xref: /freebsd/sys/kern/sys_generic.c (revision 6829dae12bb055451fa467da4589c43bd03b1e64)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)sys_generic.c	8.5 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_capsicum.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/capsicum.h>
49 #include <sys/filedesc.h>
50 #include <sys/filio.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/lock.h>
54 #include <sys/proc.h>
55 #include <sys/signalvar.h>
56 #include <sys/socketvar.h>
57 #include <sys/uio.h>
58 #include <sys/kernel.h>
59 #include <sys/ktr.h>
60 #include <sys/limits.h>
61 #include <sys/malloc.h>
62 #include <sys/poll.h>
63 #include <sys/resourcevar.h>
64 #include <sys/selinfo.h>
65 #include <sys/sleepqueue.h>
66 #include <sys/syscallsubr.h>
67 #include <sys/sysctl.h>
68 #include <sys/sysent.h>
69 #include <sys/vnode.h>
70 #include <sys/bio.h>
71 #include <sys/buf.h>
72 #include <sys/condvar.h>
73 #ifdef KTRACE
74 #include <sys/ktrace.h>
75 #endif
76 
77 #include <security/audit/audit.h>
78 
79 /*
80  * The following macro defines how many bytes will be allocated from
81  * the stack instead of memory allocated when passing the IOCTL data
82  * structures from userspace and to the kernel. Some IOCTLs having
83  * small data structures are used very frequently and this small
84  * buffer on the stack gives a significant speedup improvement for
85  * those requests. The value of this define should be greater or equal
86  * to 64 bytes and should also be power of two. The data structure is
87  * currently hard-aligned to a 8-byte boundary on the stack. This
88  * should currently be sufficient for all supported platforms.
89  */
90 #define	SYS_IOCTL_SMALL_SIZE	128	/* bytes */
91 #define	SYS_IOCTL_SMALL_ALIGN	8	/* bytes */
92 
93 #ifdef __LP64__
94 static int iosize_max_clamp = 0;
95 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW,
96     &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX");
97 static int devfs_iosize_max_clamp = 1;
98 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW,
99     &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices");
100 #endif
101 
102 /*
103  * Assert that the return value of read(2) and write(2) syscalls fits
104  * into a register.  If not, an architecture will need to provide the
105  * usermode wrappers to reconstruct the result.
106  */
107 CTASSERT(sizeof(register_t) >= sizeof(size_t));
108 
109 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
110 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
111 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
112 
113 static int	pollout(struct thread *, struct pollfd *, struct pollfd *,
114 		    u_int);
115 static int	pollscan(struct thread *, struct pollfd *, u_int);
116 static int	pollrescan(struct thread *);
117 static int	selscan(struct thread *, fd_mask **, fd_mask **, int);
118 static int	selrescan(struct thread *, fd_mask **, fd_mask **);
119 static void	selfdalloc(struct thread *, void *);
120 static void	selfdfree(struct seltd *, struct selfd *);
121 static int	dofileread(struct thread *, int, struct file *, struct uio *,
122 		    off_t, int);
123 static int	dofilewrite(struct thread *, int, struct file *, struct uio *,
124 		    off_t, int);
125 static void	doselwakeup(struct selinfo *, int);
126 static void	seltdinit(struct thread *);
127 static int	seltdwait(struct thread *, sbintime_t, sbintime_t);
128 static void	seltdclear(struct thread *);
129 
130 /*
131  * One seltd per-thread allocated on demand as needed.
132  *
133  *	t - protected by st_mtx
134  * 	k - Only accessed by curthread or read-only
135  */
136 struct seltd {
137 	STAILQ_HEAD(, selfd)	st_selq;	/* (k) List of selfds. */
138 	struct selfd		*st_free1;	/* (k) free fd for read set. */
139 	struct selfd		*st_free2;	/* (k) free fd for write set. */
140 	struct mtx		st_mtx;		/* Protects struct seltd */
141 	struct cv		st_wait;	/* (t) Wait channel. */
142 	int			st_flags;	/* (t) SELTD_ flags. */
143 };
144 
145 #define	SELTD_PENDING	0x0001			/* We have pending events. */
146 #define	SELTD_RESCAN	0x0002			/* Doing a rescan. */
147 
148 /*
149  * One selfd allocated per-thread per-file-descriptor.
150  *	f - protected by sf_mtx
151  */
152 struct selfd {
153 	STAILQ_ENTRY(selfd)	sf_link;	/* (k) fds owned by this td. */
154 	TAILQ_ENTRY(selfd)	sf_threads;	/* (f) fds on this selinfo. */
155 	struct selinfo		*sf_si;		/* (f) selinfo when linked. */
156 	struct mtx		*sf_mtx;	/* Pointer to selinfo mtx. */
157 	struct seltd		*sf_td;		/* (k) owning seltd. */
158 	void			*sf_cookie;	/* (k) fd or pollfd. */
159 	u_int			sf_refs;
160 };
161 
162 static uma_zone_t selfd_zone;
163 static struct mtx_pool *mtxpool_select;
164 
165 #ifdef __LP64__
166 size_t
167 devfs_iosize_max(void)
168 {
169 
170 	return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
171 	    INT_MAX : SSIZE_MAX);
172 }
173 
174 size_t
175 iosize_max(void)
176 {
177 
178 	return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
179 	    INT_MAX : SSIZE_MAX);
180 }
181 #endif
182 
183 #ifndef _SYS_SYSPROTO_H_
184 struct read_args {
185 	int	fd;
186 	void	*buf;
187 	size_t	nbyte;
188 };
189 #endif
190 int
191 sys_read(struct thread *td, struct read_args *uap)
192 {
193 	struct uio auio;
194 	struct iovec aiov;
195 	int error;
196 
197 	if (uap->nbyte > IOSIZE_MAX)
198 		return (EINVAL);
199 	aiov.iov_base = uap->buf;
200 	aiov.iov_len = uap->nbyte;
201 	auio.uio_iov = &aiov;
202 	auio.uio_iovcnt = 1;
203 	auio.uio_resid = uap->nbyte;
204 	auio.uio_segflg = UIO_USERSPACE;
205 	error = kern_readv(td, uap->fd, &auio);
206 	return (error);
207 }
208 
209 /*
210  * Positioned read system call
211  */
212 #ifndef _SYS_SYSPROTO_H_
213 struct pread_args {
214 	int	fd;
215 	void	*buf;
216 	size_t	nbyte;
217 	int	pad;
218 	off_t	offset;
219 };
220 #endif
221 int
222 sys_pread(struct thread *td, struct pread_args *uap)
223 {
224 
225 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
226 }
227 
228 int
229 kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset)
230 {
231 	struct uio auio;
232 	struct iovec aiov;
233 	int error;
234 
235 	if (nbyte > IOSIZE_MAX)
236 		return (EINVAL);
237 	aiov.iov_base = buf;
238 	aiov.iov_len = nbyte;
239 	auio.uio_iov = &aiov;
240 	auio.uio_iovcnt = 1;
241 	auio.uio_resid = nbyte;
242 	auio.uio_segflg = UIO_USERSPACE;
243 	error = kern_preadv(td, fd, &auio, offset);
244 	return (error);
245 }
246 
247 #if defined(COMPAT_FREEBSD6)
248 int
249 freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap)
250 {
251 
252 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
253 }
254 #endif
255 
256 /*
257  * Scatter read system call.
258  */
259 #ifndef _SYS_SYSPROTO_H_
260 struct readv_args {
261 	int	fd;
262 	struct	iovec *iovp;
263 	u_int	iovcnt;
264 };
265 #endif
266 int
267 sys_readv(struct thread *td, struct readv_args *uap)
268 {
269 	struct uio *auio;
270 	int error;
271 
272 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
273 	if (error)
274 		return (error);
275 	error = kern_readv(td, uap->fd, auio);
276 	free(auio, M_IOV);
277 	return (error);
278 }
279 
280 int
281 kern_readv(struct thread *td, int fd, struct uio *auio)
282 {
283 	struct file *fp;
284 	int error;
285 
286 	error = fget_read(td, fd, &cap_read_rights, &fp);
287 	if (error)
288 		return (error);
289 	error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
290 	fdrop(fp, td);
291 	return (error);
292 }
293 
294 /*
295  * Scatter positioned read system call.
296  */
297 #ifndef _SYS_SYSPROTO_H_
298 struct preadv_args {
299 	int	fd;
300 	struct	iovec *iovp;
301 	u_int	iovcnt;
302 	off_t	offset;
303 };
304 #endif
305 int
306 sys_preadv(struct thread *td, struct preadv_args *uap)
307 {
308 	struct uio *auio;
309 	int error;
310 
311 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
312 	if (error)
313 		return (error);
314 	error = kern_preadv(td, uap->fd, auio, uap->offset);
315 	free(auio, M_IOV);
316 	return (error);
317 }
318 
319 int
320 kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset)
321 {
322 	struct file *fp;
323 	int error;
324 
325 	error = fget_read(td, fd, &cap_pread_rights, &fp);
326 	if (error)
327 		return (error);
328 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
329 		error = ESPIPE;
330 	else if (offset < 0 &&
331 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
332 		error = EINVAL;
333 	else
334 		error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
335 	fdrop(fp, td);
336 	return (error);
337 }
338 
339 /*
340  * Common code for readv and preadv that reads data in
341  * from a file using the passed in uio, offset, and flags.
342  */
343 static int
344 dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio,
345     off_t offset, int flags)
346 {
347 	ssize_t cnt;
348 	int error;
349 #ifdef KTRACE
350 	struct uio *ktruio = NULL;
351 #endif
352 
353 	AUDIT_ARG_FD(fd);
354 
355 	/* Finish zero length reads right here */
356 	if (auio->uio_resid == 0) {
357 		td->td_retval[0] = 0;
358 		return (0);
359 	}
360 	auio->uio_rw = UIO_READ;
361 	auio->uio_offset = offset;
362 	auio->uio_td = td;
363 #ifdef KTRACE
364 	if (KTRPOINT(td, KTR_GENIO))
365 		ktruio = cloneuio(auio);
366 #endif
367 	cnt = auio->uio_resid;
368 	if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
369 		if (auio->uio_resid != cnt && (error == ERESTART ||
370 		    error == EINTR || error == EWOULDBLOCK))
371 			error = 0;
372 	}
373 	cnt -= auio->uio_resid;
374 #ifdef KTRACE
375 	if (ktruio != NULL) {
376 		ktruio->uio_resid = cnt;
377 		ktrgenio(fd, UIO_READ, ktruio, error);
378 	}
379 #endif
380 	td->td_retval[0] = cnt;
381 	return (error);
382 }
383 
384 #ifndef _SYS_SYSPROTO_H_
385 struct write_args {
386 	int	fd;
387 	const void *buf;
388 	size_t	nbyte;
389 };
390 #endif
391 int
392 sys_write(struct thread *td, struct write_args *uap)
393 {
394 	struct uio auio;
395 	struct iovec aiov;
396 	int error;
397 
398 	if (uap->nbyte > IOSIZE_MAX)
399 		return (EINVAL);
400 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
401 	aiov.iov_len = uap->nbyte;
402 	auio.uio_iov = &aiov;
403 	auio.uio_iovcnt = 1;
404 	auio.uio_resid = uap->nbyte;
405 	auio.uio_segflg = UIO_USERSPACE;
406 	error = kern_writev(td, uap->fd, &auio);
407 	return (error);
408 }
409 
410 /*
411  * Positioned write system call.
412  */
413 #ifndef _SYS_SYSPROTO_H_
414 struct pwrite_args {
415 	int	fd;
416 	const void *buf;
417 	size_t	nbyte;
418 	int	pad;
419 	off_t	offset;
420 };
421 #endif
422 int
423 sys_pwrite(struct thread *td, struct pwrite_args *uap)
424 {
425 
426 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
427 }
428 
429 int
430 kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte,
431     off_t offset)
432 {
433 	struct uio auio;
434 	struct iovec aiov;
435 	int error;
436 
437 	if (nbyte > IOSIZE_MAX)
438 		return (EINVAL);
439 	aiov.iov_base = (void *)(uintptr_t)buf;
440 	aiov.iov_len = nbyte;
441 	auio.uio_iov = &aiov;
442 	auio.uio_iovcnt = 1;
443 	auio.uio_resid = nbyte;
444 	auio.uio_segflg = UIO_USERSPACE;
445 	error = kern_pwritev(td, fd, &auio, offset);
446 	return (error);
447 }
448 
449 #if defined(COMPAT_FREEBSD6)
450 int
451 freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap)
452 {
453 
454 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
455 }
456 #endif
457 
458 /*
459  * Gather write system call.
460  */
461 #ifndef _SYS_SYSPROTO_H_
462 struct writev_args {
463 	int	fd;
464 	struct	iovec *iovp;
465 	u_int	iovcnt;
466 };
467 #endif
468 int
469 sys_writev(struct thread *td, struct writev_args *uap)
470 {
471 	struct uio *auio;
472 	int error;
473 
474 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
475 	if (error)
476 		return (error);
477 	error = kern_writev(td, uap->fd, auio);
478 	free(auio, M_IOV);
479 	return (error);
480 }
481 
482 int
483 kern_writev(struct thread *td, int fd, struct uio *auio)
484 {
485 	struct file *fp;
486 	int error;
487 
488 	error = fget_write(td, fd, &cap_write_rights, &fp);
489 	if (error)
490 		return (error);
491 	error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
492 	fdrop(fp, td);
493 	return (error);
494 }
495 
496 /*
497  * Gather positioned write system call.
498  */
499 #ifndef _SYS_SYSPROTO_H_
500 struct pwritev_args {
501 	int	fd;
502 	struct	iovec *iovp;
503 	u_int	iovcnt;
504 	off_t	offset;
505 };
506 #endif
507 int
508 sys_pwritev(struct thread *td, struct pwritev_args *uap)
509 {
510 	struct uio *auio;
511 	int error;
512 
513 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
514 	if (error)
515 		return (error);
516 	error = kern_pwritev(td, uap->fd, auio, uap->offset);
517 	free(auio, M_IOV);
518 	return (error);
519 }
520 
521 int
522 kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset)
523 {
524 	struct file *fp;
525 	int error;
526 
527 	error = fget_write(td, fd, &cap_pwrite_rights, &fp);
528 	if (error)
529 		return (error);
530 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
531 		error = ESPIPE;
532 	else if (offset < 0 &&
533 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
534 		error = EINVAL;
535 	else
536 		error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
537 	fdrop(fp, td);
538 	return (error);
539 }
540 
541 /*
542  * Common code for writev and pwritev that writes data to
543  * a file using the passed in uio, offset, and flags.
544  */
545 static int
546 dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio,
547     off_t offset, int flags)
548 {
549 	ssize_t cnt;
550 	int error;
551 #ifdef KTRACE
552 	struct uio *ktruio = NULL;
553 #endif
554 
555 	AUDIT_ARG_FD(fd);
556 	auio->uio_rw = UIO_WRITE;
557 	auio->uio_td = td;
558 	auio->uio_offset = offset;
559 #ifdef KTRACE
560 	if (KTRPOINT(td, KTR_GENIO))
561 		ktruio = cloneuio(auio);
562 #endif
563 	cnt = auio->uio_resid;
564 	if (fp->f_type == DTYPE_VNODE &&
565 	    (fp->f_vnread_flags & FDEVFS_VNODE) == 0)
566 		bwillwrite();
567 	if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) {
568 		if (auio->uio_resid != cnt && (error == ERESTART ||
569 		    error == EINTR || error == EWOULDBLOCK))
570 			error = 0;
571 		/* Socket layer is responsible for issuing SIGPIPE. */
572 		if (fp->f_type != DTYPE_SOCKET && error == EPIPE) {
573 			PROC_LOCK(td->td_proc);
574 			tdsignal(td, SIGPIPE);
575 			PROC_UNLOCK(td->td_proc);
576 		}
577 	}
578 	cnt -= auio->uio_resid;
579 #ifdef KTRACE
580 	if (ktruio != NULL) {
581 		ktruio->uio_resid = cnt;
582 		ktrgenio(fd, UIO_WRITE, ktruio, error);
583 	}
584 #endif
585 	td->td_retval[0] = cnt;
586 	return (error);
587 }
588 
589 /*
590  * Truncate a file given a file descriptor.
591  *
592  * Can't use fget_write() here, since must return EINVAL and not EBADF if the
593  * descriptor isn't writable.
594  */
595 int
596 kern_ftruncate(struct thread *td, int fd, off_t length)
597 {
598 	struct file *fp;
599 	int error;
600 
601 	AUDIT_ARG_FD(fd);
602 	if (length < 0)
603 		return (EINVAL);
604 	error = fget(td, fd, &cap_ftruncate_rights, &fp);
605 	if (error)
606 		return (error);
607 	AUDIT_ARG_FILE(td->td_proc, fp);
608 	if (!(fp->f_flag & FWRITE)) {
609 		fdrop(fp, td);
610 		return (EINVAL);
611 	}
612 	error = fo_truncate(fp, length, td->td_ucred, td);
613 	fdrop(fp, td);
614 	return (error);
615 }
616 
617 #ifndef _SYS_SYSPROTO_H_
618 struct ftruncate_args {
619 	int	fd;
620 	int	pad;
621 	off_t	length;
622 };
623 #endif
624 int
625 sys_ftruncate(struct thread *td, struct ftruncate_args *uap)
626 {
627 
628 	return (kern_ftruncate(td, uap->fd, uap->length));
629 }
630 
631 #if defined(COMPAT_43)
632 #ifndef _SYS_SYSPROTO_H_
633 struct oftruncate_args {
634 	int	fd;
635 	long	length;
636 };
637 #endif
638 int
639 oftruncate(struct thread *td, struct oftruncate_args *uap)
640 {
641 
642 	return (kern_ftruncate(td, uap->fd, uap->length));
643 }
644 #endif /* COMPAT_43 */
645 
646 #ifndef _SYS_SYSPROTO_H_
647 struct ioctl_args {
648 	int	fd;
649 	u_long	com;
650 	caddr_t	data;
651 };
652 #endif
653 /* ARGSUSED */
654 int
655 sys_ioctl(struct thread *td, struct ioctl_args *uap)
656 {
657 	u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN);
658 	u_long com;
659 	int arg, error;
660 	u_int size;
661 	caddr_t data;
662 
663 	if (uap->com > 0xffffffff) {
664 		printf(
665 		    "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
666 		    td->td_proc->p_pid, td->td_name, uap->com);
667 		uap->com &= 0xffffffff;
668 	}
669 	com = uap->com;
670 
671 	/*
672 	 * Interpret high order word to find amount of data to be
673 	 * copied to/from the user's address space.
674 	 */
675 	size = IOCPARM_LEN(com);
676 	if ((size > IOCPARM_MAX) ||
677 	    ((com & (IOC_VOID  | IOC_IN | IOC_OUT)) == 0) ||
678 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
679 	    ((com & IOC_OUT) && size == 0) ||
680 #else
681 	    ((com & (IOC_IN | IOC_OUT)) && size == 0) ||
682 #endif
683 	    ((com & IOC_VOID) && size > 0 && size != sizeof(int)))
684 		return (ENOTTY);
685 
686 	if (size > 0) {
687 		if (com & IOC_VOID) {
688 			/* Integer argument. */
689 			arg = (intptr_t)uap->data;
690 			data = (void *)&arg;
691 			size = 0;
692 		} else {
693 			if (size > SYS_IOCTL_SMALL_SIZE)
694 				data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
695 			else
696 				data = smalldata;
697 		}
698 	} else
699 		data = (void *)&uap->data;
700 	if (com & IOC_IN) {
701 		error = copyin(uap->data, data, (u_int)size);
702 		if (error != 0)
703 			goto out;
704 	} else if (com & IOC_OUT) {
705 		/*
706 		 * Zero the buffer so the user always
707 		 * gets back something deterministic.
708 		 */
709 		bzero(data, size);
710 	}
711 
712 	error = kern_ioctl(td, uap->fd, com, data);
713 
714 	if (error == 0 && (com & IOC_OUT))
715 		error = copyout(data, uap->data, (u_int)size);
716 
717 out:
718 	if (size > SYS_IOCTL_SMALL_SIZE)
719 		free(data, M_IOCTLOPS);
720 	return (error);
721 }
722 
723 int
724 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
725 {
726 	struct file *fp;
727 	struct filedesc *fdp;
728 	int error, tmp, locked;
729 
730 	AUDIT_ARG_FD(fd);
731 	AUDIT_ARG_CMD(com);
732 
733 	fdp = td->td_proc->p_fd;
734 
735 	switch (com) {
736 	case FIONCLEX:
737 	case FIOCLEX:
738 		FILEDESC_XLOCK(fdp);
739 		locked = LA_XLOCKED;
740 		break;
741 	default:
742 #ifdef CAPABILITIES
743 		FILEDESC_SLOCK(fdp);
744 		locked = LA_SLOCKED;
745 #else
746 		locked = LA_UNLOCKED;
747 #endif
748 		break;
749 	}
750 
751 #ifdef CAPABILITIES
752 	if ((fp = fget_locked(fdp, fd)) == NULL) {
753 		error = EBADF;
754 		goto out;
755 	}
756 	if ((error = cap_ioctl_check(fdp, fd, com)) != 0) {
757 		fp = NULL;	/* fhold() was not called yet */
758 		goto out;
759 	}
760 	fhold(fp);
761 	if (locked == LA_SLOCKED) {
762 		FILEDESC_SUNLOCK(fdp);
763 		locked = LA_UNLOCKED;
764 	}
765 #else
766 	error = fget(td, fd, &cap_ioctl_rights, &fp);
767 	if (error != 0) {
768 		fp = NULL;
769 		goto out;
770 	}
771 #endif
772 	if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
773 		error = EBADF;
774 		goto out;
775 	}
776 
777 	switch (com) {
778 	case FIONCLEX:
779 		fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE;
780 		goto out;
781 	case FIOCLEX:
782 		fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE;
783 		goto out;
784 	case FIONBIO:
785 		if ((tmp = *(int *)data))
786 			atomic_set_int(&fp->f_flag, FNONBLOCK);
787 		else
788 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
789 		data = (void *)&tmp;
790 		break;
791 	case FIOASYNC:
792 		if ((tmp = *(int *)data))
793 			atomic_set_int(&fp->f_flag, FASYNC);
794 		else
795 			atomic_clear_int(&fp->f_flag, FASYNC);
796 		data = (void *)&tmp;
797 		break;
798 	}
799 
800 	error = fo_ioctl(fp, com, data, td->td_ucred, td);
801 out:
802 	switch (locked) {
803 	case LA_XLOCKED:
804 		FILEDESC_XUNLOCK(fdp);
805 		break;
806 #ifdef CAPABILITIES
807 	case LA_SLOCKED:
808 		FILEDESC_SUNLOCK(fdp);
809 		break;
810 #endif
811 	default:
812 		FILEDESC_UNLOCK_ASSERT(fdp);
813 		break;
814 	}
815 	if (fp != NULL)
816 		fdrop(fp, td);
817 	return (error);
818 }
819 
820 int
821 poll_no_poll(int events)
822 {
823 	/*
824 	 * Return true for read/write.  If the user asked for something
825 	 * special, return POLLNVAL, so that clients have a way of
826 	 * determining reliably whether or not the extended
827 	 * functionality is present without hard-coding knowledge
828 	 * of specific filesystem implementations.
829 	 */
830 	if (events & ~POLLSTANDARD)
831 		return (POLLNVAL);
832 
833 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
834 }
835 
836 int
837 sys_pselect(struct thread *td, struct pselect_args *uap)
838 {
839 	struct timespec ts;
840 	struct timeval tv, *tvp;
841 	sigset_t set, *uset;
842 	int error;
843 
844 	if (uap->ts != NULL) {
845 		error = copyin(uap->ts, &ts, sizeof(ts));
846 		if (error != 0)
847 		    return (error);
848 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
849 		tvp = &tv;
850 	} else
851 		tvp = NULL;
852 	if (uap->sm != NULL) {
853 		error = copyin(uap->sm, &set, sizeof(set));
854 		if (error != 0)
855 			return (error);
856 		uset = &set;
857 	} else
858 		uset = NULL;
859 	return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
860 	    uset, NFDBITS));
861 }
862 
863 int
864 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex,
865     struct timeval *tvp, sigset_t *uset, int abi_nfdbits)
866 {
867 	int error;
868 
869 	if (uset != NULL) {
870 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
871 		    &td->td_oldsigmask, 0);
872 		if (error != 0)
873 			return (error);
874 		td->td_pflags |= TDP_OLDMASK;
875 		/*
876 		 * Make sure that ast() is called on return to
877 		 * usermode and TDP_OLDMASK is cleared, restoring old
878 		 * sigmask.
879 		 */
880 		thread_lock(td);
881 		td->td_flags |= TDF_ASTPENDING;
882 		thread_unlock(td);
883 	}
884 	error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits);
885 	return (error);
886 }
887 
888 #ifndef _SYS_SYSPROTO_H_
889 struct select_args {
890 	int	nd;
891 	fd_set	*in, *ou, *ex;
892 	struct	timeval *tv;
893 };
894 #endif
895 int
896 sys_select(struct thread *td, struct select_args *uap)
897 {
898 	struct timeval tv, *tvp;
899 	int error;
900 
901 	if (uap->tv != NULL) {
902 		error = copyin(uap->tv, &tv, sizeof(tv));
903 		if (error)
904 			return (error);
905 		tvp = &tv;
906 	} else
907 		tvp = NULL;
908 
909 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
910 	    NFDBITS));
911 }
912 
913 /*
914  * In the unlikely case when user specified n greater then the last
915  * open file descriptor, check that no bits are set after the last
916  * valid fd.  We must return EBADF if any is set.
917  *
918  * There are applications that rely on the behaviour.
919  *
920  * nd is fd_lastfile + 1.
921  */
922 static int
923 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits)
924 {
925 	char *addr, *oaddr;
926 	int b, i, res;
927 	uint8_t bits;
928 
929 	if (nd >= ndu || fd_in == NULL)
930 		return (0);
931 
932 	oaddr = NULL;
933 	bits = 0; /* silence gcc */
934 	for (i = nd; i < ndu; i++) {
935 		b = i / NBBY;
936 #if BYTE_ORDER == LITTLE_ENDIAN
937 		addr = (char *)fd_in + b;
938 #else
939 		addr = (char *)fd_in;
940 		if (abi_nfdbits == NFDBITS) {
941 			addr += rounddown(b, sizeof(fd_mask)) +
942 			    sizeof(fd_mask) - 1 - b % sizeof(fd_mask);
943 		} else {
944 			addr += rounddown(b, sizeof(uint32_t)) +
945 			    sizeof(uint32_t) - 1 - b % sizeof(uint32_t);
946 		}
947 #endif
948 		if (addr != oaddr) {
949 			res = fubyte(addr);
950 			if (res == -1)
951 				return (EFAULT);
952 			oaddr = addr;
953 			bits = res;
954 		}
955 		if ((bits & (1 << (i % NBBY))) != 0)
956 			return (EBADF);
957 	}
958 	return (0);
959 }
960 
961 int
962 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
963     fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits)
964 {
965 	struct filedesc *fdp;
966 	/*
967 	 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
968 	 * infds with the new FD_SETSIZE of 1024, and more than enough for
969 	 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
970 	 * of 256.
971 	 */
972 	fd_mask s_selbits[howmany(2048, NFDBITS)];
973 	fd_mask *ibits[3], *obits[3], *selbits, *sbp;
974 	struct timeval rtv;
975 	sbintime_t asbt, precision, rsbt;
976 	u_int nbufbytes, ncpbytes, ncpubytes, nfdbits;
977 	int error, lf, ndu;
978 
979 	if (nd < 0)
980 		return (EINVAL);
981 	fdp = td->td_proc->p_fd;
982 	ndu = nd;
983 	lf = fdp->fd_lastfile;
984 	if (nd > lf + 1)
985 		nd = lf + 1;
986 
987 	error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);
988 	if (error != 0)
989 		return (error);
990 	error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits);
991 	if (error != 0)
992 		return (error);
993 	error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits);
994 	if (error != 0)
995 		return (error);
996 
997 	/*
998 	 * Allocate just enough bits for the non-null fd_sets.  Use the
999 	 * preallocated auto buffer if possible.
1000 	 */
1001 	nfdbits = roundup(nd, NFDBITS);
1002 	ncpbytes = nfdbits / NBBY;
1003 	ncpubytes = roundup(nd, abi_nfdbits) / NBBY;
1004 	nbufbytes = 0;
1005 	if (fd_in != NULL)
1006 		nbufbytes += 2 * ncpbytes;
1007 	if (fd_ou != NULL)
1008 		nbufbytes += 2 * ncpbytes;
1009 	if (fd_ex != NULL)
1010 		nbufbytes += 2 * ncpbytes;
1011 	if (nbufbytes <= sizeof s_selbits)
1012 		selbits = &s_selbits[0];
1013 	else
1014 		selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
1015 
1016 	/*
1017 	 * Assign pointers into the bit buffers and fetch the input bits.
1018 	 * Put the output buffers together so that they can be bzeroed
1019 	 * together.
1020 	 */
1021 	sbp = selbits;
1022 #define	getbits(name, x) \
1023 	do {								\
1024 		if (name == NULL) {					\
1025 			ibits[x] = NULL;				\
1026 			obits[x] = NULL;				\
1027 		} else {						\
1028 			ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;	\
1029 			obits[x] = sbp;					\
1030 			sbp += ncpbytes / sizeof *sbp;			\
1031 			error = copyin(name, ibits[x], ncpubytes);	\
1032 			if (error != 0)					\
1033 				goto done;				\
1034 			if (ncpbytes != ncpubytes)			\
1035 				bzero((char *)ibits[x] + ncpubytes,	\
1036 				    ncpbytes - ncpubytes);		\
1037 		}							\
1038 	} while (0)
1039 	getbits(fd_in, 0);
1040 	getbits(fd_ou, 1);
1041 	getbits(fd_ex, 2);
1042 #undef	getbits
1043 
1044 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__)
1045 	/*
1046 	 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS,
1047 	 * we are running under 32-bit emulation. This should be more
1048 	 * generic.
1049 	 */
1050 #define swizzle_fdset(bits)						\
1051 	if (abi_nfdbits != NFDBITS && bits != NULL) {			\
1052 		int i;							\
1053 		for (i = 0; i < ncpbytes / sizeof *sbp; i++)		\
1054 			bits[i] = (bits[i] >> 32) | (bits[i] << 32);	\
1055 	}
1056 #else
1057 #define swizzle_fdset(bits)
1058 #endif
1059 
1060 	/* Make sure the bit order makes it through an ABI transition */
1061 	swizzle_fdset(ibits[0]);
1062 	swizzle_fdset(ibits[1]);
1063 	swizzle_fdset(ibits[2]);
1064 
1065 	if (nbufbytes != 0)
1066 		bzero(selbits, nbufbytes / 2);
1067 
1068 	precision = 0;
1069 	if (tvp != NULL) {
1070 		rtv = *tvp;
1071 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1072 		    rtv.tv_usec >= 1000000) {
1073 			error = EINVAL;
1074 			goto done;
1075 		}
1076 		if (!timevalisset(&rtv))
1077 			asbt = 0;
1078 		else if (rtv.tv_sec <= INT32_MAX) {
1079 			rsbt = tvtosbt(rtv);
1080 			precision = rsbt;
1081 			precision >>= tc_precexp;
1082 			if (TIMESEL(&asbt, rsbt))
1083 				asbt += tc_tick_sbt;
1084 			if (asbt <= SBT_MAX - rsbt)
1085 				asbt += rsbt;
1086 			else
1087 				asbt = -1;
1088 		} else
1089 			asbt = -1;
1090 	} else
1091 		asbt = -1;
1092 	seltdinit(td);
1093 	/* Iterate until the timeout expires or descriptors become ready. */
1094 	for (;;) {
1095 		error = selscan(td, ibits, obits, nd);
1096 		if (error || td->td_retval[0] != 0)
1097 			break;
1098 		error = seltdwait(td, asbt, precision);
1099 		if (error)
1100 			break;
1101 		error = selrescan(td, ibits, obits);
1102 		if (error || td->td_retval[0] != 0)
1103 			break;
1104 	}
1105 	seltdclear(td);
1106 
1107 done:
1108 	/* select is not restarted after signals... */
1109 	if (error == ERESTART)
1110 		error = EINTR;
1111 	if (error == EWOULDBLOCK)
1112 		error = 0;
1113 
1114 	/* swizzle bit order back, if necessary */
1115 	swizzle_fdset(obits[0]);
1116 	swizzle_fdset(obits[1]);
1117 	swizzle_fdset(obits[2]);
1118 #undef swizzle_fdset
1119 
1120 #define	putbits(name, x) \
1121 	if (name && (error2 = copyout(obits[x], name, ncpubytes))) \
1122 		error = error2;
1123 	if (error == 0) {
1124 		int error2;
1125 
1126 		putbits(fd_in, 0);
1127 		putbits(fd_ou, 1);
1128 		putbits(fd_ex, 2);
1129 #undef putbits
1130 	}
1131 	if (selbits != &s_selbits[0])
1132 		free(selbits, M_SELECT);
1133 
1134 	return (error);
1135 }
1136 /*
1137  * Convert a select bit set to poll flags.
1138  *
1139  * The backend always returns POLLHUP/POLLERR if appropriate and we
1140  * return this as a set bit in any set.
1141  */
1142 static int select_flags[3] = {
1143     POLLRDNORM | POLLHUP | POLLERR,
1144     POLLWRNORM | POLLHUP | POLLERR,
1145     POLLRDBAND | POLLERR
1146 };
1147 
1148 /*
1149  * Compute the fo_poll flags required for a fd given by the index and
1150  * bit position in the fd_mask array.
1151  */
1152 static __inline int
1153 selflags(fd_mask **ibits, int idx, fd_mask bit)
1154 {
1155 	int flags;
1156 	int msk;
1157 
1158 	flags = 0;
1159 	for (msk = 0; msk < 3; msk++) {
1160 		if (ibits[msk] == NULL)
1161 			continue;
1162 		if ((ibits[msk][idx] & bit) == 0)
1163 			continue;
1164 		flags |= select_flags[msk];
1165 	}
1166 	return (flags);
1167 }
1168 
1169 /*
1170  * Set the appropriate output bits given a mask of fired events and the
1171  * input bits originally requested.
1172  */
1173 static __inline int
1174 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events)
1175 {
1176 	int msk;
1177 	int n;
1178 
1179 	n = 0;
1180 	for (msk = 0; msk < 3; msk++) {
1181 		if ((events & select_flags[msk]) == 0)
1182 			continue;
1183 		if (ibits[msk] == NULL)
1184 			continue;
1185 		if ((ibits[msk][idx] & bit) == 0)
1186 			continue;
1187 		/*
1188 		 * XXX Check for a duplicate set.  This can occur because a
1189 		 * socket calls selrecord() twice for each poll() call
1190 		 * resulting in two selfds per real fd.  selrescan() will
1191 		 * call selsetbits twice as a result.
1192 		 */
1193 		if ((obits[msk][idx] & bit) != 0)
1194 			continue;
1195 		obits[msk][idx] |= bit;
1196 		n++;
1197 	}
1198 
1199 	return (n);
1200 }
1201 
1202 static __inline int
1203 getselfd_cap(struct filedesc *fdp, int fd, struct file **fpp)
1204 {
1205 
1206 	return (fget_unlocked(fdp, fd, &cap_event_rights, fpp, NULL));
1207 }
1208 
1209 /*
1210  * Traverse the list of fds attached to this thread's seltd and check for
1211  * completion.
1212  */
1213 static int
1214 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
1215 {
1216 	struct filedesc *fdp;
1217 	struct selinfo *si;
1218 	struct seltd *stp;
1219 	struct selfd *sfp;
1220 	struct selfd *sfn;
1221 	struct file *fp;
1222 	fd_mask bit;
1223 	int fd, ev, n, idx;
1224 	int error;
1225 
1226 	fdp = td->td_proc->p_fd;
1227 	stp = td->td_sel;
1228 	n = 0;
1229 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1230 		fd = (int)(uintptr_t)sfp->sf_cookie;
1231 		si = sfp->sf_si;
1232 		selfdfree(stp, sfp);
1233 		/* If the selinfo wasn't cleared the event didn't fire. */
1234 		if (si != NULL)
1235 			continue;
1236 		error = getselfd_cap(fdp, fd, &fp);
1237 		if (error)
1238 			return (error);
1239 		idx = fd / NFDBITS;
1240 		bit = (fd_mask)1 << (fd % NFDBITS);
1241 		ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td);
1242 		fdrop(fp, td);
1243 		if (ev != 0)
1244 			n += selsetbits(ibits, obits, idx, bit, ev);
1245 	}
1246 	stp->st_flags = 0;
1247 	td->td_retval[0] = n;
1248 	return (0);
1249 }
1250 
1251 /*
1252  * Perform the initial filedescriptor scan and register ourselves with
1253  * each selinfo.
1254  */
1255 static int
1256 selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd)
1257 {
1258 	struct filedesc *fdp;
1259 	struct file *fp;
1260 	fd_mask bit;
1261 	int ev, flags, end, fd;
1262 	int n, idx;
1263 	int error;
1264 
1265 	fdp = td->td_proc->p_fd;
1266 	n = 0;
1267 	for (idx = 0, fd = 0; fd < nfd; idx++) {
1268 		end = imin(fd + NFDBITS, nfd);
1269 		for (bit = 1; fd < end; bit <<= 1, fd++) {
1270 			/* Compute the list of events we're interested in. */
1271 			flags = selflags(ibits, idx, bit);
1272 			if (flags == 0)
1273 				continue;
1274 			error = getselfd_cap(fdp, fd, &fp);
1275 			if (error)
1276 				return (error);
1277 			selfdalloc(td, (void *)(uintptr_t)fd);
1278 			ev = fo_poll(fp, flags, td->td_ucred, td);
1279 			fdrop(fp, td);
1280 			if (ev != 0)
1281 				n += selsetbits(ibits, obits, idx, bit, ev);
1282 		}
1283 	}
1284 
1285 	td->td_retval[0] = n;
1286 	return (0);
1287 }
1288 
1289 int
1290 sys_poll(struct thread *td, struct poll_args *uap)
1291 {
1292 	struct timespec ts, *tsp;
1293 
1294 	if (uap->timeout != INFTIM) {
1295 		if (uap->timeout < 0)
1296 			return (EINVAL);
1297 		ts.tv_sec = uap->timeout / 1000;
1298 		ts.tv_nsec = (uap->timeout % 1000) * 1000000;
1299 		tsp = &ts;
1300 	} else
1301 		tsp = NULL;
1302 
1303 	return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL));
1304 }
1305 
1306 int
1307 kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds,
1308     struct timespec *tsp, sigset_t *uset)
1309 {
1310 	struct pollfd *kfds;
1311 	struct pollfd stackfds[32];
1312 	sbintime_t sbt, precision, tmp;
1313 	time_t over;
1314 	struct timespec ts;
1315 	int error;
1316 
1317 	precision = 0;
1318 	if (tsp != NULL) {
1319 		if (tsp->tv_sec < 0)
1320 			return (EINVAL);
1321 		if (tsp->tv_nsec < 0 || tsp->tv_nsec >= 1000000000)
1322 			return (EINVAL);
1323 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1324 			sbt = 0;
1325 		else {
1326 			ts = *tsp;
1327 			if (ts.tv_sec > INT32_MAX / 2) {
1328 				over = ts.tv_sec - INT32_MAX / 2;
1329 				ts.tv_sec -= over;
1330 			} else
1331 				over = 0;
1332 			tmp = tstosbt(ts);
1333 			precision = tmp;
1334 			precision >>= tc_precexp;
1335 			if (TIMESEL(&sbt, tmp))
1336 				sbt += tc_tick_sbt;
1337 			sbt += tmp;
1338 		}
1339 	} else
1340 		sbt = -1;
1341 
1342 	/*
1343 	 * This is kinda bogus.  We have fd limits, but that is not
1344 	 * really related to the size of the pollfd array.  Make sure
1345 	 * we let the process use at least FD_SETSIZE entries and at
1346 	 * least enough for the system-wide limits.  We want to be reasonably
1347 	 * safe, but not overly restrictive.
1348 	 */
1349 	if (nfds > maxfilesperproc && nfds > FD_SETSIZE)
1350 		return (EINVAL);
1351 	if (nfds > nitems(stackfds))
1352 		kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
1353 	else
1354 		kfds = stackfds;
1355 	error = copyin(ufds, kfds, nfds * sizeof(*kfds));
1356 	if (error)
1357 		goto done;
1358 
1359 	if (uset != NULL) {
1360 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
1361 		    &td->td_oldsigmask, 0);
1362 		if (error)
1363 			goto done;
1364 		td->td_pflags |= TDP_OLDMASK;
1365 		/*
1366 		 * Make sure that ast() is called on return to
1367 		 * usermode and TDP_OLDMASK is cleared, restoring old
1368 		 * sigmask.
1369 		 */
1370 		thread_lock(td);
1371 		td->td_flags |= TDF_ASTPENDING;
1372 		thread_unlock(td);
1373 	}
1374 
1375 	seltdinit(td);
1376 	/* Iterate until the timeout expires or descriptors become ready. */
1377 	for (;;) {
1378 		error = pollscan(td, kfds, nfds);
1379 		if (error || td->td_retval[0] != 0)
1380 			break;
1381 		error = seltdwait(td, sbt, precision);
1382 		if (error)
1383 			break;
1384 		error = pollrescan(td);
1385 		if (error || td->td_retval[0] != 0)
1386 			break;
1387 	}
1388 	seltdclear(td);
1389 
1390 done:
1391 	/* poll is not restarted after signals... */
1392 	if (error == ERESTART)
1393 		error = EINTR;
1394 	if (error == EWOULDBLOCK)
1395 		error = 0;
1396 	if (error == 0) {
1397 		error = pollout(td, kfds, ufds, nfds);
1398 		if (error)
1399 			goto out;
1400 	}
1401 out:
1402 	if (nfds > nitems(stackfds))
1403 		free(kfds, M_TEMP);
1404 	return (error);
1405 }
1406 
1407 int
1408 sys_ppoll(struct thread *td, struct ppoll_args *uap)
1409 {
1410 	struct timespec ts, *tsp;
1411 	sigset_t set, *ssp;
1412 	int error;
1413 
1414 	if (uap->ts != NULL) {
1415 		error = copyin(uap->ts, &ts, sizeof(ts));
1416 		if (error)
1417 			return (error);
1418 		tsp = &ts;
1419 	} else
1420 		tsp = NULL;
1421 	if (uap->set != NULL) {
1422 		error = copyin(uap->set, &set, sizeof(set));
1423 		if (error)
1424 			return (error);
1425 		ssp = &set;
1426 	} else
1427 		ssp = NULL;
1428 	/*
1429 	 * fds is still a pointer to user space. kern_poll() will
1430 	 * take care of copyin that array to the kernel space.
1431 	 */
1432 
1433 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
1434 }
1435 
1436 static int
1437 pollrescan(struct thread *td)
1438 {
1439 	struct seltd *stp;
1440 	struct selfd *sfp;
1441 	struct selfd *sfn;
1442 	struct selinfo *si;
1443 	struct filedesc *fdp;
1444 	struct file *fp;
1445 	struct pollfd *fd;
1446 	int n;
1447 
1448 	n = 0;
1449 	fdp = td->td_proc->p_fd;
1450 	stp = td->td_sel;
1451 	FILEDESC_SLOCK(fdp);
1452 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1453 		fd = (struct pollfd *)sfp->sf_cookie;
1454 		si = sfp->sf_si;
1455 		selfdfree(stp, sfp);
1456 		/* If the selinfo wasn't cleared the event didn't fire. */
1457 		if (si != NULL)
1458 			continue;
1459 		fp = fdp->fd_ofiles[fd->fd].fde_file;
1460 #ifdef CAPABILITIES
1461 		if (fp == NULL ||
1462 		    cap_check(cap_rights(fdp, fd->fd), &cap_event_rights) != 0)
1463 #else
1464 		if (fp == NULL)
1465 #endif
1466 		{
1467 			fd->revents = POLLNVAL;
1468 			n++;
1469 			continue;
1470 		}
1471 
1472 		/*
1473 		 * Note: backend also returns POLLHUP and
1474 		 * POLLERR if appropriate.
1475 		 */
1476 		fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
1477 		if (fd->revents != 0)
1478 			n++;
1479 	}
1480 	FILEDESC_SUNLOCK(fdp);
1481 	stp->st_flags = 0;
1482 	td->td_retval[0] = n;
1483 	return (0);
1484 }
1485 
1486 
1487 static int
1488 pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
1489 {
1490 	int error = 0;
1491 	u_int i = 0;
1492 	u_int n = 0;
1493 
1494 	for (i = 0; i < nfd; i++) {
1495 		error = copyout(&fds->revents, &ufds->revents,
1496 		    sizeof(ufds->revents));
1497 		if (error)
1498 			return (error);
1499 		if (fds->revents != 0)
1500 			n++;
1501 		fds++;
1502 		ufds++;
1503 	}
1504 	td->td_retval[0] = n;
1505 	return (0);
1506 }
1507 
1508 static int
1509 pollscan(struct thread *td, struct pollfd *fds, u_int nfd)
1510 {
1511 	struct filedesc *fdp = td->td_proc->p_fd;
1512 	struct file *fp;
1513 	int i, n = 0;
1514 
1515 	FILEDESC_SLOCK(fdp);
1516 	for (i = 0; i < nfd; i++, fds++) {
1517 		if (fds->fd > fdp->fd_lastfile) {
1518 			fds->revents = POLLNVAL;
1519 			n++;
1520 		} else if (fds->fd < 0) {
1521 			fds->revents = 0;
1522 		} else {
1523 			fp = fdp->fd_ofiles[fds->fd].fde_file;
1524 #ifdef CAPABILITIES
1525 			if (fp == NULL ||
1526 			    cap_check(cap_rights(fdp, fds->fd), &cap_event_rights) != 0)
1527 #else
1528 			if (fp == NULL)
1529 #endif
1530 			{
1531 				fds->revents = POLLNVAL;
1532 				n++;
1533 			} else {
1534 				/*
1535 				 * Note: backend also returns POLLHUP and
1536 				 * POLLERR if appropriate.
1537 				 */
1538 				selfdalloc(td, fds);
1539 				fds->revents = fo_poll(fp, fds->events,
1540 				    td->td_ucred, td);
1541 				/*
1542 				 * POSIX requires POLLOUT to be never
1543 				 * set simultaneously with POLLHUP.
1544 				 */
1545 				if ((fds->revents & POLLHUP) != 0)
1546 					fds->revents &= ~POLLOUT;
1547 
1548 				if (fds->revents != 0)
1549 					n++;
1550 			}
1551 		}
1552 	}
1553 	FILEDESC_SUNLOCK(fdp);
1554 	td->td_retval[0] = n;
1555 	return (0);
1556 }
1557 
1558 /*
1559  * XXX This was created specifically to support netncp and netsmb.  This
1560  * allows the caller to specify a socket to wait for events on.  It returns
1561  * 0 if any events matched and an error otherwise.  There is no way to
1562  * determine which events fired.
1563  */
1564 int
1565 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
1566 {
1567 	struct timeval rtv;
1568 	sbintime_t asbt, precision, rsbt;
1569 	int error;
1570 
1571 	precision = 0;	/* stupid gcc! */
1572 	if (tvp != NULL) {
1573 		rtv = *tvp;
1574 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1575 		    rtv.tv_usec >= 1000000)
1576 			return (EINVAL);
1577 		if (!timevalisset(&rtv))
1578 			asbt = 0;
1579 		else if (rtv.tv_sec <= INT32_MAX) {
1580 			rsbt = tvtosbt(rtv);
1581 			precision = rsbt;
1582 			precision >>= tc_precexp;
1583 			if (TIMESEL(&asbt, rsbt))
1584 				asbt += tc_tick_sbt;
1585 			if (asbt <= SBT_MAX - rsbt)
1586 				asbt += rsbt;
1587 			else
1588 				asbt = -1;
1589 		} else
1590 			asbt = -1;
1591 	} else
1592 		asbt = -1;
1593 	seltdinit(td);
1594 	/*
1595 	 * Iterate until the timeout expires or the socket becomes ready.
1596 	 */
1597 	for (;;) {
1598 		selfdalloc(td, NULL);
1599 		error = sopoll(so, events, NULL, td);
1600 		/* error here is actually the ready events. */
1601 		if (error)
1602 			return (0);
1603 		error = seltdwait(td, asbt, precision);
1604 		if (error)
1605 			break;
1606 	}
1607 	seltdclear(td);
1608 	/* XXX Duplicates ncp/smb behavior. */
1609 	if (error == ERESTART)
1610 		error = 0;
1611 	return (error);
1612 }
1613 
1614 /*
1615  * Preallocate two selfds associated with 'cookie'.  Some fo_poll routines
1616  * have two select sets, one for read and another for write.
1617  */
1618 static void
1619 selfdalloc(struct thread *td, void *cookie)
1620 {
1621 	struct seltd *stp;
1622 
1623 	stp = td->td_sel;
1624 	if (stp->st_free1 == NULL)
1625 		stp->st_free1 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
1626 	stp->st_free1->sf_td = stp;
1627 	stp->st_free1->sf_cookie = cookie;
1628 	if (stp->st_free2 == NULL)
1629 		stp->st_free2 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
1630 	stp->st_free2->sf_td = stp;
1631 	stp->st_free2->sf_cookie = cookie;
1632 }
1633 
1634 static void
1635 selfdfree(struct seltd *stp, struct selfd *sfp)
1636 {
1637 	STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
1638 	if (sfp->sf_si != NULL) {
1639 		mtx_lock(sfp->sf_mtx);
1640 		if (sfp->sf_si != NULL) {
1641 			TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
1642 			refcount_release(&sfp->sf_refs);
1643 		}
1644 		mtx_unlock(sfp->sf_mtx);
1645 	}
1646 	if (refcount_release(&sfp->sf_refs))
1647 		uma_zfree(selfd_zone, sfp);
1648 }
1649 
1650 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */
1651 void
1652 seldrain(struct selinfo *sip)
1653 {
1654 
1655 	/*
1656 	 * This feature is already provided by doselwakeup(), thus it is
1657 	 * enough to go for it.
1658 	 * Eventually, the context, should take care to avoid races
1659 	 * between thread calling select()/poll() and file descriptor
1660 	 * detaching, but, again, the races are just the same as
1661 	 * selwakeup().
1662 	 */
1663         doselwakeup(sip, -1);
1664 }
1665 
1666 /*
1667  * Record a select request.
1668  */
1669 void
1670 selrecord(struct thread *selector, struct selinfo *sip)
1671 {
1672 	struct selfd *sfp;
1673 	struct seltd *stp;
1674 	struct mtx *mtxp;
1675 
1676 	stp = selector->td_sel;
1677 	/*
1678 	 * Don't record when doing a rescan.
1679 	 */
1680 	if (stp->st_flags & SELTD_RESCAN)
1681 		return;
1682 	/*
1683 	 * Grab one of the preallocated descriptors.
1684 	 */
1685 	sfp = NULL;
1686 	if ((sfp = stp->st_free1) != NULL)
1687 		stp->st_free1 = NULL;
1688 	else if ((sfp = stp->st_free2) != NULL)
1689 		stp->st_free2 = NULL;
1690 	else
1691 		panic("selrecord: No free selfd on selq");
1692 	mtxp = sip->si_mtx;
1693 	if (mtxp == NULL)
1694 		mtxp = mtx_pool_find(mtxpool_select, sip);
1695 	/*
1696 	 * Initialize the sfp and queue it in the thread.
1697 	 */
1698 	sfp->sf_si = sip;
1699 	sfp->sf_mtx = mtxp;
1700 	refcount_init(&sfp->sf_refs, 2);
1701 	STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
1702 	/*
1703 	 * Now that we've locked the sip, check for initialization.
1704 	 */
1705 	mtx_lock(mtxp);
1706 	if (sip->si_mtx == NULL) {
1707 		sip->si_mtx = mtxp;
1708 		TAILQ_INIT(&sip->si_tdlist);
1709 	}
1710 	/*
1711 	 * Add this thread to the list of selfds listening on this selinfo.
1712 	 */
1713 	TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
1714 	mtx_unlock(sip->si_mtx);
1715 }
1716 
1717 /* Wake up a selecting thread. */
1718 void
1719 selwakeup(struct selinfo *sip)
1720 {
1721 	doselwakeup(sip, -1);
1722 }
1723 
1724 /* Wake up a selecting thread, and set its priority. */
1725 void
1726 selwakeuppri(struct selinfo *sip, int pri)
1727 {
1728 	doselwakeup(sip, pri);
1729 }
1730 
1731 /*
1732  * Do a wakeup when a selectable event occurs.
1733  */
1734 static void
1735 doselwakeup(struct selinfo *sip, int pri)
1736 {
1737 	struct selfd *sfp;
1738 	struct selfd *sfn;
1739 	struct seltd *stp;
1740 
1741 	/* If it's not initialized there can't be any waiters. */
1742 	if (sip->si_mtx == NULL)
1743 		return;
1744 	/*
1745 	 * Locking the selinfo locks all selfds associated with it.
1746 	 */
1747 	mtx_lock(sip->si_mtx);
1748 	TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
1749 		/*
1750 		 * Once we remove this sfp from the list and clear the
1751 		 * sf_si seltdclear will know to ignore this si.
1752 		 */
1753 		TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
1754 		sfp->sf_si = NULL;
1755 		stp = sfp->sf_td;
1756 		mtx_lock(&stp->st_mtx);
1757 		stp->st_flags |= SELTD_PENDING;
1758 		cv_broadcastpri(&stp->st_wait, pri);
1759 		mtx_unlock(&stp->st_mtx);
1760 		if (refcount_release(&sfp->sf_refs))
1761 			uma_zfree(selfd_zone, sfp);
1762 	}
1763 	mtx_unlock(sip->si_mtx);
1764 }
1765 
1766 static void
1767 seltdinit(struct thread *td)
1768 {
1769 	struct seltd *stp;
1770 
1771 	if ((stp = td->td_sel) != NULL)
1772 		goto out;
1773 	td->td_sel = stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
1774 	mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
1775 	cv_init(&stp->st_wait, "select");
1776 out:
1777 	stp->st_flags = 0;
1778 	STAILQ_INIT(&stp->st_selq);
1779 }
1780 
1781 static int
1782 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision)
1783 {
1784 	struct seltd *stp;
1785 	int error;
1786 
1787 	stp = td->td_sel;
1788 	/*
1789 	 * An event of interest may occur while we do not hold the seltd
1790 	 * locked so check the pending flag before we sleep.
1791 	 */
1792 	mtx_lock(&stp->st_mtx);
1793 	/*
1794 	 * Any further calls to selrecord will be a rescan.
1795 	 */
1796 	stp->st_flags |= SELTD_RESCAN;
1797 	if (stp->st_flags & SELTD_PENDING) {
1798 		mtx_unlock(&stp->st_mtx);
1799 		return (0);
1800 	}
1801 	if (sbt == 0)
1802 		error = EWOULDBLOCK;
1803 	else if (sbt != -1)
1804 		error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx,
1805 		    sbt, precision, C_ABSOLUTE);
1806 	else
1807 		error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
1808 	mtx_unlock(&stp->st_mtx);
1809 
1810 	return (error);
1811 }
1812 
1813 void
1814 seltdfini(struct thread *td)
1815 {
1816 	struct seltd *stp;
1817 
1818 	stp = td->td_sel;
1819 	if (stp == NULL)
1820 		return;
1821 	if (stp->st_free1)
1822 		uma_zfree(selfd_zone, stp->st_free1);
1823 	if (stp->st_free2)
1824 		uma_zfree(selfd_zone, stp->st_free2);
1825 	td->td_sel = NULL;
1826 	cv_destroy(&stp->st_wait);
1827 	mtx_destroy(&stp->st_mtx);
1828 	free(stp, M_SELECT);
1829 }
1830 
1831 /*
1832  * Remove the references to the thread from all of the objects we were
1833  * polling.
1834  */
1835 static void
1836 seltdclear(struct thread *td)
1837 {
1838 	struct seltd *stp;
1839 	struct selfd *sfp;
1840 	struct selfd *sfn;
1841 
1842 	stp = td->td_sel;
1843 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
1844 		selfdfree(stp, sfp);
1845 	stp->st_flags = 0;
1846 }
1847 
1848 static void selectinit(void *);
1849 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
1850 static void
1851 selectinit(void *dummy __unused)
1852 {
1853 
1854 	selfd_zone = uma_zcreate("selfd", sizeof(struct selfd), NULL, NULL,
1855 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1856 	mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF);
1857 }
1858 
1859 /*
1860  * Set up a syscall return value that follows the convention specified for
1861  * posix_* functions.
1862  */
1863 int
1864 kern_posix_error(struct thread *td, int error)
1865 {
1866 
1867 	if (error <= 0)
1868 		return (error);
1869 	td->td_errno = error;
1870 	td->td_pflags |= TDP_NERRNO;
1871 	td->td_retval[0] = error;
1872 	return (0);
1873 }
1874