire it.
834  * This is similar to a physical write operation.
835  */
836 static int
837 pipe_build_write_buffer(wpipe, uio)
838 	struct pipe *wpipe;
839 	struct uio *uio;
840 {
841 	u_int size;
842 	int i;
843 
844 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
845 	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
846 		("Clone attempt on non-direct write pipe!"));
847 
848 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
849                 size = wpipe->pipe_buffer.size;
850 	else
851                 size = uio->uio_iov->iov_len;
852 
853 	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
854 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
855 	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
856 		return (EFAULT);
857 
858 /*
859  * set up the control block
860  */
861 	wpipe->pipe_map.npages = i;
862 	wpipe->pipe_map.pos =
863 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
864 	wpipe->pipe_map.cnt = size;
865 
866 /*
867  * and update the uio data
868  */
869 
870 	uio->uio_iov->iov_len -= size;
871 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
872 	if (uio->uio_iov->iov_len == 0)
873 		uio->uio_iov++;
874 	uio->uio_resid -= size;
875 	uio->uio_offset += size;
876 	return (0);
877 }
878 
879 /*
880  * unmap and unwire the process buffer
881  */
882 static void
883 pipe_destroy_write_buffer(wpipe)
884 	struct pipe *wpipe;
885 {
886 
887 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
888 	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
889 	wpipe->pipe_map.npages = 0;
890 }
891 
892 /*
893  * In the case of a signal, the writing process might go away.  This
894  * code copies the data into the circular buffer so that the source
895  * pages can be freed without loss of data.
896  */
897 static void
898 pipe_clone_write_buffer(wpipe)
899 	struct pipe *wpipe;
900 {
901 	struct uio uio;
902 	struct iovec iov;
903 	int size;
904 	int pos;
905 
906 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
907 	size = wpipe->pipe_map.cnt;
908 	pos = wpipe->pipe_map.pos;
909 
910 	wpipe->pipe_buffer.in = size;
911 	wpipe->pipe_buffer.out = 0;
912 	wpipe->pipe_buffer.cnt = size;
913 	wpipe->pipe_state &= ~PIPE_DIRECTW;
914 
915 	PIPE_UNLOCK(wpipe);
916 	iov.iov_base = wpipe->pipe_buffer.buffer;
917 	iov.iov_len = size;
918 	uio.uio_iov = &iov;
919 	uio.uio_iovcnt = 1;
920 	uio.uio_offset = 0;
921 	uio.uio_resid = size;
922 	uio.uio_segflg = UIO_SYSSPACE;
923 	uio.uio_rw = UIO_READ;
924 	uio.uio_td = curthread;
925 	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
926 	PIPE_LOCK(wpipe);
927 	pipe_destroy_write_buffer(wpipe);
928 }
929 
930 /*
931  * This implements the pipe buffer write mechanism.  Note that only
932  * a direct write OR a normal pipe write can be pending at any given time.
933  * If there are any characters in the pipe buffer, the direct write will
934  * be deferred until the receiving process grabs all of the bytes from
935  * the pipe buffer.  Then the direct mapping write is set-up.
936  */
937 static int
938 pipe_direct_write(wpipe, uio)
939 	struct pipe *wpipe;
940 	struct uio *uio;
941 {
942 	int error;
943 
944 retry:
945 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
946 	error = pipelock(wpipe, 1);
947 	if (wpipe->pipe_state & PIPE_EOF)
948 		error = EPIPE;
949 	if (error) {
950 		pipeunlock(wpipe);
951 		goto error1;
952 	}
953 	while (wpipe->pipe_state & PIPE_DIRECTW) {
954 		if (wpipe->pipe_state & PIPE_WANTR) {
955 			wpipe->pipe_state &= ~PIPE_WANTR;
956 			wakeup(wpipe);
957 		}
958 		pipeselwakeup(wpipe);
959 		wpipe->pipe_state |= PIPE_WANTW;
960 		pipeunlock(wpipe);
961 		error = msleep(wpipe, PIPE_MTX(wpipe),
962 		    PRIBIO | PCATCH, "pipdww", 0);
963 		if (error)
964 			goto error1;
965 		else
966 			goto retry;
967 	}
968 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
969 	if (wpipe->pipe_buffer.cnt > 0) {
970 		if (wpipe->pipe_state & PIPE_WANTR) {
971 			wpipe->pipe_state &= ~PIPE_WANTR;
972 			wakeup(wpipe);
973 		}
974 		pipeselwakeup(wpipe);
975 		wpipe->pipe_state |= PIPE_WANTW;
976 		pipeunlock(wpipe);
977 		error = msleep(wpipe, PIPE_MTX(wpipe),
978 		    PRIBIO | PCATCH, "pipdwc", 0);
979 		if (error)
980 			goto error1;
981 		else
982 			goto retry;
983 	}
984 
985 	wpipe->pipe_state |= PIPE_DIRECTW;
986 
987 	PIPE_UNLOCK(wpipe);
988 	error = pipe_build_write_buffer(wpipe, uio);
989 	PIPE_LOCK(wpipe);
990 	if (error) {
991 		wpipe->pipe_state &= ~PIPE_DIRECTW;
992 		pipeunlock(wpipe);
993 		goto error1;
994 	}
995 
996 	error = 0;
997 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
998 		if (wpipe->pipe_state & PIPE_EOF) {
999 			pipe_destroy_write_buffer(wpipe);
1000 			pipeselwakeup(wpipe);
1001 			pipeunlock(wpipe);
1002 			error = EPIPE;
1003 			goto error1;
1004 		}
1005 		if (wpipe->pipe_state & PIPE_WANTR) {
1006 			wpipe->pipe_state &= ~PIPE_WANTR;
1007 			wakeup(wpipe);
1008 		}
1009 		pipeselwakeup(wpipe);
1010 		wpipe->pipe_state |= PIPE_WANTW;
1011 		pipeunlock(wpipe);
1012 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1013 		    "pipdwt", 0);
1014 		pipelock(wpipe, 0);
1015 	}
1016 
1017 	if (wpipe->pipe_state & PIPE_EOF)
1018 		error = EPIPE;
1019 	if (wpipe->pipe_state & PIPE_DIRECTW) {
1020 		/*
1021 		 * this bit of trickery substitutes a kernel buffer for
1022 		 * the process that might be going away.
1023 		 */
1024 		pipe_clone_write_buffer(wpipe);
1025 	} else {
1026 		pipe_destroy_write_buffer(wpipe);
1027 	}
1028 	pipeunlock(wpipe);
1029 	return (error);
1030 
1031 error1:
1032 	wakeup(wpipe);
1033 	return (error);
1034 }
1035 #endif
1036 
1037 static int
1038 pipe_write(fp, uio, active_cred, flags, td)
1039 	struct file *fp;
1040 	struct uio *uio;
1041 	struct ucred *active_cred;
1042 	struct thread *td;
1043 	int flags;
1044 {
1045 	int error = 0;
1046 	int desiredsize;
1047 	ssize_t orig_resid;
1048 	struct pipe *wpipe, *rpipe;
1049 
1050 	rpipe = fp->f_data;
1051 	wpipe = PIPE_PEER(rpipe);
1052 	PIPE_LOCK(rpipe);
1053 	error = pipelock(wpipe, 1);
1054 	if (error) {
1055 		PIPE_UNLOCK(rpipe);
1056 		return (error);
1057 	}
1058 	/*
1059 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1060 	 */
1061 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1062 	    (wpipe->pipe_state & PIPE_EOF)) {
1063 		pipeunlock(wpipe);
1064 		PIPE_UNLOCK(rpipe);
1065 		return (EPIPE);
1066 	}
1067 #ifdef MAC
1068 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1069 	if (error) {
1070 		pipeunlock(wpipe);
1071 		PIPE_UNLOCK(rpipe);
1072 		return (error);
1073 	}
1074 #endif
1075 	++wpipe->pipe_busy;
1076 
1077 	/* Choose a larger size if it's advantageous */
1078 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1079 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1080 		if (piperesizeallowed != 1)
1081 			break;
1082 		if (amountpipekva > maxpipekva / 2)
1083 			break;
1084 		if (desiredsize == BIG_PIPE_SIZE)
1085 			break;
1086 		desiredsize = desiredsize * 2;
1087 	}
1088 
1089 	/* Choose a smaller size if we're in a OOM situation */
1090 	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1091 		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1092 		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1093 		(piperesizeallowed == 1))
1094 		desiredsize = SMALL_PIPE_SIZE;
1095 
1096 	/* Resize if the above determined that a new size was necessary */
1097 	if ((desiredsize != wpipe->pipe_buffer.size) &&
1098 		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1099 		PIPE_UNLOCK(wpipe);
1100 		pipespace(wpipe, desiredsize);
1101 		PIPE_LOCK(wpipe);
1102 	}
1103 	if (wpipe->pipe_buffer.size == 0) {
1104 		/*
1105 		 * This can only happen for reverse direction use of pipes
1106 		 * in a complete OOM situation.
1107 		 */
1108 		error = ENOMEM;
1109 		--wpipe->pipe_busy;
1110 		pipeunlock(wpipe);
1111 		PIPE_UNLOCK(wpipe);
1112 		return (error);
1113 	}
1114 
1115 	pipeunlock(wpipe);
1116 
1117 	orig_resid = uio->uio_resid;
1118 
1119 	while (uio->uio_resid) {
1120 		int space;
1121 
1122 		pipelock(wpipe, 0);
1123 		if (wpipe->pipe_state & PIPE_EOF) {
1124 			pipeunlock(wpipe);
1125 			error = EPIPE;
1126 			break;
1127 		}
1128 #ifndef PIPE_NODIRECT
1129 		/*
1130 		 * If the transfer is large, we can gain performance if
1131 		 * we do process-to-process copies directly.
1132 		 * If the write is non-blocking, we don't use the
1133 		 * direct write mechanism.
1134 		 *
1135 		 * The direct write mechanism will detect the reader going
1136 		 * away on us.
1137 		 */
1138 		if (uio->uio_segflg == UIO_USERSPACE &&
1139 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1140 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1141 		    (fp->f_flag & FNONBLOCK) == 0) {
1142 			pipeunlock(wpipe);
1143 			error = pipe_direct_write(wpipe, uio);
1144 			if (error)
1145 				break;
1146 			continue;
1147 		}
1148 #endif
1149 
1150 		/*
1151 		 * Pipe buffered writes cannot be coincidental with
1152 		 * direct writes.  We wait until the currently executing
1153 		 * direct write is completed before we start filling the
1154 		 * pipe buffer.  We break out if a signal occurs or the
1155 		 * reader goes away.
1156 		 */
1157 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1158 			if (wpipe->pipe_state & PIPE_WANTR) {
1159 				wpipe->pipe_state &= ~PIPE_WANTR;
1160 				wakeup(wpipe);
1161 			}
1162 			pipeselwakeup(wpipe);
1163 			wpipe->pipe_state |= PIPE_WANTW;
1164 			pipeunlock(wpipe);
1165 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1166 			    "pipbww", 0);
1167 			if (error)
1168 				break;
1169 			else
1170 				continue;
1171 		}
1172 
1173 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1174 
1175 		/* Writes of size <= PIPE_BUF must be atomic. */
1176 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1177 			space = 0;
1178 
1179 		if (space > 0) {
1180 			int size;	/* Transfer size */
1181 			int segsize;	/* first segment to transfer */
1182 
1183 			/*
1184 			 * Transfer size is minimum of uio transfer
1185 			 * and free space in pipe buffer.
1186 			 */
1187 			if (space > uio->uio_resid)
1188 				size = uio->uio_resid;
1189 			else
1190 				size = space;
1191 			/*
1192 			 * First segment to transfer is minimum of
1193 			 * transfer size and contiguous space in
1194 			 * pipe buffer.  If first segment to transfer
1195 			 * is less than the transfer size, we've got
1196 			 * a wraparound in the buffer.
1197 			 */
1198 			segsize = wpipe->pipe_buffer.size -
1199 				wpipe->pipe_buffer.in;
1200 			if (segsize > size)
1201 				segsize = size;
1202 
1203 			/* Transfer first segment */
1204 
1205 			PIPE_UNLOCK(rpipe);
1206 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1207 					segsize, uio);
1208 			PIPE_LOCK(rpipe);
1209 
1210 			if (error == 0 && segsize < size) {
1211 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1212 					wpipe->pipe_buffer.size,
1213 					("Pipe buffer wraparound disappeared"));
1214 				/*
1215 				 * Transfer remaining part now, to
1216 				 * support atomic writes.  Wraparound
1217 				 * happened.
1218 				 */
1219 
1220 				PIPE_UNLOCK(rpipe);
1221 				error = uiomove(
1222 				    &wpipe->pipe_buffer.buffer[0],
1223 				    size - segsize, uio);
1224 				PIPE_LOCK(rpipe);
1225 			}
1226 			if (error == 0) {
1227 				wpipe->pipe_buffer.in += size;
1228 				if (wpipe->pipe_buffer.in >=
1229 				    wpipe->pipe_buffer.size) {
1230 					KASSERT(wpipe->pipe_buffer.in ==
1231 						size - segsize +
1232 						wpipe->pipe_buffer.size,
1233 						("Expected wraparound bad"));
1234 					wpipe->pipe_buffer.in = size - segsize;
1235 				}
1236 
1237 				wpipe->pipe_buffer.cnt += size;
1238 				KASSERT(wpipe->pipe_buffer.cnt <=
1239 					wpipe->pipe_buffer.size,
1240 					("Pipe buffer overflow"));
1241 			}
1242 			pipeunlock(wpipe);
1243 			if (error != 0)
1244 				break;
1245 		} else {
1246 			/*
1247 			 * If the "read-side" has been blocked, wake it up now.
1248 			 */
1249 			if (wpipe->pipe_state & PIPE_WANTR) {
1250 				wpipe->pipe_state &= ~PIPE_WANTR;
1251 				wakeup(wpipe);
1252 			}
1253 
1254 			/*
1255 			 * don't block on non-blocking I/O
1256 			 */
1257 			if (fp->f_flag & FNONBLOCK) {
1258 				error = EAGAIN;
1259 				pipeunlock(wpipe);
1260 				break;
1261 			}
1262 
1263 			/*
1264 			 * We have no more space and have something to offer,
1265 			 * wake up select/poll.
1266 			 */
1267 			pipeselwakeup(wpipe);
1268 
1269 			wpipe->pipe_state |= PIPE_WANTW;
1270 			pipeunlock(wpipe);
1271 			error = msleep(wpipe, PIPE_MTX(rpipe),
1272 			    PRIBIO | PCATCH, "pipewr", 0);
1273 			if (error != 0)
1274 				break;
1275 		}
1276 	}
1277 
1278 	pipelock(wpipe, 0);
1279 	--wpipe->pipe_busy;
1280 
1281 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1282 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1283 		wakeup(wpipe);
1284 	} else if (wpipe->pipe_buffer.cnt > 0) {
1285 		/*
1286 		 * If we have put any characters in the buffer, we wake up
1287 		 * the reader.
1288 		 */
1289 		if (wpipe->pipe_state & PIPE_WANTR) {
1290 			wpipe->pipe_state &= ~PIPE_WANTR;
1291 			wakeup(wpipe);
1292 		}
1293 	}
1294 
1295 	/*
1296 	 * Don't return EPIPE if I/O was successful
1297 	 */
1298 	if ((wpipe->pipe_buffer.cnt == 0) &&
1299 	    (uio->uio_resid == 0) &&
1300 	    (error == EPIPE)) {
1301 		error = 0;
1302 	}
1303 
1304 	if (error == 0)
1305 		vfs_timestamp(&wpipe->pipe_mtime);
1306 
1307 	/*
1308 	 * We have something to offer,
1309 	 * wake up select/poll.
1310 	 */
1311 	if (wpipe->pipe_buffer.cnt)
1312 		pipeselwakeup(wpipe);
1313 
1314 	pipeunlock(wpipe);
1315 	PIPE_UNLOCK(rpipe);
1316 	return (error);
1317 }
1318 
1319 /* ARGSUSED */
1320 static int
1321 pipe_truncate(fp, length, active_cred, td)
1322 	struct file *fp;
1323 	off_t length;
1324 	struct ucred *active_cred;
1325 	struct thread *td;
1326 {
1327 
1328 	/* For named pipes call the vnode operation. */
1329 	if (fp->f_vnode != NULL)
1330 		return (vnops.fo_truncate(fp, length, active_cred, td));
1331 	return (EINVAL);
1332 }
1333 
1334 /*
1335  * we implement a very minimal set of ioctls for compatibility with sockets.
1336  */
1337 static int
1338 pipe_ioctl(fp, cmd, data, active_cred, td)
1339 	struct file *fp;
1340 	u_long cmd;
1341 	void *data;
1342 	struct ucred *active_cred;
1343 	struct thread *td;
1344 {
1345 	struct pipe *mpipe = fp->f_data;
1346 	int error;
1347 
1348 	PIPE_LOCK(mpipe);
1349 
1350 #ifdef MAC
1351 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1352 	if (error) {
1353 		PIPE_UNLOCK(mpipe);
1354 		return (error);
1355 	}
1356 #endif
1357 
1358 	error = 0;
1359 	switch (cmd) {
1360 
1361 	case FIONBIO:
1362 		break;
1363 
1364 	case FIOASYNC:
1365 		if (*(int *)data) {
1366 			mpipe->pipe_state |= PIPE_ASYNC;
1367 		} else {
1368 			mpipe->pipe_state &= ~PIPE_ASYNC;
1369 		}
1370 		break;
1371 
1372 	case FIONREAD:
1373 		if (!(fp->f_flag & FREAD)) {
1374 			*(int *)data = 0;
1375 			PIPE_UNLOCK(mpipe);
1376 			return (0);
1377 		}
1378 		if (mpipe->pipe_state & PIPE_DIRECTW)
1379 			*(int *)data = mpipe->pipe_map.cnt;
1380 		else
1381 			*(int *)data = mpipe->pipe_buffer.cnt;
1382 		break;
1383 
1384 	case FIOSETOWN:
1385 		PIPE_UNLOCK(mpipe);
1386 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1387 		goto out_unlocked;
1388 
1389 	case FIOGETOWN:
1390 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1391 		break;
1392 
1393 	/* This is deprecated, FIOSETOWN should be used instead. */
1394 	case TIOCSPGRP:
1395 		PIPE_UNLOCK(mpipe);
1396 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1397 		goto out_unlocked;
1398 
1399 	/* This is deprecated, FIOGETOWN should be used instead. */
1400 	case TIOCGPGRP:
1401 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1402 		break;
1403 
1404 	default:
1405 		error = ENOTTY;
1406 		break;
1407 	}
1408 	PIPE_UNLOCK(mpipe);
1409 out_unlocked:
1410 	return (error);
1411 }
1412 
1413 static int
1414 pipe_poll(fp, events, active_cred, td)
1415 	struct file *fp;
1416 	int events;
1417 	struct ucred *active_cred;
1418 	struct thread *td;
1419 {
1420 	struct pipe *rpipe;
1421 	struct pipe *wpipe;
1422 	int levents, revents;
1423 #ifdef MAC
1424 	int error;
1425 #endif
1426 
1427 	revents = 0;
1428 	rpipe = fp->f_data;
1429 	wpipe = PIPE_PEER(rpipe);
1430 	PIPE_LOCK(rpipe);
1431 #ifdef MAC
1432 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1433 	if (error)
1434 		goto locked_error;
1435 #endif
1436 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1437 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1438 		    (rpipe->pipe_buffer.cnt > 0))
1439 			revents |= events & (POLLIN | POLLRDNORM);
1440 
1441 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1442 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1443 		    (wpipe->pipe_state & PIPE_EOF) ||
1444 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1445 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1446 			 wpipe->pipe_buffer.size == 0)))
1447 			revents |= events & (POLLOUT | POLLWRNORM);
1448 
1449 	levents = events &
1450 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1451 	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1452 	    fp->f_seqcount == rpipe->pipe_wgen)
1453 		events |= POLLINIGNEOF;
1454 
1455 	if ((events & POLLINIGNEOF) == 0) {
1456 		if (rpipe->pipe_state & PIPE_EOF) {
1457 			revents |= (events & (POLLIN | POLLRDNORM));
1458 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1459 			    (wpipe->pipe_state & PIPE_EOF))
1460 				revents |= POLLHUP;
1461 		}
1462 	}
1463 
1464 	if (revents == 0) {
1465 		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1466 			selrecord(td, &rpipe->pipe_sel);
1467 			if (SEL_WAITING(&rpipe->pipe_sel))
1468 				rpipe->pipe_state |= PIPE_SEL;
1469 		}
1470 
1471 		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1472 			selrecord(td, &wpipe->pipe_sel);
1473 			if (SEL_WAITING(&wpipe->pipe_sel))
1474 				wpipe->pipe_state |= PIPE_SEL;
1475 		}
1476 	}
1477 #ifdef MAC
1478 locked_error:
1479 #endif
1480 	PIPE_UNLOCK(rpipe);
1481 
1482 	return (revents);
1483 }
1484 
1485 /*
1486  * We shouldn't need locks here as we're doing a read and this should
1487  * be a natural race.
1488  */
1489 static int
1490 pipe_stat(fp, ub, active_cred, td)
1491 	struct file *fp;
1492 	struct stat *ub;
1493 	struct ucred *active_cred;
1494 	struct thread *td;
1495 {
1496 	struct pipe *pipe;
1497 	int new_unr;
1498 #ifdef MAC
1499 	int error;
1500 #endif
1501 
1502 	pipe = fp->f_data;
1503 	PIPE_LOCK(pipe);
1504 #ifdef MAC
1505 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1506 	if (error) {
1507 		PIPE_UNLOCK(pipe);
1508 		return (error);
1509 	}
1510 #endif
1511 
1512 	/* For named pipes ask the underlying filesystem. */
1513 	if (pipe->pipe_state & PIPE_NAMED) {
1514 		PIPE_UNLOCK(pipe);
1515 		return (vnops.fo_stat(fp, ub, active_cred, td));
1516 	}
1517 
1518 	/*
1519 	 * Lazily allocate an inode number for the pipe.  Most pipe
1520 	 * users do not call fstat(2) on the pipe, which means that
1521 	 * postponing the inode allocation until it is must be
1522 	 * returned to userland is useful.  If alloc_unr failed,
1523 	 * assign st_ino zero instead of returning an error.
1524 	 * Special pipe_ino values:
1525 	 *  -1 - not yet initialized;
1526 	 *  0  - alloc_unr failed, return 0 as st_ino forever.
1527 	 */
1528 	if (pipe->pipe_ino == (ino_t)-1) {
1529 		new_unr = alloc_unr(pipeino_unr);
1530 		if (new_unr != -1)
1531 			pipe->pipe_ino = new_unr;
1532 		else
1533 			pipe->pipe_ino = 0;
1534 	}
1535 	PIPE_UNLOCK(pipe);
1536 
1537 	bzero(ub, sizeof(*ub));
1538 	ub->st_mode = S_IFIFO;
1539 	ub->st_blksize = PAGE_SIZE;
1540 	if (pipe->pipe_state & PIPE_DIRECTW)
1541 		ub->st_size = pipe->pipe_map.cnt;
1542 	else
1543 		ub->st_size = pipe->pipe_buffer.cnt;
1544 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1545 	ub->st_atim = pipe->pipe_atime;
1546 	ub->st_mtim = pipe->pipe_mtime;
1547 	ub->st_ctim = pipe->pipe_ctime;
1548 	ub->st_uid = fp->f_cred->cr_uid;
1549 	ub->st_gid = fp->f_cred->cr_gid;
1550 	ub->st_dev = pipedev_ino;
1551 	ub->st_ino = pipe->pipe_ino;
1552 	/*
1553 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1554 	 */
1555 	return (0);
1556 }
1557 
1558 /* ARGSUSED */
1559 static int
1560 pipe_close(fp, td)
1561 	struct file *fp;
1562 	struct thread *td;
1563 {
1564 
1565 	if (fp->f_vnode != NULL)
1566 		return vnops.fo_close(fp, td);
1567 	fp->f_ops = &badfileops;
1568 	pipe_dtor(fp->f_data);
1569 	fp->f_data = NULL;
1570 	return (0);
1571 }
1572 
1573 static int
1574 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1575 {
1576 	struct pipe *cpipe;
1577 	int error;
1578 
1579 	cpipe = fp->f_data;
1580 	if (cpipe->pipe_state & PIPE_NAMED)
1581 		error = vn_chmod(fp, mode, active_cred, td);
1582 	else
1583 		error = invfo_chmod(fp, mode, active_cred, td);
1584 	return (error);
1585 }
1586 
1587 static int
1588 pipe_chown(fp, uid, gid, active_cred, td)
1589 	struct file *fp;
1590 	uid_t uid;
1591 	gid_t gid;
1592 	struct ucred *active_cred;
1593 	struct thread *td;
1594 {
1595 	struct pipe *cpipe;
1596 	int error;
1597 
1598 	cpipe = fp->f_data;
1599 	if (cpipe->pipe_state & PIPE_NAMED)
1600 		error = vn_chown(fp, uid, gid, active_cred, td);
1601 	else
1602 		error = invfo_chown(fp, uid, gid, active_cred, td);
1603 	return (error);
1604 }
1605 
1606 static void
1607 pipe_free_kmem(cpipe)
1608 	struct pipe *cpipe;
1609 {
1610 
1611 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1612 	    ("pipe_free_kmem: pipe mutex locked"));
1613 
1614 	if (cpipe->pipe_buffer.buffer != NULL) {
1615 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1616 		vm_map_remove(pipe_map,
1617 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1618 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1619 		cpipe->pipe_buffer.buffer = NULL;
1620 	}
1621 #ifndef PIPE_NODIRECT
1622 	{
1623 		cpipe->pipe_map.cnt = 0;
1624 		cpipe->pipe_map.pos = 0;
1625 		cpipe->pipe_map.npages = 0;
1626 	}
1627 #endif
1628 }
1629 
1630 /*
1631  * shutdown the pipe
1632  */
1633 static void
1634 pipeclose(cpipe)
1635 	struct pipe *cpipe;
1636 {
1637 	struct pipepair *pp;
1638 	struct pipe *ppipe;
1639 
1640 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1641 
1642 	PIPE_LOCK(cpipe);
1643 	pipelock(cpipe, 0);
1644 	pp = cpipe->pipe_pair;
1645 
1646 	pipeselwakeup(cpipe);
1647 
1648 	/*
1649 	 * If the other side is blocked, wake it up saying that
1650 	 * we want to close it down.
1651 	 */
1652 	cpipe->pipe_state |= PIPE_EOF;
1653 	while (cpipe->pipe_busy) {
1654 		wakeup(cpipe);
1655 		cpipe->pipe_state |= PIPE_WANT;
1656 		pipeunlock(cpipe);
1657 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1658 		pipelock(cpipe, 0);
1659 	}
1660 
1661 
1662 	/*
1663 	 * Disconnect from peer, if any.
1664 	 */
1665 	ppipe = cpipe->pipe_peer;
1666 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1667 		pipeselwakeup(ppipe);
1668 
1669 		ppipe->pipe_state |= PIPE_EOF;
1670 		wakeup(ppipe);
1671 		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1672 	}
1673 
1674 	/*
1675 	 * Mark this endpoint as free.  Release kmem resources.  We
1676 	 * don't mark this endpoint as unused until we've finished
1677 	 * doing that, or the pipe might disappear out from under
1678 	 * us.
1679 	 */
1680 	PIPE_UNLOCK(cpipe);
1681 	pipe_free_kmem(cpipe);
1682 	PIPE_LOCK(cpipe);
1683 	cpipe->pipe_present = PIPE_CLOSING;
1684 	pipeunlock(cpipe);
1685 
1686 	/*
1687 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1688 	 * PIPE_FINALIZED, that allows other end to free the
1689 	 * pipe_pair, only after the knotes are completely dismantled.
1690 	 */
1691 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1692 	cpipe->pipe_present = PIPE_FINALIZED;
1693 	seldrain(&cpipe->pipe_sel);
1694 	knlist_destroy(&cpipe->pipe_sel.si_note);
1695 
1696 	/*
1697 	 * If both endpoints are now closed, release the memory for the
1698 	 * pipe pair.  If not, unlock.
1699 	 */
1700 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1701 		PIPE_UNLOCK(cpipe);
1702 #ifdef MAC
1703 		mac_pipe_destroy(pp);
1704 #endif
1705 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1706 	} else
1707 		PIPE_UNLOCK(cpipe);
1708 }
1709 
1710 /*ARGSUSED*/
1711 static int
1712 pipe_kqfilter(struct file *fp, struct knote *kn)
1713 {
1714 	struct pipe *cpipe;
1715 
1716 	/*
1717 	 * If a filter is requested that is not supported by this file
1718 	 * descriptor, don't return an error, but also don't ever generate an
1719 	 * event.
1720 	 */
1721 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1722 		kn->kn_fop = &pipe_nfiltops;
1723 		return (0);
1724 	}
1725 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1726 		kn->kn_fop = &pipe_nfiltops;
1727 		return (0);
1728 	}
1729 	cpipe = fp->f_data;
1730 	PIPE_LOCK(cpipe);
1731 	switch (kn->kn_filter) {
1732 	case EVFILT_READ:
1733 		kn->kn_fop = &pipe_rfiltops;
1734 		break;
1735 	case EVFILT_WRITE:
1736 		kn->kn_fop = &pipe_wfiltops;
1737 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1738 			/* other end of pipe has been closed */
1739 			PIPE_UNLOCK(cpipe);
1740 			return (EPIPE);
1741 		}
1742 		cpipe = PIPE_PEER(cpipe);
1743 		break;
1744 	default:
1745 		PIPE_UNLOCK(cpipe);
1746 		return (EINVAL);
1747 	}
1748 
1749 	kn->kn_hook = cpipe;
1750 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1751 	PIPE_UNLOCK(cpipe);
1752 	return (0);
1753 }
1754 
1755 static void
1756 filt_pipedetach(struct knote *kn)
1757 {
1758 	struct pipe *cpipe = kn->kn_hook;
1759 
1760 	PIPE_LOCK(cpipe);
1761 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1762 	PIPE_UNLOCK(cpipe);
1763 }
1764 
1765 /*ARGSUSED*/
1766 static int
1767 filt_piperead(struct knote *kn, long hint)
1768 {
1769 	struct pipe *rpipe = kn->kn_hook;
1770 	struct pipe *wpipe = rpipe->pipe_peer;
1771 	int ret;
1772 
1773 	PIPE_LOCK(rpipe);
1774 	kn->kn_data = rpipe->pipe_buffer.cnt;
1775 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1776 		kn->kn_data = rpipe->pipe_map.cnt;
1777 
1778 	if ((rpipe->pipe_state & PIPE_EOF) ||
1779 	    wpipe->pipe_present != PIPE_ACTIVE ||
1780 	    (wpipe->pipe_state & PIPE_EOF)) {
1781 		kn->kn_flags |= EV_EOF;
1782 		PIPE_UNLOCK(rpipe);
1783 		return (1);
1784 	}
1785 	ret = kn->kn_data > 0;
1786 	PIPE_UNLOCK(rpipe);
1787 	return ret;
1788 }
1789 
1790 /*ARGSUSED*/
1791 static int
1792 filt_pipewrite(struct knote *kn, long hint)
1793 {
1794 	struct pipe *wpipe;
1795 
1796 	wpipe = kn->kn_hook;
1797 	PIPE_LOCK(wpipe);
1798 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1799 	    (wpipe->pipe_state & PIPE_EOF)) {
1800 		kn->kn_data = 0;
1801 		kn->kn_flags |= EV_EOF;
1802 		PIPE_UNLOCK(wpipe);
1803 		return (1);
1804 	}
1805 	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1806 	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1807 	if (wpipe->pipe_state & PIPE_DIRECTW)
1808 		kn->kn_data = 0;
1809 
1810 	PIPE_UNLOCK(wpipe);
1811 	return (kn->kn_data >= PIPE_BUF);
1812 }
1813 
1814 static void
1815 filt_pipedetach_notsup(struct knote *kn)
1816 {
1817 
1818 }
1819 
1820 static int
1821 filt_pipenotsup(struct knote *kn, long hint)
1822 {
1823 
1824 	return (0);
1825 }
1826