xref: /freebsd/sys/kern/sys_generic.c (revision 3fc9e2c36555140de248a0b4def91bbfa44d7c2c)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)sys_generic.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_capsicum.h"
41 #include "opt_compat.h"
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysproto.h>
47 #include <sys/capability.h>
48 #include <sys/filedesc.h>
49 #include <sys/filio.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/lock.h>
53 #include <sys/proc.h>
54 #include <sys/signalvar.h>
55 #include <sys/socketvar.h>
56 #include <sys/uio.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/malloc.h>
61 #include <sys/poll.h>
62 #include <sys/resourcevar.h>
63 #include <sys/selinfo.h>
64 #include <sys/sleepqueue.h>
65 #include <sys/syscallsubr.h>
66 #include <sys/sysctl.h>
67 #include <sys/sysent.h>
68 #include <sys/vnode.h>
69 #include <sys/bio.h>
70 #include <sys/buf.h>
71 #include <sys/condvar.h>
72 #ifdef KTRACE
73 #include <sys/ktrace.h>
74 #endif
75 
76 #include <security/audit/audit.h>
77 
78 int iosize_max_clamp = 1;
79 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW,
80     &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX");
81 /*
82  * Assert that the return value of read(2) and write(2) syscalls fits
83  * into a register.  If not, an architecture will need to provide the
84  * usermode wrappers to reconstruct the result.
85  */
86 CTASSERT(sizeof(register_t) >= sizeof(size_t));
87 
88 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
89 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
90 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
91 
92 static int	pollout(struct thread *, struct pollfd *, struct pollfd *,
93 		    u_int);
94 static int	pollscan(struct thread *, struct pollfd *, u_int);
95 static int	pollrescan(struct thread *);
96 static int	selscan(struct thread *, fd_mask **, fd_mask **, int);
97 static int	selrescan(struct thread *, fd_mask **, fd_mask **);
98 static void	selfdalloc(struct thread *, void *);
99 static void	selfdfree(struct seltd *, struct selfd *);
100 static int	dofileread(struct thread *, int, struct file *, struct uio *,
101 		    off_t, int);
102 static int	dofilewrite(struct thread *, int, struct file *, struct uio *,
103 		    off_t, int);
104 static void	doselwakeup(struct selinfo *, int);
105 static void	seltdinit(struct thread *);
106 static int	seltdwait(struct thread *, sbintime_t, sbintime_t);
107 static void	seltdclear(struct thread *);
108 
109 /*
110  * One seltd per-thread allocated on demand as needed.
111  *
112  *	t - protected by st_mtx
113  * 	k - Only accessed by curthread or read-only
114  */
115 struct seltd {
116 	STAILQ_HEAD(, selfd)	st_selq;	/* (k) List of selfds. */
117 	struct selfd		*st_free1;	/* (k) free fd for read set. */
118 	struct selfd		*st_free2;	/* (k) free fd for write set. */
119 	struct mtx		st_mtx;		/* Protects struct seltd */
120 	struct cv		st_wait;	/* (t) Wait channel. */
121 	int			st_flags;	/* (t) SELTD_ flags. */
122 };
123 
124 #define	SELTD_PENDING	0x0001			/* We have pending events. */
125 #define	SELTD_RESCAN	0x0002			/* Doing a rescan. */
126 
127 /*
128  * One selfd allocated per-thread per-file-descriptor.
129  *	f - protected by sf_mtx
130  */
131 struct selfd {
132 	STAILQ_ENTRY(selfd)	sf_link;	/* (k) fds owned by this td. */
133 	TAILQ_ENTRY(selfd)	sf_threads;	/* (f) fds on this selinfo. */
134 	struct selinfo		*sf_si;		/* (f) selinfo when linked. */
135 	struct mtx		*sf_mtx;	/* Pointer to selinfo mtx. */
136 	struct seltd		*sf_td;		/* (k) owning seltd. */
137 	void			*sf_cookie;	/* (k) fd or pollfd. */
138 };
139 
140 static uma_zone_t selfd_zone;
141 static struct mtx_pool *mtxpool_select;
142 
143 #ifndef _SYS_SYSPROTO_H_
144 struct read_args {
145 	int	fd;
146 	void	*buf;
147 	size_t	nbyte;
148 };
149 #endif
150 int
151 sys_read(td, uap)
152 	struct thread *td;
153 	struct read_args *uap;
154 {
155 	struct uio auio;
156 	struct iovec aiov;
157 	int error;
158 
159 	if (uap->nbyte > IOSIZE_MAX)
160 		return (EINVAL);
161 	aiov.iov_base = uap->buf;
162 	aiov.iov_len = uap->nbyte;
163 	auio.uio_iov = &aiov;
164 	auio.uio_iovcnt = 1;
165 	auio.uio_resid = uap->nbyte;
166 	auio.uio_segflg = UIO_USERSPACE;
167 	error = kern_readv(td, uap->fd, &auio);
168 	return(error);
169 }
170 
171 /*
172  * Positioned read system call
173  */
174 #ifndef _SYS_SYSPROTO_H_
175 struct pread_args {
176 	int	fd;
177 	void	*buf;
178 	size_t	nbyte;
179 	int	pad;
180 	off_t	offset;
181 };
182 #endif
183 int
184 sys_pread(td, uap)
185 	struct thread *td;
186 	struct pread_args *uap;
187 {
188 	struct uio auio;
189 	struct iovec aiov;
190 	int error;
191 
192 	if (uap->nbyte > IOSIZE_MAX)
193 		return (EINVAL);
194 	aiov.iov_base = uap->buf;
195 	aiov.iov_len = uap->nbyte;
196 	auio.uio_iov = &aiov;
197 	auio.uio_iovcnt = 1;
198 	auio.uio_resid = uap->nbyte;
199 	auio.uio_segflg = UIO_USERSPACE;
200 	error = kern_preadv(td, uap->fd, &auio, uap->offset);
201 	return(error);
202 }
203 
204 int
205 freebsd6_pread(td, uap)
206 	struct thread *td;
207 	struct freebsd6_pread_args *uap;
208 {
209 	struct pread_args oargs;
210 
211 	oargs.fd = uap->fd;
212 	oargs.buf = uap->buf;
213 	oargs.nbyte = uap->nbyte;
214 	oargs.offset = uap->offset;
215 	return (sys_pread(td, &oargs));
216 }
217 
218 /*
219  * Scatter read system call.
220  */
221 #ifndef _SYS_SYSPROTO_H_
222 struct readv_args {
223 	int	fd;
224 	struct	iovec *iovp;
225 	u_int	iovcnt;
226 };
227 #endif
228 int
229 sys_readv(struct thread *td, struct readv_args *uap)
230 {
231 	struct uio *auio;
232 	int error;
233 
234 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
235 	if (error)
236 		return (error);
237 	error = kern_readv(td, uap->fd, auio);
238 	free(auio, M_IOV);
239 	return (error);
240 }
241 
242 int
243 kern_readv(struct thread *td, int fd, struct uio *auio)
244 {
245 	struct file *fp;
246 	cap_rights_t rights;
247 	int error;
248 
249 	error = fget_read(td, fd, cap_rights_init(&rights, CAP_READ), &fp);
250 	if (error)
251 		return (error);
252 	error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
253 	fdrop(fp, td);
254 	return (error);
255 }
256 
257 /*
258  * Scatter positioned read system call.
259  */
260 #ifndef _SYS_SYSPROTO_H_
261 struct preadv_args {
262 	int	fd;
263 	struct	iovec *iovp;
264 	u_int	iovcnt;
265 	off_t	offset;
266 };
267 #endif
268 int
269 sys_preadv(struct thread *td, struct preadv_args *uap)
270 {
271 	struct uio *auio;
272 	int error;
273 
274 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
275 	if (error)
276 		return (error);
277 	error = kern_preadv(td, uap->fd, auio, uap->offset);
278 	free(auio, M_IOV);
279 	return (error);
280 }
281 
282 int
283 kern_preadv(td, fd, auio, offset)
284 	struct thread *td;
285 	int fd;
286 	struct uio *auio;
287 	off_t offset;
288 {
289 	struct file *fp;
290 	cap_rights_t rights;
291 	int error;
292 
293 	error = fget_read(td, fd, cap_rights_init(&rights, CAP_PREAD), &fp);
294 	if (error)
295 		return (error);
296 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
297 		error = ESPIPE;
298 	else if (offset < 0 && fp->f_vnode->v_type != VCHR)
299 		error = EINVAL;
300 	else
301 		error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
302 	fdrop(fp, td);
303 	return (error);
304 }
305 
306 /*
307  * Common code for readv and preadv that reads data in
308  * from a file using the passed in uio, offset, and flags.
309  */
310 static int
311 dofileread(td, fd, fp, auio, offset, flags)
312 	struct thread *td;
313 	int fd;
314 	struct file *fp;
315 	struct uio *auio;
316 	off_t offset;
317 	int flags;
318 {
319 	ssize_t cnt;
320 	int error;
321 #ifdef KTRACE
322 	struct uio *ktruio = NULL;
323 #endif
324 
325 	/* Finish zero length reads right here */
326 	if (auio->uio_resid == 0) {
327 		td->td_retval[0] = 0;
328 		return(0);
329 	}
330 	auio->uio_rw = UIO_READ;
331 	auio->uio_offset = offset;
332 	auio->uio_td = td;
333 #ifdef KTRACE
334 	if (KTRPOINT(td, KTR_GENIO))
335 		ktruio = cloneuio(auio);
336 #endif
337 	cnt = auio->uio_resid;
338 	if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
339 		if (auio->uio_resid != cnt && (error == ERESTART ||
340 		    error == EINTR || error == EWOULDBLOCK))
341 			error = 0;
342 	}
343 	cnt -= auio->uio_resid;
344 #ifdef KTRACE
345 	if (ktruio != NULL) {
346 		ktruio->uio_resid = cnt;
347 		ktrgenio(fd, UIO_READ, ktruio, error);
348 	}
349 #endif
350 	td->td_retval[0] = cnt;
351 	return (error);
352 }
353 
354 #ifndef _SYS_SYSPROTO_H_
355 struct write_args {
356 	int	fd;
357 	const void *buf;
358 	size_t	nbyte;
359 };
360 #endif
361 int
362 sys_write(td, uap)
363 	struct thread *td;
364 	struct write_args *uap;
365 {
366 	struct uio auio;
367 	struct iovec aiov;
368 	int error;
369 
370 	if (uap->nbyte > IOSIZE_MAX)
371 		return (EINVAL);
372 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
373 	aiov.iov_len = uap->nbyte;
374 	auio.uio_iov = &aiov;
375 	auio.uio_iovcnt = 1;
376 	auio.uio_resid = uap->nbyte;
377 	auio.uio_segflg = UIO_USERSPACE;
378 	error = kern_writev(td, uap->fd, &auio);
379 	return(error);
380 }
381 
382 /*
383  * Positioned write system call.
384  */
385 #ifndef _SYS_SYSPROTO_H_
386 struct pwrite_args {
387 	int	fd;
388 	const void *buf;
389 	size_t	nbyte;
390 	int	pad;
391 	off_t	offset;
392 };
393 #endif
394 int
395 sys_pwrite(td, uap)
396 	struct thread *td;
397 	struct pwrite_args *uap;
398 {
399 	struct uio auio;
400 	struct iovec aiov;
401 	int error;
402 
403 	if (uap->nbyte > IOSIZE_MAX)
404 		return (EINVAL);
405 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
406 	aiov.iov_len = uap->nbyte;
407 	auio.uio_iov = &aiov;
408 	auio.uio_iovcnt = 1;
409 	auio.uio_resid = uap->nbyte;
410 	auio.uio_segflg = UIO_USERSPACE;
411 	error = kern_pwritev(td, uap->fd, &auio, uap->offset);
412 	return(error);
413 }
414 
415 int
416 freebsd6_pwrite(td, uap)
417 	struct thread *td;
418 	struct freebsd6_pwrite_args *uap;
419 {
420 	struct pwrite_args oargs;
421 
422 	oargs.fd = uap->fd;
423 	oargs.buf = uap->buf;
424 	oargs.nbyte = uap->nbyte;
425 	oargs.offset = uap->offset;
426 	return (sys_pwrite(td, &oargs));
427 }
428 
429 /*
430  * Gather write system call.
431  */
432 #ifndef _SYS_SYSPROTO_H_
433 struct writev_args {
434 	int	fd;
435 	struct	iovec *iovp;
436 	u_int	iovcnt;
437 };
438 #endif
439 int
440 sys_writev(struct thread *td, struct writev_args *uap)
441 {
442 	struct uio *auio;
443 	int error;
444 
445 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
446 	if (error)
447 		return (error);
448 	error = kern_writev(td, uap->fd, auio);
449 	free(auio, M_IOV);
450 	return (error);
451 }
452 
453 int
454 kern_writev(struct thread *td, int fd, struct uio *auio)
455 {
456 	struct file *fp;
457 	cap_rights_t rights;
458 	int error;
459 
460 	error = fget_write(td, fd, cap_rights_init(&rights, CAP_WRITE), &fp);
461 	if (error)
462 		return (error);
463 	error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
464 	fdrop(fp, td);
465 	return (error);
466 }
467 
468 /*
469  * Gather positioned write system call.
470  */
471 #ifndef _SYS_SYSPROTO_H_
472 struct pwritev_args {
473 	int	fd;
474 	struct	iovec *iovp;
475 	u_int	iovcnt;
476 	off_t	offset;
477 };
478 #endif
479 int
480 sys_pwritev(struct thread *td, struct pwritev_args *uap)
481 {
482 	struct uio *auio;
483 	int error;
484 
485 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
486 	if (error)
487 		return (error);
488 	error = kern_pwritev(td, uap->fd, auio, uap->offset);
489 	free(auio, M_IOV);
490 	return (error);
491 }
492 
493 int
494 kern_pwritev(td, fd, auio, offset)
495 	struct thread *td;
496 	struct uio *auio;
497 	int fd;
498 	off_t offset;
499 {
500 	struct file *fp;
501 	cap_rights_t rights;
502 	int error;
503 
504 	error = fget_write(td, fd, cap_rights_init(&rights, CAP_PWRITE), &fp);
505 	if (error)
506 		return (error);
507 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
508 		error = ESPIPE;
509 	else if (offset < 0 && fp->f_vnode->v_type != VCHR)
510 		error = EINVAL;
511 	else
512 		error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
513 	fdrop(fp, td);
514 	return (error);
515 }
516 
517 /*
518  * Common code for writev and pwritev that writes data to
519  * a file using the passed in uio, offset, and flags.
520  */
521 static int
522 dofilewrite(td, fd, fp, auio, offset, flags)
523 	struct thread *td;
524 	int fd;
525 	struct file *fp;
526 	struct uio *auio;
527 	off_t offset;
528 	int flags;
529 {
530 	ssize_t cnt;
531 	int error;
532 #ifdef KTRACE
533 	struct uio *ktruio = NULL;
534 #endif
535 
536 	auio->uio_rw = UIO_WRITE;
537 	auio->uio_td = td;
538 	auio->uio_offset = offset;
539 #ifdef KTRACE
540 	if (KTRPOINT(td, KTR_GENIO))
541 		ktruio = cloneuio(auio);
542 #endif
543 	cnt = auio->uio_resid;
544 	if (fp->f_type == DTYPE_VNODE &&
545 	    (fp->f_vnread_flags & FDEVFS_VNODE) == 0)
546 		bwillwrite();
547 	if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) {
548 		if (auio->uio_resid != cnt && (error == ERESTART ||
549 		    error == EINTR || error == EWOULDBLOCK))
550 			error = 0;
551 		/* Socket layer is responsible for issuing SIGPIPE. */
552 		if (fp->f_type != DTYPE_SOCKET && error == EPIPE) {
553 			PROC_LOCK(td->td_proc);
554 			tdsignal(td, SIGPIPE);
555 			PROC_UNLOCK(td->td_proc);
556 		}
557 	}
558 	cnt -= auio->uio_resid;
559 #ifdef KTRACE
560 	if (ktruio != NULL) {
561 		ktruio->uio_resid = cnt;
562 		ktrgenio(fd, UIO_WRITE, ktruio, error);
563 	}
564 #endif
565 	td->td_retval[0] = cnt;
566 	return (error);
567 }
568 
569 /*
570  * Truncate a file given a file descriptor.
571  *
572  * Can't use fget_write() here, since must return EINVAL and not EBADF if the
573  * descriptor isn't writable.
574  */
575 int
576 kern_ftruncate(td, fd, length)
577 	struct thread *td;
578 	int fd;
579 	off_t length;
580 {
581 	struct file *fp;
582 	cap_rights_t rights;
583 	int error;
584 
585 	AUDIT_ARG_FD(fd);
586 	if (length < 0)
587 		return (EINVAL);
588 	error = fget(td, fd, cap_rights_init(&rights, CAP_FTRUNCATE), &fp);
589 	if (error)
590 		return (error);
591 	AUDIT_ARG_FILE(td->td_proc, fp);
592 	if (!(fp->f_flag & FWRITE)) {
593 		fdrop(fp, td);
594 		return (EINVAL);
595 	}
596 	error = fo_truncate(fp, length, td->td_ucred, td);
597 	fdrop(fp, td);
598 	return (error);
599 }
600 
601 #ifndef _SYS_SYSPROTO_H_
602 struct ftruncate_args {
603 	int	fd;
604 	int	pad;
605 	off_t	length;
606 };
607 #endif
608 int
609 sys_ftruncate(td, uap)
610 	struct thread *td;
611 	struct ftruncate_args *uap;
612 {
613 
614 	return (kern_ftruncate(td, uap->fd, uap->length));
615 }
616 
617 #if defined(COMPAT_43)
618 #ifndef _SYS_SYSPROTO_H_
619 struct oftruncate_args {
620 	int	fd;
621 	long	length;
622 };
623 #endif
624 int
625 oftruncate(td, uap)
626 	struct thread *td;
627 	struct oftruncate_args *uap;
628 {
629 
630 	return (kern_ftruncate(td, uap->fd, uap->length));
631 }
632 #endif /* COMPAT_43 */
633 
634 #ifndef _SYS_SYSPROTO_H_
635 struct ioctl_args {
636 	int	fd;
637 	u_long	com;
638 	caddr_t	data;
639 };
640 #endif
641 /* ARGSUSED */
642 int
643 sys_ioctl(struct thread *td, struct ioctl_args *uap)
644 {
645 	u_long com;
646 	int arg, error;
647 	u_int size;
648 	caddr_t data;
649 
650 	if (uap->com > 0xffffffff) {
651 		printf(
652 		    "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
653 		    td->td_proc->p_pid, td->td_name, uap->com);
654 		uap->com &= 0xffffffff;
655 	}
656 	com = uap->com;
657 
658 	/*
659 	 * Interpret high order word to find amount of data to be
660 	 * copied to/from the user's address space.
661 	 */
662 	size = IOCPARM_LEN(com);
663 	if ((size > IOCPARM_MAX) ||
664 	    ((com & (IOC_VOID  | IOC_IN | IOC_OUT)) == 0) ||
665 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
666 	    ((com & IOC_OUT) && size == 0) ||
667 #else
668 	    ((com & (IOC_IN | IOC_OUT)) && size == 0) ||
669 #endif
670 	    ((com & IOC_VOID) && size > 0 && size != sizeof(int)))
671 		return (ENOTTY);
672 
673 	if (size > 0) {
674 		if (com & IOC_VOID) {
675 			/* Integer argument. */
676 			arg = (intptr_t)uap->data;
677 			data = (void *)&arg;
678 			size = 0;
679 		} else
680 			data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
681 	} else
682 		data = (void *)&uap->data;
683 	if (com & IOC_IN) {
684 		error = copyin(uap->data, data, (u_int)size);
685 		if (error) {
686 			if (size > 0)
687 				free(data, M_IOCTLOPS);
688 			return (error);
689 		}
690 	} else if (com & IOC_OUT) {
691 		/*
692 		 * Zero the buffer so the user always
693 		 * gets back something deterministic.
694 		 */
695 		bzero(data, size);
696 	}
697 
698 	error = kern_ioctl(td, uap->fd, com, data);
699 
700 	if (error == 0 && (com & IOC_OUT))
701 		error = copyout(data, uap->data, (u_int)size);
702 
703 	if (size > 0)
704 		free(data, M_IOCTLOPS);
705 	return (error);
706 }
707 
708 int
709 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
710 {
711 	struct file *fp;
712 	struct filedesc *fdp;
713 #ifndef CAPABILITIES
714 	cap_rights_t rights;
715 #endif
716 	int error, tmp, locked;
717 
718 	AUDIT_ARG_FD(fd);
719 	AUDIT_ARG_CMD(com);
720 
721 	fdp = td->td_proc->p_fd;
722 
723 	switch (com) {
724 	case FIONCLEX:
725 	case FIOCLEX:
726 		FILEDESC_XLOCK(fdp);
727 		locked = LA_XLOCKED;
728 		break;
729 	default:
730 #ifdef CAPABILITIES
731 		FILEDESC_SLOCK(fdp);
732 		locked = LA_SLOCKED;
733 #else
734 		locked = LA_UNLOCKED;
735 #endif
736 		break;
737 	}
738 
739 #ifdef CAPABILITIES
740 	if ((fp = fget_locked(fdp, fd)) == NULL) {
741 		error = EBADF;
742 		goto out;
743 	}
744 	if ((error = cap_ioctl_check(fdp, fd, com)) != 0) {
745 		fp = NULL;	/* fhold() was not called yet */
746 		goto out;
747 	}
748 	fhold(fp);
749 	if (locked == LA_SLOCKED) {
750 		FILEDESC_SUNLOCK(fdp);
751 		locked = LA_UNLOCKED;
752 	}
753 #else
754 	error = fget(td, fd, cap_rights_init(&rights, CAP_IOCTL), &fp);
755 	if (error != 0) {
756 		fp = NULL;
757 		goto out;
758 	}
759 #endif
760 	if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
761 		error = EBADF;
762 		goto out;
763 	}
764 
765 	switch (com) {
766 	case FIONCLEX:
767 		fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE;
768 		goto out;
769 	case FIOCLEX:
770 		fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE;
771 		goto out;
772 	case FIONBIO:
773 		if ((tmp = *(int *)data))
774 			atomic_set_int(&fp->f_flag, FNONBLOCK);
775 		else
776 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
777 		data = (void *)&tmp;
778 		break;
779 	case FIOASYNC:
780 		if ((tmp = *(int *)data))
781 			atomic_set_int(&fp->f_flag, FASYNC);
782 		else
783 			atomic_clear_int(&fp->f_flag, FASYNC);
784 		data = (void *)&tmp;
785 		break;
786 	}
787 
788 	error = fo_ioctl(fp, com, data, td->td_ucred, td);
789 out:
790 	switch (locked) {
791 	case LA_XLOCKED:
792 		FILEDESC_XUNLOCK(fdp);
793 		break;
794 #ifdef CAPABILITIES
795 	case LA_SLOCKED:
796 		FILEDESC_SUNLOCK(fdp);
797 		break;
798 #endif
799 	default:
800 		FILEDESC_UNLOCK_ASSERT(fdp);
801 		break;
802 	}
803 	if (fp != NULL)
804 		fdrop(fp, td);
805 	return (error);
806 }
807 
808 int
809 poll_no_poll(int events)
810 {
811 	/*
812 	 * Return true for read/write.  If the user asked for something
813 	 * special, return POLLNVAL, so that clients have a way of
814 	 * determining reliably whether or not the extended
815 	 * functionality is present without hard-coding knowledge
816 	 * of specific filesystem implementations.
817 	 */
818 	if (events & ~POLLSTANDARD)
819 		return (POLLNVAL);
820 
821 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
822 }
823 
824 int
825 sys_pselect(struct thread *td, struct pselect_args *uap)
826 {
827 	struct timespec ts;
828 	struct timeval tv, *tvp;
829 	sigset_t set, *uset;
830 	int error;
831 
832 	if (uap->ts != NULL) {
833 		error = copyin(uap->ts, &ts, sizeof(ts));
834 		if (error != 0)
835 		    return (error);
836 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
837 		tvp = &tv;
838 	} else
839 		tvp = NULL;
840 	if (uap->sm != NULL) {
841 		error = copyin(uap->sm, &set, sizeof(set));
842 		if (error != 0)
843 			return (error);
844 		uset = &set;
845 	} else
846 		uset = NULL;
847 	return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
848 	    uset, NFDBITS));
849 }
850 
851 int
852 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex,
853     struct timeval *tvp, sigset_t *uset, int abi_nfdbits)
854 {
855 	int error;
856 
857 	if (uset != NULL) {
858 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
859 		    &td->td_oldsigmask, 0);
860 		if (error != 0)
861 			return (error);
862 		td->td_pflags |= TDP_OLDMASK;
863 		/*
864 		 * Make sure that ast() is called on return to
865 		 * usermode and TDP_OLDMASK is cleared, restoring old
866 		 * sigmask.
867 		 */
868 		thread_lock(td);
869 		td->td_flags |= TDF_ASTPENDING;
870 		thread_unlock(td);
871 	}
872 	error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits);
873 	return (error);
874 }
875 
876 #ifndef _SYS_SYSPROTO_H_
877 struct select_args {
878 	int	nd;
879 	fd_set	*in, *ou, *ex;
880 	struct	timeval *tv;
881 };
882 #endif
883 int
884 sys_select(struct thread *td, struct select_args *uap)
885 {
886 	struct timeval tv, *tvp;
887 	int error;
888 
889 	if (uap->tv != NULL) {
890 		error = copyin(uap->tv, &tv, sizeof(tv));
891 		if (error)
892 			return (error);
893 		tvp = &tv;
894 	} else
895 		tvp = NULL;
896 
897 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
898 	    NFDBITS));
899 }
900 
901 /*
902  * In the unlikely case when user specified n greater then the last
903  * open file descriptor, check that no bits are set after the last
904  * valid fd.  We must return EBADF if any is set.
905  *
906  * There are applications that rely on the behaviour.
907  *
908  * nd is fd_lastfile + 1.
909  */
910 static int
911 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits)
912 {
913 	char *addr, *oaddr;
914 	int b, i, res;
915 	uint8_t bits;
916 
917 	if (nd >= ndu || fd_in == NULL)
918 		return (0);
919 
920 	oaddr = NULL;
921 	bits = 0; /* silence gcc */
922 	for (i = nd; i < ndu; i++) {
923 		b = i / NBBY;
924 #if BYTE_ORDER == LITTLE_ENDIAN
925 		addr = (char *)fd_in + b;
926 #else
927 		addr = (char *)fd_in;
928 		if (abi_nfdbits == NFDBITS) {
929 			addr += rounddown(b, sizeof(fd_mask)) +
930 			    sizeof(fd_mask) - 1 - b % sizeof(fd_mask);
931 		} else {
932 			addr += rounddown(b, sizeof(uint32_t)) +
933 			    sizeof(uint32_t) - 1 - b % sizeof(uint32_t);
934 		}
935 #endif
936 		if (addr != oaddr) {
937 			res = fubyte(addr);
938 			if (res == -1)
939 				return (EFAULT);
940 			oaddr = addr;
941 			bits = res;
942 		}
943 		if ((bits & (1 << (i % NBBY))) != 0)
944 			return (EBADF);
945 	}
946 	return (0);
947 }
948 
949 int
950 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
951     fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits)
952 {
953 	struct filedesc *fdp;
954 	/*
955 	 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
956 	 * infds with the new FD_SETSIZE of 1024, and more than enough for
957 	 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
958 	 * of 256.
959 	 */
960 	fd_mask s_selbits[howmany(2048, NFDBITS)];
961 	fd_mask *ibits[3], *obits[3], *selbits, *sbp;
962 	struct timeval rtv;
963 	sbintime_t asbt, precision, rsbt;
964 	u_int nbufbytes, ncpbytes, ncpubytes, nfdbits;
965 	int error, lf, ndu;
966 
967 	if (nd < 0)
968 		return (EINVAL);
969 	fdp = td->td_proc->p_fd;
970 	ndu = nd;
971 	lf = fdp->fd_lastfile;
972 	if (nd > lf + 1)
973 		nd = lf + 1;
974 
975 	error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);
976 	if (error != 0)
977 		return (error);
978 	error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits);
979 	if (error != 0)
980 		return (error);
981 	error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits);
982 	if (error != 0)
983 		return (error);
984 
985 	/*
986 	 * Allocate just enough bits for the non-null fd_sets.  Use the
987 	 * preallocated auto buffer if possible.
988 	 */
989 	nfdbits = roundup(nd, NFDBITS);
990 	ncpbytes = nfdbits / NBBY;
991 	ncpubytes = roundup(nd, abi_nfdbits) / NBBY;
992 	nbufbytes = 0;
993 	if (fd_in != NULL)
994 		nbufbytes += 2 * ncpbytes;
995 	if (fd_ou != NULL)
996 		nbufbytes += 2 * ncpbytes;
997 	if (fd_ex != NULL)
998 		nbufbytes += 2 * ncpbytes;
999 	if (nbufbytes <= sizeof s_selbits)
1000 		selbits = &s_selbits[0];
1001 	else
1002 		selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
1003 
1004 	/*
1005 	 * Assign pointers into the bit buffers and fetch the input bits.
1006 	 * Put the output buffers together so that they can be bzeroed
1007 	 * together.
1008 	 */
1009 	sbp = selbits;
1010 #define	getbits(name, x) \
1011 	do {								\
1012 		if (name == NULL) {					\
1013 			ibits[x] = NULL;				\
1014 			obits[x] = NULL;				\
1015 		} else {						\
1016 			ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;	\
1017 			obits[x] = sbp;					\
1018 			sbp += ncpbytes / sizeof *sbp;			\
1019 			error = copyin(name, ibits[x], ncpubytes);	\
1020 			if (error != 0)					\
1021 				goto done;				\
1022 			bzero((char *)ibits[x] + ncpubytes,		\
1023 			    ncpbytes - ncpubytes);			\
1024 		}							\
1025 	} while (0)
1026 	getbits(fd_in, 0);
1027 	getbits(fd_ou, 1);
1028 	getbits(fd_ex, 2);
1029 #undef	getbits
1030 
1031 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__)
1032 	/*
1033 	 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS,
1034 	 * we are running under 32-bit emulation. This should be more
1035 	 * generic.
1036 	 */
1037 #define swizzle_fdset(bits)						\
1038 	if (abi_nfdbits != NFDBITS && bits != NULL) {			\
1039 		int i;							\
1040 		for (i = 0; i < ncpbytes / sizeof *sbp; i++)		\
1041 			bits[i] = (bits[i] >> 32) | (bits[i] << 32);	\
1042 	}
1043 #else
1044 #define swizzle_fdset(bits)
1045 #endif
1046 
1047 	/* Make sure the bit order makes it through an ABI transition */
1048 	swizzle_fdset(ibits[0]);
1049 	swizzle_fdset(ibits[1]);
1050 	swizzle_fdset(ibits[2]);
1051 
1052 	if (nbufbytes != 0)
1053 		bzero(selbits, nbufbytes / 2);
1054 
1055 	precision = 0;
1056 	if (tvp != NULL) {
1057 		rtv = *tvp;
1058 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1059 		    rtv.tv_usec >= 1000000) {
1060 			error = EINVAL;
1061 			goto done;
1062 		}
1063 		if (!timevalisset(&rtv))
1064 			asbt = 0;
1065 		else if (rtv.tv_sec <= INT32_MAX) {
1066 			rsbt = tvtosbt(rtv);
1067 			precision = rsbt;
1068 			precision >>= tc_precexp;
1069 			if (TIMESEL(&asbt, rsbt))
1070 				asbt += tc_tick_sbt;
1071 			if (asbt <= INT64_MAX - rsbt)
1072 				asbt += rsbt;
1073 			else
1074 				asbt = -1;
1075 		} else
1076 			asbt = -1;
1077 	} else
1078 		asbt = -1;
1079 	seltdinit(td);
1080 	/* Iterate until the timeout expires or descriptors become ready. */
1081 	for (;;) {
1082 		error = selscan(td, ibits, obits, nd);
1083 		if (error || td->td_retval[0] != 0)
1084 			break;
1085 		error = seltdwait(td, asbt, precision);
1086 		if (error)
1087 			break;
1088 		error = selrescan(td, ibits, obits);
1089 		if (error || td->td_retval[0] != 0)
1090 			break;
1091 	}
1092 	seltdclear(td);
1093 
1094 done:
1095 	/* select is not restarted after signals... */
1096 	if (error == ERESTART)
1097 		error = EINTR;
1098 	if (error == EWOULDBLOCK)
1099 		error = 0;
1100 
1101 	/* swizzle bit order back, if necessary */
1102 	swizzle_fdset(obits[0]);
1103 	swizzle_fdset(obits[1]);
1104 	swizzle_fdset(obits[2]);
1105 #undef swizzle_fdset
1106 
1107 #define	putbits(name, x) \
1108 	if (name && (error2 = copyout(obits[x], name, ncpubytes))) \
1109 		error = error2;
1110 	if (error == 0) {
1111 		int error2;
1112 
1113 		putbits(fd_in, 0);
1114 		putbits(fd_ou, 1);
1115 		putbits(fd_ex, 2);
1116 #undef putbits
1117 	}
1118 	if (selbits != &s_selbits[0])
1119 		free(selbits, M_SELECT);
1120 
1121 	return (error);
1122 }
1123 /*
1124  * Convert a select bit set to poll flags.
1125  *
1126  * The backend always returns POLLHUP/POLLERR if appropriate and we
1127  * return this as a set bit in any set.
1128  */
1129 static int select_flags[3] = {
1130     POLLRDNORM | POLLHUP | POLLERR,
1131     POLLWRNORM | POLLHUP | POLLERR,
1132     POLLRDBAND | POLLERR
1133 };
1134 
1135 /*
1136  * Compute the fo_poll flags required for a fd given by the index and
1137  * bit position in the fd_mask array.
1138  */
1139 static __inline int
1140 selflags(fd_mask **ibits, int idx, fd_mask bit)
1141 {
1142 	int flags;
1143 	int msk;
1144 
1145 	flags = 0;
1146 	for (msk = 0; msk < 3; msk++) {
1147 		if (ibits[msk] == NULL)
1148 			continue;
1149 		if ((ibits[msk][idx] & bit) == 0)
1150 			continue;
1151 		flags |= select_flags[msk];
1152 	}
1153 	return (flags);
1154 }
1155 
1156 /*
1157  * Set the appropriate output bits given a mask of fired events and the
1158  * input bits originally requested.
1159  */
1160 static __inline int
1161 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events)
1162 {
1163 	int msk;
1164 	int n;
1165 
1166 	n = 0;
1167 	for (msk = 0; msk < 3; msk++) {
1168 		if ((events & select_flags[msk]) == 0)
1169 			continue;
1170 		if (ibits[msk] == NULL)
1171 			continue;
1172 		if ((ibits[msk][idx] & bit) == 0)
1173 			continue;
1174 		/*
1175 		 * XXX Check for a duplicate set.  This can occur because a
1176 		 * socket calls selrecord() twice for each poll() call
1177 		 * resulting in two selfds per real fd.  selrescan() will
1178 		 * call selsetbits twice as a result.
1179 		 */
1180 		if ((obits[msk][idx] & bit) != 0)
1181 			continue;
1182 		obits[msk][idx] |= bit;
1183 		n++;
1184 	}
1185 
1186 	return (n);
1187 }
1188 
1189 static __inline int
1190 getselfd_cap(struct filedesc *fdp, int fd, struct file **fpp)
1191 {
1192 	cap_rights_t rights;
1193 
1194 	return (fget_unlocked(fdp, fd, cap_rights_init(&rights, CAP_POLL_EVENT),
1195 	    0, fpp, NULL));
1196 }
1197 
1198 /*
1199  * Traverse the list of fds attached to this thread's seltd and check for
1200  * completion.
1201  */
1202 static int
1203 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
1204 {
1205 	struct filedesc *fdp;
1206 	struct selinfo *si;
1207 	struct seltd *stp;
1208 	struct selfd *sfp;
1209 	struct selfd *sfn;
1210 	struct file *fp;
1211 	fd_mask bit;
1212 	int fd, ev, n, idx;
1213 	int error;
1214 
1215 	fdp = td->td_proc->p_fd;
1216 	stp = td->td_sel;
1217 	n = 0;
1218 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1219 		fd = (int)(uintptr_t)sfp->sf_cookie;
1220 		si = sfp->sf_si;
1221 		selfdfree(stp, sfp);
1222 		/* If the selinfo wasn't cleared the event didn't fire. */
1223 		if (si != NULL)
1224 			continue;
1225 		error = getselfd_cap(fdp, fd, &fp);
1226 		if (error)
1227 			return (error);
1228 		idx = fd / NFDBITS;
1229 		bit = (fd_mask)1 << (fd % NFDBITS);
1230 		ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td);
1231 		fdrop(fp, td);
1232 		if (ev != 0)
1233 			n += selsetbits(ibits, obits, idx, bit, ev);
1234 	}
1235 	stp->st_flags = 0;
1236 	td->td_retval[0] = n;
1237 	return (0);
1238 }
1239 
1240 /*
1241  * Perform the initial filedescriptor scan and register ourselves with
1242  * each selinfo.
1243  */
1244 static int
1245 selscan(td, ibits, obits, nfd)
1246 	struct thread *td;
1247 	fd_mask **ibits, **obits;
1248 	int nfd;
1249 {
1250 	struct filedesc *fdp;
1251 	struct file *fp;
1252 	fd_mask bit;
1253 	int ev, flags, end, fd;
1254 	int n, idx;
1255 	int error;
1256 
1257 	fdp = td->td_proc->p_fd;
1258 	n = 0;
1259 	for (idx = 0, fd = 0; fd < nfd; idx++) {
1260 		end = imin(fd + NFDBITS, nfd);
1261 		for (bit = 1; fd < end; bit <<= 1, fd++) {
1262 			/* Compute the list of events we're interested in. */
1263 			flags = selflags(ibits, idx, bit);
1264 			if (flags == 0)
1265 				continue;
1266 			error = getselfd_cap(fdp, fd, &fp);
1267 			if (error)
1268 				return (error);
1269 			selfdalloc(td, (void *)(uintptr_t)fd);
1270 			ev = fo_poll(fp, flags, td->td_ucred, td);
1271 			fdrop(fp, td);
1272 			if (ev != 0)
1273 				n += selsetbits(ibits, obits, idx, bit, ev);
1274 		}
1275 	}
1276 
1277 	td->td_retval[0] = n;
1278 	return (0);
1279 }
1280 
1281 #ifndef _SYS_SYSPROTO_H_
1282 struct poll_args {
1283 	struct pollfd *fds;
1284 	u_int	nfds;
1285 	int	timeout;
1286 };
1287 #endif
1288 int
1289 sys_poll(td, uap)
1290 	struct thread *td;
1291 	struct poll_args *uap;
1292 {
1293 	struct pollfd *bits;
1294 	struct pollfd smallbits[32];
1295 	sbintime_t asbt, precision, rsbt;
1296 	u_int nfds;
1297 	int error;
1298 	size_t ni;
1299 
1300 	nfds = uap->nfds;
1301 	if (nfds > maxfilesperproc && nfds > FD_SETSIZE)
1302 		return (EINVAL);
1303 	ni = nfds * sizeof(struct pollfd);
1304 	if (ni > sizeof(smallbits))
1305 		bits = malloc(ni, M_TEMP, M_WAITOK);
1306 	else
1307 		bits = smallbits;
1308 	error = copyin(uap->fds, bits, ni);
1309 	if (error)
1310 		goto done;
1311 	precision = 0;
1312 	if (uap->timeout != INFTIM) {
1313 		if (uap->timeout < 0) {
1314 			error = EINVAL;
1315 			goto done;
1316 		}
1317 		if (uap->timeout == 0)
1318 			asbt = 0;
1319 		else {
1320 			rsbt = SBT_1MS * uap->timeout;
1321 			precision = rsbt;
1322 			precision >>= tc_precexp;
1323 			if (TIMESEL(&asbt, rsbt))
1324 				asbt += tc_tick_sbt;
1325 			asbt += rsbt;
1326 		}
1327 	} else
1328 		asbt = -1;
1329 	seltdinit(td);
1330 	/* Iterate until the timeout expires or descriptors become ready. */
1331 	for (;;) {
1332 		error = pollscan(td, bits, nfds);
1333 		if (error || td->td_retval[0] != 0)
1334 			break;
1335 		error = seltdwait(td, asbt, precision);
1336 		if (error)
1337 			break;
1338 		error = pollrescan(td);
1339 		if (error || td->td_retval[0] != 0)
1340 			break;
1341 	}
1342 	seltdclear(td);
1343 
1344 done:
1345 	/* poll is not restarted after signals... */
1346 	if (error == ERESTART)
1347 		error = EINTR;
1348 	if (error == EWOULDBLOCK)
1349 		error = 0;
1350 	if (error == 0) {
1351 		error = pollout(td, bits, uap->fds, nfds);
1352 		if (error)
1353 			goto out;
1354 	}
1355 out:
1356 	if (ni > sizeof(smallbits))
1357 		free(bits, M_TEMP);
1358 	return (error);
1359 }
1360 
1361 static int
1362 pollrescan(struct thread *td)
1363 {
1364 	struct seltd *stp;
1365 	struct selfd *sfp;
1366 	struct selfd *sfn;
1367 	struct selinfo *si;
1368 	struct filedesc *fdp;
1369 	struct file *fp;
1370 	struct pollfd *fd;
1371 #ifdef CAPABILITIES
1372 	cap_rights_t rights;
1373 #endif
1374 	int n;
1375 
1376 	n = 0;
1377 	fdp = td->td_proc->p_fd;
1378 	stp = td->td_sel;
1379 	FILEDESC_SLOCK(fdp);
1380 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1381 		fd = (struct pollfd *)sfp->sf_cookie;
1382 		si = sfp->sf_si;
1383 		selfdfree(stp, sfp);
1384 		/* If the selinfo wasn't cleared the event didn't fire. */
1385 		if (si != NULL)
1386 			continue;
1387 		fp = fdp->fd_ofiles[fd->fd].fde_file;
1388 #ifdef CAPABILITIES
1389 		if (fp == NULL ||
1390 		    cap_check(cap_rights(fdp, fd->fd),
1391 		    cap_rights_init(&rights, CAP_POLL_EVENT)) != 0)
1392 #else
1393 		if (fp == NULL)
1394 #endif
1395 		{
1396 			fd->revents = POLLNVAL;
1397 			n++;
1398 			continue;
1399 		}
1400 
1401 		/*
1402 		 * Note: backend also returns POLLHUP and
1403 		 * POLLERR if appropriate.
1404 		 */
1405 		fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
1406 		if (fd->revents != 0)
1407 			n++;
1408 	}
1409 	FILEDESC_SUNLOCK(fdp);
1410 	stp->st_flags = 0;
1411 	td->td_retval[0] = n;
1412 	return (0);
1413 }
1414 
1415 
1416 static int
1417 pollout(td, fds, ufds, nfd)
1418 	struct thread *td;
1419 	struct pollfd *fds;
1420 	struct pollfd *ufds;
1421 	u_int nfd;
1422 {
1423 	int error = 0;
1424 	u_int i = 0;
1425 	u_int n = 0;
1426 
1427 	for (i = 0; i < nfd; i++) {
1428 		error = copyout(&fds->revents, &ufds->revents,
1429 		    sizeof(ufds->revents));
1430 		if (error)
1431 			return (error);
1432 		if (fds->revents != 0)
1433 			n++;
1434 		fds++;
1435 		ufds++;
1436 	}
1437 	td->td_retval[0] = n;
1438 	return (0);
1439 }
1440 
1441 static int
1442 pollscan(td, fds, nfd)
1443 	struct thread *td;
1444 	struct pollfd *fds;
1445 	u_int nfd;
1446 {
1447 	struct filedesc *fdp = td->td_proc->p_fd;
1448 	struct file *fp;
1449 #ifdef CAPABILITIES
1450 	cap_rights_t rights;
1451 #endif
1452 	int i, n = 0;
1453 
1454 	FILEDESC_SLOCK(fdp);
1455 	for (i = 0; i < nfd; i++, fds++) {
1456 		if (fds->fd >= fdp->fd_nfiles) {
1457 			fds->revents = POLLNVAL;
1458 			n++;
1459 		} else if (fds->fd < 0) {
1460 			fds->revents = 0;
1461 		} else {
1462 			fp = fdp->fd_ofiles[fds->fd].fde_file;
1463 #ifdef CAPABILITIES
1464 			if (fp == NULL ||
1465 			    cap_check(cap_rights(fdp, fds->fd),
1466 			    cap_rights_init(&rights, CAP_POLL_EVENT)) != 0)
1467 #else
1468 			if (fp == NULL)
1469 #endif
1470 			{
1471 				fds->revents = POLLNVAL;
1472 				n++;
1473 			} else {
1474 				/*
1475 				 * Note: backend also returns POLLHUP and
1476 				 * POLLERR if appropriate.
1477 				 */
1478 				selfdalloc(td, fds);
1479 				fds->revents = fo_poll(fp, fds->events,
1480 				    td->td_ucred, td);
1481 				/*
1482 				 * POSIX requires POLLOUT to be never
1483 				 * set simultaneously with POLLHUP.
1484 				 */
1485 				if ((fds->revents & POLLHUP) != 0)
1486 					fds->revents &= ~POLLOUT;
1487 
1488 				if (fds->revents != 0)
1489 					n++;
1490 			}
1491 		}
1492 	}
1493 	FILEDESC_SUNLOCK(fdp);
1494 	td->td_retval[0] = n;
1495 	return (0);
1496 }
1497 
1498 /*
1499  * OpenBSD poll system call.
1500  *
1501  * XXX this isn't quite a true representation..  OpenBSD uses select ops.
1502  */
1503 #ifndef _SYS_SYSPROTO_H_
1504 struct openbsd_poll_args {
1505 	struct pollfd *fds;
1506 	u_int	nfds;
1507 	int	timeout;
1508 };
1509 #endif
1510 int
1511 sys_openbsd_poll(td, uap)
1512 	register struct thread *td;
1513 	register struct openbsd_poll_args *uap;
1514 {
1515 	return (sys_poll(td, (struct poll_args *)uap));
1516 }
1517 
1518 /*
1519  * XXX This was created specifically to support netncp and netsmb.  This
1520  * allows the caller to specify a socket to wait for events on.  It returns
1521  * 0 if any events matched and an error otherwise.  There is no way to
1522  * determine which events fired.
1523  */
1524 int
1525 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
1526 {
1527 	struct timeval rtv;
1528 	sbintime_t asbt, precision, rsbt;
1529 	int error;
1530 
1531 	precision = 0;	/* stupid gcc! */
1532 	if (tvp != NULL) {
1533 		rtv = *tvp;
1534 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1535 		    rtv.tv_usec >= 1000000)
1536 			return (EINVAL);
1537 		if (!timevalisset(&rtv))
1538 			asbt = 0;
1539 		else if (rtv.tv_sec <= INT32_MAX) {
1540 			rsbt = tvtosbt(rtv);
1541 			precision = rsbt;
1542 			precision >>= tc_precexp;
1543 			if (TIMESEL(&asbt, rsbt))
1544 				asbt += tc_tick_sbt;
1545 			if (asbt <= INT64_MAX - rsbt)
1546 				asbt += rsbt;
1547 			else
1548 				asbt = -1;
1549 		} else
1550 			asbt = -1;
1551 	} else
1552 		asbt = -1;
1553 	seltdinit(td);
1554 	/*
1555 	 * Iterate until the timeout expires or the socket becomes ready.
1556 	 */
1557 	for (;;) {
1558 		selfdalloc(td, NULL);
1559 		error = sopoll(so, events, NULL, td);
1560 		/* error here is actually the ready events. */
1561 		if (error)
1562 			return (0);
1563 		error = seltdwait(td, asbt, precision);
1564 		if (error)
1565 			break;
1566 	}
1567 	seltdclear(td);
1568 	/* XXX Duplicates ncp/smb behavior. */
1569 	if (error == ERESTART)
1570 		error = 0;
1571 	return (error);
1572 }
1573 
1574 /*
1575  * Preallocate two selfds associated with 'cookie'.  Some fo_poll routines
1576  * have two select sets, one for read and another for write.
1577  */
1578 static void
1579 selfdalloc(struct thread *td, void *cookie)
1580 {
1581 	struct seltd *stp;
1582 
1583 	stp = td->td_sel;
1584 	if (stp->st_free1 == NULL)
1585 		stp->st_free1 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
1586 	stp->st_free1->sf_td = stp;
1587 	stp->st_free1->sf_cookie = cookie;
1588 	if (stp->st_free2 == NULL)
1589 		stp->st_free2 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
1590 	stp->st_free2->sf_td = stp;
1591 	stp->st_free2->sf_cookie = cookie;
1592 }
1593 
1594 static void
1595 selfdfree(struct seltd *stp, struct selfd *sfp)
1596 {
1597 	STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
1598 	mtx_lock(sfp->sf_mtx);
1599 	if (sfp->sf_si)
1600 		TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
1601 	mtx_unlock(sfp->sf_mtx);
1602 	uma_zfree(selfd_zone, sfp);
1603 }
1604 
1605 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */
1606 void
1607 seldrain(sip)
1608         struct selinfo *sip;
1609 {
1610 
1611 	/*
1612 	 * This feature is already provided by doselwakeup(), thus it is
1613 	 * enough to go for it.
1614 	 * Eventually, the context, should take care to avoid races
1615 	 * between thread calling select()/poll() and file descriptor
1616 	 * detaching, but, again, the races are just the same as
1617 	 * selwakeup().
1618 	 */
1619         doselwakeup(sip, -1);
1620 }
1621 
1622 /*
1623  * Record a select request.
1624  */
1625 void
1626 selrecord(selector, sip)
1627 	struct thread *selector;
1628 	struct selinfo *sip;
1629 {
1630 	struct selfd *sfp;
1631 	struct seltd *stp;
1632 	struct mtx *mtxp;
1633 
1634 	stp = selector->td_sel;
1635 	/*
1636 	 * Don't record when doing a rescan.
1637 	 */
1638 	if (stp->st_flags & SELTD_RESCAN)
1639 		return;
1640 	/*
1641 	 * Grab one of the preallocated descriptors.
1642 	 */
1643 	sfp = NULL;
1644 	if ((sfp = stp->st_free1) != NULL)
1645 		stp->st_free1 = NULL;
1646 	else if ((sfp = stp->st_free2) != NULL)
1647 		stp->st_free2 = NULL;
1648 	else
1649 		panic("selrecord: No free selfd on selq");
1650 	mtxp = sip->si_mtx;
1651 	if (mtxp == NULL)
1652 		mtxp = mtx_pool_find(mtxpool_select, sip);
1653 	/*
1654 	 * Initialize the sfp and queue it in the thread.
1655 	 */
1656 	sfp->sf_si = sip;
1657 	sfp->sf_mtx = mtxp;
1658 	STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
1659 	/*
1660 	 * Now that we've locked the sip, check for initialization.
1661 	 */
1662 	mtx_lock(mtxp);
1663 	if (sip->si_mtx == NULL) {
1664 		sip->si_mtx = mtxp;
1665 		TAILQ_INIT(&sip->si_tdlist);
1666 	}
1667 	/*
1668 	 * Add this thread to the list of selfds listening on this selinfo.
1669 	 */
1670 	TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
1671 	mtx_unlock(sip->si_mtx);
1672 }
1673 
1674 /* Wake up a selecting thread. */
1675 void
1676 selwakeup(sip)
1677 	struct selinfo *sip;
1678 {
1679 	doselwakeup(sip, -1);
1680 }
1681 
1682 /* Wake up a selecting thread, and set its priority. */
1683 void
1684 selwakeuppri(sip, pri)
1685 	struct selinfo *sip;
1686 	int pri;
1687 {
1688 	doselwakeup(sip, pri);
1689 }
1690 
1691 /*
1692  * Do a wakeup when a selectable event occurs.
1693  */
1694 static void
1695 doselwakeup(sip, pri)
1696 	struct selinfo *sip;
1697 	int pri;
1698 {
1699 	struct selfd *sfp;
1700 	struct selfd *sfn;
1701 	struct seltd *stp;
1702 
1703 	/* If it's not initialized there can't be any waiters. */
1704 	if (sip->si_mtx == NULL)
1705 		return;
1706 	/*
1707 	 * Locking the selinfo locks all selfds associated with it.
1708 	 */
1709 	mtx_lock(sip->si_mtx);
1710 	TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
1711 		/*
1712 		 * Once we remove this sfp from the list and clear the
1713 		 * sf_si seltdclear will know to ignore this si.
1714 		 */
1715 		TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
1716 		sfp->sf_si = NULL;
1717 		stp = sfp->sf_td;
1718 		mtx_lock(&stp->st_mtx);
1719 		stp->st_flags |= SELTD_PENDING;
1720 		cv_broadcastpri(&stp->st_wait, pri);
1721 		mtx_unlock(&stp->st_mtx);
1722 	}
1723 	mtx_unlock(sip->si_mtx);
1724 }
1725 
1726 static void
1727 seltdinit(struct thread *td)
1728 {
1729 	struct seltd *stp;
1730 
1731 	if ((stp = td->td_sel) != NULL)
1732 		goto out;
1733 	td->td_sel = stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
1734 	mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
1735 	cv_init(&stp->st_wait, "select");
1736 out:
1737 	stp->st_flags = 0;
1738 	STAILQ_INIT(&stp->st_selq);
1739 }
1740 
1741 static int
1742 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision)
1743 {
1744 	struct seltd *stp;
1745 	int error;
1746 
1747 	stp = td->td_sel;
1748 	/*
1749 	 * An event of interest may occur while we do not hold the seltd
1750 	 * locked so check the pending flag before we sleep.
1751 	 */
1752 	mtx_lock(&stp->st_mtx);
1753 	/*
1754 	 * Any further calls to selrecord will be a rescan.
1755 	 */
1756 	stp->st_flags |= SELTD_RESCAN;
1757 	if (stp->st_flags & SELTD_PENDING) {
1758 		mtx_unlock(&stp->st_mtx);
1759 		return (0);
1760 	}
1761 	if (sbt == 0)
1762 		error = EWOULDBLOCK;
1763 	else if (sbt != -1)
1764 		error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx,
1765 		    sbt, precision, C_ABSOLUTE);
1766 	else
1767 		error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
1768 	mtx_unlock(&stp->st_mtx);
1769 
1770 	return (error);
1771 }
1772 
1773 void
1774 seltdfini(struct thread *td)
1775 {
1776 	struct seltd *stp;
1777 
1778 	stp = td->td_sel;
1779 	if (stp == NULL)
1780 		return;
1781 	if (stp->st_free1)
1782 		uma_zfree(selfd_zone, stp->st_free1);
1783 	if (stp->st_free2)
1784 		uma_zfree(selfd_zone, stp->st_free2);
1785 	td->td_sel = NULL;
1786 	free(stp, M_SELECT);
1787 }
1788 
1789 /*
1790  * Remove the references to the thread from all of the objects we were
1791  * polling.
1792  */
1793 static void
1794 seltdclear(struct thread *td)
1795 {
1796 	struct seltd *stp;
1797 	struct selfd *sfp;
1798 	struct selfd *sfn;
1799 
1800 	stp = td->td_sel;
1801 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
1802 		selfdfree(stp, sfp);
1803 	stp->st_flags = 0;
1804 }
1805 
1806 static void selectinit(void *);
1807 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
1808 static void
1809 selectinit(void *dummy __unused)
1810 {
1811 
1812 	selfd_zone = uma_zcreate("selfd", sizeof(struct selfd), NULL, NULL,
1813 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1814 	mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF);
1815 }
1816