1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)sys_generic.c 8.5 (Berkeley) 1/21/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_capsicum.h" 43 #include "opt_ktrace.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysproto.h> 48 #include <sys/capsicum.h> 49 #include <sys/filedesc.h> 50 #include <sys/filio.h> 51 #include <sys/fcntl.h> 52 #include <sys/file.h> 53 #include <sys/lock.h> 54 #include <sys/proc.h> 55 #include <sys/signalvar.h> 56 #include <sys/socketvar.h> 57 #include <sys/uio.h> 58 #include <sys/eventfd.h> 59 #include <sys/kernel.h> 60 #include <sys/ktr.h> 61 #include <sys/limits.h> 62 #include <sys/malloc.h> 63 #include <sys/poll.h> 64 #include <sys/resourcevar.h> 65 #include <sys/selinfo.h> 66 #include <sys/sleepqueue.h> 67 #include <sys/specialfd.h> 68 #include <sys/syscallsubr.h> 69 #include <sys/sysctl.h> 70 #include <sys/sysent.h> 71 #include <sys/vnode.h> 72 #include <sys/bio.h> 73 #include <sys/buf.h> 74 #include <sys/condvar.h> 75 #ifdef KTRACE 76 #include <sys/ktrace.h> 77 #endif 78 79 #include <security/audit/audit.h> 80 81 /* 82 * The following macro defines how many bytes will be allocated from 83 * the stack instead of memory allocated when passing the IOCTL data 84 * structures from userspace and to the kernel. Some IOCTLs having 85 * small data structures are used very frequently and this small 86 * buffer on the stack gives a significant speedup improvement for 87 * those requests. The value of this define should be greater or equal 88 * to 64 bytes and should also be power of two. The data structure is 89 * currently hard-aligned to a 8-byte boundary on the stack. This 90 * should currently be sufficient for all supported platforms. 91 */ 92 #define SYS_IOCTL_SMALL_SIZE 128 /* bytes */ 93 #define SYS_IOCTL_SMALL_ALIGN 8 /* bytes */ 94 95 #ifdef __LP64__ 96 static int iosize_max_clamp = 0; 97 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW, 98 &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX"); 99 static int devfs_iosize_max_clamp = 1; 100 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW, 101 &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices"); 102 #endif 103 104 /* 105 * Assert that the return value of read(2) and write(2) syscalls fits 106 * into a register. If not, an architecture will need to provide the 107 * usermode wrappers to reconstruct the result. 108 */ 109 CTASSERT(sizeof(register_t) >= sizeof(size_t)); 110 111 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer"); 112 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer"); 113 MALLOC_DEFINE(M_IOV, "iov", "large iov's"); 114 115 static int pollout(struct thread *, struct pollfd *, struct pollfd *, 116 u_int); 117 static int pollscan(struct thread *, struct pollfd *, u_int); 118 static int pollrescan(struct thread *); 119 static int selscan(struct thread *, fd_mask **, fd_mask **, int); 120 static int selrescan(struct thread *, fd_mask **, fd_mask **); 121 static void selfdalloc(struct thread *, void *); 122 static void selfdfree(struct seltd *, struct selfd *); 123 static int dofileread(struct thread *, int, struct file *, struct uio *, 124 off_t, int); 125 static int dofilewrite(struct thread *, int, struct file *, struct uio *, 126 off_t, int); 127 static void doselwakeup(struct selinfo *, int); 128 static void seltdinit(struct thread *); 129 static int seltdwait(struct thread *, sbintime_t, sbintime_t); 130 static void seltdclear(struct thread *); 131 132 /* 133 * One seltd per-thread allocated on demand as needed. 134 * 135 * t - protected by st_mtx 136 * k - Only accessed by curthread or read-only 137 */ 138 struct seltd { 139 STAILQ_HEAD(, selfd) st_selq; /* (k) List of selfds. */ 140 struct selfd *st_free1; /* (k) free fd for read set. */ 141 struct selfd *st_free2; /* (k) free fd for write set. */ 142 struct mtx st_mtx; /* Protects struct seltd */ 143 struct cv st_wait; /* (t) Wait channel. */ 144 int st_flags; /* (t) SELTD_ flags. */ 145 }; 146 147 #define SELTD_PENDING 0x0001 /* We have pending events. */ 148 #define SELTD_RESCAN 0x0002 /* Doing a rescan. */ 149 150 /* 151 * One selfd allocated per-thread per-file-descriptor. 152 * f - protected by sf_mtx 153 */ 154 struct selfd { 155 STAILQ_ENTRY(selfd) sf_link; /* (k) fds owned by this td. */ 156 TAILQ_ENTRY(selfd) sf_threads; /* (f) fds on this selinfo. */ 157 struct selinfo *sf_si; /* (f) selinfo when linked. */ 158 struct mtx *sf_mtx; /* Pointer to selinfo mtx. */ 159 struct seltd *sf_td; /* (k) owning seltd. */ 160 void *sf_cookie; /* (k) fd or pollfd. */ 161 }; 162 163 MALLOC_DEFINE(M_SELFD, "selfd", "selfd"); 164 static struct mtx_pool *mtxpool_select; 165 166 #ifdef __LP64__ 167 size_t 168 devfs_iosize_max(void) 169 { 170 171 return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ? 172 INT_MAX : SSIZE_MAX); 173 } 174 175 size_t 176 iosize_max(void) 177 { 178 179 return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ? 180 INT_MAX : SSIZE_MAX); 181 } 182 #endif 183 184 #ifndef _SYS_SYSPROTO_H_ 185 struct read_args { 186 int fd; 187 void *buf; 188 size_t nbyte; 189 }; 190 #endif 191 int 192 sys_read(struct thread *td, struct read_args *uap) 193 { 194 struct uio auio; 195 struct iovec aiov; 196 int error; 197 198 if (uap->nbyte > IOSIZE_MAX) 199 return (EINVAL); 200 aiov.iov_base = uap->buf; 201 aiov.iov_len = uap->nbyte; 202 auio.uio_iov = &aiov; 203 auio.uio_iovcnt = 1; 204 auio.uio_resid = uap->nbyte; 205 auio.uio_segflg = UIO_USERSPACE; 206 error = kern_readv(td, uap->fd, &auio); 207 return (error); 208 } 209 210 /* 211 * Positioned read system call 212 */ 213 #ifndef _SYS_SYSPROTO_H_ 214 struct pread_args { 215 int fd; 216 void *buf; 217 size_t nbyte; 218 int pad; 219 off_t offset; 220 }; 221 #endif 222 int 223 sys_pread(struct thread *td, struct pread_args *uap) 224 { 225 226 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); 227 } 228 229 int 230 kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset) 231 { 232 struct uio auio; 233 struct iovec aiov; 234 int error; 235 236 if (nbyte > IOSIZE_MAX) 237 return (EINVAL); 238 aiov.iov_base = buf; 239 aiov.iov_len = nbyte; 240 auio.uio_iov = &aiov; 241 auio.uio_iovcnt = 1; 242 auio.uio_resid = nbyte; 243 auio.uio_segflg = UIO_USERSPACE; 244 error = kern_preadv(td, fd, &auio, offset); 245 return (error); 246 } 247 248 #if defined(COMPAT_FREEBSD6) 249 int 250 freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap) 251 { 252 253 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); 254 } 255 #endif 256 257 /* 258 * Scatter read system call. 259 */ 260 #ifndef _SYS_SYSPROTO_H_ 261 struct readv_args { 262 int fd; 263 struct iovec *iovp; 264 u_int iovcnt; 265 }; 266 #endif 267 int 268 sys_readv(struct thread *td, struct readv_args *uap) 269 { 270 struct uio *auio; 271 int error; 272 273 error = copyinuio(uap->iovp, uap->iovcnt, &auio); 274 if (error) 275 return (error); 276 error = kern_readv(td, uap->fd, auio); 277 free(auio, M_IOV); 278 return (error); 279 } 280 281 int 282 kern_readv(struct thread *td, int fd, struct uio *auio) 283 { 284 struct file *fp; 285 int error; 286 287 error = fget_read(td, fd, &cap_read_rights, &fp); 288 if (error) 289 return (error); 290 error = dofileread(td, fd, fp, auio, (off_t)-1, 0); 291 fdrop(fp, td); 292 return (error); 293 } 294 295 /* 296 * Scatter positioned read system call. 297 */ 298 #ifndef _SYS_SYSPROTO_H_ 299 struct preadv_args { 300 int fd; 301 struct iovec *iovp; 302 u_int iovcnt; 303 off_t offset; 304 }; 305 #endif 306 int 307 sys_preadv(struct thread *td, struct preadv_args *uap) 308 { 309 struct uio *auio; 310 int error; 311 312 error = copyinuio(uap->iovp, uap->iovcnt, &auio); 313 if (error) 314 return (error); 315 error = kern_preadv(td, uap->fd, auio, uap->offset); 316 free(auio, M_IOV); 317 return (error); 318 } 319 320 int 321 kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset) 322 { 323 struct file *fp; 324 int error; 325 326 error = fget_read(td, fd, &cap_pread_rights, &fp); 327 if (error) 328 return (error); 329 if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE)) 330 error = ESPIPE; 331 else if (offset < 0 && 332 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) 333 error = EINVAL; 334 else 335 error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET); 336 fdrop(fp, td); 337 return (error); 338 } 339 340 /* 341 * Common code for readv and preadv that reads data in 342 * from a file using the passed in uio, offset, and flags. 343 */ 344 static int 345 dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio, 346 off_t offset, int flags) 347 { 348 ssize_t cnt; 349 int error; 350 #ifdef KTRACE 351 struct uio *ktruio = NULL; 352 #endif 353 354 AUDIT_ARG_FD(fd); 355 356 /* Finish zero length reads right here */ 357 if (auio->uio_resid == 0) { 358 td->td_retval[0] = 0; 359 return (0); 360 } 361 auio->uio_rw = UIO_READ; 362 auio->uio_offset = offset; 363 auio->uio_td = td; 364 #ifdef KTRACE 365 if (KTRPOINT(td, KTR_GENIO)) 366 ktruio = cloneuio(auio); 367 #endif 368 cnt = auio->uio_resid; 369 if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) { 370 if (auio->uio_resid != cnt && (error == ERESTART || 371 error == EINTR || error == EWOULDBLOCK)) 372 error = 0; 373 } 374 cnt -= auio->uio_resid; 375 #ifdef KTRACE 376 if (ktruio != NULL) { 377 ktruio->uio_resid = cnt; 378 ktrgenio(fd, UIO_READ, ktruio, error); 379 } 380 #endif 381 td->td_retval[0] = cnt; 382 return (error); 383 } 384 385 #ifndef _SYS_SYSPROTO_H_ 386 struct write_args { 387 int fd; 388 const void *buf; 389 size_t nbyte; 390 }; 391 #endif 392 int 393 sys_write(struct thread *td, struct write_args *uap) 394 { 395 struct uio auio; 396 struct iovec aiov; 397 int error; 398 399 if (uap->nbyte > IOSIZE_MAX) 400 return (EINVAL); 401 aiov.iov_base = (void *)(uintptr_t)uap->buf; 402 aiov.iov_len = uap->nbyte; 403 auio.uio_iov = &aiov; 404 auio.uio_iovcnt = 1; 405 auio.uio_resid = uap->nbyte; 406 auio.uio_segflg = UIO_USERSPACE; 407 error = kern_writev(td, uap->fd, &auio); 408 return (error); 409 } 410 411 /* 412 * Positioned write system call. 413 */ 414 #ifndef _SYS_SYSPROTO_H_ 415 struct pwrite_args { 416 int fd; 417 const void *buf; 418 size_t nbyte; 419 int pad; 420 off_t offset; 421 }; 422 #endif 423 int 424 sys_pwrite(struct thread *td, struct pwrite_args *uap) 425 { 426 427 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); 428 } 429 430 int 431 kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte, 432 off_t offset) 433 { 434 struct uio auio; 435 struct iovec aiov; 436 int error; 437 438 if (nbyte > IOSIZE_MAX) 439 return (EINVAL); 440 aiov.iov_base = (void *)(uintptr_t)buf; 441 aiov.iov_len = nbyte; 442 auio.uio_iov = &aiov; 443 auio.uio_iovcnt = 1; 444 auio.uio_resid = nbyte; 445 auio.uio_segflg = UIO_USERSPACE; 446 error = kern_pwritev(td, fd, &auio, offset); 447 return (error); 448 } 449 450 #if defined(COMPAT_FREEBSD6) 451 int 452 freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap) 453 { 454 455 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); 456 } 457 #endif 458 459 /* 460 * Gather write system call. 461 */ 462 #ifndef _SYS_SYSPROTO_H_ 463 struct writev_args { 464 int fd; 465 struct iovec *iovp; 466 u_int iovcnt; 467 }; 468 #endif 469 int 470 sys_writev(struct thread *td, struct writev_args *uap) 471 { 472 struct uio *auio; 473 int error; 474 475 error = copyinuio(uap->iovp, uap->iovcnt, &auio); 476 if (error) 477 return (error); 478 error = kern_writev(td, uap->fd, auio); 479 free(auio, M_IOV); 480 return (error); 481 } 482 483 int 484 kern_writev(struct thread *td, int fd, struct uio *auio) 485 { 486 struct file *fp; 487 int error; 488 489 error = fget_write(td, fd, &cap_write_rights, &fp); 490 if (error) 491 return (error); 492 error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0); 493 fdrop(fp, td); 494 return (error); 495 } 496 497 /* 498 * Gather positioned write system call. 499 */ 500 #ifndef _SYS_SYSPROTO_H_ 501 struct pwritev_args { 502 int fd; 503 struct iovec *iovp; 504 u_int iovcnt; 505 off_t offset; 506 }; 507 #endif 508 int 509 sys_pwritev(struct thread *td, struct pwritev_args *uap) 510 { 511 struct uio *auio; 512 int error; 513 514 error = copyinuio(uap->iovp, uap->iovcnt, &auio); 515 if (error) 516 return (error); 517 error = kern_pwritev(td, uap->fd, auio, uap->offset); 518 free(auio, M_IOV); 519 return (error); 520 } 521 522 int 523 kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset) 524 { 525 struct file *fp; 526 int error; 527 528 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 529 if (error) 530 return (error); 531 if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE)) 532 error = ESPIPE; 533 else if (offset < 0 && 534 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) 535 error = EINVAL; 536 else 537 error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET); 538 fdrop(fp, td); 539 return (error); 540 } 541 542 /* 543 * Common code for writev and pwritev that writes data to 544 * a file using the passed in uio, offset, and flags. 545 */ 546 static int 547 dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio, 548 off_t offset, int flags) 549 { 550 ssize_t cnt; 551 int error; 552 #ifdef KTRACE 553 struct uio *ktruio = NULL; 554 #endif 555 556 AUDIT_ARG_FD(fd); 557 auio->uio_rw = UIO_WRITE; 558 auio->uio_td = td; 559 auio->uio_offset = offset; 560 #ifdef KTRACE 561 if (KTRPOINT(td, KTR_GENIO)) 562 ktruio = cloneuio(auio); 563 #endif 564 cnt = auio->uio_resid; 565 if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) { 566 if (auio->uio_resid != cnt && (error == ERESTART || 567 error == EINTR || error == EWOULDBLOCK)) 568 error = 0; 569 /* Socket layer is responsible for issuing SIGPIPE. */ 570 if (fp->f_type != DTYPE_SOCKET && error == EPIPE) { 571 PROC_LOCK(td->td_proc); 572 tdsignal(td, SIGPIPE); 573 PROC_UNLOCK(td->td_proc); 574 } 575 } 576 cnt -= auio->uio_resid; 577 #ifdef KTRACE 578 if (ktruio != NULL) { 579 ktruio->uio_resid = cnt; 580 ktrgenio(fd, UIO_WRITE, ktruio, error); 581 } 582 #endif 583 td->td_retval[0] = cnt; 584 return (error); 585 } 586 587 /* 588 * Truncate a file given a file descriptor. 589 * 590 * Can't use fget_write() here, since must return EINVAL and not EBADF if the 591 * descriptor isn't writable. 592 */ 593 int 594 kern_ftruncate(struct thread *td, int fd, off_t length) 595 { 596 struct file *fp; 597 int error; 598 599 AUDIT_ARG_FD(fd); 600 if (length < 0) 601 return (EINVAL); 602 error = fget(td, fd, &cap_ftruncate_rights, &fp); 603 if (error) 604 return (error); 605 AUDIT_ARG_FILE(td->td_proc, fp); 606 if (!(fp->f_flag & FWRITE)) { 607 fdrop(fp, td); 608 return (EINVAL); 609 } 610 error = fo_truncate(fp, length, td->td_ucred, td); 611 fdrop(fp, td); 612 return (error); 613 } 614 615 #ifndef _SYS_SYSPROTO_H_ 616 struct ftruncate_args { 617 int fd; 618 int pad; 619 off_t length; 620 }; 621 #endif 622 int 623 sys_ftruncate(struct thread *td, struct ftruncate_args *uap) 624 { 625 626 return (kern_ftruncate(td, uap->fd, uap->length)); 627 } 628 629 #if defined(COMPAT_43) 630 #ifndef _SYS_SYSPROTO_H_ 631 struct oftruncate_args { 632 int fd; 633 long length; 634 }; 635 #endif 636 int 637 oftruncate(struct thread *td, struct oftruncate_args *uap) 638 { 639 640 return (kern_ftruncate(td, uap->fd, uap->length)); 641 } 642 #endif /* COMPAT_43 */ 643 644 #ifndef _SYS_SYSPROTO_H_ 645 struct ioctl_args { 646 int fd; 647 u_long com; 648 caddr_t data; 649 }; 650 #endif 651 /* ARGSUSED */ 652 int 653 sys_ioctl(struct thread *td, struct ioctl_args *uap) 654 { 655 u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN); 656 uint32_t com; 657 int arg, error; 658 u_int size; 659 caddr_t data; 660 661 #ifdef INVARIANTS 662 if (uap->com > 0xffffffff) { 663 printf( 664 "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n", 665 td->td_proc->p_pid, td->td_name, uap->com); 666 } 667 #endif 668 com = (uint32_t)uap->com; 669 670 /* 671 * Interpret high order word to find amount of data to be 672 * copied to/from the user's address space. 673 */ 674 size = IOCPARM_LEN(com); 675 if ((size > IOCPARM_MAX) || 676 ((com & (IOC_VOID | IOC_IN | IOC_OUT)) == 0) || 677 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43) 678 ((com & IOC_OUT) && size == 0) || 679 #else 680 ((com & (IOC_IN | IOC_OUT)) && size == 0) || 681 #endif 682 ((com & IOC_VOID) && size > 0 && size != sizeof(int))) 683 return (ENOTTY); 684 685 if (size > 0) { 686 if (com & IOC_VOID) { 687 /* Integer argument. */ 688 arg = (intptr_t)uap->data; 689 data = (void *)&arg; 690 size = 0; 691 } else { 692 if (size > SYS_IOCTL_SMALL_SIZE) 693 data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK); 694 else 695 data = smalldata; 696 } 697 } else 698 data = (void *)&uap->data; 699 if (com & IOC_IN) { 700 error = copyin(uap->data, data, (u_int)size); 701 if (error != 0) 702 goto out; 703 } else if (com & IOC_OUT) { 704 /* 705 * Zero the buffer so the user always 706 * gets back something deterministic. 707 */ 708 bzero(data, size); 709 } 710 711 error = kern_ioctl(td, uap->fd, com, data); 712 713 if (error == 0 && (com & IOC_OUT)) 714 error = copyout(data, uap->data, (u_int)size); 715 716 out: 717 if (size > SYS_IOCTL_SMALL_SIZE) 718 free(data, M_IOCTLOPS); 719 return (error); 720 } 721 722 int 723 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data) 724 { 725 struct file *fp; 726 struct filedesc *fdp; 727 int error, tmp, locked; 728 729 AUDIT_ARG_FD(fd); 730 AUDIT_ARG_CMD(com); 731 732 fdp = td->td_proc->p_fd; 733 734 switch (com) { 735 case FIONCLEX: 736 case FIOCLEX: 737 FILEDESC_XLOCK(fdp); 738 locked = LA_XLOCKED; 739 break; 740 default: 741 #ifdef CAPABILITIES 742 FILEDESC_SLOCK(fdp); 743 locked = LA_SLOCKED; 744 #else 745 locked = LA_UNLOCKED; 746 #endif 747 break; 748 } 749 750 #ifdef CAPABILITIES 751 if ((fp = fget_locked(fdp, fd)) == NULL) { 752 error = EBADF; 753 goto out; 754 } 755 if ((error = cap_ioctl_check(fdp, fd, com)) != 0) { 756 fp = NULL; /* fhold() was not called yet */ 757 goto out; 758 } 759 if (!fhold(fp)) { 760 error = EBADF; 761 fp = NULL; 762 goto out; 763 } 764 if (locked == LA_SLOCKED) { 765 FILEDESC_SUNLOCK(fdp); 766 locked = LA_UNLOCKED; 767 } 768 #else 769 error = fget(td, fd, &cap_ioctl_rights, &fp); 770 if (error != 0) { 771 fp = NULL; 772 goto out; 773 } 774 #endif 775 if ((fp->f_flag & (FREAD | FWRITE)) == 0) { 776 error = EBADF; 777 goto out; 778 } 779 780 switch (com) { 781 case FIONCLEX: 782 fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE; 783 goto out; 784 case FIOCLEX: 785 fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE; 786 goto out; 787 case FIONBIO: 788 if ((tmp = *(int *)data)) 789 atomic_set_int(&fp->f_flag, FNONBLOCK); 790 else 791 atomic_clear_int(&fp->f_flag, FNONBLOCK); 792 data = (void *)&tmp; 793 break; 794 case FIOASYNC: 795 if ((tmp = *(int *)data)) 796 atomic_set_int(&fp->f_flag, FASYNC); 797 else 798 atomic_clear_int(&fp->f_flag, FASYNC); 799 data = (void *)&tmp; 800 break; 801 } 802 803 error = fo_ioctl(fp, com, data, td->td_ucred, td); 804 out: 805 switch (locked) { 806 case LA_XLOCKED: 807 FILEDESC_XUNLOCK(fdp); 808 break; 809 #ifdef CAPABILITIES 810 case LA_SLOCKED: 811 FILEDESC_SUNLOCK(fdp); 812 break; 813 #endif 814 default: 815 FILEDESC_UNLOCK_ASSERT(fdp); 816 break; 817 } 818 if (fp != NULL) 819 fdrop(fp, td); 820 return (error); 821 } 822 823 int 824 sys_posix_fallocate(struct thread *td, struct posix_fallocate_args *uap) 825 { 826 int error; 827 828 error = kern_posix_fallocate(td, uap->fd, uap->offset, uap->len); 829 return (kern_posix_error(td, error)); 830 } 831 832 int 833 kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len) 834 { 835 struct file *fp; 836 int error; 837 838 AUDIT_ARG_FD(fd); 839 if (offset < 0 || len <= 0) 840 return (EINVAL); 841 /* Check for wrap. */ 842 if (offset > OFF_MAX - len) 843 return (EFBIG); 844 AUDIT_ARG_FD(fd); 845 error = fget(td, fd, &cap_pwrite_rights, &fp); 846 if (error != 0) 847 return (error); 848 AUDIT_ARG_FILE(td->td_proc, fp); 849 if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) { 850 error = ESPIPE; 851 goto out; 852 } 853 if ((fp->f_flag & FWRITE) == 0) { 854 error = EBADF; 855 goto out; 856 } 857 858 error = fo_fallocate(fp, offset, len, td); 859 out: 860 fdrop(fp, td); 861 return (error); 862 } 863 864 int 865 kern_specialfd(struct thread *td, int type, void *arg) 866 { 867 struct file *fp; 868 struct specialfd_eventfd *ae; 869 int error, fd, fflags; 870 871 fflags = 0; 872 error = falloc_noinstall(td, &fp); 873 if (error != 0) 874 return (error); 875 876 switch (type) { 877 case SPECIALFD_EVENTFD: 878 ae = arg; 879 if ((ae->flags & EFD_CLOEXEC) != 0) 880 fflags |= O_CLOEXEC; 881 error = eventfd_create_file(td, fp, ae->initval, ae->flags); 882 break; 883 default: 884 error = EINVAL; 885 break; 886 } 887 888 if (error == 0) 889 error = finstall(td, fp, &fd, fflags, NULL); 890 fdrop(fp, td); 891 if (error == 0) 892 td->td_retval[0] = fd; 893 return (error); 894 } 895 896 int 897 sys___specialfd(struct thread *td, struct __specialfd_args *args) 898 { 899 struct specialfd_eventfd ae; 900 int error; 901 902 switch (args->type) { 903 case SPECIALFD_EVENTFD: 904 if (args->len != sizeof(struct specialfd_eventfd)) { 905 error = EINVAL; 906 break; 907 } 908 error = copyin(args->req, &ae, sizeof(ae)); 909 if (error != 0) 910 break; 911 if ((ae.flags & ~(EFD_CLOEXEC | EFD_NONBLOCK | 912 EFD_SEMAPHORE)) != 0) { 913 error = EINVAL; 914 break; 915 } 916 error = kern_specialfd(td, args->type, &ae); 917 break; 918 default: 919 error = EINVAL; 920 break; 921 } 922 return (error); 923 } 924 925 int 926 poll_no_poll(int events) 927 { 928 /* 929 * Return true for read/write. If the user asked for something 930 * special, return POLLNVAL, so that clients have a way of 931 * determining reliably whether or not the extended 932 * functionality is present without hard-coding knowledge 933 * of specific filesystem implementations. 934 */ 935 if (events & ~POLLSTANDARD) 936 return (POLLNVAL); 937 938 return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 939 } 940 941 int 942 sys_pselect(struct thread *td, struct pselect_args *uap) 943 { 944 struct timespec ts; 945 struct timeval tv, *tvp; 946 sigset_t set, *uset; 947 int error; 948 949 if (uap->ts != NULL) { 950 error = copyin(uap->ts, &ts, sizeof(ts)); 951 if (error != 0) 952 return (error); 953 TIMESPEC_TO_TIMEVAL(&tv, &ts); 954 tvp = &tv; 955 } else 956 tvp = NULL; 957 if (uap->sm != NULL) { 958 error = copyin(uap->sm, &set, sizeof(set)); 959 if (error != 0) 960 return (error); 961 uset = &set; 962 } else 963 uset = NULL; 964 return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 965 uset, NFDBITS)); 966 } 967 968 int 969 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex, 970 struct timeval *tvp, sigset_t *uset, int abi_nfdbits) 971 { 972 int error; 973 974 if (uset != NULL) { 975 error = kern_sigprocmask(td, SIG_SETMASK, uset, 976 &td->td_oldsigmask, 0); 977 if (error != 0) 978 return (error); 979 td->td_pflags |= TDP_OLDMASK; 980 /* 981 * Make sure that ast() is called on return to 982 * usermode and TDP_OLDMASK is cleared, restoring old 983 * sigmask. 984 */ 985 thread_lock(td); 986 td->td_flags |= TDF_ASTPENDING; 987 thread_unlock(td); 988 } 989 error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits); 990 return (error); 991 } 992 993 #ifndef _SYS_SYSPROTO_H_ 994 struct select_args { 995 int nd; 996 fd_set *in, *ou, *ex; 997 struct timeval *tv; 998 }; 999 #endif 1000 int 1001 sys_select(struct thread *td, struct select_args *uap) 1002 { 1003 struct timeval tv, *tvp; 1004 int error; 1005 1006 if (uap->tv != NULL) { 1007 error = copyin(uap->tv, &tv, sizeof(tv)); 1008 if (error) 1009 return (error); 1010 tvp = &tv; 1011 } else 1012 tvp = NULL; 1013 1014 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 1015 NFDBITS)); 1016 } 1017 1018 /* 1019 * In the unlikely case when user specified n greater then the last 1020 * open file descriptor, check that no bits are set after the last 1021 * valid fd. We must return EBADF if any is set. 1022 * 1023 * There are applications that rely on the behaviour. 1024 * 1025 * nd is fd_nfiles. 1026 */ 1027 static int 1028 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits) 1029 { 1030 char *addr, *oaddr; 1031 int b, i, res; 1032 uint8_t bits; 1033 1034 if (nd >= ndu || fd_in == NULL) 1035 return (0); 1036 1037 oaddr = NULL; 1038 bits = 0; /* silence gcc */ 1039 for (i = nd; i < ndu; i++) { 1040 b = i / NBBY; 1041 #if BYTE_ORDER == LITTLE_ENDIAN 1042 addr = (char *)fd_in + b; 1043 #else 1044 addr = (char *)fd_in; 1045 if (abi_nfdbits == NFDBITS) { 1046 addr += rounddown(b, sizeof(fd_mask)) + 1047 sizeof(fd_mask) - 1 - b % sizeof(fd_mask); 1048 } else { 1049 addr += rounddown(b, sizeof(uint32_t)) + 1050 sizeof(uint32_t) - 1 - b % sizeof(uint32_t); 1051 } 1052 #endif 1053 if (addr != oaddr) { 1054 res = fubyte(addr); 1055 if (res == -1) 1056 return (EFAULT); 1057 oaddr = addr; 1058 bits = res; 1059 } 1060 if ((bits & (1 << (i % NBBY))) != 0) 1061 return (EBADF); 1062 } 1063 return (0); 1064 } 1065 1066 int 1067 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou, 1068 fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits) 1069 { 1070 struct filedesc *fdp; 1071 /* 1072 * The magic 2048 here is chosen to be just enough for FD_SETSIZE 1073 * infds with the new FD_SETSIZE of 1024, and more than enough for 1074 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE 1075 * of 256. 1076 */ 1077 fd_mask s_selbits[howmany(2048, NFDBITS)]; 1078 fd_mask *ibits[3], *obits[3], *selbits, *sbp; 1079 struct timeval rtv; 1080 sbintime_t asbt, precision, rsbt; 1081 u_int nbufbytes, ncpbytes, ncpubytes, nfdbits; 1082 int error, lf, ndu; 1083 1084 if (nd < 0) 1085 return (EINVAL); 1086 fdp = td->td_proc->p_fd; 1087 ndu = nd; 1088 lf = fdp->fd_nfiles; 1089 if (nd > lf) 1090 nd = lf; 1091 1092 error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits); 1093 if (error != 0) 1094 return (error); 1095 error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits); 1096 if (error != 0) 1097 return (error); 1098 error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits); 1099 if (error != 0) 1100 return (error); 1101 1102 /* 1103 * Allocate just enough bits for the non-null fd_sets. Use the 1104 * preallocated auto buffer if possible. 1105 */ 1106 nfdbits = roundup(nd, NFDBITS); 1107 ncpbytes = nfdbits / NBBY; 1108 ncpubytes = roundup(nd, abi_nfdbits) / NBBY; 1109 nbufbytes = 0; 1110 if (fd_in != NULL) 1111 nbufbytes += 2 * ncpbytes; 1112 if (fd_ou != NULL) 1113 nbufbytes += 2 * ncpbytes; 1114 if (fd_ex != NULL) 1115 nbufbytes += 2 * ncpbytes; 1116 if (nbufbytes <= sizeof s_selbits) 1117 selbits = &s_selbits[0]; 1118 else 1119 selbits = malloc(nbufbytes, M_SELECT, M_WAITOK); 1120 1121 /* 1122 * Assign pointers into the bit buffers and fetch the input bits. 1123 * Put the output buffers together so that they can be bzeroed 1124 * together. 1125 */ 1126 sbp = selbits; 1127 #define getbits(name, x) \ 1128 do { \ 1129 if (name == NULL) { \ 1130 ibits[x] = NULL; \ 1131 obits[x] = NULL; \ 1132 } else { \ 1133 ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp; \ 1134 obits[x] = sbp; \ 1135 sbp += ncpbytes / sizeof *sbp; \ 1136 error = copyin(name, ibits[x], ncpubytes); \ 1137 if (error != 0) \ 1138 goto done; \ 1139 if (ncpbytes != ncpubytes) \ 1140 bzero((char *)ibits[x] + ncpubytes, \ 1141 ncpbytes - ncpubytes); \ 1142 } \ 1143 } while (0) 1144 getbits(fd_in, 0); 1145 getbits(fd_ou, 1); 1146 getbits(fd_ex, 2); 1147 #undef getbits 1148 1149 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__) 1150 /* 1151 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS, 1152 * we are running under 32-bit emulation. This should be more 1153 * generic. 1154 */ 1155 #define swizzle_fdset(bits) \ 1156 if (abi_nfdbits != NFDBITS && bits != NULL) { \ 1157 int i; \ 1158 for (i = 0; i < ncpbytes / sizeof *sbp; i++) \ 1159 bits[i] = (bits[i] >> 32) | (bits[i] << 32); \ 1160 } 1161 #else 1162 #define swizzle_fdset(bits) 1163 #endif 1164 1165 /* Make sure the bit order makes it through an ABI transition */ 1166 swizzle_fdset(ibits[0]); 1167 swizzle_fdset(ibits[1]); 1168 swizzle_fdset(ibits[2]); 1169 1170 if (nbufbytes != 0) 1171 bzero(selbits, nbufbytes / 2); 1172 1173 precision = 0; 1174 if (tvp != NULL) { 1175 rtv = *tvp; 1176 if (rtv.tv_sec < 0 || rtv.tv_usec < 0 || 1177 rtv.tv_usec >= 1000000) { 1178 error = EINVAL; 1179 goto done; 1180 } 1181 if (!timevalisset(&rtv)) 1182 asbt = 0; 1183 else if (rtv.tv_sec <= INT32_MAX) { 1184 rsbt = tvtosbt(rtv); 1185 precision = rsbt; 1186 precision >>= tc_precexp; 1187 if (TIMESEL(&asbt, rsbt)) 1188 asbt += tc_tick_sbt; 1189 if (asbt <= SBT_MAX - rsbt) 1190 asbt += rsbt; 1191 else 1192 asbt = -1; 1193 } else 1194 asbt = -1; 1195 } else 1196 asbt = -1; 1197 seltdinit(td); 1198 /* Iterate until the timeout expires or descriptors become ready. */ 1199 for (;;) { 1200 error = selscan(td, ibits, obits, nd); 1201 if (error || td->td_retval[0] != 0) 1202 break; 1203 error = seltdwait(td, asbt, precision); 1204 if (error) 1205 break; 1206 error = selrescan(td, ibits, obits); 1207 if (error || td->td_retval[0] != 0) 1208 break; 1209 } 1210 seltdclear(td); 1211 1212 done: 1213 /* select is not restarted after signals... */ 1214 if (error == ERESTART) 1215 error = EINTR; 1216 if (error == EWOULDBLOCK) 1217 error = 0; 1218 1219 /* swizzle bit order back, if necessary */ 1220 swizzle_fdset(obits[0]); 1221 swizzle_fdset(obits[1]); 1222 swizzle_fdset(obits[2]); 1223 #undef swizzle_fdset 1224 1225 #define putbits(name, x) \ 1226 if (name && (error2 = copyout(obits[x], name, ncpubytes))) \ 1227 error = error2; 1228 if (error == 0) { 1229 int error2; 1230 1231 putbits(fd_in, 0); 1232 putbits(fd_ou, 1); 1233 putbits(fd_ex, 2); 1234 #undef putbits 1235 } 1236 if (selbits != &s_selbits[0]) 1237 free(selbits, M_SELECT); 1238 1239 return (error); 1240 } 1241 /* 1242 * Convert a select bit set to poll flags. 1243 * 1244 * The backend always returns POLLHUP/POLLERR if appropriate and we 1245 * return this as a set bit in any set. 1246 */ 1247 static int select_flags[3] = { 1248 POLLRDNORM | POLLHUP | POLLERR, 1249 POLLWRNORM | POLLHUP | POLLERR, 1250 POLLRDBAND | POLLERR 1251 }; 1252 1253 /* 1254 * Compute the fo_poll flags required for a fd given by the index and 1255 * bit position in the fd_mask array. 1256 */ 1257 static __inline int 1258 selflags(fd_mask **ibits, int idx, fd_mask bit) 1259 { 1260 int flags; 1261 int msk; 1262 1263 flags = 0; 1264 for (msk = 0; msk < 3; msk++) { 1265 if (ibits[msk] == NULL) 1266 continue; 1267 if ((ibits[msk][idx] & bit) == 0) 1268 continue; 1269 flags |= select_flags[msk]; 1270 } 1271 return (flags); 1272 } 1273 1274 /* 1275 * Set the appropriate output bits given a mask of fired events and the 1276 * input bits originally requested. 1277 */ 1278 static __inline int 1279 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events) 1280 { 1281 int msk; 1282 int n; 1283 1284 n = 0; 1285 for (msk = 0; msk < 3; msk++) { 1286 if ((events & select_flags[msk]) == 0) 1287 continue; 1288 if (ibits[msk] == NULL) 1289 continue; 1290 if ((ibits[msk][idx] & bit) == 0) 1291 continue; 1292 /* 1293 * XXX Check for a duplicate set. This can occur because a 1294 * socket calls selrecord() twice for each poll() call 1295 * resulting in two selfds per real fd. selrescan() will 1296 * call selsetbits twice as a result. 1297 */ 1298 if ((obits[msk][idx] & bit) != 0) 1299 continue; 1300 obits[msk][idx] |= bit; 1301 n++; 1302 } 1303 1304 return (n); 1305 } 1306 1307 static __inline int 1308 getselfd_cap(struct filedesc *fdp, int fd, struct file **fpp) 1309 { 1310 1311 return (fget_unlocked(fdp, fd, &cap_event_rights, fpp)); 1312 } 1313 1314 /* 1315 * Traverse the list of fds attached to this thread's seltd and check for 1316 * completion. 1317 */ 1318 static int 1319 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits) 1320 { 1321 struct filedesc *fdp; 1322 struct selinfo *si; 1323 struct seltd *stp; 1324 struct selfd *sfp; 1325 struct selfd *sfn; 1326 struct file *fp; 1327 fd_mask bit; 1328 int fd, ev, n, idx; 1329 int error; 1330 1331 fdp = td->td_proc->p_fd; 1332 stp = td->td_sel; 1333 n = 0; 1334 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) { 1335 fd = (int)(uintptr_t)sfp->sf_cookie; 1336 si = sfp->sf_si; 1337 selfdfree(stp, sfp); 1338 /* If the selinfo wasn't cleared the event didn't fire. */ 1339 if (si != NULL) 1340 continue; 1341 error = getselfd_cap(fdp, fd, &fp); 1342 if (error) 1343 return (error); 1344 idx = fd / NFDBITS; 1345 bit = (fd_mask)1 << (fd % NFDBITS); 1346 ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td); 1347 fdrop(fp, td); 1348 if (ev != 0) 1349 n += selsetbits(ibits, obits, idx, bit, ev); 1350 } 1351 stp->st_flags = 0; 1352 td->td_retval[0] = n; 1353 return (0); 1354 } 1355 1356 /* 1357 * Perform the initial filedescriptor scan and register ourselves with 1358 * each selinfo. 1359 */ 1360 static int 1361 selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd) 1362 { 1363 struct filedesc *fdp; 1364 struct file *fp; 1365 fd_mask bit; 1366 int ev, flags, end, fd; 1367 int n, idx; 1368 int error; 1369 1370 fdp = td->td_proc->p_fd; 1371 n = 0; 1372 for (idx = 0, fd = 0; fd < nfd; idx++) { 1373 end = imin(fd + NFDBITS, nfd); 1374 for (bit = 1; fd < end; bit <<= 1, fd++) { 1375 /* Compute the list of events we're interested in. */ 1376 flags = selflags(ibits, idx, bit); 1377 if (flags == 0) 1378 continue; 1379 error = getselfd_cap(fdp, fd, &fp); 1380 if (error) 1381 return (error); 1382 selfdalloc(td, (void *)(uintptr_t)fd); 1383 ev = fo_poll(fp, flags, td->td_ucred, td); 1384 fdrop(fp, td); 1385 if (ev != 0) 1386 n += selsetbits(ibits, obits, idx, bit, ev); 1387 } 1388 } 1389 1390 td->td_retval[0] = n; 1391 return (0); 1392 } 1393 1394 int 1395 sys_poll(struct thread *td, struct poll_args *uap) 1396 { 1397 struct timespec ts, *tsp; 1398 1399 if (uap->timeout != INFTIM) { 1400 if (uap->timeout < 0) 1401 return (EINVAL); 1402 ts.tv_sec = uap->timeout / 1000; 1403 ts.tv_nsec = (uap->timeout % 1000) * 1000000; 1404 tsp = &ts; 1405 } else 1406 tsp = NULL; 1407 1408 return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL)); 1409 } 1410 1411 int 1412 kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds, 1413 struct timespec *tsp, sigset_t *uset) 1414 { 1415 struct pollfd *kfds; 1416 struct pollfd stackfds[32]; 1417 sbintime_t sbt, precision, tmp; 1418 time_t over; 1419 struct timespec ts; 1420 int error; 1421 1422 precision = 0; 1423 if (tsp != NULL) { 1424 if (tsp->tv_sec < 0) 1425 return (EINVAL); 1426 if (tsp->tv_nsec < 0 || tsp->tv_nsec >= 1000000000) 1427 return (EINVAL); 1428 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) 1429 sbt = 0; 1430 else { 1431 ts = *tsp; 1432 if (ts.tv_sec > INT32_MAX / 2) { 1433 over = ts.tv_sec - INT32_MAX / 2; 1434 ts.tv_sec -= over; 1435 } else 1436 over = 0; 1437 tmp = tstosbt(ts); 1438 precision = tmp; 1439 precision >>= tc_precexp; 1440 if (TIMESEL(&sbt, tmp)) 1441 sbt += tc_tick_sbt; 1442 sbt += tmp; 1443 } 1444 } else 1445 sbt = -1; 1446 1447 /* 1448 * This is kinda bogus. We have fd limits, but that is not 1449 * really related to the size of the pollfd array. Make sure 1450 * we let the process use at least FD_SETSIZE entries and at 1451 * least enough for the system-wide limits. We want to be reasonably 1452 * safe, but not overly restrictive. 1453 */ 1454 if (nfds > maxfilesperproc && nfds > FD_SETSIZE) 1455 return (EINVAL); 1456 if (nfds > nitems(stackfds)) 1457 kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK); 1458 else 1459 kfds = stackfds; 1460 error = copyin(ufds, kfds, nfds * sizeof(*kfds)); 1461 if (error) 1462 goto done; 1463 1464 if (uset != NULL) { 1465 error = kern_sigprocmask(td, SIG_SETMASK, uset, 1466 &td->td_oldsigmask, 0); 1467 if (error) 1468 goto done; 1469 td->td_pflags |= TDP_OLDMASK; 1470 /* 1471 * Make sure that ast() is called on return to 1472 * usermode and TDP_OLDMASK is cleared, restoring old 1473 * sigmask. 1474 */ 1475 thread_lock(td); 1476 td->td_flags |= TDF_ASTPENDING; 1477 thread_unlock(td); 1478 } 1479 1480 seltdinit(td); 1481 /* Iterate until the timeout expires or descriptors become ready. */ 1482 for (;;) { 1483 error = pollscan(td, kfds, nfds); 1484 if (error || td->td_retval[0] != 0) 1485 break; 1486 error = seltdwait(td, sbt, precision); 1487 if (error) 1488 break; 1489 error = pollrescan(td); 1490 if (error || td->td_retval[0] != 0) 1491 break; 1492 } 1493 seltdclear(td); 1494 1495 done: 1496 /* poll is not restarted after signals... */ 1497 if (error == ERESTART) 1498 error = EINTR; 1499 if (error == EWOULDBLOCK) 1500 error = 0; 1501 if (error == 0) { 1502 error = pollout(td, kfds, ufds, nfds); 1503 if (error) 1504 goto out; 1505 } 1506 out: 1507 if (nfds > nitems(stackfds)) 1508 free(kfds, M_TEMP); 1509 return (error); 1510 } 1511 1512 int 1513 sys_ppoll(struct thread *td, struct ppoll_args *uap) 1514 { 1515 struct timespec ts, *tsp; 1516 sigset_t set, *ssp; 1517 int error; 1518 1519 if (uap->ts != NULL) { 1520 error = copyin(uap->ts, &ts, sizeof(ts)); 1521 if (error) 1522 return (error); 1523 tsp = &ts; 1524 } else 1525 tsp = NULL; 1526 if (uap->set != NULL) { 1527 error = copyin(uap->set, &set, sizeof(set)); 1528 if (error) 1529 return (error); 1530 ssp = &set; 1531 } else 1532 ssp = NULL; 1533 /* 1534 * fds is still a pointer to user space. kern_poll() will 1535 * take care of copyin that array to the kernel space. 1536 */ 1537 1538 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 1539 } 1540 1541 #ifdef CAPABILITIES 1542 static int 1543 poll_fget(struct filedesc *fdp, int fd, struct file **fpp) 1544 { 1545 const struct filedescent *fde; 1546 const struct fdescenttbl *fdt; 1547 const cap_rights_t *haverights; 1548 struct file *fp; 1549 int error; 1550 1551 if (__predict_false(fd >= fdp->fd_nfiles)) 1552 return (EBADF); 1553 1554 fdt = fdp->fd_files; 1555 fde = &fdt->fdt_ofiles[fd]; 1556 fp = fde->fde_file; 1557 if (__predict_false(fp == NULL)) 1558 return (EBADF); 1559 haverights = cap_rights_fde_inline(fde); 1560 error = cap_check_inline(haverights, &cap_event_rights); 1561 if (__predict_false(error != 0)) 1562 return (EBADF); 1563 *fpp = fp; 1564 return (0); 1565 } 1566 #else 1567 static int 1568 poll_fget(struct filedesc *fdp, int fd, struct file **fpp) 1569 { 1570 struct file *fp; 1571 1572 if (__predict_false(fd >= fdp->fd_nfiles)) 1573 return (EBADF); 1574 1575 fp = fdp->fd_ofiles[fd].fde_file; 1576 if (__predict_false(fp == NULL)) 1577 return (EBADF); 1578 1579 *fpp = fp; 1580 return (0); 1581 } 1582 #endif 1583 1584 static int 1585 pollrescan(struct thread *td) 1586 { 1587 struct seltd *stp; 1588 struct selfd *sfp; 1589 struct selfd *sfn; 1590 struct selinfo *si; 1591 struct filedesc *fdp; 1592 struct file *fp; 1593 struct pollfd *fd; 1594 int n; 1595 1596 n = 0; 1597 fdp = td->td_proc->p_fd; 1598 stp = td->td_sel; 1599 FILEDESC_SLOCK(fdp); 1600 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) { 1601 fd = (struct pollfd *)sfp->sf_cookie; 1602 si = sfp->sf_si; 1603 selfdfree(stp, sfp); 1604 /* If the selinfo wasn't cleared the event didn't fire. */ 1605 if (si != NULL) 1606 continue; 1607 if (poll_fget(fdp, fd->fd, &fp) != 0) { 1608 fd->revents = POLLNVAL; 1609 n++; 1610 continue; 1611 } 1612 /* 1613 * Note: backend also returns POLLHUP and 1614 * POLLERR if appropriate. 1615 */ 1616 fd->revents = fo_poll(fp, fd->events, td->td_ucred, td); 1617 if (fd->revents != 0) 1618 n++; 1619 } 1620 FILEDESC_SUNLOCK(fdp); 1621 stp->st_flags = 0; 1622 td->td_retval[0] = n; 1623 return (0); 1624 } 1625 1626 static int 1627 pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) 1628 { 1629 int error = 0; 1630 u_int i = 0; 1631 u_int n = 0; 1632 1633 for (i = 0; i < nfd; i++) { 1634 error = copyout(&fds->revents, &ufds->revents, 1635 sizeof(ufds->revents)); 1636 if (error) 1637 return (error); 1638 if (fds->revents != 0) 1639 n++; 1640 fds++; 1641 ufds++; 1642 } 1643 td->td_retval[0] = n; 1644 return (0); 1645 } 1646 1647 static int 1648 pollscan(struct thread *td, struct pollfd *fds, u_int nfd) 1649 { 1650 struct filedesc *fdp; 1651 struct file *fp; 1652 int i, n; 1653 1654 n = 0; 1655 fdp = td->td_proc->p_fd; 1656 FILEDESC_SLOCK(fdp); 1657 for (i = 0; i < nfd; i++, fds++) { 1658 if (fds->fd < 0) { 1659 fds->revents = 0; 1660 continue; 1661 } 1662 if (poll_fget(fdp, fds->fd, &fp) != 0) { 1663 fds->revents = POLLNVAL; 1664 n++; 1665 continue; 1666 } 1667 /* 1668 * Note: backend also returns POLLHUP and 1669 * POLLERR if appropriate. 1670 */ 1671 selfdalloc(td, fds); 1672 fds->revents = fo_poll(fp, fds->events, 1673 td->td_ucred, td); 1674 /* 1675 * POSIX requires POLLOUT to be never 1676 * set simultaneously with POLLHUP. 1677 */ 1678 if ((fds->revents & POLLHUP) != 0) 1679 fds->revents &= ~POLLOUT; 1680 1681 if (fds->revents != 0) 1682 n++; 1683 } 1684 FILEDESC_SUNLOCK(fdp); 1685 td->td_retval[0] = n; 1686 return (0); 1687 } 1688 1689 /* 1690 * XXX This was created specifically to support netncp and netsmb. This 1691 * allows the caller to specify a socket to wait for events on. It returns 1692 * 0 if any events matched and an error otherwise. There is no way to 1693 * determine which events fired. 1694 */ 1695 int 1696 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td) 1697 { 1698 struct timeval rtv; 1699 sbintime_t asbt, precision, rsbt; 1700 int error; 1701 1702 precision = 0; /* stupid gcc! */ 1703 if (tvp != NULL) { 1704 rtv = *tvp; 1705 if (rtv.tv_sec < 0 || rtv.tv_usec < 0 || 1706 rtv.tv_usec >= 1000000) 1707 return (EINVAL); 1708 if (!timevalisset(&rtv)) 1709 asbt = 0; 1710 else if (rtv.tv_sec <= INT32_MAX) { 1711 rsbt = tvtosbt(rtv); 1712 precision = rsbt; 1713 precision >>= tc_precexp; 1714 if (TIMESEL(&asbt, rsbt)) 1715 asbt += tc_tick_sbt; 1716 if (asbt <= SBT_MAX - rsbt) 1717 asbt += rsbt; 1718 else 1719 asbt = -1; 1720 } else 1721 asbt = -1; 1722 } else 1723 asbt = -1; 1724 seltdinit(td); 1725 /* 1726 * Iterate until the timeout expires or the socket becomes ready. 1727 */ 1728 for (;;) { 1729 selfdalloc(td, NULL); 1730 error = sopoll(so, events, NULL, td); 1731 /* error here is actually the ready events. */ 1732 if (error) 1733 return (0); 1734 error = seltdwait(td, asbt, precision); 1735 if (error) 1736 break; 1737 } 1738 seltdclear(td); 1739 /* XXX Duplicates ncp/smb behavior. */ 1740 if (error == ERESTART) 1741 error = 0; 1742 return (error); 1743 } 1744 1745 /* 1746 * Preallocate two selfds associated with 'cookie'. Some fo_poll routines 1747 * have two select sets, one for read and another for write. 1748 */ 1749 static void 1750 selfdalloc(struct thread *td, void *cookie) 1751 { 1752 struct seltd *stp; 1753 1754 stp = td->td_sel; 1755 if (stp->st_free1 == NULL) 1756 stp->st_free1 = malloc(sizeof(*stp->st_free1), M_SELFD, M_WAITOK|M_ZERO); 1757 stp->st_free1->sf_td = stp; 1758 stp->st_free1->sf_cookie = cookie; 1759 if (stp->st_free2 == NULL) 1760 stp->st_free2 = malloc(sizeof(*stp->st_free2), M_SELFD, M_WAITOK|M_ZERO); 1761 stp->st_free2->sf_td = stp; 1762 stp->st_free2->sf_cookie = cookie; 1763 } 1764 1765 static void 1766 selfdfree(struct seltd *stp, struct selfd *sfp) 1767 { 1768 STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link); 1769 /* 1770 * Paired with doselwakeup. 1771 */ 1772 if (atomic_load_acq_ptr((uintptr_t *)&sfp->sf_si) != (uintptr_t)NULL) { 1773 mtx_lock(sfp->sf_mtx); 1774 if (sfp->sf_si != NULL) { 1775 TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads); 1776 } 1777 mtx_unlock(sfp->sf_mtx); 1778 } 1779 free(sfp, M_SELFD); 1780 } 1781 1782 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */ 1783 void 1784 seldrain(struct selinfo *sip) 1785 { 1786 1787 /* 1788 * This feature is already provided by doselwakeup(), thus it is 1789 * enough to go for it. 1790 * Eventually, the context, should take care to avoid races 1791 * between thread calling select()/poll() and file descriptor 1792 * detaching, but, again, the races are just the same as 1793 * selwakeup(). 1794 */ 1795 doselwakeup(sip, -1); 1796 } 1797 1798 /* 1799 * Record a select request. 1800 */ 1801 void 1802 selrecord(struct thread *selector, struct selinfo *sip) 1803 { 1804 struct selfd *sfp; 1805 struct seltd *stp; 1806 struct mtx *mtxp; 1807 1808 stp = selector->td_sel; 1809 /* 1810 * Don't record when doing a rescan. 1811 */ 1812 if (stp->st_flags & SELTD_RESCAN) 1813 return; 1814 /* 1815 * Grab one of the preallocated descriptors. 1816 */ 1817 sfp = NULL; 1818 if ((sfp = stp->st_free1) != NULL) 1819 stp->st_free1 = NULL; 1820 else if ((sfp = stp->st_free2) != NULL) 1821 stp->st_free2 = NULL; 1822 else 1823 panic("selrecord: No free selfd on selq"); 1824 mtxp = sip->si_mtx; 1825 if (mtxp == NULL) 1826 mtxp = mtx_pool_find(mtxpool_select, sip); 1827 /* 1828 * Initialize the sfp and queue it in the thread. 1829 */ 1830 sfp->sf_si = sip; 1831 sfp->sf_mtx = mtxp; 1832 STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link); 1833 /* 1834 * Now that we've locked the sip, check for initialization. 1835 */ 1836 mtx_lock(mtxp); 1837 if (sip->si_mtx == NULL) { 1838 sip->si_mtx = mtxp; 1839 TAILQ_INIT(&sip->si_tdlist); 1840 } 1841 /* 1842 * Add this thread to the list of selfds listening on this selinfo. 1843 */ 1844 TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads); 1845 mtx_unlock(sip->si_mtx); 1846 } 1847 1848 /* Wake up a selecting thread. */ 1849 void 1850 selwakeup(struct selinfo *sip) 1851 { 1852 doselwakeup(sip, -1); 1853 } 1854 1855 /* Wake up a selecting thread, and set its priority. */ 1856 void 1857 selwakeuppri(struct selinfo *sip, int pri) 1858 { 1859 doselwakeup(sip, pri); 1860 } 1861 1862 /* 1863 * Do a wakeup when a selectable event occurs. 1864 */ 1865 static void 1866 doselwakeup(struct selinfo *sip, int pri) 1867 { 1868 struct selfd *sfp; 1869 struct selfd *sfn; 1870 struct seltd *stp; 1871 1872 /* If it's not initialized there can't be any waiters. */ 1873 if (sip->si_mtx == NULL) 1874 return; 1875 /* 1876 * Locking the selinfo locks all selfds associated with it. 1877 */ 1878 mtx_lock(sip->si_mtx); 1879 TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) { 1880 /* 1881 * Once we remove this sfp from the list and clear the 1882 * sf_si seltdclear will know to ignore this si. 1883 */ 1884 TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads); 1885 stp = sfp->sf_td; 1886 mtx_lock(&stp->st_mtx); 1887 stp->st_flags |= SELTD_PENDING; 1888 cv_broadcastpri(&stp->st_wait, pri); 1889 mtx_unlock(&stp->st_mtx); 1890 /* 1891 * Paired with selfdfree. 1892 * 1893 * Storing this only after the wakeup provides an invariant that 1894 * stp is not used after selfdfree returns. 1895 */ 1896 atomic_store_rel_ptr((uintptr_t *)&sfp->sf_si, (uintptr_t)NULL); 1897 } 1898 mtx_unlock(sip->si_mtx); 1899 } 1900 1901 static void 1902 seltdinit(struct thread *td) 1903 { 1904 struct seltd *stp; 1905 1906 stp = td->td_sel; 1907 if (stp != NULL) { 1908 MPASS(stp->st_flags == 0); 1909 MPASS(STAILQ_EMPTY(&stp->st_selq)); 1910 return; 1911 } 1912 stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO); 1913 mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF); 1914 cv_init(&stp->st_wait, "select"); 1915 stp->st_flags = 0; 1916 STAILQ_INIT(&stp->st_selq); 1917 td->td_sel = stp; 1918 } 1919 1920 static int 1921 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision) 1922 { 1923 struct seltd *stp; 1924 int error; 1925 1926 stp = td->td_sel; 1927 /* 1928 * An event of interest may occur while we do not hold the seltd 1929 * locked so check the pending flag before we sleep. 1930 */ 1931 mtx_lock(&stp->st_mtx); 1932 /* 1933 * Any further calls to selrecord will be a rescan. 1934 */ 1935 stp->st_flags |= SELTD_RESCAN; 1936 if (stp->st_flags & SELTD_PENDING) { 1937 mtx_unlock(&stp->st_mtx); 1938 return (0); 1939 } 1940 if (sbt == 0) 1941 error = EWOULDBLOCK; 1942 else if (sbt != -1) 1943 error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx, 1944 sbt, precision, C_ABSOLUTE); 1945 else 1946 error = cv_wait_sig(&stp->st_wait, &stp->st_mtx); 1947 mtx_unlock(&stp->st_mtx); 1948 1949 return (error); 1950 } 1951 1952 void 1953 seltdfini(struct thread *td) 1954 { 1955 struct seltd *stp; 1956 1957 stp = td->td_sel; 1958 if (stp == NULL) 1959 return; 1960 MPASS(stp->st_flags == 0); 1961 MPASS(STAILQ_EMPTY(&stp->st_selq)); 1962 if (stp->st_free1) 1963 free(stp->st_free1, M_SELFD); 1964 if (stp->st_free2) 1965 free(stp->st_free2, M_SELFD); 1966 td->td_sel = NULL; 1967 cv_destroy(&stp->st_wait); 1968 mtx_destroy(&stp->st_mtx); 1969 free(stp, M_SELECT); 1970 } 1971 1972 /* 1973 * Remove the references to the thread from all of the objects we were 1974 * polling. 1975 */ 1976 static void 1977 seltdclear(struct thread *td) 1978 { 1979 struct seltd *stp; 1980 struct selfd *sfp; 1981 struct selfd *sfn; 1982 1983 stp = td->td_sel; 1984 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) 1985 selfdfree(stp, sfp); 1986 stp->st_flags = 0; 1987 } 1988 1989 static void selectinit(void *); 1990 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL); 1991 static void 1992 selectinit(void *dummy __unused) 1993 { 1994 1995 mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF); 1996 } 1997 1998 /* 1999 * Set up a syscall return value that follows the convention specified for 2000 * posix_* functions. 2001 */ 2002 int 2003 kern_posix_error(struct thread *td, int error) 2004 { 2005 2006 if (error <= 0) 2007 return (error); 2008 td->td_errno = error; 2009 td->td_pflags |= TDP_NERRNO; 2010 td->td_retval[0] = error; 2011 return (0); 2012 } 2013