xref: /freebsd/sys/kern/sys_generic.c (revision 2fb4f839f3fc72ce2bab12f9ba4760f97f73e97f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)sys_generic.c	8.5 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_capsicum.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/capsicum.h>
49 #include <sys/filedesc.h>
50 #include <sys/filio.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/lock.h>
54 #include <sys/proc.h>
55 #include <sys/signalvar.h>
56 #include <sys/socketvar.h>
57 #include <sys/uio.h>
58 #include <sys/eventfd.h>
59 #include <sys/kernel.h>
60 #include <sys/ktr.h>
61 #include <sys/limits.h>
62 #include <sys/malloc.h>
63 #include <sys/poll.h>
64 #include <sys/resourcevar.h>
65 #include <sys/selinfo.h>
66 #include <sys/sleepqueue.h>
67 #include <sys/specialfd.h>
68 #include <sys/syscallsubr.h>
69 #include <sys/sysctl.h>
70 #include <sys/sysent.h>
71 #include <sys/vnode.h>
72 #include <sys/bio.h>
73 #include <sys/buf.h>
74 #include <sys/condvar.h>
75 #ifdef KTRACE
76 #include <sys/ktrace.h>
77 #endif
78 
79 #include <security/audit/audit.h>
80 
81 /*
82  * The following macro defines how many bytes will be allocated from
83  * the stack instead of memory allocated when passing the IOCTL data
84  * structures from userspace and to the kernel. Some IOCTLs having
85  * small data structures are used very frequently and this small
86  * buffer on the stack gives a significant speedup improvement for
87  * those requests. The value of this define should be greater or equal
88  * to 64 bytes and should also be power of two. The data structure is
89  * currently hard-aligned to a 8-byte boundary on the stack. This
90  * should currently be sufficient for all supported platforms.
91  */
92 #define	SYS_IOCTL_SMALL_SIZE	128	/* bytes */
93 #define	SYS_IOCTL_SMALL_ALIGN	8	/* bytes */
94 
95 #ifdef __LP64__
96 static int iosize_max_clamp = 0;
97 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW,
98     &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX");
99 static int devfs_iosize_max_clamp = 1;
100 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW,
101     &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices");
102 #endif
103 
104 /*
105  * Assert that the return value of read(2) and write(2) syscalls fits
106  * into a register.  If not, an architecture will need to provide the
107  * usermode wrappers to reconstruct the result.
108  */
109 CTASSERT(sizeof(register_t) >= sizeof(size_t));
110 
111 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
112 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
113 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
114 
115 static int	pollout(struct thread *, struct pollfd *, struct pollfd *,
116 		    u_int);
117 static int	pollscan(struct thread *, struct pollfd *, u_int);
118 static int	pollrescan(struct thread *);
119 static int	selscan(struct thread *, fd_mask **, fd_mask **, int);
120 static int	selrescan(struct thread *, fd_mask **, fd_mask **);
121 static void	selfdalloc(struct thread *, void *);
122 static void	selfdfree(struct seltd *, struct selfd *);
123 static int	dofileread(struct thread *, int, struct file *, struct uio *,
124 		    off_t, int);
125 static int	dofilewrite(struct thread *, int, struct file *, struct uio *,
126 		    off_t, int);
127 static void	doselwakeup(struct selinfo *, int);
128 static void	seltdinit(struct thread *);
129 static int	seltdwait(struct thread *, sbintime_t, sbintime_t);
130 static void	seltdclear(struct thread *);
131 
132 /*
133  * One seltd per-thread allocated on demand as needed.
134  *
135  *	t - protected by st_mtx
136  * 	k - Only accessed by curthread or read-only
137  */
138 struct seltd {
139 	STAILQ_HEAD(, selfd)	st_selq;	/* (k) List of selfds. */
140 	struct selfd		*st_free1;	/* (k) free fd for read set. */
141 	struct selfd		*st_free2;	/* (k) free fd for write set. */
142 	struct mtx		st_mtx;		/* Protects struct seltd */
143 	struct cv		st_wait;	/* (t) Wait channel. */
144 	int			st_flags;	/* (t) SELTD_ flags. */
145 };
146 
147 #define	SELTD_PENDING	0x0001			/* We have pending events. */
148 #define	SELTD_RESCAN	0x0002			/* Doing a rescan. */
149 
150 /*
151  * One selfd allocated per-thread per-file-descriptor.
152  *	f - protected by sf_mtx
153  */
154 struct selfd {
155 	STAILQ_ENTRY(selfd)	sf_link;	/* (k) fds owned by this td. */
156 	TAILQ_ENTRY(selfd)	sf_threads;	/* (f) fds on this selinfo. */
157 	struct selinfo		*sf_si;		/* (f) selinfo when linked. */
158 	struct mtx		*sf_mtx;	/* Pointer to selinfo mtx. */
159 	struct seltd		*sf_td;		/* (k) owning seltd. */
160 	void			*sf_cookie;	/* (k) fd or pollfd. */
161 };
162 
163 MALLOC_DEFINE(M_SELFD, "selfd", "selfd");
164 static struct mtx_pool *mtxpool_select;
165 
166 #ifdef __LP64__
167 size_t
168 devfs_iosize_max(void)
169 {
170 
171 	return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
172 	    INT_MAX : SSIZE_MAX);
173 }
174 
175 size_t
176 iosize_max(void)
177 {
178 
179 	return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
180 	    INT_MAX : SSIZE_MAX);
181 }
182 #endif
183 
184 #ifndef _SYS_SYSPROTO_H_
185 struct read_args {
186 	int	fd;
187 	void	*buf;
188 	size_t	nbyte;
189 };
190 #endif
191 int
192 sys_read(struct thread *td, struct read_args *uap)
193 {
194 	struct uio auio;
195 	struct iovec aiov;
196 	int error;
197 
198 	if (uap->nbyte > IOSIZE_MAX)
199 		return (EINVAL);
200 	aiov.iov_base = uap->buf;
201 	aiov.iov_len = uap->nbyte;
202 	auio.uio_iov = &aiov;
203 	auio.uio_iovcnt = 1;
204 	auio.uio_resid = uap->nbyte;
205 	auio.uio_segflg = UIO_USERSPACE;
206 	error = kern_readv(td, uap->fd, &auio);
207 	return (error);
208 }
209 
210 /*
211  * Positioned read system call
212  */
213 #ifndef _SYS_SYSPROTO_H_
214 struct pread_args {
215 	int	fd;
216 	void	*buf;
217 	size_t	nbyte;
218 	int	pad;
219 	off_t	offset;
220 };
221 #endif
222 int
223 sys_pread(struct thread *td, struct pread_args *uap)
224 {
225 
226 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
227 }
228 
229 int
230 kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset)
231 {
232 	struct uio auio;
233 	struct iovec aiov;
234 	int error;
235 
236 	if (nbyte > IOSIZE_MAX)
237 		return (EINVAL);
238 	aiov.iov_base = buf;
239 	aiov.iov_len = nbyte;
240 	auio.uio_iov = &aiov;
241 	auio.uio_iovcnt = 1;
242 	auio.uio_resid = nbyte;
243 	auio.uio_segflg = UIO_USERSPACE;
244 	error = kern_preadv(td, fd, &auio, offset);
245 	return (error);
246 }
247 
248 #if defined(COMPAT_FREEBSD6)
249 int
250 freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap)
251 {
252 
253 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
254 }
255 #endif
256 
257 /*
258  * Scatter read system call.
259  */
260 #ifndef _SYS_SYSPROTO_H_
261 struct readv_args {
262 	int	fd;
263 	struct	iovec *iovp;
264 	u_int	iovcnt;
265 };
266 #endif
267 int
268 sys_readv(struct thread *td, struct readv_args *uap)
269 {
270 	struct uio *auio;
271 	int error;
272 
273 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
274 	if (error)
275 		return (error);
276 	error = kern_readv(td, uap->fd, auio);
277 	free(auio, M_IOV);
278 	return (error);
279 }
280 
281 int
282 kern_readv(struct thread *td, int fd, struct uio *auio)
283 {
284 	struct file *fp;
285 	int error;
286 
287 	error = fget_read(td, fd, &cap_read_rights, &fp);
288 	if (error)
289 		return (error);
290 	error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
291 	fdrop(fp, td);
292 	return (error);
293 }
294 
295 /*
296  * Scatter positioned read system call.
297  */
298 #ifndef _SYS_SYSPROTO_H_
299 struct preadv_args {
300 	int	fd;
301 	struct	iovec *iovp;
302 	u_int	iovcnt;
303 	off_t	offset;
304 };
305 #endif
306 int
307 sys_preadv(struct thread *td, struct preadv_args *uap)
308 {
309 	struct uio *auio;
310 	int error;
311 
312 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
313 	if (error)
314 		return (error);
315 	error = kern_preadv(td, uap->fd, auio, uap->offset);
316 	free(auio, M_IOV);
317 	return (error);
318 }
319 
320 int
321 kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset)
322 {
323 	struct file *fp;
324 	int error;
325 
326 	error = fget_read(td, fd, &cap_pread_rights, &fp);
327 	if (error)
328 		return (error);
329 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
330 		error = ESPIPE;
331 	else if (offset < 0 &&
332 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
333 		error = EINVAL;
334 	else
335 		error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
336 	fdrop(fp, td);
337 	return (error);
338 }
339 
340 /*
341  * Common code for readv and preadv that reads data in
342  * from a file using the passed in uio, offset, and flags.
343  */
344 static int
345 dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio,
346     off_t offset, int flags)
347 {
348 	ssize_t cnt;
349 	int error;
350 #ifdef KTRACE
351 	struct uio *ktruio = NULL;
352 #endif
353 
354 	AUDIT_ARG_FD(fd);
355 
356 	/* Finish zero length reads right here */
357 	if (auio->uio_resid == 0) {
358 		td->td_retval[0] = 0;
359 		return (0);
360 	}
361 	auio->uio_rw = UIO_READ;
362 	auio->uio_offset = offset;
363 	auio->uio_td = td;
364 #ifdef KTRACE
365 	if (KTRPOINT(td, KTR_GENIO))
366 		ktruio = cloneuio(auio);
367 #endif
368 	cnt = auio->uio_resid;
369 	if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
370 		if (auio->uio_resid != cnt && (error == ERESTART ||
371 		    error == EINTR || error == EWOULDBLOCK))
372 			error = 0;
373 	}
374 	cnt -= auio->uio_resid;
375 #ifdef KTRACE
376 	if (ktruio != NULL) {
377 		ktruio->uio_resid = cnt;
378 		ktrgenio(fd, UIO_READ, ktruio, error);
379 	}
380 #endif
381 	td->td_retval[0] = cnt;
382 	return (error);
383 }
384 
385 #ifndef _SYS_SYSPROTO_H_
386 struct write_args {
387 	int	fd;
388 	const void *buf;
389 	size_t	nbyte;
390 };
391 #endif
392 int
393 sys_write(struct thread *td, struct write_args *uap)
394 {
395 	struct uio auio;
396 	struct iovec aiov;
397 	int error;
398 
399 	if (uap->nbyte > IOSIZE_MAX)
400 		return (EINVAL);
401 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
402 	aiov.iov_len = uap->nbyte;
403 	auio.uio_iov = &aiov;
404 	auio.uio_iovcnt = 1;
405 	auio.uio_resid = uap->nbyte;
406 	auio.uio_segflg = UIO_USERSPACE;
407 	error = kern_writev(td, uap->fd, &auio);
408 	return (error);
409 }
410 
411 /*
412  * Positioned write system call.
413  */
414 #ifndef _SYS_SYSPROTO_H_
415 struct pwrite_args {
416 	int	fd;
417 	const void *buf;
418 	size_t	nbyte;
419 	int	pad;
420 	off_t	offset;
421 };
422 #endif
423 int
424 sys_pwrite(struct thread *td, struct pwrite_args *uap)
425 {
426 
427 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
428 }
429 
430 int
431 kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte,
432     off_t offset)
433 {
434 	struct uio auio;
435 	struct iovec aiov;
436 	int error;
437 
438 	if (nbyte > IOSIZE_MAX)
439 		return (EINVAL);
440 	aiov.iov_base = (void *)(uintptr_t)buf;
441 	aiov.iov_len = nbyte;
442 	auio.uio_iov = &aiov;
443 	auio.uio_iovcnt = 1;
444 	auio.uio_resid = nbyte;
445 	auio.uio_segflg = UIO_USERSPACE;
446 	error = kern_pwritev(td, fd, &auio, offset);
447 	return (error);
448 }
449 
450 #if defined(COMPAT_FREEBSD6)
451 int
452 freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap)
453 {
454 
455 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
456 }
457 #endif
458 
459 /*
460  * Gather write system call.
461  */
462 #ifndef _SYS_SYSPROTO_H_
463 struct writev_args {
464 	int	fd;
465 	struct	iovec *iovp;
466 	u_int	iovcnt;
467 };
468 #endif
469 int
470 sys_writev(struct thread *td, struct writev_args *uap)
471 {
472 	struct uio *auio;
473 	int error;
474 
475 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
476 	if (error)
477 		return (error);
478 	error = kern_writev(td, uap->fd, auio);
479 	free(auio, M_IOV);
480 	return (error);
481 }
482 
483 int
484 kern_writev(struct thread *td, int fd, struct uio *auio)
485 {
486 	struct file *fp;
487 	int error;
488 
489 	error = fget_write(td, fd, &cap_write_rights, &fp);
490 	if (error)
491 		return (error);
492 	error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
493 	fdrop(fp, td);
494 	return (error);
495 }
496 
497 /*
498  * Gather positioned write system call.
499  */
500 #ifndef _SYS_SYSPROTO_H_
501 struct pwritev_args {
502 	int	fd;
503 	struct	iovec *iovp;
504 	u_int	iovcnt;
505 	off_t	offset;
506 };
507 #endif
508 int
509 sys_pwritev(struct thread *td, struct pwritev_args *uap)
510 {
511 	struct uio *auio;
512 	int error;
513 
514 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
515 	if (error)
516 		return (error);
517 	error = kern_pwritev(td, uap->fd, auio, uap->offset);
518 	free(auio, M_IOV);
519 	return (error);
520 }
521 
522 int
523 kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset)
524 {
525 	struct file *fp;
526 	int error;
527 
528 	error = fget_write(td, fd, &cap_pwrite_rights, &fp);
529 	if (error)
530 		return (error);
531 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
532 		error = ESPIPE;
533 	else if (offset < 0 &&
534 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
535 		error = EINVAL;
536 	else
537 		error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
538 	fdrop(fp, td);
539 	return (error);
540 }
541 
542 /*
543  * Common code for writev and pwritev that writes data to
544  * a file using the passed in uio, offset, and flags.
545  */
546 static int
547 dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio,
548     off_t offset, int flags)
549 {
550 	ssize_t cnt;
551 	int error;
552 #ifdef KTRACE
553 	struct uio *ktruio = NULL;
554 #endif
555 
556 	AUDIT_ARG_FD(fd);
557 	auio->uio_rw = UIO_WRITE;
558 	auio->uio_td = td;
559 	auio->uio_offset = offset;
560 #ifdef KTRACE
561 	if (KTRPOINT(td, KTR_GENIO))
562 		ktruio = cloneuio(auio);
563 #endif
564 	cnt = auio->uio_resid;
565 	error = fo_write(fp, auio, td->td_ucred, flags, td);
566 	/*
567 	 * Socket layer is responsible for special error handling,
568 	 * see sousrsend().
569 	 */
570 	if (error != 0 && fp->f_type != DTYPE_SOCKET) {
571 		if (auio->uio_resid != cnt && (error == ERESTART ||
572 		    error == EINTR || error == EWOULDBLOCK))
573 			error = 0;
574 		if (error == EPIPE) {
575 			PROC_LOCK(td->td_proc);
576 			tdsignal(td, SIGPIPE);
577 			PROC_UNLOCK(td->td_proc);
578 		}
579 	}
580 	cnt -= auio->uio_resid;
581 #ifdef KTRACE
582 	if (ktruio != NULL) {
583 		ktruio->uio_resid = cnt;
584 		ktrgenio(fd, UIO_WRITE, ktruio, error);
585 	}
586 #endif
587 	td->td_retval[0] = cnt;
588 	return (error);
589 }
590 
591 /*
592  * Truncate a file given a file descriptor.
593  *
594  * Can't use fget_write() here, since must return EINVAL and not EBADF if the
595  * descriptor isn't writable.
596  */
597 int
598 kern_ftruncate(struct thread *td, int fd, off_t length)
599 {
600 	struct file *fp;
601 	int error;
602 
603 	AUDIT_ARG_FD(fd);
604 	if (length < 0)
605 		return (EINVAL);
606 	error = fget(td, fd, &cap_ftruncate_rights, &fp);
607 	if (error)
608 		return (error);
609 	AUDIT_ARG_FILE(td->td_proc, fp);
610 	if (!(fp->f_flag & FWRITE)) {
611 		fdrop(fp, td);
612 		return (EINVAL);
613 	}
614 	error = fo_truncate(fp, length, td->td_ucred, td);
615 	fdrop(fp, td);
616 	return (error);
617 }
618 
619 #ifndef _SYS_SYSPROTO_H_
620 struct ftruncate_args {
621 	int	fd;
622 	int	pad;
623 	off_t	length;
624 };
625 #endif
626 int
627 sys_ftruncate(struct thread *td, struct ftruncate_args *uap)
628 {
629 
630 	return (kern_ftruncate(td, uap->fd, uap->length));
631 }
632 
633 #if defined(COMPAT_43)
634 #ifndef _SYS_SYSPROTO_H_
635 struct oftruncate_args {
636 	int	fd;
637 	long	length;
638 };
639 #endif
640 int
641 oftruncate(struct thread *td, struct oftruncate_args *uap)
642 {
643 
644 	return (kern_ftruncate(td, uap->fd, uap->length));
645 }
646 #endif /* COMPAT_43 */
647 
648 #ifndef _SYS_SYSPROTO_H_
649 struct ioctl_args {
650 	int	fd;
651 	u_long	com;
652 	caddr_t	data;
653 };
654 #endif
655 /* ARGSUSED */
656 int
657 sys_ioctl(struct thread *td, struct ioctl_args *uap)
658 {
659 	u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN);
660 	uint32_t com;
661 	int arg, error;
662 	u_int size;
663 	caddr_t data;
664 
665 #ifdef INVARIANTS
666 	if (uap->com > 0xffffffff) {
667 		printf(
668 		    "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
669 		    td->td_proc->p_pid, td->td_name, uap->com);
670 	}
671 #endif
672 	com = (uint32_t)uap->com;
673 
674 	/*
675 	 * Interpret high order word to find amount of data to be
676 	 * copied to/from the user's address space.
677 	 */
678 	size = IOCPARM_LEN(com);
679 	if ((size > IOCPARM_MAX) ||
680 	    ((com & (IOC_VOID  | IOC_IN | IOC_OUT)) == 0) ||
681 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
682 	    ((com & IOC_OUT) && size == 0) ||
683 #else
684 	    ((com & (IOC_IN | IOC_OUT)) && size == 0) ||
685 #endif
686 	    ((com & IOC_VOID) && size > 0 && size != sizeof(int)))
687 		return (ENOTTY);
688 
689 	if (size > 0) {
690 		if (com & IOC_VOID) {
691 			/* Integer argument. */
692 			arg = (intptr_t)uap->data;
693 			data = (void *)&arg;
694 			size = 0;
695 		} else {
696 			if (size > SYS_IOCTL_SMALL_SIZE)
697 				data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
698 			else
699 				data = smalldata;
700 		}
701 	} else
702 		data = (void *)&uap->data;
703 	if (com & IOC_IN) {
704 		error = copyin(uap->data, data, (u_int)size);
705 		if (error != 0)
706 			goto out;
707 	} else if (com & IOC_OUT) {
708 		/*
709 		 * Zero the buffer so the user always
710 		 * gets back something deterministic.
711 		 */
712 		bzero(data, size);
713 	}
714 
715 	error = kern_ioctl(td, uap->fd, com, data);
716 
717 	if (error == 0 && (com & IOC_OUT))
718 		error = copyout(data, uap->data, (u_int)size);
719 
720 out:
721 	if (size > SYS_IOCTL_SMALL_SIZE)
722 		free(data, M_IOCTLOPS);
723 	return (error);
724 }
725 
726 int
727 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
728 {
729 	struct file *fp;
730 	struct filedesc *fdp;
731 	int error, tmp, locked;
732 
733 	AUDIT_ARG_FD(fd);
734 	AUDIT_ARG_CMD(com);
735 
736 	fdp = td->td_proc->p_fd;
737 
738 	switch (com) {
739 	case FIONCLEX:
740 	case FIOCLEX:
741 		FILEDESC_XLOCK(fdp);
742 		locked = LA_XLOCKED;
743 		break;
744 	default:
745 #ifdef CAPABILITIES
746 		FILEDESC_SLOCK(fdp);
747 		locked = LA_SLOCKED;
748 #else
749 		locked = LA_UNLOCKED;
750 #endif
751 		break;
752 	}
753 
754 #ifdef CAPABILITIES
755 	if ((fp = fget_noref(fdp, fd)) == NULL) {
756 		error = EBADF;
757 		goto out;
758 	}
759 	if ((error = cap_ioctl_check(fdp, fd, com)) != 0) {
760 		fp = NULL;	/* fhold() was not called yet */
761 		goto out;
762 	}
763 	if (!fhold(fp)) {
764 		error = EBADF;
765 		fp = NULL;
766 		goto out;
767 	}
768 	if (locked == LA_SLOCKED) {
769 		FILEDESC_SUNLOCK(fdp);
770 		locked = LA_UNLOCKED;
771 	}
772 #else
773 	error = fget(td, fd, &cap_ioctl_rights, &fp);
774 	if (error != 0) {
775 		fp = NULL;
776 		goto out;
777 	}
778 #endif
779 	if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
780 		error = EBADF;
781 		goto out;
782 	}
783 
784 	switch (com) {
785 	case FIONCLEX:
786 		fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE;
787 		goto out;
788 	case FIOCLEX:
789 		fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE;
790 		goto out;
791 	case FIONBIO:
792 		if ((tmp = *(int *)data))
793 			atomic_set_int(&fp->f_flag, FNONBLOCK);
794 		else
795 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
796 		data = (void *)&tmp;
797 		break;
798 	case FIOASYNC:
799 		if ((tmp = *(int *)data))
800 			atomic_set_int(&fp->f_flag, FASYNC);
801 		else
802 			atomic_clear_int(&fp->f_flag, FASYNC);
803 		data = (void *)&tmp;
804 		break;
805 	}
806 
807 	error = fo_ioctl(fp, com, data, td->td_ucred, td);
808 out:
809 	switch (locked) {
810 	case LA_XLOCKED:
811 		FILEDESC_XUNLOCK(fdp);
812 		break;
813 #ifdef CAPABILITIES
814 	case LA_SLOCKED:
815 		FILEDESC_SUNLOCK(fdp);
816 		break;
817 #endif
818 	default:
819 		FILEDESC_UNLOCK_ASSERT(fdp);
820 		break;
821 	}
822 	if (fp != NULL)
823 		fdrop(fp, td);
824 	return (error);
825 }
826 
827 int
828 sys_posix_fallocate(struct thread *td, struct posix_fallocate_args *uap)
829 {
830 	int error;
831 
832 	error = kern_posix_fallocate(td, uap->fd, uap->offset, uap->len);
833 	return (kern_posix_error(td, error));
834 }
835 
836 int
837 kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len)
838 {
839 	struct file *fp;
840 	int error;
841 
842 	AUDIT_ARG_FD(fd);
843 	if (offset < 0 || len <= 0)
844 		return (EINVAL);
845 	/* Check for wrap. */
846 	if (offset > OFF_MAX - len)
847 		return (EFBIG);
848 	AUDIT_ARG_FD(fd);
849 	error = fget(td, fd, &cap_pwrite_rights, &fp);
850 	if (error != 0)
851 		return (error);
852 	AUDIT_ARG_FILE(td->td_proc, fp);
853 	if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) {
854 		error = ESPIPE;
855 		goto out;
856 	}
857 	if ((fp->f_flag & FWRITE) == 0) {
858 		error = EBADF;
859 		goto out;
860 	}
861 
862 	error = fo_fallocate(fp, offset, len, td);
863  out:
864 	fdrop(fp, td);
865 	return (error);
866 }
867 
868 int
869 sys_fspacectl(struct thread *td, struct fspacectl_args *uap)
870 {
871 	struct spacectl_range rqsr, rmsr;
872 	int error, cerror;
873 
874 	error = copyin(uap->rqsr, &rqsr, sizeof(rqsr));
875 	if (error != 0)
876 		return (error);
877 
878 	error = kern_fspacectl(td, uap->fd, uap->cmd, &rqsr, uap->flags,
879 	    &rmsr);
880 	if (uap->rmsr != NULL) {
881 		cerror = copyout(&rmsr, uap->rmsr, sizeof(rmsr));
882 		if (error == 0)
883 			error = cerror;
884 	}
885 	return (error);
886 }
887 
888 int
889 kern_fspacectl(struct thread *td, int fd, int cmd,
890     const struct spacectl_range *rqsr, int flags, struct spacectl_range *rmsrp)
891 {
892 	struct file *fp;
893 	struct spacectl_range rmsr;
894 	int error;
895 
896 	AUDIT_ARG_FD(fd);
897 	AUDIT_ARG_CMD(cmd);
898 	AUDIT_ARG_FFLAGS(flags);
899 
900 	if (rqsr == NULL)
901 		return (EINVAL);
902 	rmsr = *rqsr;
903 	if (rmsrp != NULL)
904 		*rmsrp = rmsr;
905 
906 	if (cmd != SPACECTL_DEALLOC ||
907 	    rqsr->r_offset < 0 || rqsr->r_len <= 0 ||
908 	    rqsr->r_offset > OFF_MAX - rqsr->r_len ||
909 	    (flags & ~SPACECTL_F_SUPPORTED) != 0)
910 		return (EINVAL);
911 
912 	error = fget_write(td, fd, &cap_pwrite_rights, &fp);
913 	if (error != 0)
914 		return (error);
915 	AUDIT_ARG_FILE(td->td_proc, fp);
916 	if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) {
917 		error = ESPIPE;
918 		goto out;
919 	}
920 	if ((fp->f_flag & FWRITE) == 0) {
921 		error = EBADF;
922 		goto out;
923 	}
924 
925 	error = fo_fspacectl(fp, cmd, &rmsr.r_offset, &rmsr.r_len, flags,
926 	    td->td_ucred, td);
927 	/* fspacectl is not restarted after signals if the file is modified. */
928 	if (rmsr.r_len != rqsr->r_len && (error == ERESTART ||
929 	    error == EINTR || error == EWOULDBLOCK))
930 		error = 0;
931 	if (rmsrp != NULL)
932 		*rmsrp = rmsr;
933 out:
934 	fdrop(fp, td);
935 	return (error);
936 }
937 
938 int
939 kern_specialfd(struct thread *td, int type, void *arg)
940 {
941 	struct file *fp;
942 	struct specialfd_eventfd *ae;
943 	int error, fd, fflags;
944 
945 	fflags = 0;
946 	error = falloc_noinstall(td, &fp);
947 	if (error != 0)
948 		return (error);
949 
950 	switch (type) {
951 	case SPECIALFD_EVENTFD:
952 		ae = arg;
953 		if ((ae->flags & EFD_CLOEXEC) != 0)
954 			fflags |= O_CLOEXEC;
955 		error = eventfd_create_file(td, fp, ae->initval, ae->flags);
956 		break;
957 	default:
958 		error = EINVAL;
959 		break;
960 	}
961 
962 	if (error == 0)
963 		error = finstall(td, fp, &fd, fflags, NULL);
964 	fdrop(fp, td);
965 	if (error == 0)
966 		td->td_retval[0] = fd;
967 	return (error);
968 }
969 
970 int
971 sys___specialfd(struct thread *td, struct __specialfd_args *args)
972 {
973 	struct specialfd_eventfd ae;
974 	int error;
975 
976 	switch (args->type) {
977 	case SPECIALFD_EVENTFD:
978 		if (args->len != sizeof(struct specialfd_eventfd)) {
979 			error = EINVAL;
980 			break;
981 		}
982 		error = copyin(args->req, &ae, sizeof(ae));
983 		if (error != 0)
984 			break;
985 		if ((ae.flags & ~(EFD_CLOEXEC | EFD_NONBLOCK |
986 		    EFD_SEMAPHORE)) != 0) {
987 			error = EINVAL;
988 			break;
989 		}
990 		error = kern_specialfd(td, args->type, &ae);
991 		break;
992 	default:
993 		error = EINVAL;
994 		break;
995 	}
996 	return (error);
997 }
998 
999 int
1000 poll_no_poll(int events)
1001 {
1002 	/*
1003 	 * Return true for read/write.  If the user asked for something
1004 	 * special, return POLLNVAL, so that clients have a way of
1005 	 * determining reliably whether or not the extended
1006 	 * functionality is present without hard-coding knowledge
1007 	 * of specific filesystem implementations.
1008 	 */
1009 	if (events & ~POLLSTANDARD)
1010 		return (POLLNVAL);
1011 
1012 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
1013 }
1014 
1015 int
1016 sys_pselect(struct thread *td, struct pselect_args *uap)
1017 {
1018 	struct timespec ts;
1019 	struct timeval tv, *tvp;
1020 	sigset_t set, *uset;
1021 	int error;
1022 
1023 	if (uap->ts != NULL) {
1024 		error = copyin(uap->ts, &ts, sizeof(ts));
1025 		if (error != 0)
1026 		    return (error);
1027 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1028 		tvp = &tv;
1029 	} else
1030 		tvp = NULL;
1031 	if (uap->sm != NULL) {
1032 		error = copyin(uap->sm, &set, sizeof(set));
1033 		if (error != 0)
1034 			return (error);
1035 		uset = &set;
1036 	} else
1037 		uset = NULL;
1038 	return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
1039 	    uset, NFDBITS));
1040 }
1041 
1042 int
1043 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex,
1044     struct timeval *tvp, sigset_t *uset, int abi_nfdbits)
1045 {
1046 	int error;
1047 
1048 	if (uset != NULL) {
1049 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
1050 		    &td->td_oldsigmask, 0);
1051 		if (error != 0)
1052 			return (error);
1053 		td->td_pflags |= TDP_OLDMASK;
1054 		/*
1055 		 * Make sure that ast() is called on return to
1056 		 * usermode and TDP_OLDMASK is cleared, restoring old
1057 		 * sigmask.
1058 		 */
1059 		ast_sched(td, TDA_SIGSUSPEND);
1060 	}
1061 	error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits);
1062 	return (error);
1063 }
1064 
1065 #ifndef _SYS_SYSPROTO_H_
1066 struct select_args {
1067 	int	nd;
1068 	fd_set	*in, *ou, *ex;
1069 	struct	timeval *tv;
1070 };
1071 #endif
1072 int
1073 sys_select(struct thread *td, struct select_args *uap)
1074 {
1075 	struct timeval tv, *tvp;
1076 	int error;
1077 
1078 	if (uap->tv != NULL) {
1079 		error = copyin(uap->tv, &tv, sizeof(tv));
1080 		if (error)
1081 			return (error);
1082 		tvp = &tv;
1083 	} else
1084 		tvp = NULL;
1085 
1086 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
1087 	    NFDBITS));
1088 }
1089 
1090 /*
1091  * In the unlikely case when user specified n greater then the last
1092  * open file descriptor, check that no bits are set after the last
1093  * valid fd.  We must return EBADF if any is set.
1094  *
1095  * There are applications that rely on the behaviour.
1096  *
1097  * nd is fd_nfiles.
1098  */
1099 static int
1100 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits)
1101 {
1102 	char *addr, *oaddr;
1103 	int b, i, res;
1104 	uint8_t bits;
1105 
1106 	if (nd >= ndu || fd_in == NULL)
1107 		return (0);
1108 
1109 	oaddr = NULL;
1110 	bits = 0; /* silence gcc */
1111 	for (i = nd; i < ndu; i++) {
1112 		b = i / NBBY;
1113 #if BYTE_ORDER == LITTLE_ENDIAN
1114 		addr = (char *)fd_in + b;
1115 #else
1116 		addr = (char *)fd_in;
1117 		if (abi_nfdbits == NFDBITS) {
1118 			addr += rounddown(b, sizeof(fd_mask)) +
1119 			    sizeof(fd_mask) - 1 - b % sizeof(fd_mask);
1120 		} else {
1121 			addr += rounddown(b, sizeof(uint32_t)) +
1122 			    sizeof(uint32_t) - 1 - b % sizeof(uint32_t);
1123 		}
1124 #endif
1125 		if (addr != oaddr) {
1126 			res = fubyte(addr);
1127 			if (res == -1)
1128 				return (EFAULT);
1129 			oaddr = addr;
1130 			bits = res;
1131 		}
1132 		if ((bits & (1 << (i % NBBY))) != 0)
1133 			return (EBADF);
1134 	}
1135 	return (0);
1136 }
1137 
1138 int
1139 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
1140     fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits)
1141 {
1142 	struct filedesc *fdp;
1143 	/*
1144 	 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
1145 	 * infds with the new FD_SETSIZE of 1024, and more than enough for
1146 	 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
1147 	 * of 256.
1148 	 */
1149 	fd_mask s_selbits[howmany(2048, NFDBITS)];
1150 	fd_mask *ibits[3], *obits[3], *selbits, *sbp;
1151 	struct timeval rtv;
1152 	sbintime_t asbt, precision, rsbt;
1153 	u_int nbufbytes, ncpbytes, ncpubytes, nfdbits;
1154 	int error, lf, ndu;
1155 
1156 	if (nd < 0)
1157 		return (EINVAL);
1158 	fdp = td->td_proc->p_fd;
1159 	ndu = nd;
1160 	lf = fdp->fd_nfiles;
1161 	if (nd > lf)
1162 		nd = lf;
1163 
1164 	error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);
1165 	if (error != 0)
1166 		return (error);
1167 	error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits);
1168 	if (error != 0)
1169 		return (error);
1170 	error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits);
1171 	if (error != 0)
1172 		return (error);
1173 
1174 	/*
1175 	 * Allocate just enough bits for the non-null fd_sets.  Use the
1176 	 * preallocated auto buffer if possible.
1177 	 */
1178 	nfdbits = roundup(nd, NFDBITS);
1179 	ncpbytes = nfdbits / NBBY;
1180 	ncpubytes = roundup(nd, abi_nfdbits) / NBBY;
1181 	nbufbytes = 0;
1182 	if (fd_in != NULL)
1183 		nbufbytes += 2 * ncpbytes;
1184 	if (fd_ou != NULL)
1185 		nbufbytes += 2 * ncpbytes;
1186 	if (fd_ex != NULL)
1187 		nbufbytes += 2 * ncpbytes;
1188 	if (nbufbytes <= sizeof s_selbits)
1189 		selbits = &s_selbits[0];
1190 	else
1191 		selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
1192 
1193 	/*
1194 	 * Assign pointers into the bit buffers and fetch the input bits.
1195 	 * Put the output buffers together so that they can be bzeroed
1196 	 * together.
1197 	 */
1198 	sbp = selbits;
1199 #define	getbits(name, x) \
1200 	do {								\
1201 		if (name == NULL) {					\
1202 			ibits[x] = NULL;				\
1203 			obits[x] = NULL;				\
1204 		} else {						\
1205 			ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;	\
1206 			obits[x] = sbp;					\
1207 			sbp += ncpbytes / sizeof *sbp;			\
1208 			error = copyin(name, ibits[x], ncpubytes);	\
1209 			if (error != 0)					\
1210 				goto done;				\
1211 			if (ncpbytes != ncpubytes)			\
1212 				bzero((char *)ibits[x] + ncpubytes,	\
1213 				    ncpbytes - ncpubytes);		\
1214 		}							\
1215 	} while (0)
1216 	getbits(fd_in, 0);
1217 	getbits(fd_ou, 1);
1218 	getbits(fd_ex, 2);
1219 #undef	getbits
1220 
1221 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__)
1222 	/*
1223 	 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS,
1224 	 * we are running under 32-bit emulation. This should be more
1225 	 * generic.
1226 	 */
1227 #define swizzle_fdset(bits)						\
1228 	if (abi_nfdbits != NFDBITS && bits != NULL) {			\
1229 		int i;							\
1230 		for (i = 0; i < ncpbytes / sizeof *sbp; i++)		\
1231 			bits[i] = (bits[i] >> 32) | (bits[i] << 32);	\
1232 	}
1233 #else
1234 #define swizzle_fdset(bits)
1235 #endif
1236 
1237 	/* Make sure the bit order makes it through an ABI transition */
1238 	swizzle_fdset(ibits[0]);
1239 	swizzle_fdset(ibits[1]);
1240 	swizzle_fdset(ibits[2]);
1241 
1242 	if (nbufbytes != 0)
1243 		bzero(selbits, nbufbytes / 2);
1244 
1245 	precision = 0;
1246 	if (tvp != NULL) {
1247 		rtv = *tvp;
1248 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1249 		    rtv.tv_usec >= 1000000) {
1250 			error = EINVAL;
1251 			goto done;
1252 		}
1253 		if (!timevalisset(&rtv))
1254 			asbt = 0;
1255 		else if (rtv.tv_sec <= INT32_MAX) {
1256 			rsbt = tvtosbt(rtv);
1257 			precision = rsbt;
1258 			precision >>= tc_precexp;
1259 			if (TIMESEL(&asbt, rsbt))
1260 				asbt += tc_tick_sbt;
1261 			if (asbt <= SBT_MAX - rsbt)
1262 				asbt += rsbt;
1263 			else
1264 				asbt = -1;
1265 		} else
1266 			asbt = -1;
1267 	} else
1268 		asbt = -1;
1269 	seltdinit(td);
1270 	/* Iterate until the timeout expires or descriptors become ready. */
1271 	for (;;) {
1272 		error = selscan(td, ibits, obits, nd);
1273 		if (error || td->td_retval[0] != 0)
1274 			break;
1275 		error = seltdwait(td, asbt, precision);
1276 		if (error)
1277 			break;
1278 		error = selrescan(td, ibits, obits);
1279 		if (error || td->td_retval[0] != 0)
1280 			break;
1281 	}
1282 	seltdclear(td);
1283 
1284 done:
1285 	/* select is not restarted after signals... */
1286 	if (error == ERESTART)
1287 		error = EINTR;
1288 	if (error == EWOULDBLOCK)
1289 		error = 0;
1290 
1291 	/* swizzle bit order back, if necessary */
1292 	swizzle_fdset(obits[0]);
1293 	swizzle_fdset(obits[1]);
1294 	swizzle_fdset(obits[2]);
1295 #undef swizzle_fdset
1296 
1297 #define	putbits(name, x) \
1298 	if (name && (error2 = copyout(obits[x], name, ncpubytes))) \
1299 		error = error2;
1300 	if (error == 0) {
1301 		int error2;
1302 
1303 		putbits(fd_in, 0);
1304 		putbits(fd_ou, 1);
1305 		putbits(fd_ex, 2);
1306 #undef putbits
1307 	}
1308 	if (selbits != &s_selbits[0])
1309 		free(selbits, M_SELECT);
1310 
1311 	return (error);
1312 }
1313 /*
1314  * Convert a select bit set to poll flags.
1315  *
1316  * The backend always returns POLLHUP/POLLERR if appropriate and we
1317  * return this as a set bit in any set.
1318  */
1319 static const int select_flags[3] = {
1320     POLLRDNORM | POLLHUP | POLLERR,
1321     POLLWRNORM | POLLHUP | POLLERR,
1322     POLLRDBAND | POLLERR
1323 };
1324 
1325 /*
1326  * Compute the fo_poll flags required for a fd given by the index and
1327  * bit position in the fd_mask array.
1328  */
1329 static __inline int
1330 selflags(fd_mask **ibits, int idx, fd_mask bit)
1331 {
1332 	int flags;
1333 	int msk;
1334 
1335 	flags = 0;
1336 	for (msk = 0; msk < 3; msk++) {
1337 		if (ibits[msk] == NULL)
1338 			continue;
1339 		if ((ibits[msk][idx] & bit) == 0)
1340 			continue;
1341 		flags |= select_flags[msk];
1342 	}
1343 	return (flags);
1344 }
1345 
1346 /*
1347  * Set the appropriate output bits given a mask of fired events and the
1348  * input bits originally requested.
1349  */
1350 static __inline int
1351 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events)
1352 {
1353 	int msk;
1354 	int n;
1355 
1356 	n = 0;
1357 	for (msk = 0; msk < 3; msk++) {
1358 		if ((events & select_flags[msk]) == 0)
1359 			continue;
1360 		if (ibits[msk] == NULL)
1361 			continue;
1362 		if ((ibits[msk][idx] & bit) == 0)
1363 			continue;
1364 		/*
1365 		 * XXX Check for a duplicate set.  This can occur because a
1366 		 * socket calls selrecord() twice for each poll() call
1367 		 * resulting in two selfds per real fd.  selrescan() will
1368 		 * call selsetbits twice as a result.
1369 		 */
1370 		if ((obits[msk][idx] & bit) != 0)
1371 			continue;
1372 		obits[msk][idx] |= bit;
1373 		n++;
1374 	}
1375 
1376 	return (n);
1377 }
1378 
1379 /*
1380  * Traverse the list of fds attached to this thread's seltd and check for
1381  * completion.
1382  */
1383 static int
1384 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
1385 {
1386 	struct filedesc *fdp;
1387 	struct selinfo *si;
1388 	struct seltd *stp;
1389 	struct selfd *sfp;
1390 	struct selfd *sfn;
1391 	struct file *fp;
1392 	fd_mask bit;
1393 	int fd, ev, n, idx;
1394 	int error;
1395 	bool only_user;
1396 
1397 	fdp = td->td_proc->p_fd;
1398 	stp = td->td_sel;
1399 	n = 0;
1400 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1401 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1402 		fd = (int)(uintptr_t)sfp->sf_cookie;
1403 		si = sfp->sf_si;
1404 		selfdfree(stp, sfp);
1405 		/* If the selinfo wasn't cleared the event didn't fire. */
1406 		if (si != NULL)
1407 			continue;
1408 		if (only_user)
1409 			error = fget_only_user(fdp, fd, &cap_event_rights, &fp);
1410 		else
1411 			error = fget_unlocked(td, fd, &cap_event_rights, &fp);
1412 		if (__predict_false(error != 0))
1413 			return (error);
1414 		idx = fd / NFDBITS;
1415 		bit = (fd_mask)1 << (fd % NFDBITS);
1416 		ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td);
1417 		if (only_user)
1418 			fput_only_user(fdp, fp);
1419 		else
1420 			fdrop(fp, td);
1421 		if (ev != 0)
1422 			n += selsetbits(ibits, obits, idx, bit, ev);
1423 	}
1424 	stp->st_flags = 0;
1425 	td->td_retval[0] = n;
1426 	return (0);
1427 }
1428 
1429 /*
1430  * Perform the initial filedescriptor scan and register ourselves with
1431  * each selinfo.
1432  */
1433 static int
1434 selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd)
1435 {
1436 	struct filedesc *fdp;
1437 	struct file *fp;
1438 	fd_mask bit;
1439 	int ev, flags, end, fd;
1440 	int n, idx;
1441 	int error;
1442 	bool only_user;
1443 
1444 	fdp = td->td_proc->p_fd;
1445 	n = 0;
1446 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1447 	for (idx = 0, fd = 0; fd < nfd; idx++) {
1448 		end = imin(fd + NFDBITS, nfd);
1449 		for (bit = 1; fd < end; bit <<= 1, fd++) {
1450 			/* Compute the list of events we're interested in. */
1451 			flags = selflags(ibits, idx, bit);
1452 			if (flags == 0)
1453 				continue;
1454 			if (only_user)
1455 				error = fget_only_user(fdp, fd, &cap_event_rights, &fp);
1456 			else
1457 				error = fget_unlocked(td, fd, &cap_event_rights, &fp);
1458 			if (__predict_false(error != 0))
1459 				return (error);
1460 			selfdalloc(td, (void *)(uintptr_t)fd);
1461 			ev = fo_poll(fp, flags, td->td_ucred, td);
1462 			if (only_user)
1463 				fput_only_user(fdp, fp);
1464 			else
1465 				fdrop(fp, td);
1466 			if (ev != 0)
1467 				n += selsetbits(ibits, obits, idx, bit, ev);
1468 		}
1469 	}
1470 
1471 	td->td_retval[0] = n;
1472 	return (0);
1473 }
1474 
1475 int
1476 sys_poll(struct thread *td, struct poll_args *uap)
1477 {
1478 	struct timespec ts, *tsp;
1479 
1480 	if (uap->timeout != INFTIM) {
1481 		if (uap->timeout < 0)
1482 			return (EINVAL);
1483 		ts.tv_sec = uap->timeout / 1000;
1484 		ts.tv_nsec = (uap->timeout % 1000) * 1000000;
1485 		tsp = &ts;
1486 	} else
1487 		tsp = NULL;
1488 
1489 	return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL));
1490 }
1491 
1492 /*
1493  * kfds points to an array in the kernel.
1494  */
1495 int
1496 kern_poll_kfds(struct thread *td, struct pollfd *kfds, u_int nfds,
1497     struct timespec *tsp, sigset_t *uset)
1498 {
1499 	sbintime_t sbt, precision, tmp;
1500 	time_t over;
1501 	struct timespec ts;
1502 	int error;
1503 
1504 	precision = 0;
1505 	if (tsp != NULL) {
1506 		if (!timespecvalid_interval(tsp))
1507 			return (EINVAL);
1508 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1509 			sbt = 0;
1510 		else {
1511 			ts = *tsp;
1512 			if (ts.tv_sec > INT32_MAX / 2) {
1513 				over = ts.tv_sec - INT32_MAX / 2;
1514 				ts.tv_sec -= over;
1515 			} else
1516 				over = 0;
1517 			tmp = tstosbt(ts);
1518 			precision = tmp;
1519 			precision >>= tc_precexp;
1520 			if (TIMESEL(&sbt, tmp))
1521 				sbt += tc_tick_sbt;
1522 			sbt += tmp;
1523 		}
1524 	} else
1525 		sbt = -1;
1526 
1527 	if (uset != NULL) {
1528 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
1529 		    &td->td_oldsigmask, 0);
1530 		if (error)
1531 			return (error);
1532 		td->td_pflags |= TDP_OLDMASK;
1533 		/*
1534 		 * Make sure that ast() is called on return to
1535 		 * usermode and TDP_OLDMASK is cleared, restoring old
1536 		 * sigmask.
1537 		 */
1538 		ast_sched(td, TDA_SIGSUSPEND);
1539 	}
1540 
1541 	seltdinit(td);
1542 	/* Iterate until the timeout expires or descriptors become ready. */
1543 	for (;;) {
1544 		error = pollscan(td, kfds, nfds);
1545 		if (error || td->td_retval[0] != 0)
1546 			break;
1547 		error = seltdwait(td, sbt, precision);
1548 		if (error)
1549 			break;
1550 		error = pollrescan(td);
1551 		if (error || td->td_retval[0] != 0)
1552 			break;
1553 	}
1554 	seltdclear(td);
1555 
1556 	/* poll is not restarted after signals... */
1557 	if (error == ERESTART)
1558 		error = EINTR;
1559 	if (error == EWOULDBLOCK)
1560 		error = 0;
1561 	return (error);
1562 }
1563 
1564 int
1565 sys_ppoll(struct thread *td, struct ppoll_args *uap)
1566 {
1567 	struct timespec ts, *tsp;
1568 	sigset_t set, *ssp;
1569 	int error;
1570 
1571 	if (uap->ts != NULL) {
1572 		error = copyin(uap->ts, &ts, sizeof(ts));
1573 		if (error)
1574 			return (error);
1575 		tsp = &ts;
1576 	} else
1577 		tsp = NULL;
1578 	if (uap->set != NULL) {
1579 		error = copyin(uap->set, &set, sizeof(set));
1580 		if (error)
1581 			return (error);
1582 		ssp = &set;
1583 	} else
1584 		ssp = NULL;
1585 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
1586 }
1587 
1588 /*
1589  * ufds points to an array in user space.
1590  */
1591 int
1592 kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds,
1593     struct timespec *tsp, sigset_t *set)
1594 {
1595 	struct pollfd *kfds;
1596 	struct pollfd stackfds[32];
1597 	int error;
1598 
1599 	if (kern_poll_maxfds(nfds))
1600 		return (EINVAL);
1601 	if (nfds > nitems(stackfds))
1602 		kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
1603 	else
1604 		kfds = stackfds;
1605 	error = copyin(ufds, kfds, nfds * sizeof(*kfds));
1606 	if (error != 0)
1607 		goto out;
1608 
1609 	error = kern_poll_kfds(td, kfds, nfds, tsp, set);
1610 	if (error == 0)
1611 		error = pollout(td, kfds, ufds, nfds);
1612 
1613 out:
1614 	if (nfds > nitems(stackfds))
1615 		free(kfds, M_TEMP);
1616 	return (error);
1617 }
1618 
1619 bool
1620 kern_poll_maxfds(u_int nfds)
1621 {
1622 
1623 	/*
1624 	 * This is kinda bogus.  We have fd limits, but that is not
1625 	 * really related to the size of the pollfd array.  Make sure
1626 	 * we let the process use at least FD_SETSIZE entries and at
1627 	 * least enough for the system-wide limits.  We want to be reasonably
1628 	 * safe, but not overly restrictive.
1629 	 */
1630 	return (nfds > maxfilesperproc && nfds > FD_SETSIZE);
1631 }
1632 
1633 static int
1634 pollrescan(struct thread *td)
1635 {
1636 	struct seltd *stp;
1637 	struct selfd *sfp;
1638 	struct selfd *sfn;
1639 	struct selinfo *si;
1640 	struct filedesc *fdp;
1641 	struct file *fp;
1642 	struct pollfd *fd;
1643 	int n, error;
1644 	bool only_user;
1645 
1646 	n = 0;
1647 	fdp = td->td_proc->p_fd;
1648 	stp = td->td_sel;
1649 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1650 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1651 		fd = (struct pollfd *)sfp->sf_cookie;
1652 		si = sfp->sf_si;
1653 		selfdfree(stp, sfp);
1654 		/* If the selinfo wasn't cleared the event didn't fire. */
1655 		if (si != NULL)
1656 			continue;
1657 		if (only_user)
1658 			error = fget_only_user(fdp, fd->fd, &cap_event_rights, &fp);
1659 		else
1660 			error = fget_unlocked(td, fd->fd, &cap_event_rights, &fp);
1661 		if (__predict_false(error != 0)) {
1662 			fd->revents = POLLNVAL;
1663 			n++;
1664 			continue;
1665 		}
1666 		/*
1667 		 * Note: backend also returns POLLHUP and
1668 		 * POLLERR if appropriate.
1669 		 */
1670 		fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
1671 		if (only_user)
1672 			fput_only_user(fdp, fp);
1673 		else
1674 			fdrop(fp, td);
1675 		if (fd->revents != 0)
1676 			n++;
1677 	}
1678 	stp->st_flags = 0;
1679 	td->td_retval[0] = n;
1680 	return (0);
1681 }
1682 
1683 static int
1684 pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
1685 {
1686 	int error = 0;
1687 	u_int i = 0;
1688 	u_int n = 0;
1689 
1690 	for (i = 0; i < nfd; i++) {
1691 		error = copyout(&fds->revents, &ufds->revents,
1692 		    sizeof(ufds->revents));
1693 		if (error)
1694 			return (error);
1695 		if (fds->revents != 0)
1696 			n++;
1697 		fds++;
1698 		ufds++;
1699 	}
1700 	td->td_retval[0] = n;
1701 	return (0);
1702 }
1703 
1704 static int
1705 pollscan(struct thread *td, struct pollfd *fds, u_int nfd)
1706 {
1707 	struct filedesc *fdp;
1708 	struct file *fp;
1709 	int i, n, error;
1710 	bool only_user;
1711 
1712 	n = 0;
1713 	fdp = td->td_proc->p_fd;
1714 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1715 	for (i = 0; i < nfd; i++, fds++) {
1716 		if (fds->fd < 0) {
1717 			fds->revents = 0;
1718 			continue;
1719 		}
1720 		if (only_user)
1721 			error = fget_only_user(fdp, fds->fd, &cap_event_rights, &fp);
1722 		else
1723 			error = fget_unlocked(td, fds->fd, &cap_event_rights, &fp);
1724 		if (__predict_false(error != 0)) {
1725 			fds->revents = POLLNVAL;
1726 			n++;
1727 			continue;
1728 		}
1729 		/*
1730 		 * Note: backend also returns POLLHUP and
1731 		 * POLLERR if appropriate.
1732 		 */
1733 		selfdalloc(td, fds);
1734 		fds->revents = fo_poll(fp, fds->events,
1735 		    td->td_ucred, td);
1736 		if (only_user)
1737 			fput_only_user(fdp, fp);
1738 		else
1739 			fdrop(fp, td);
1740 		/*
1741 		 * POSIX requires POLLOUT to be never
1742 		 * set simultaneously with POLLHUP.
1743 		 */
1744 		if ((fds->revents & POLLHUP) != 0)
1745 			fds->revents &= ~POLLOUT;
1746 
1747 		if (fds->revents != 0)
1748 			n++;
1749 	}
1750 	td->td_retval[0] = n;
1751 	return (0);
1752 }
1753 
1754 /*
1755  * XXX This was created specifically to support netncp and netsmb.  This
1756  * allows the caller to specify a socket to wait for events on.  It returns
1757  * 0 if any events matched and an error otherwise.  There is no way to
1758  * determine which events fired.
1759  */
1760 int
1761 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
1762 {
1763 	struct timeval rtv;
1764 	sbintime_t asbt, precision, rsbt;
1765 	int error;
1766 
1767 	precision = 0;	/* stupid gcc! */
1768 	if (tvp != NULL) {
1769 		rtv = *tvp;
1770 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1771 		    rtv.tv_usec >= 1000000)
1772 			return (EINVAL);
1773 		if (!timevalisset(&rtv))
1774 			asbt = 0;
1775 		else if (rtv.tv_sec <= INT32_MAX) {
1776 			rsbt = tvtosbt(rtv);
1777 			precision = rsbt;
1778 			precision >>= tc_precexp;
1779 			if (TIMESEL(&asbt, rsbt))
1780 				asbt += tc_tick_sbt;
1781 			if (asbt <= SBT_MAX - rsbt)
1782 				asbt += rsbt;
1783 			else
1784 				asbt = -1;
1785 		} else
1786 			asbt = -1;
1787 	} else
1788 		asbt = -1;
1789 	seltdinit(td);
1790 	/*
1791 	 * Iterate until the timeout expires or the socket becomes ready.
1792 	 */
1793 	for (;;) {
1794 		selfdalloc(td, NULL);
1795 		if (sopoll(so, events, NULL, td) != 0) {
1796 			error = 0;
1797 			break;
1798 		}
1799 		error = seltdwait(td, asbt, precision);
1800 		if (error)
1801 			break;
1802 	}
1803 	seltdclear(td);
1804 	/* XXX Duplicates ncp/smb behavior. */
1805 	if (error == ERESTART)
1806 		error = 0;
1807 	return (error);
1808 }
1809 
1810 /*
1811  * Preallocate two selfds associated with 'cookie'.  Some fo_poll routines
1812  * have two select sets, one for read and another for write.
1813  */
1814 static void
1815 selfdalloc(struct thread *td, void *cookie)
1816 {
1817 	struct seltd *stp;
1818 
1819 	stp = td->td_sel;
1820 	if (stp->st_free1 == NULL)
1821 		stp->st_free1 = malloc(sizeof(*stp->st_free1), M_SELFD, M_WAITOK|M_ZERO);
1822 	stp->st_free1->sf_td = stp;
1823 	stp->st_free1->sf_cookie = cookie;
1824 	if (stp->st_free2 == NULL)
1825 		stp->st_free2 = malloc(sizeof(*stp->st_free2), M_SELFD, M_WAITOK|M_ZERO);
1826 	stp->st_free2->sf_td = stp;
1827 	stp->st_free2->sf_cookie = cookie;
1828 }
1829 
1830 static void
1831 selfdfree(struct seltd *stp, struct selfd *sfp)
1832 {
1833 	STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
1834 	/*
1835 	 * Paired with doselwakeup.
1836 	 */
1837 	if (atomic_load_acq_ptr((uintptr_t *)&sfp->sf_si) != (uintptr_t)NULL) {
1838 		mtx_lock(sfp->sf_mtx);
1839 		if (sfp->sf_si != NULL) {
1840 			TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
1841 		}
1842 		mtx_unlock(sfp->sf_mtx);
1843 	}
1844 	free(sfp, M_SELFD);
1845 }
1846 
1847 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */
1848 void
1849 seldrain(struct selinfo *sip)
1850 {
1851 
1852 	/*
1853 	 * This feature is already provided by doselwakeup(), thus it is
1854 	 * enough to go for it.
1855 	 * Eventually, the context, should take care to avoid races
1856 	 * between thread calling select()/poll() and file descriptor
1857 	 * detaching, but, again, the races are just the same as
1858 	 * selwakeup().
1859 	 */
1860         doselwakeup(sip, -1);
1861 }
1862 
1863 /*
1864  * Record a select request.
1865  */
1866 void
1867 selrecord(struct thread *selector, struct selinfo *sip)
1868 {
1869 	struct selfd *sfp;
1870 	struct seltd *stp;
1871 	struct mtx *mtxp;
1872 
1873 	stp = selector->td_sel;
1874 	/*
1875 	 * Don't record when doing a rescan.
1876 	 */
1877 	if (stp->st_flags & SELTD_RESCAN)
1878 		return;
1879 	/*
1880 	 * Grab one of the preallocated descriptors.
1881 	 */
1882 	sfp = NULL;
1883 	if ((sfp = stp->st_free1) != NULL)
1884 		stp->st_free1 = NULL;
1885 	else if ((sfp = stp->st_free2) != NULL)
1886 		stp->st_free2 = NULL;
1887 	else
1888 		panic("selrecord: No free selfd on selq");
1889 	mtxp = sip->si_mtx;
1890 	if (mtxp == NULL)
1891 		mtxp = mtx_pool_find(mtxpool_select, sip);
1892 	/*
1893 	 * Initialize the sfp and queue it in the thread.
1894 	 */
1895 	sfp->sf_si = sip;
1896 	sfp->sf_mtx = mtxp;
1897 	STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
1898 	/*
1899 	 * Now that we've locked the sip, check for initialization.
1900 	 */
1901 	mtx_lock(mtxp);
1902 	if (sip->si_mtx == NULL) {
1903 		sip->si_mtx = mtxp;
1904 		TAILQ_INIT(&sip->si_tdlist);
1905 	}
1906 	/*
1907 	 * Add this thread to the list of selfds listening on this selinfo.
1908 	 */
1909 	TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
1910 	mtx_unlock(sip->si_mtx);
1911 }
1912 
1913 /* Wake up a selecting thread. */
1914 void
1915 selwakeup(struct selinfo *sip)
1916 {
1917 	doselwakeup(sip, -1);
1918 }
1919 
1920 /* Wake up a selecting thread, and set its priority. */
1921 void
1922 selwakeuppri(struct selinfo *sip, int pri)
1923 {
1924 	doselwakeup(sip, pri);
1925 }
1926 
1927 /*
1928  * Do a wakeup when a selectable event occurs.
1929  */
1930 static void
1931 doselwakeup(struct selinfo *sip, int pri)
1932 {
1933 	struct selfd *sfp;
1934 	struct selfd *sfn;
1935 	struct seltd *stp;
1936 
1937 	/* If it's not initialized there can't be any waiters. */
1938 	if (sip->si_mtx == NULL)
1939 		return;
1940 	/*
1941 	 * Locking the selinfo locks all selfds associated with it.
1942 	 */
1943 	mtx_lock(sip->si_mtx);
1944 	TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
1945 		/*
1946 		 * Once we remove this sfp from the list and clear the
1947 		 * sf_si seltdclear will know to ignore this si.
1948 		 */
1949 		TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
1950 		stp = sfp->sf_td;
1951 		mtx_lock(&stp->st_mtx);
1952 		stp->st_flags |= SELTD_PENDING;
1953 		cv_broadcastpri(&stp->st_wait, pri);
1954 		mtx_unlock(&stp->st_mtx);
1955 		/*
1956 		 * Paired with selfdfree.
1957 		 *
1958 		 * Storing this only after the wakeup provides an invariant that
1959 		 * stp is not used after selfdfree returns.
1960 		 */
1961 		atomic_store_rel_ptr((uintptr_t *)&sfp->sf_si, (uintptr_t)NULL);
1962 	}
1963 	mtx_unlock(sip->si_mtx);
1964 }
1965 
1966 static void
1967 seltdinit(struct thread *td)
1968 {
1969 	struct seltd *stp;
1970 
1971 	stp = td->td_sel;
1972 	if (stp != NULL) {
1973 		MPASS(stp->st_flags == 0);
1974 		MPASS(STAILQ_EMPTY(&stp->st_selq));
1975 		return;
1976 	}
1977 	stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
1978 	mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
1979 	cv_init(&stp->st_wait, "select");
1980 	stp->st_flags = 0;
1981 	STAILQ_INIT(&stp->st_selq);
1982 	td->td_sel = stp;
1983 }
1984 
1985 static int
1986 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision)
1987 {
1988 	struct seltd *stp;
1989 	int error;
1990 
1991 	stp = td->td_sel;
1992 	/*
1993 	 * An event of interest may occur while we do not hold the seltd
1994 	 * locked so check the pending flag before we sleep.
1995 	 */
1996 	mtx_lock(&stp->st_mtx);
1997 	/*
1998 	 * Any further calls to selrecord will be a rescan.
1999 	 */
2000 	stp->st_flags |= SELTD_RESCAN;
2001 	if (stp->st_flags & SELTD_PENDING) {
2002 		mtx_unlock(&stp->st_mtx);
2003 		return (0);
2004 	}
2005 	if (sbt == 0)
2006 		error = EWOULDBLOCK;
2007 	else if (sbt != -1)
2008 		error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx,
2009 		    sbt, precision, C_ABSOLUTE);
2010 	else
2011 		error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
2012 	mtx_unlock(&stp->st_mtx);
2013 
2014 	return (error);
2015 }
2016 
2017 void
2018 seltdfini(struct thread *td)
2019 {
2020 	struct seltd *stp;
2021 
2022 	stp = td->td_sel;
2023 	if (stp == NULL)
2024 		return;
2025 	MPASS(stp->st_flags == 0);
2026 	MPASS(STAILQ_EMPTY(&stp->st_selq));
2027 	if (stp->st_free1)
2028 		free(stp->st_free1, M_SELFD);
2029 	if (stp->st_free2)
2030 		free(stp->st_free2, M_SELFD);
2031 	td->td_sel = NULL;
2032 	cv_destroy(&stp->st_wait);
2033 	mtx_destroy(&stp->st_mtx);
2034 	free(stp, M_SELECT);
2035 }
2036 
2037 /*
2038  * Remove the references to the thread from all of the objects we were
2039  * polling.
2040  */
2041 static void
2042 seltdclear(struct thread *td)
2043 {
2044 	struct seltd *stp;
2045 	struct selfd *sfp;
2046 	struct selfd *sfn;
2047 
2048 	stp = td->td_sel;
2049 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
2050 		selfdfree(stp, sfp);
2051 	stp->st_flags = 0;
2052 }
2053 
2054 static void selectinit(void *);
2055 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
2056 static void
2057 selectinit(void *dummy __unused)
2058 {
2059 
2060 	mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF);
2061 }
2062 
2063 /*
2064  * Set up a syscall return value that follows the convention specified for
2065  * posix_* functions.
2066  */
2067 int
2068 kern_posix_error(struct thread *td, int error)
2069 {
2070 
2071 	if (error <= 0)
2072 		return (error);
2073 	td->td_errno = error;
2074 	td->td_pflags |= TDP_NERRNO;
2075 	td->td_retval[0] = error;
2076 	return (0);
2077 }
2078