xref: /freebsd/sys/kern/sys_generic.c (revision ca2e4ecd7395ba655ab4bebe7262a06e634216ce)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)sys_generic.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_capsicum.h"
41 #include "opt_compat.h"
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysproto.h>
47 #include <sys/capsicum.h>
48 #include <sys/filedesc.h>
49 #include <sys/filio.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/lock.h>
53 #include <sys/proc.h>
54 #include <sys/signalvar.h>
55 #include <sys/socketvar.h>
56 #include <sys/uio.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/malloc.h>
61 #include <sys/poll.h>
62 #include <sys/resourcevar.h>
63 #include <sys/selinfo.h>
64 #include <sys/sleepqueue.h>
65 #include <sys/syscallsubr.h>
66 #include <sys/sysctl.h>
67 #include <sys/sysent.h>
68 #include <sys/vnode.h>
69 #include <sys/bio.h>
70 #include <sys/buf.h>
71 #include <sys/condvar.h>
72 #ifdef KTRACE
73 #include <sys/ktrace.h>
74 #endif
75 
76 #include <security/audit/audit.h>
77 
78 /*
79  * The following macro defines how many bytes will be allocated from
80  * the stack instead of memory allocated when passing the IOCTL data
81  * structures from userspace and to the kernel. Some IOCTLs having
82  * small data structures are used very frequently and this small
83  * buffer on the stack gives a significant speedup improvement for
84  * those requests. The value of this define should be greater or equal
85  * to 64 bytes and should also be power of two. The data structure is
86  * currently hard-aligned to a 8-byte boundary on the stack. This
87  * should currently be sufficient for all supported platforms.
88  */
89 #define	SYS_IOCTL_SMALL_SIZE	128	/* bytes */
90 #define	SYS_IOCTL_SMALL_ALIGN	8	/* bytes */
91 
92 int iosize_max_clamp = 0;
93 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW,
94     &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX");
95 int devfs_iosize_max_clamp = 1;
96 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW,
97     &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices");
98 
99 /*
100  * Assert that the return value of read(2) and write(2) syscalls fits
101  * into a register.  If not, an architecture will need to provide the
102  * usermode wrappers to reconstruct the result.
103  */
104 CTASSERT(sizeof(register_t) >= sizeof(size_t));
105 
106 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
107 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
108 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
109 
110 static int	pollout(struct thread *, struct pollfd *, struct pollfd *,
111 		    u_int);
112 static int	pollscan(struct thread *, struct pollfd *, u_int);
113 static int	pollrescan(struct thread *);
114 static int	selscan(struct thread *, fd_mask **, fd_mask **, int);
115 static int	selrescan(struct thread *, fd_mask **, fd_mask **);
116 static void	selfdalloc(struct thread *, void *);
117 static void	selfdfree(struct seltd *, struct selfd *);
118 static int	dofileread(struct thread *, int, struct file *, struct uio *,
119 		    off_t, int);
120 static int	dofilewrite(struct thread *, int, struct file *, struct uio *,
121 		    off_t, int);
122 static void	doselwakeup(struct selinfo *, int);
123 static void	seltdinit(struct thread *);
124 static int	seltdwait(struct thread *, sbintime_t, sbintime_t);
125 static void	seltdclear(struct thread *);
126 
127 /*
128  * One seltd per-thread allocated on demand as needed.
129  *
130  *	t - protected by st_mtx
131  * 	k - Only accessed by curthread or read-only
132  */
133 struct seltd {
134 	STAILQ_HEAD(, selfd)	st_selq;	/* (k) List of selfds. */
135 	struct selfd		*st_free1;	/* (k) free fd for read set. */
136 	struct selfd		*st_free2;	/* (k) free fd for write set. */
137 	struct mtx		st_mtx;		/* Protects struct seltd */
138 	struct cv		st_wait;	/* (t) Wait channel. */
139 	int			st_flags;	/* (t) SELTD_ flags. */
140 };
141 
142 #define	SELTD_PENDING	0x0001			/* We have pending events. */
143 #define	SELTD_RESCAN	0x0002			/* Doing a rescan. */
144 
145 /*
146  * One selfd allocated per-thread per-file-descriptor.
147  *	f - protected by sf_mtx
148  */
149 struct selfd {
150 	STAILQ_ENTRY(selfd)	sf_link;	/* (k) fds owned by this td. */
151 	TAILQ_ENTRY(selfd)	sf_threads;	/* (f) fds on this selinfo. */
152 	struct selinfo		*sf_si;		/* (f) selinfo when linked. */
153 	struct mtx		*sf_mtx;	/* Pointer to selinfo mtx. */
154 	struct seltd		*sf_td;		/* (k) owning seltd. */
155 	void			*sf_cookie;	/* (k) fd or pollfd. */
156 	u_int			sf_refs;
157 };
158 
159 static uma_zone_t selfd_zone;
160 static struct mtx_pool *mtxpool_select;
161 
162 #ifndef _SYS_SYSPROTO_H_
163 struct read_args {
164 	int	fd;
165 	void	*buf;
166 	size_t	nbyte;
167 };
168 #endif
169 int
170 sys_read(td, uap)
171 	struct thread *td;
172 	struct read_args *uap;
173 {
174 	struct uio auio;
175 	struct iovec aiov;
176 	int error;
177 
178 	if (uap->nbyte > IOSIZE_MAX)
179 		return (EINVAL);
180 	aiov.iov_base = uap->buf;
181 	aiov.iov_len = uap->nbyte;
182 	auio.uio_iov = &aiov;
183 	auio.uio_iovcnt = 1;
184 	auio.uio_resid = uap->nbyte;
185 	auio.uio_segflg = UIO_USERSPACE;
186 	error = kern_readv(td, uap->fd, &auio);
187 	return(error);
188 }
189 
190 /*
191  * Positioned read system call
192  */
193 #ifndef _SYS_SYSPROTO_H_
194 struct pread_args {
195 	int	fd;
196 	void	*buf;
197 	size_t	nbyte;
198 	int	pad;
199 	off_t	offset;
200 };
201 #endif
202 int
203 sys_pread(td, uap)
204 	struct thread *td;
205 	struct pread_args *uap;
206 {
207 	struct uio auio;
208 	struct iovec aiov;
209 	int error;
210 
211 	if (uap->nbyte > IOSIZE_MAX)
212 		return (EINVAL);
213 	aiov.iov_base = uap->buf;
214 	aiov.iov_len = uap->nbyte;
215 	auio.uio_iov = &aiov;
216 	auio.uio_iovcnt = 1;
217 	auio.uio_resid = uap->nbyte;
218 	auio.uio_segflg = UIO_USERSPACE;
219 	error = kern_preadv(td, uap->fd, &auio, uap->offset);
220 	return(error);
221 }
222 
223 #if defined(COMPAT_FREEBSD6)
224 int
225 freebsd6_pread(td, uap)
226 	struct thread *td;
227 	struct freebsd6_pread_args *uap;
228 {
229 	struct pread_args oargs;
230 
231 	oargs.fd = uap->fd;
232 	oargs.buf = uap->buf;
233 	oargs.nbyte = uap->nbyte;
234 	oargs.offset = uap->offset;
235 	return (sys_pread(td, &oargs));
236 }
237 #endif
238 
239 /*
240  * Scatter read system call.
241  */
242 #ifndef _SYS_SYSPROTO_H_
243 struct readv_args {
244 	int	fd;
245 	struct	iovec *iovp;
246 	u_int	iovcnt;
247 };
248 #endif
249 int
250 sys_readv(struct thread *td, struct readv_args *uap)
251 {
252 	struct uio *auio;
253 	int error;
254 
255 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
256 	if (error)
257 		return (error);
258 	error = kern_readv(td, uap->fd, auio);
259 	free(auio, M_IOV);
260 	return (error);
261 }
262 
263 int
264 kern_readv(struct thread *td, int fd, struct uio *auio)
265 {
266 	struct file *fp;
267 	cap_rights_t rights;
268 	int error;
269 
270 	error = fget_read(td, fd, cap_rights_init(&rights, CAP_READ), &fp);
271 	if (error)
272 		return (error);
273 	error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
274 	fdrop(fp, td);
275 	return (error);
276 }
277 
278 /*
279  * Scatter positioned read system call.
280  */
281 #ifndef _SYS_SYSPROTO_H_
282 struct preadv_args {
283 	int	fd;
284 	struct	iovec *iovp;
285 	u_int	iovcnt;
286 	off_t	offset;
287 };
288 #endif
289 int
290 sys_preadv(struct thread *td, struct preadv_args *uap)
291 {
292 	struct uio *auio;
293 	int error;
294 
295 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
296 	if (error)
297 		return (error);
298 	error = kern_preadv(td, uap->fd, auio, uap->offset);
299 	free(auio, M_IOV);
300 	return (error);
301 }
302 
303 int
304 kern_preadv(td, fd, auio, offset)
305 	struct thread *td;
306 	int fd;
307 	struct uio *auio;
308 	off_t offset;
309 {
310 	struct file *fp;
311 	cap_rights_t rights;
312 	int error;
313 
314 	error = fget_read(td, fd, cap_rights_init(&rights, CAP_PREAD), &fp);
315 	if (error)
316 		return (error);
317 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
318 		error = ESPIPE;
319 	else if (offset < 0 && fp->f_vnode->v_type != VCHR)
320 		error = EINVAL;
321 	else
322 		error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
323 	fdrop(fp, td);
324 	return (error);
325 }
326 
327 /*
328  * Common code for readv and preadv that reads data in
329  * from a file using the passed in uio, offset, and flags.
330  */
331 static int
332 dofileread(td, fd, fp, auio, offset, flags)
333 	struct thread *td;
334 	int fd;
335 	struct file *fp;
336 	struct uio *auio;
337 	off_t offset;
338 	int flags;
339 {
340 	ssize_t cnt;
341 	int error;
342 #ifdef KTRACE
343 	struct uio *ktruio = NULL;
344 #endif
345 
346 	/* Finish zero length reads right here */
347 	if (auio->uio_resid == 0) {
348 		td->td_retval[0] = 0;
349 		return(0);
350 	}
351 	auio->uio_rw = UIO_READ;
352 	auio->uio_offset = offset;
353 	auio->uio_td = td;
354 #ifdef KTRACE
355 	if (KTRPOINT(td, KTR_GENIO))
356 		ktruio = cloneuio(auio);
357 #endif
358 	cnt = auio->uio_resid;
359 	if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
360 		if (auio->uio_resid != cnt && (error == ERESTART ||
361 		    error == EINTR || error == EWOULDBLOCK))
362 			error = 0;
363 	}
364 	cnt -= auio->uio_resid;
365 #ifdef KTRACE
366 	if (ktruio != NULL) {
367 		ktruio->uio_resid = cnt;
368 		ktrgenio(fd, UIO_READ, ktruio, error);
369 	}
370 #endif
371 	td->td_retval[0] = cnt;
372 	return (error);
373 }
374 
375 #ifndef _SYS_SYSPROTO_H_
376 struct write_args {
377 	int	fd;
378 	const void *buf;
379 	size_t	nbyte;
380 };
381 #endif
382 int
383 sys_write(td, uap)
384 	struct thread *td;
385 	struct write_args *uap;
386 {
387 	struct uio auio;
388 	struct iovec aiov;
389 	int error;
390 
391 	if (uap->nbyte > IOSIZE_MAX)
392 		return (EINVAL);
393 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
394 	aiov.iov_len = uap->nbyte;
395 	auio.uio_iov = &aiov;
396 	auio.uio_iovcnt = 1;
397 	auio.uio_resid = uap->nbyte;
398 	auio.uio_segflg = UIO_USERSPACE;
399 	error = kern_writev(td, uap->fd, &auio);
400 	return(error);
401 }
402 
403 /*
404  * Positioned write system call.
405  */
406 #ifndef _SYS_SYSPROTO_H_
407 struct pwrite_args {
408 	int	fd;
409 	const void *buf;
410 	size_t	nbyte;
411 	int	pad;
412 	off_t	offset;
413 };
414 #endif
415 int
416 sys_pwrite(td, uap)
417 	struct thread *td;
418 	struct pwrite_args *uap;
419 {
420 	struct uio auio;
421 	struct iovec aiov;
422 	int error;
423 
424 	if (uap->nbyte > IOSIZE_MAX)
425 		return (EINVAL);
426 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
427 	aiov.iov_len = uap->nbyte;
428 	auio.uio_iov = &aiov;
429 	auio.uio_iovcnt = 1;
430 	auio.uio_resid = uap->nbyte;
431 	auio.uio_segflg = UIO_USERSPACE;
432 	error = kern_pwritev(td, uap->fd, &auio, uap->offset);
433 	return(error);
434 }
435 
436 #if defined(COMPAT_FREEBSD6)
437 int
438 freebsd6_pwrite(td, uap)
439 	struct thread *td;
440 	struct freebsd6_pwrite_args *uap;
441 {
442 	struct pwrite_args oargs;
443 
444 	oargs.fd = uap->fd;
445 	oargs.buf = uap->buf;
446 	oargs.nbyte = uap->nbyte;
447 	oargs.offset = uap->offset;
448 	return (sys_pwrite(td, &oargs));
449 }
450 #endif
451 
452 /*
453  * Gather write system call.
454  */
455 #ifndef _SYS_SYSPROTO_H_
456 struct writev_args {
457 	int	fd;
458 	struct	iovec *iovp;
459 	u_int	iovcnt;
460 };
461 #endif
462 int
463 sys_writev(struct thread *td, struct writev_args *uap)
464 {
465 	struct uio *auio;
466 	int error;
467 
468 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
469 	if (error)
470 		return (error);
471 	error = kern_writev(td, uap->fd, auio);
472 	free(auio, M_IOV);
473 	return (error);
474 }
475 
476 int
477 kern_writev(struct thread *td, int fd, struct uio *auio)
478 {
479 	struct file *fp;
480 	cap_rights_t rights;
481 	int error;
482 
483 	error = fget_write(td, fd, cap_rights_init(&rights, CAP_WRITE), &fp);
484 	if (error)
485 		return (error);
486 	error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
487 	fdrop(fp, td);
488 	return (error);
489 }
490 
491 /*
492  * Gather positioned write system call.
493  */
494 #ifndef _SYS_SYSPROTO_H_
495 struct pwritev_args {
496 	int	fd;
497 	struct	iovec *iovp;
498 	u_int	iovcnt;
499 	off_t	offset;
500 };
501 #endif
502 int
503 sys_pwritev(struct thread *td, struct pwritev_args *uap)
504 {
505 	struct uio *auio;
506 	int error;
507 
508 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
509 	if (error)
510 		return (error);
511 	error = kern_pwritev(td, uap->fd, auio, uap->offset);
512 	free(auio, M_IOV);
513 	return (error);
514 }
515 
516 int
517 kern_pwritev(td, fd, auio, offset)
518 	struct thread *td;
519 	struct uio *auio;
520 	int fd;
521 	off_t offset;
522 {
523 	struct file *fp;
524 	cap_rights_t rights;
525 	int error;
526 
527 	error = fget_write(td, fd, cap_rights_init(&rights, CAP_PWRITE), &fp);
528 	if (error)
529 		return (error);
530 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
531 		error = ESPIPE;
532 	else if (offset < 0 && fp->f_vnode->v_type != VCHR)
533 		error = EINVAL;
534 	else
535 		error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
536 	fdrop(fp, td);
537 	return (error);
538 }
539 
540 /*
541  * Common code for writev and pwritev that writes data to
542  * a file using the passed in uio, offset, and flags.
543  */
544 static int
545 dofilewrite(td, fd, fp, auio, offset, flags)
546 	struct thread *td;
547 	int fd;
548 	struct file *fp;
549 	struct uio *auio;
550 	off_t offset;
551 	int flags;
552 {
553 	ssize_t cnt;
554 	int error;
555 #ifdef KTRACE
556 	struct uio *ktruio = NULL;
557 #endif
558 
559 	auio->uio_rw = UIO_WRITE;
560 	auio->uio_td = td;
561 	auio->uio_offset = offset;
562 #ifdef KTRACE
563 	if (KTRPOINT(td, KTR_GENIO))
564 		ktruio = cloneuio(auio);
565 #endif
566 	cnt = auio->uio_resid;
567 	if (fp->f_type == DTYPE_VNODE &&
568 	    (fp->f_vnread_flags & FDEVFS_VNODE) == 0)
569 		bwillwrite();
570 	if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) {
571 		if (auio->uio_resid != cnt && (error == ERESTART ||
572 		    error == EINTR || error == EWOULDBLOCK))
573 			error = 0;
574 		/* Socket layer is responsible for issuing SIGPIPE. */
575 		if (fp->f_type != DTYPE_SOCKET && error == EPIPE) {
576 			PROC_LOCK(td->td_proc);
577 			tdsignal(td, SIGPIPE);
578 			PROC_UNLOCK(td->td_proc);
579 		}
580 	}
581 	cnt -= auio->uio_resid;
582 #ifdef KTRACE
583 	if (ktruio != NULL) {
584 		ktruio->uio_resid = cnt;
585 		ktrgenio(fd, UIO_WRITE, ktruio, error);
586 	}
587 #endif
588 	td->td_retval[0] = cnt;
589 	return (error);
590 }
591 
592 /*
593  * Truncate a file given a file descriptor.
594  *
595  * Can't use fget_write() here, since must return EINVAL and not EBADF if the
596  * descriptor isn't writable.
597  */
598 int
599 kern_ftruncate(td, fd, length)
600 	struct thread *td;
601 	int fd;
602 	off_t length;
603 {
604 	struct file *fp;
605 	cap_rights_t rights;
606 	int error;
607 
608 	AUDIT_ARG_FD(fd);
609 	if (length < 0)
610 		return (EINVAL);
611 	error = fget(td, fd, cap_rights_init(&rights, CAP_FTRUNCATE), &fp);
612 	if (error)
613 		return (error);
614 	AUDIT_ARG_FILE(td->td_proc, fp);
615 	if (!(fp->f_flag & FWRITE)) {
616 		fdrop(fp, td);
617 		return (EINVAL);
618 	}
619 	error = fo_truncate(fp, length, td->td_ucred, td);
620 	fdrop(fp, td);
621 	return (error);
622 }
623 
624 #ifndef _SYS_SYSPROTO_H_
625 struct ftruncate_args {
626 	int	fd;
627 	int	pad;
628 	off_t	length;
629 };
630 #endif
631 int
632 sys_ftruncate(td, uap)
633 	struct thread *td;
634 	struct ftruncate_args *uap;
635 {
636 
637 	return (kern_ftruncate(td, uap->fd, uap->length));
638 }
639 
640 #if defined(COMPAT_43)
641 #ifndef _SYS_SYSPROTO_H_
642 struct oftruncate_args {
643 	int	fd;
644 	long	length;
645 };
646 #endif
647 int
648 oftruncate(td, uap)
649 	struct thread *td;
650 	struct oftruncate_args *uap;
651 {
652 
653 	return (kern_ftruncate(td, uap->fd, uap->length));
654 }
655 #endif /* COMPAT_43 */
656 
657 #ifndef _SYS_SYSPROTO_H_
658 struct ioctl_args {
659 	int	fd;
660 	u_long	com;
661 	caddr_t	data;
662 };
663 #endif
664 /* ARGSUSED */
665 int
666 sys_ioctl(struct thread *td, struct ioctl_args *uap)
667 {
668 	u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN);
669 	u_long com;
670 	int arg, error;
671 	u_int size;
672 	caddr_t data;
673 
674 	if (uap->com > 0xffffffff) {
675 		printf(
676 		    "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
677 		    td->td_proc->p_pid, td->td_name, uap->com);
678 		uap->com &= 0xffffffff;
679 	}
680 	com = uap->com;
681 
682 	/*
683 	 * Interpret high order word to find amount of data to be
684 	 * copied to/from the user's address space.
685 	 */
686 	size = IOCPARM_LEN(com);
687 	if ((size > IOCPARM_MAX) ||
688 	    ((com & (IOC_VOID  | IOC_IN | IOC_OUT)) == 0) ||
689 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
690 	    ((com & IOC_OUT) && size == 0) ||
691 #else
692 	    ((com & (IOC_IN | IOC_OUT)) && size == 0) ||
693 #endif
694 	    ((com & IOC_VOID) && size > 0 && size != sizeof(int)))
695 		return (ENOTTY);
696 
697 	if (size > 0) {
698 		if (com & IOC_VOID) {
699 			/* Integer argument. */
700 			arg = (intptr_t)uap->data;
701 			data = (void *)&arg;
702 			size = 0;
703 		} else {
704 			if (size > SYS_IOCTL_SMALL_SIZE)
705 				data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
706 			else
707 				data = smalldata;
708 		}
709 	} else
710 		data = (void *)&uap->data;
711 	if (com & IOC_IN) {
712 		error = copyin(uap->data, data, (u_int)size);
713 		if (error != 0)
714 			goto out;
715 	} else if (com & IOC_OUT) {
716 		/*
717 		 * Zero the buffer so the user always
718 		 * gets back something deterministic.
719 		 */
720 		bzero(data, size);
721 	}
722 
723 	error = kern_ioctl(td, uap->fd, com, data);
724 
725 	if (error == 0 && (com & IOC_OUT))
726 		error = copyout(data, uap->data, (u_int)size);
727 
728 out:
729 	if (size > SYS_IOCTL_SMALL_SIZE)
730 		free(data, M_IOCTLOPS);
731 	return (error);
732 }
733 
734 int
735 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
736 {
737 	struct file *fp;
738 	struct filedesc *fdp;
739 #ifndef CAPABILITIES
740 	cap_rights_t rights;
741 #endif
742 	int error, tmp, locked;
743 
744 	AUDIT_ARG_FD(fd);
745 	AUDIT_ARG_CMD(com);
746 
747 	fdp = td->td_proc->p_fd;
748 
749 	switch (com) {
750 	case FIONCLEX:
751 	case FIOCLEX:
752 		FILEDESC_XLOCK(fdp);
753 		locked = LA_XLOCKED;
754 		break;
755 	default:
756 #ifdef CAPABILITIES
757 		FILEDESC_SLOCK(fdp);
758 		locked = LA_SLOCKED;
759 #else
760 		locked = LA_UNLOCKED;
761 #endif
762 		break;
763 	}
764 
765 #ifdef CAPABILITIES
766 	if ((fp = fget_locked(fdp, fd)) == NULL) {
767 		error = EBADF;
768 		goto out;
769 	}
770 	if ((error = cap_ioctl_check(fdp, fd, com)) != 0) {
771 		fp = NULL;	/* fhold() was not called yet */
772 		goto out;
773 	}
774 	fhold(fp);
775 	if (locked == LA_SLOCKED) {
776 		FILEDESC_SUNLOCK(fdp);
777 		locked = LA_UNLOCKED;
778 	}
779 #else
780 	error = fget(td, fd, cap_rights_init(&rights, CAP_IOCTL), &fp);
781 	if (error != 0) {
782 		fp = NULL;
783 		goto out;
784 	}
785 #endif
786 	if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
787 		error = EBADF;
788 		goto out;
789 	}
790 
791 	switch (com) {
792 	case FIONCLEX:
793 		fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE;
794 		goto out;
795 	case FIOCLEX:
796 		fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE;
797 		goto out;
798 	case FIONBIO:
799 		if ((tmp = *(int *)data))
800 			atomic_set_int(&fp->f_flag, FNONBLOCK);
801 		else
802 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
803 		data = (void *)&tmp;
804 		break;
805 	case FIOASYNC:
806 		if ((tmp = *(int *)data))
807 			atomic_set_int(&fp->f_flag, FASYNC);
808 		else
809 			atomic_clear_int(&fp->f_flag, FASYNC);
810 		data = (void *)&tmp;
811 		break;
812 	}
813 
814 	error = fo_ioctl(fp, com, data, td->td_ucred, td);
815 out:
816 	switch (locked) {
817 	case LA_XLOCKED:
818 		FILEDESC_XUNLOCK(fdp);
819 		break;
820 #ifdef CAPABILITIES
821 	case LA_SLOCKED:
822 		FILEDESC_SUNLOCK(fdp);
823 		break;
824 #endif
825 	default:
826 		FILEDESC_UNLOCK_ASSERT(fdp);
827 		break;
828 	}
829 	if (fp != NULL)
830 		fdrop(fp, td);
831 	return (error);
832 }
833 
834 int
835 poll_no_poll(int events)
836 {
837 	/*
838 	 * Return true for read/write.  If the user asked for something
839 	 * special, return POLLNVAL, so that clients have a way of
840 	 * determining reliably whether or not the extended
841 	 * functionality is present without hard-coding knowledge
842 	 * of specific filesystem implementations.
843 	 */
844 	if (events & ~POLLSTANDARD)
845 		return (POLLNVAL);
846 
847 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
848 }
849 
850 int
851 sys_pselect(struct thread *td, struct pselect_args *uap)
852 {
853 	struct timespec ts;
854 	struct timeval tv, *tvp;
855 	sigset_t set, *uset;
856 	int error;
857 
858 	if (uap->ts != NULL) {
859 		error = copyin(uap->ts, &ts, sizeof(ts));
860 		if (error != 0)
861 		    return (error);
862 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
863 		tvp = &tv;
864 	} else
865 		tvp = NULL;
866 	if (uap->sm != NULL) {
867 		error = copyin(uap->sm, &set, sizeof(set));
868 		if (error != 0)
869 			return (error);
870 		uset = &set;
871 	} else
872 		uset = NULL;
873 	return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
874 	    uset, NFDBITS));
875 }
876 
877 int
878 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex,
879     struct timeval *tvp, sigset_t *uset, int abi_nfdbits)
880 {
881 	int error;
882 
883 	if (uset != NULL) {
884 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
885 		    &td->td_oldsigmask, 0);
886 		if (error != 0)
887 			return (error);
888 		td->td_pflags |= TDP_OLDMASK;
889 		/*
890 		 * Make sure that ast() is called on return to
891 		 * usermode and TDP_OLDMASK is cleared, restoring old
892 		 * sigmask.
893 		 */
894 		thread_lock(td);
895 		td->td_flags |= TDF_ASTPENDING;
896 		thread_unlock(td);
897 	}
898 	error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits);
899 	return (error);
900 }
901 
902 #ifndef _SYS_SYSPROTO_H_
903 struct select_args {
904 	int	nd;
905 	fd_set	*in, *ou, *ex;
906 	struct	timeval *tv;
907 };
908 #endif
909 int
910 sys_select(struct thread *td, struct select_args *uap)
911 {
912 	struct timeval tv, *tvp;
913 	int error;
914 
915 	if (uap->tv != NULL) {
916 		error = copyin(uap->tv, &tv, sizeof(tv));
917 		if (error)
918 			return (error);
919 		tvp = &tv;
920 	} else
921 		tvp = NULL;
922 
923 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
924 	    NFDBITS));
925 }
926 
927 /*
928  * In the unlikely case when user specified n greater then the last
929  * open file descriptor, check that no bits are set after the last
930  * valid fd.  We must return EBADF if any is set.
931  *
932  * There are applications that rely on the behaviour.
933  *
934  * nd is fd_lastfile + 1.
935  */
936 static int
937 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits)
938 {
939 	char *addr, *oaddr;
940 	int b, i, res;
941 	uint8_t bits;
942 
943 	if (nd >= ndu || fd_in == NULL)
944 		return (0);
945 
946 	oaddr = NULL;
947 	bits = 0; /* silence gcc */
948 	for (i = nd; i < ndu; i++) {
949 		b = i / NBBY;
950 #if BYTE_ORDER == LITTLE_ENDIAN
951 		addr = (char *)fd_in + b;
952 #else
953 		addr = (char *)fd_in;
954 		if (abi_nfdbits == NFDBITS) {
955 			addr += rounddown(b, sizeof(fd_mask)) +
956 			    sizeof(fd_mask) - 1 - b % sizeof(fd_mask);
957 		} else {
958 			addr += rounddown(b, sizeof(uint32_t)) +
959 			    sizeof(uint32_t) - 1 - b % sizeof(uint32_t);
960 		}
961 #endif
962 		if (addr != oaddr) {
963 			res = fubyte(addr);
964 			if (res == -1)
965 				return (EFAULT);
966 			oaddr = addr;
967 			bits = res;
968 		}
969 		if ((bits & (1 << (i % NBBY))) != 0)
970 			return (EBADF);
971 	}
972 	return (0);
973 }
974 
975 int
976 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
977     fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits)
978 {
979 	struct filedesc *fdp;
980 	/*
981 	 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
982 	 * infds with the new FD_SETSIZE of 1024, and more than enough for
983 	 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
984 	 * of 256.
985 	 */
986 	fd_mask s_selbits[howmany(2048, NFDBITS)];
987 	fd_mask *ibits[3], *obits[3], *selbits, *sbp;
988 	struct timeval rtv;
989 	sbintime_t asbt, precision, rsbt;
990 	u_int nbufbytes, ncpbytes, ncpubytes, nfdbits;
991 	int error, lf, ndu;
992 
993 	if (nd < 0)
994 		return (EINVAL);
995 	fdp = td->td_proc->p_fd;
996 	ndu = nd;
997 	lf = fdp->fd_lastfile;
998 	if (nd > lf + 1)
999 		nd = lf + 1;
1000 
1001 	error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);
1002 	if (error != 0)
1003 		return (error);
1004 	error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits);
1005 	if (error != 0)
1006 		return (error);
1007 	error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits);
1008 	if (error != 0)
1009 		return (error);
1010 
1011 	/*
1012 	 * Allocate just enough bits for the non-null fd_sets.  Use the
1013 	 * preallocated auto buffer if possible.
1014 	 */
1015 	nfdbits = roundup(nd, NFDBITS);
1016 	ncpbytes = nfdbits / NBBY;
1017 	ncpubytes = roundup(nd, abi_nfdbits) / NBBY;
1018 	nbufbytes = 0;
1019 	if (fd_in != NULL)
1020 		nbufbytes += 2 * ncpbytes;
1021 	if (fd_ou != NULL)
1022 		nbufbytes += 2 * ncpbytes;
1023 	if (fd_ex != NULL)
1024 		nbufbytes += 2 * ncpbytes;
1025 	if (nbufbytes <= sizeof s_selbits)
1026 		selbits = &s_selbits[0];
1027 	else
1028 		selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
1029 
1030 	/*
1031 	 * Assign pointers into the bit buffers and fetch the input bits.
1032 	 * Put the output buffers together so that they can be bzeroed
1033 	 * together.
1034 	 */
1035 	sbp = selbits;
1036 #define	getbits(name, x) \
1037 	do {								\
1038 		if (name == NULL) {					\
1039 			ibits[x] = NULL;				\
1040 			obits[x] = NULL;				\
1041 		} else {						\
1042 			ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;	\
1043 			obits[x] = sbp;					\
1044 			sbp += ncpbytes / sizeof *sbp;			\
1045 			error = copyin(name, ibits[x], ncpubytes);	\
1046 			if (error != 0)					\
1047 				goto done;				\
1048 			bzero((char *)ibits[x] + ncpubytes,		\
1049 			    ncpbytes - ncpubytes);			\
1050 		}							\
1051 	} while (0)
1052 	getbits(fd_in, 0);
1053 	getbits(fd_ou, 1);
1054 	getbits(fd_ex, 2);
1055 #undef	getbits
1056 
1057 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__)
1058 	/*
1059 	 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS,
1060 	 * we are running under 32-bit emulation. This should be more
1061 	 * generic.
1062 	 */
1063 #define swizzle_fdset(bits)						\
1064 	if (abi_nfdbits != NFDBITS && bits != NULL) {			\
1065 		int i;							\
1066 		for (i = 0; i < ncpbytes / sizeof *sbp; i++)		\
1067 			bits[i] = (bits[i] >> 32) | (bits[i] << 32);	\
1068 	}
1069 #else
1070 #define swizzle_fdset(bits)
1071 #endif
1072 
1073 	/* Make sure the bit order makes it through an ABI transition */
1074 	swizzle_fdset(ibits[0]);
1075 	swizzle_fdset(ibits[1]);
1076 	swizzle_fdset(ibits[2]);
1077 
1078 	if (nbufbytes != 0)
1079 		bzero(selbits, nbufbytes / 2);
1080 
1081 	precision = 0;
1082 	if (tvp != NULL) {
1083 		rtv = *tvp;
1084 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1085 		    rtv.tv_usec >= 1000000) {
1086 			error = EINVAL;
1087 			goto done;
1088 		}
1089 		if (!timevalisset(&rtv))
1090 			asbt = 0;
1091 		else if (rtv.tv_sec <= INT32_MAX) {
1092 			rsbt = tvtosbt(rtv);
1093 			precision = rsbt;
1094 			precision >>= tc_precexp;
1095 			if (TIMESEL(&asbt, rsbt))
1096 				asbt += tc_tick_sbt;
1097 			if (asbt <= SBT_MAX - rsbt)
1098 				asbt += rsbt;
1099 			else
1100 				asbt = -1;
1101 		} else
1102 			asbt = -1;
1103 	} else
1104 		asbt = -1;
1105 	seltdinit(td);
1106 	/* Iterate until the timeout expires or descriptors become ready. */
1107 	for (;;) {
1108 		error = selscan(td, ibits, obits, nd);
1109 		if (error || td->td_retval[0] != 0)
1110 			break;
1111 		error = seltdwait(td, asbt, precision);
1112 		if (error)
1113 			break;
1114 		error = selrescan(td, ibits, obits);
1115 		if (error || td->td_retval[0] != 0)
1116 			break;
1117 	}
1118 	seltdclear(td);
1119 
1120 done:
1121 	/* select is not restarted after signals... */
1122 	if (error == ERESTART)
1123 		error = EINTR;
1124 	if (error == EWOULDBLOCK)
1125 		error = 0;
1126 
1127 	/* swizzle bit order back, if necessary */
1128 	swizzle_fdset(obits[0]);
1129 	swizzle_fdset(obits[1]);
1130 	swizzle_fdset(obits[2]);
1131 #undef swizzle_fdset
1132 
1133 #define	putbits(name, x) \
1134 	if (name && (error2 = copyout(obits[x], name, ncpubytes))) \
1135 		error = error2;
1136 	if (error == 0) {
1137 		int error2;
1138 
1139 		putbits(fd_in, 0);
1140 		putbits(fd_ou, 1);
1141 		putbits(fd_ex, 2);
1142 #undef putbits
1143 	}
1144 	if (selbits != &s_selbits[0])
1145 		free(selbits, M_SELECT);
1146 
1147 	return (error);
1148 }
1149 /*
1150  * Convert a select bit set to poll flags.
1151  *
1152  * The backend always returns POLLHUP/POLLERR if appropriate and we
1153  * return this as a set bit in any set.
1154  */
1155 static int select_flags[3] = {
1156     POLLRDNORM | POLLHUP | POLLERR,
1157     POLLWRNORM | POLLHUP | POLLERR,
1158     POLLRDBAND | POLLERR
1159 };
1160 
1161 /*
1162  * Compute the fo_poll flags required for a fd given by the index and
1163  * bit position in the fd_mask array.
1164  */
1165 static __inline int
1166 selflags(fd_mask **ibits, int idx, fd_mask bit)
1167 {
1168 	int flags;
1169 	int msk;
1170 
1171 	flags = 0;
1172 	for (msk = 0; msk < 3; msk++) {
1173 		if (ibits[msk] == NULL)
1174 			continue;
1175 		if ((ibits[msk][idx] & bit) == 0)
1176 			continue;
1177 		flags |= select_flags[msk];
1178 	}
1179 	return (flags);
1180 }
1181 
1182 /*
1183  * Set the appropriate output bits given a mask of fired events and the
1184  * input bits originally requested.
1185  */
1186 static __inline int
1187 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events)
1188 {
1189 	int msk;
1190 	int n;
1191 
1192 	n = 0;
1193 	for (msk = 0; msk < 3; msk++) {
1194 		if ((events & select_flags[msk]) == 0)
1195 			continue;
1196 		if (ibits[msk] == NULL)
1197 			continue;
1198 		if ((ibits[msk][idx] & bit) == 0)
1199 			continue;
1200 		/*
1201 		 * XXX Check for a duplicate set.  This can occur because a
1202 		 * socket calls selrecord() twice for each poll() call
1203 		 * resulting in two selfds per real fd.  selrescan() will
1204 		 * call selsetbits twice as a result.
1205 		 */
1206 		if ((obits[msk][idx] & bit) != 0)
1207 			continue;
1208 		obits[msk][idx] |= bit;
1209 		n++;
1210 	}
1211 
1212 	return (n);
1213 }
1214 
1215 static __inline int
1216 getselfd_cap(struct filedesc *fdp, int fd, struct file **fpp)
1217 {
1218 	cap_rights_t rights;
1219 
1220 	cap_rights_init(&rights, CAP_EVENT);
1221 
1222 	return (fget_unlocked(fdp, fd, &rights, fpp, NULL));
1223 }
1224 
1225 /*
1226  * Traverse the list of fds attached to this thread's seltd and check for
1227  * completion.
1228  */
1229 static int
1230 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
1231 {
1232 	struct filedesc *fdp;
1233 	struct selinfo *si;
1234 	struct seltd *stp;
1235 	struct selfd *sfp;
1236 	struct selfd *sfn;
1237 	struct file *fp;
1238 	fd_mask bit;
1239 	int fd, ev, n, idx;
1240 	int error;
1241 
1242 	fdp = td->td_proc->p_fd;
1243 	stp = td->td_sel;
1244 	n = 0;
1245 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1246 		fd = (int)(uintptr_t)sfp->sf_cookie;
1247 		si = sfp->sf_si;
1248 		selfdfree(stp, sfp);
1249 		/* If the selinfo wasn't cleared the event didn't fire. */
1250 		if (si != NULL)
1251 			continue;
1252 		error = getselfd_cap(fdp, fd, &fp);
1253 		if (error)
1254 			return (error);
1255 		idx = fd / NFDBITS;
1256 		bit = (fd_mask)1 << (fd % NFDBITS);
1257 		ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td);
1258 		fdrop(fp, td);
1259 		if (ev != 0)
1260 			n += selsetbits(ibits, obits, idx, bit, ev);
1261 	}
1262 	stp->st_flags = 0;
1263 	td->td_retval[0] = n;
1264 	return (0);
1265 }
1266 
1267 /*
1268  * Perform the initial filedescriptor scan and register ourselves with
1269  * each selinfo.
1270  */
1271 static int
1272 selscan(td, ibits, obits, nfd)
1273 	struct thread *td;
1274 	fd_mask **ibits, **obits;
1275 	int nfd;
1276 {
1277 	struct filedesc *fdp;
1278 	struct file *fp;
1279 	fd_mask bit;
1280 	int ev, flags, end, fd;
1281 	int n, idx;
1282 	int error;
1283 
1284 	fdp = td->td_proc->p_fd;
1285 	n = 0;
1286 	for (idx = 0, fd = 0; fd < nfd; idx++) {
1287 		end = imin(fd + NFDBITS, nfd);
1288 		for (bit = 1; fd < end; bit <<= 1, fd++) {
1289 			/* Compute the list of events we're interested in. */
1290 			flags = selflags(ibits, idx, bit);
1291 			if (flags == 0)
1292 				continue;
1293 			error = getselfd_cap(fdp, fd, &fp);
1294 			if (error)
1295 				return (error);
1296 			selfdalloc(td, (void *)(uintptr_t)fd);
1297 			ev = fo_poll(fp, flags, td->td_ucred, td);
1298 			fdrop(fp, td);
1299 			if (ev != 0)
1300 				n += selsetbits(ibits, obits, idx, bit, ev);
1301 		}
1302 	}
1303 
1304 	td->td_retval[0] = n;
1305 	return (0);
1306 }
1307 
1308 int
1309 sys_poll(struct thread *td, struct poll_args *uap)
1310 {
1311 	struct timespec ts, *tsp;
1312 
1313 	if (uap->timeout != INFTIM) {
1314 		if (uap->timeout < 0)
1315 			return (EINVAL);
1316 		ts.tv_sec = uap->timeout / 1000;
1317 		ts.tv_nsec = (uap->timeout % 1000) * 1000000;
1318 		tsp = &ts;
1319 	} else
1320 		tsp = NULL;
1321 
1322 	return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL));
1323 }
1324 
1325 int
1326 kern_poll(struct thread *td, struct pollfd *fds, u_int nfds,
1327     struct timespec *tsp, sigset_t *uset)
1328 {
1329 	struct pollfd *bits;
1330 	struct pollfd smallbits[32];
1331 	sbintime_t sbt, precision, tmp;
1332 	time_t over;
1333 	struct timespec ts;
1334 	int error;
1335 	size_t ni;
1336 
1337 	precision = 0;
1338 	if (tsp != NULL) {
1339 		if (tsp->tv_sec < 0)
1340 			return (EINVAL);
1341 		if (tsp->tv_nsec < 0 || tsp->tv_nsec >= 1000000000)
1342 			return (EINVAL);
1343 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1344 			sbt = 0;
1345 		else {
1346 			ts = *tsp;
1347 			if (ts.tv_sec > INT32_MAX / 2) {
1348 				over = ts.tv_sec - INT32_MAX / 2;
1349 				ts.tv_sec -= over;
1350 			} else
1351 				over = 0;
1352 			tmp = tstosbt(ts);
1353 			precision = tmp;
1354 			precision >>= tc_precexp;
1355 			if (TIMESEL(&sbt, tmp))
1356 				sbt += tc_tick_sbt;
1357 			sbt += tmp;
1358 		}
1359 	} else
1360 		sbt = -1;
1361 
1362 	if (nfds > maxfilesperproc && nfds > FD_SETSIZE)
1363 		return (EINVAL);
1364 	ni = nfds * sizeof(struct pollfd);
1365 	if (ni > sizeof(smallbits))
1366 		bits = malloc(ni, M_TEMP, M_WAITOK);
1367 	else
1368 		bits = smallbits;
1369 	error = copyin(fds, bits, ni);
1370 	if (error)
1371 		goto done;
1372 
1373 	if (uset != NULL) {
1374 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
1375 		    &td->td_oldsigmask, 0);
1376 		if (error)
1377 			goto done;
1378 		td->td_pflags |= TDP_OLDMASK;
1379 		/*
1380 		 * Make sure that ast() is called on return to
1381 		 * usermode and TDP_OLDMASK is cleared, restoring old
1382 		 * sigmask.
1383 		 */
1384 		thread_lock(td);
1385 		td->td_flags |= TDF_ASTPENDING;
1386 		thread_unlock(td);
1387 	}
1388 
1389 	seltdinit(td);
1390 	/* Iterate until the timeout expires or descriptors become ready. */
1391 	for (;;) {
1392 		error = pollscan(td, bits, nfds);
1393 		if (error || td->td_retval[0] != 0)
1394 			break;
1395 		error = seltdwait(td, sbt, precision);
1396 		if (error)
1397 			break;
1398 		error = pollrescan(td);
1399 		if (error || td->td_retval[0] != 0)
1400 			break;
1401 	}
1402 	seltdclear(td);
1403 
1404 done:
1405 	/* poll is not restarted after signals... */
1406 	if (error == ERESTART)
1407 		error = EINTR;
1408 	if (error == EWOULDBLOCK)
1409 		error = 0;
1410 	if (error == 0) {
1411 		error = pollout(td, bits, fds, nfds);
1412 		if (error)
1413 			goto out;
1414 	}
1415 out:
1416 	if (ni > sizeof(smallbits))
1417 		free(bits, M_TEMP);
1418 	return (error);
1419 }
1420 
1421 int
1422 sys_ppoll(struct thread *td, struct ppoll_args *uap)
1423 {
1424 	struct timespec ts, *tsp;
1425 	sigset_t set, *ssp;
1426 	int error;
1427 
1428 	if (uap->ts != NULL) {
1429 		error = copyin(uap->ts, &ts, sizeof(ts));
1430 		if (error)
1431 			return (error);
1432 		tsp = &ts;
1433 	} else
1434 		tsp = NULL;
1435 	if (uap->set != NULL) {
1436 		error = copyin(uap->set, &set, sizeof(set));
1437 		if (error)
1438 			return (error);
1439 		ssp = &set;
1440 	} else
1441 		ssp = NULL;
1442 	/*
1443 	 * fds is still a pointer to user space. kern_poll() will
1444 	 * take care of copyin that array to the kernel space.
1445 	 */
1446 
1447 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
1448 }
1449 
1450 static int
1451 pollrescan(struct thread *td)
1452 {
1453 	struct seltd *stp;
1454 	struct selfd *sfp;
1455 	struct selfd *sfn;
1456 	struct selinfo *si;
1457 	struct filedesc *fdp;
1458 	struct file *fp;
1459 	struct pollfd *fd;
1460 #ifdef CAPABILITIES
1461 	cap_rights_t rights;
1462 #endif
1463 	int n;
1464 
1465 	n = 0;
1466 	fdp = td->td_proc->p_fd;
1467 	stp = td->td_sel;
1468 	FILEDESC_SLOCK(fdp);
1469 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1470 		fd = (struct pollfd *)sfp->sf_cookie;
1471 		si = sfp->sf_si;
1472 		selfdfree(stp, sfp);
1473 		/* If the selinfo wasn't cleared the event didn't fire. */
1474 		if (si != NULL)
1475 			continue;
1476 		fp = fdp->fd_ofiles[fd->fd].fde_file;
1477 #ifdef CAPABILITIES
1478 		if (fp == NULL ||
1479 		    cap_check(cap_rights(fdp, fd->fd),
1480 		    cap_rights_init(&rights, CAP_EVENT)) != 0)
1481 #else
1482 		if (fp == NULL)
1483 #endif
1484 		{
1485 			fd->revents = POLLNVAL;
1486 			n++;
1487 			continue;
1488 		}
1489 
1490 		/*
1491 		 * Note: backend also returns POLLHUP and
1492 		 * POLLERR if appropriate.
1493 		 */
1494 		fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
1495 		if (fd->revents != 0)
1496 			n++;
1497 	}
1498 	FILEDESC_SUNLOCK(fdp);
1499 	stp->st_flags = 0;
1500 	td->td_retval[0] = n;
1501 	return (0);
1502 }
1503 
1504 
1505 static int
1506 pollout(td, fds, ufds, nfd)
1507 	struct thread *td;
1508 	struct pollfd *fds;
1509 	struct pollfd *ufds;
1510 	u_int nfd;
1511 {
1512 	int error = 0;
1513 	u_int i = 0;
1514 	u_int n = 0;
1515 
1516 	for (i = 0; i < nfd; i++) {
1517 		error = copyout(&fds->revents, &ufds->revents,
1518 		    sizeof(ufds->revents));
1519 		if (error)
1520 			return (error);
1521 		if (fds->revents != 0)
1522 			n++;
1523 		fds++;
1524 		ufds++;
1525 	}
1526 	td->td_retval[0] = n;
1527 	return (0);
1528 }
1529 
1530 static int
1531 pollscan(td, fds, nfd)
1532 	struct thread *td;
1533 	struct pollfd *fds;
1534 	u_int nfd;
1535 {
1536 	struct filedesc *fdp = td->td_proc->p_fd;
1537 	struct file *fp;
1538 #ifdef CAPABILITIES
1539 	cap_rights_t rights;
1540 #endif
1541 	int i, n = 0;
1542 
1543 	FILEDESC_SLOCK(fdp);
1544 	for (i = 0; i < nfd; i++, fds++) {
1545 		if (fds->fd > fdp->fd_lastfile) {
1546 			fds->revents = POLLNVAL;
1547 			n++;
1548 		} else if (fds->fd < 0) {
1549 			fds->revents = 0;
1550 		} else {
1551 			fp = fdp->fd_ofiles[fds->fd].fde_file;
1552 #ifdef CAPABILITIES
1553 			if (fp == NULL ||
1554 			    cap_check(cap_rights(fdp, fds->fd),
1555 			    cap_rights_init(&rights, CAP_EVENT)) != 0)
1556 #else
1557 			if (fp == NULL)
1558 #endif
1559 			{
1560 				fds->revents = POLLNVAL;
1561 				n++;
1562 			} else {
1563 				/*
1564 				 * Note: backend also returns POLLHUP and
1565 				 * POLLERR if appropriate.
1566 				 */
1567 				selfdalloc(td, fds);
1568 				fds->revents = fo_poll(fp, fds->events,
1569 				    td->td_ucred, td);
1570 				/*
1571 				 * POSIX requires POLLOUT to be never
1572 				 * set simultaneously with POLLHUP.
1573 				 */
1574 				if ((fds->revents & POLLHUP) != 0)
1575 					fds->revents &= ~POLLOUT;
1576 
1577 				if (fds->revents != 0)
1578 					n++;
1579 			}
1580 		}
1581 	}
1582 	FILEDESC_SUNLOCK(fdp);
1583 	td->td_retval[0] = n;
1584 	return (0);
1585 }
1586 
1587 /*
1588  * OpenBSD poll system call.
1589  *
1590  * XXX this isn't quite a true representation..  OpenBSD uses select ops.
1591  */
1592 #ifndef _SYS_SYSPROTO_H_
1593 struct openbsd_poll_args {
1594 	struct pollfd *fds;
1595 	u_int	nfds;
1596 	int	timeout;
1597 };
1598 #endif
1599 int
1600 sys_openbsd_poll(td, uap)
1601 	register struct thread *td;
1602 	register struct openbsd_poll_args *uap;
1603 {
1604 	return (sys_poll(td, (struct poll_args *)uap));
1605 }
1606 
1607 /*
1608  * XXX This was created specifically to support netncp and netsmb.  This
1609  * allows the caller to specify a socket to wait for events on.  It returns
1610  * 0 if any events matched and an error otherwise.  There is no way to
1611  * determine which events fired.
1612  */
1613 int
1614 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
1615 {
1616 	struct timeval rtv;
1617 	sbintime_t asbt, precision, rsbt;
1618 	int error;
1619 
1620 	precision = 0;	/* stupid gcc! */
1621 	if (tvp != NULL) {
1622 		rtv = *tvp;
1623 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1624 		    rtv.tv_usec >= 1000000)
1625 			return (EINVAL);
1626 		if (!timevalisset(&rtv))
1627 			asbt = 0;
1628 		else if (rtv.tv_sec <= INT32_MAX) {
1629 			rsbt = tvtosbt(rtv);
1630 			precision = rsbt;
1631 			precision >>= tc_precexp;
1632 			if (TIMESEL(&asbt, rsbt))
1633 				asbt += tc_tick_sbt;
1634 			if (asbt <= SBT_MAX - rsbt)
1635 				asbt += rsbt;
1636 			else
1637 				asbt = -1;
1638 		} else
1639 			asbt = -1;
1640 	} else
1641 		asbt = -1;
1642 	seltdinit(td);
1643 	/*
1644 	 * Iterate until the timeout expires or the socket becomes ready.
1645 	 */
1646 	for (;;) {
1647 		selfdalloc(td, NULL);
1648 		error = sopoll(so, events, NULL, td);
1649 		/* error here is actually the ready events. */
1650 		if (error)
1651 			return (0);
1652 		error = seltdwait(td, asbt, precision);
1653 		if (error)
1654 			break;
1655 	}
1656 	seltdclear(td);
1657 	/* XXX Duplicates ncp/smb behavior. */
1658 	if (error == ERESTART)
1659 		error = 0;
1660 	return (error);
1661 }
1662 
1663 /*
1664  * Preallocate two selfds associated with 'cookie'.  Some fo_poll routines
1665  * have two select sets, one for read and another for write.
1666  */
1667 static void
1668 selfdalloc(struct thread *td, void *cookie)
1669 {
1670 	struct seltd *stp;
1671 
1672 	stp = td->td_sel;
1673 	if (stp->st_free1 == NULL)
1674 		stp->st_free1 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
1675 	stp->st_free1->sf_td = stp;
1676 	stp->st_free1->sf_cookie = cookie;
1677 	if (stp->st_free2 == NULL)
1678 		stp->st_free2 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
1679 	stp->st_free2->sf_td = stp;
1680 	stp->st_free2->sf_cookie = cookie;
1681 }
1682 
1683 static void
1684 selfdfree(struct seltd *stp, struct selfd *sfp)
1685 {
1686 	STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
1687 	if (sfp->sf_si != NULL) {
1688 		mtx_lock(sfp->sf_mtx);
1689 		if (sfp->sf_si != NULL) {
1690 			TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
1691 			refcount_release(&sfp->sf_refs);
1692 		}
1693 		mtx_unlock(sfp->sf_mtx);
1694 	}
1695 	if (refcount_release(&sfp->sf_refs))
1696 		uma_zfree(selfd_zone, sfp);
1697 }
1698 
1699 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */
1700 void
1701 seldrain(sip)
1702         struct selinfo *sip;
1703 {
1704 
1705 	/*
1706 	 * This feature is already provided by doselwakeup(), thus it is
1707 	 * enough to go for it.
1708 	 * Eventually, the context, should take care to avoid races
1709 	 * between thread calling select()/poll() and file descriptor
1710 	 * detaching, but, again, the races are just the same as
1711 	 * selwakeup().
1712 	 */
1713         doselwakeup(sip, -1);
1714 }
1715 
1716 /*
1717  * Record a select request.
1718  */
1719 void
1720 selrecord(selector, sip)
1721 	struct thread *selector;
1722 	struct selinfo *sip;
1723 {
1724 	struct selfd *sfp;
1725 	struct seltd *stp;
1726 	struct mtx *mtxp;
1727 
1728 	stp = selector->td_sel;
1729 	/*
1730 	 * Don't record when doing a rescan.
1731 	 */
1732 	if (stp->st_flags & SELTD_RESCAN)
1733 		return;
1734 	/*
1735 	 * Grab one of the preallocated descriptors.
1736 	 */
1737 	sfp = NULL;
1738 	if ((sfp = stp->st_free1) != NULL)
1739 		stp->st_free1 = NULL;
1740 	else if ((sfp = stp->st_free2) != NULL)
1741 		stp->st_free2 = NULL;
1742 	else
1743 		panic("selrecord: No free selfd on selq");
1744 	mtxp = sip->si_mtx;
1745 	if (mtxp == NULL)
1746 		mtxp = mtx_pool_find(mtxpool_select, sip);
1747 	/*
1748 	 * Initialize the sfp and queue it in the thread.
1749 	 */
1750 	sfp->sf_si = sip;
1751 	sfp->sf_mtx = mtxp;
1752 	refcount_init(&sfp->sf_refs, 2);
1753 	STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
1754 	/*
1755 	 * Now that we've locked the sip, check for initialization.
1756 	 */
1757 	mtx_lock(mtxp);
1758 	if (sip->si_mtx == NULL) {
1759 		sip->si_mtx = mtxp;
1760 		TAILQ_INIT(&sip->si_tdlist);
1761 	}
1762 	/*
1763 	 * Add this thread to the list of selfds listening on this selinfo.
1764 	 */
1765 	TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
1766 	mtx_unlock(sip->si_mtx);
1767 }
1768 
1769 /* Wake up a selecting thread. */
1770 void
1771 selwakeup(sip)
1772 	struct selinfo *sip;
1773 {
1774 	doselwakeup(sip, -1);
1775 }
1776 
1777 /* Wake up a selecting thread, and set its priority. */
1778 void
1779 selwakeuppri(sip, pri)
1780 	struct selinfo *sip;
1781 	int pri;
1782 {
1783 	doselwakeup(sip, pri);
1784 }
1785 
1786 /*
1787  * Do a wakeup when a selectable event occurs.
1788  */
1789 static void
1790 doselwakeup(sip, pri)
1791 	struct selinfo *sip;
1792 	int pri;
1793 {
1794 	struct selfd *sfp;
1795 	struct selfd *sfn;
1796 	struct seltd *stp;
1797 
1798 	/* If it's not initialized there can't be any waiters. */
1799 	if (sip->si_mtx == NULL)
1800 		return;
1801 	/*
1802 	 * Locking the selinfo locks all selfds associated with it.
1803 	 */
1804 	mtx_lock(sip->si_mtx);
1805 	TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
1806 		/*
1807 		 * Once we remove this sfp from the list and clear the
1808 		 * sf_si seltdclear will know to ignore this si.
1809 		 */
1810 		TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
1811 		sfp->sf_si = NULL;
1812 		stp = sfp->sf_td;
1813 		mtx_lock(&stp->st_mtx);
1814 		stp->st_flags |= SELTD_PENDING;
1815 		cv_broadcastpri(&stp->st_wait, pri);
1816 		mtx_unlock(&stp->st_mtx);
1817 		if (refcount_release(&sfp->sf_refs))
1818 			uma_zfree(selfd_zone, sfp);
1819 	}
1820 	mtx_unlock(sip->si_mtx);
1821 }
1822 
1823 static void
1824 seltdinit(struct thread *td)
1825 {
1826 	struct seltd *stp;
1827 
1828 	if ((stp = td->td_sel) != NULL)
1829 		goto out;
1830 	td->td_sel = stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
1831 	mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
1832 	cv_init(&stp->st_wait, "select");
1833 out:
1834 	stp->st_flags = 0;
1835 	STAILQ_INIT(&stp->st_selq);
1836 }
1837 
1838 static int
1839 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision)
1840 {
1841 	struct seltd *stp;
1842 	int error;
1843 
1844 	stp = td->td_sel;
1845 	/*
1846 	 * An event of interest may occur while we do not hold the seltd
1847 	 * locked so check the pending flag before we sleep.
1848 	 */
1849 	mtx_lock(&stp->st_mtx);
1850 	/*
1851 	 * Any further calls to selrecord will be a rescan.
1852 	 */
1853 	stp->st_flags |= SELTD_RESCAN;
1854 	if (stp->st_flags & SELTD_PENDING) {
1855 		mtx_unlock(&stp->st_mtx);
1856 		return (0);
1857 	}
1858 	if (sbt == 0)
1859 		error = EWOULDBLOCK;
1860 	else if (sbt != -1)
1861 		error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx,
1862 		    sbt, precision, C_ABSOLUTE);
1863 	else
1864 		error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
1865 	mtx_unlock(&stp->st_mtx);
1866 
1867 	return (error);
1868 }
1869 
1870 void
1871 seltdfini(struct thread *td)
1872 {
1873 	struct seltd *stp;
1874 
1875 	stp = td->td_sel;
1876 	if (stp == NULL)
1877 		return;
1878 	if (stp->st_free1)
1879 		uma_zfree(selfd_zone, stp->st_free1);
1880 	if (stp->st_free2)
1881 		uma_zfree(selfd_zone, stp->st_free2);
1882 	td->td_sel = NULL;
1883 	free(stp, M_SELECT);
1884 }
1885 
1886 /*
1887  * Remove the references to the thread from all of the objects we were
1888  * polling.
1889  */
1890 static void
1891 seltdclear(struct thread *td)
1892 {
1893 	struct seltd *stp;
1894 	struct selfd *sfp;
1895 	struct selfd *sfn;
1896 
1897 	stp = td->td_sel;
1898 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
1899 		selfdfree(stp, sfp);
1900 	stp->st_flags = 0;
1901 }
1902 
1903 static void selectinit(void *);
1904 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
1905 static void
1906 selectinit(void *dummy __unused)
1907 {
1908 
1909 	selfd_zone = uma_zcreate("selfd", sizeof(struct selfd), NULL, NULL,
1910 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1911 	mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF);
1912 }
1913