xref: /freebsd/sys/kern/sys_generic.c (revision 2e4311906d8c8dc7a7c726345268253bca6d4acc)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)sys_generic.c	8.5 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_capsicum.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/capsicum.h>
49 #include <sys/filedesc.h>
50 #include <sys/filio.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/lock.h>
54 #include <sys/proc.h>
55 #include <sys/signalvar.h>
56 #include <sys/socketvar.h>
57 #include <sys/uio.h>
58 #include <sys/eventfd.h>
59 #include <sys/kernel.h>
60 #include <sys/ktr.h>
61 #include <sys/limits.h>
62 #include <sys/malloc.h>
63 #include <sys/poll.h>
64 #include <sys/resourcevar.h>
65 #include <sys/selinfo.h>
66 #include <sys/sleepqueue.h>
67 #include <sys/specialfd.h>
68 #include <sys/syscallsubr.h>
69 #include <sys/sysctl.h>
70 #include <sys/sysent.h>
71 #include <sys/vnode.h>
72 #include <sys/bio.h>
73 #include <sys/buf.h>
74 #include <sys/condvar.h>
75 #ifdef KTRACE
76 #include <sys/ktrace.h>
77 #endif
78 
79 #include <security/audit/audit.h>
80 
81 /*
82  * The following macro defines how many bytes will be allocated from
83  * the stack instead of memory allocated when passing the IOCTL data
84  * structures from userspace and to the kernel. Some IOCTLs having
85  * small data structures are used very frequently and this small
86  * buffer on the stack gives a significant speedup improvement for
87  * those requests. The value of this define should be greater or equal
88  * to 64 bytes and should also be power of two. The data structure is
89  * currently hard-aligned to a 8-byte boundary on the stack. This
90  * should currently be sufficient for all supported platforms.
91  */
92 #define	SYS_IOCTL_SMALL_SIZE	128	/* bytes */
93 #define	SYS_IOCTL_SMALL_ALIGN	8	/* bytes */
94 
95 #ifdef __LP64__
96 static int iosize_max_clamp = 0;
97 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW,
98     &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX");
99 static int devfs_iosize_max_clamp = 1;
100 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW,
101     &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices");
102 #endif
103 
104 /*
105  * Assert that the return value of read(2) and write(2) syscalls fits
106  * into a register.  If not, an architecture will need to provide the
107  * usermode wrappers to reconstruct the result.
108  */
109 CTASSERT(sizeof(register_t) >= sizeof(size_t));
110 
111 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
112 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
113 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
114 
115 static int	pollout(struct thread *, struct pollfd *, struct pollfd *,
116 		    u_int);
117 static int	pollscan(struct thread *, struct pollfd *, u_int);
118 static int	pollrescan(struct thread *);
119 static int	selscan(struct thread *, fd_mask **, fd_mask **, int);
120 static int	selrescan(struct thread *, fd_mask **, fd_mask **);
121 static void	selfdalloc(struct thread *, void *);
122 static void	selfdfree(struct seltd *, struct selfd *);
123 static int	dofileread(struct thread *, int, struct file *, struct uio *,
124 		    off_t, int);
125 static int	dofilewrite(struct thread *, int, struct file *, struct uio *,
126 		    off_t, int);
127 static void	doselwakeup(struct selinfo *, int);
128 static void	seltdinit(struct thread *);
129 static int	seltdwait(struct thread *, sbintime_t, sbintime_t);
130 static void	seltdclear(struct thread *);
131 
132 /*
133  * One seltd per-thread allocated on demand as needed.
134  *
135  *	t - protected by st_mtx
136  * 	k - Only accessed by curthread or read-only
137  */
138 struct seltd {
139 	STAILQ_HEAD(, selfd)	st_selq;	/* (k) List of selfds. */
140 	struct selfd		*st_free1;	/* (k) free fd for read set. */
141 	struct selfd		*st_free2;	/* (k) free fd for write set. */
142 	struct mtx		st_mtx;		/* Protects struct seltd */
143 	struct cv		st_wait;	/* (t) Wait channel. */
144 	int			st_flags;	/* (t) SELTD_ flags. */
145 };
146 
147 #define	SELTD_PENDING	0x0001			/* We have pending events. */
148 #define	SELTD_RESCAN	0x0002			/* Doing a rescan. */
149 
150 /*
151  * One selfd allocated per-thread per-file-descriptor.
152  *	f - protected by sf_mtx
153  */
154 struct selfd {
155 	STAILQ_ENTRY(selfd)	sf_link;	/* (k) fds owned by this td. */
156 	TAILQ_ENTRY(selfd)	sf_threads;	/* (f) fds on this selinfo. */
157 	struct selinfo		*sf_si;		/* (f) selinfo when linked. */
158 	struct mtx		*sf_mtx;	/* Pointer to selinfo mtx. */
159 	struct seltd		*sf_td;		/* (k) owning seltd. */
160 	void			*sf_cookie;	/* (k) fd or pollfd. */
161 };
162 
163 MALLOC_DEFINE(M_SELFD, "selfd", "selfd");
164 static struct mtx_pool *mtxpool_select;
165 
166 #ifdef __LP64__
167 size_t
168 devfs_iosize_max(void)
169 {
170 
171 	return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
172 	    INT_MAX : SSIZE_MAX);
173 }
174 
175 size_t
176 iosize_max(void)
177 {
178 
179 	return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
180 	    INT_MAX : SSIZE_MAX);
181 }
182 #endif
183 
184 #ifndef _SYS_SYSPROTO_H_
185 struct read_args {
186 	int	fd;
187 	void	*buf;
188 	size_t	nbyte;
189 };
190 #endif
191 int
192 sys_read(struct thread *td, struct read_args *uap)
193 {
194 	struct uio auio;
195 	struct iovec aiov;
196 	int error;
197 
198 	if (uap->nbyte > IOSIZE_MAX)
199 		return (EINVAL);
200 	aiov.iov_base = uap->buf;
201 	aiov.iov_len = uap->nbyte;
202 	auio.uio_iov = &aiov;
203 	auio.uio_iovcnt = 1;
204 	auio.uio_resid = uap->nbyte;
205 	auio.uio_segflg = UIO_USERSPACE;
206 	error = kern_readv(td, uap->fd, &auio);
207 	return (error);
208 }
209 
210 /*
211  * Positioned read system call
212  */
213 #ifndef _SYS_SYSPROTO_H_
214 struct pread_args {
215 	int	fd;
216 	void	*buf;
217 	size_t	nbyte;
218 	int	pad;
219 	off_t	offset;
220 };
221 #endif
222 int
223 sys_pread(struct thread *td, struct pread_args *uap)
224 {
225 
226 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
227 }
228 
229 int
230 kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset)
231 {
232 	struct uio auio;
233 	struct iovec aiov;
234 	int error;
235 
236 	if (nbyte > IOSIZE_MAX)
237 		return (EINVAL);
238 	aiov.iov_base = buf;
239 	aiov.iov_len = nbyte;
240 	auio.uio_iov = &aiov;
241 	auio.uio_iovcnt = 1;
242 	auio.uio_resid = nbyte;
243 	auio.uio_segflg = UIO_USERSPACE;
244 	error = kern_preadv(td, fd, &auio, offset);
245 	return (error);
246 }
247 
248 #if defined(COMPAT_FREEBSD6)
249 int
250 freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap)
251 {
252 
253 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
254 }
255 #endif
256 
257 /*
258  * Scatter read system call.
259  */
260 #ifndef _SYS_SYSPROTO_H_
261 struct readv_args {
262 	int	fd;
263 	struct	iovec *iovp;
264 	u_int	iovcnt;
265 };
266 #endif
267 int
268 sys_readv(struct thread *td, struct readv_args *uap)
269 {
270 	struct uio *auio;
271 	int error;
272 
273 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
274 	if (error)
275 		return (error);
276 	error = kern_readv(td, uap->fd, auio);
277 	free(auio, M_IOV);
278 	return (error);
279 }
280 
281 int
282 kern_readv(struct thread *td, int fd, struct uio *auio)
283 {
284 	struct file *fp;
285 	int error;
286 
287 	error = fget_read(td, fd, &cap_read_rights, &fp);
288 	if (error)
289 		return (error);
290 	error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
291 	fdrop(fp, td);
292 	return (error);
293 }
294 
295 /*
296  * Scatter positioned read system call.
297  */
298 #ifndef _SYS_SYSPROTO_H_
299 struct preadv_args {
300 	int	fd;
301 	struct	iovec *iovp;
302 	u_int	iovcnt;
303 	off_t	offset;
304 };
305 #endif
306 int
307 sys_preadv(struct thread *td, struct preadv_args *uap)
308 {
309 	struct uio *auio;
310 	int error;
311 
312 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
313 	if (error)
314 		return (error);
315 	error = kern_preadv(td, uap->fd, auio, uap->offset);
316 	free(auio, M_IOV);
317 	return (error);
318 }
319 
320 int
321 kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset)
322 {
323 	struct file *fp;
324 	int error;
325 
326 	error = fget_read(td, fd, &cap_pread_rights, &fp);
327 	if (error)
328 		return (error);
329 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
330 		error = ESPIPE;
331 	else if (offset < 0 &&
332 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
333 		error = EINVAL;
334 	else
335 		error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
336 	fdrop(fp, td);
337 	return (error);
338 }
339 
340 /*
341  * Common code for readv and preadv that reads data in
342  * from a file using the passed in uio, offset, and flags.
343  */
344 static int
345 dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio,
346     off_t offset, int flags)
347 {
348 	ssize_t cnt;
349 	int error;
350 #ifdef KTRACE
351 	struct uio *ktruio = NULL;
352 #endif
353 
354 	AUDIT_ARG_FD(fd);
355 
356 	/* Finish zero length reads right here */
357 	if (auio->uio_resid == 0) {
358 		td->td_retval[0] = 0;
359 		return (0);
360 	}
361 	auio->uio_rw = UIO_READ;
362 	auio->uio_offset = offset;
363 	auio->uio_td = td;
364 #ifdef KTRACE
365 	if (KTRPOINT(td, KTR_GENIO))
366 		ktruio = cloneuio(auio);
367 #endif
368 	cnt = auio->uio_resid;
369 	if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
370 		if (auio->uio_resid != cnt && (error == ERESTART ||
371 		    error == EINTR || error == EWOULDBLOCK))
372 			error = 0;
373 	}
374 	cnt -= auio->uio_resid;
375 #ifdef KTRACE
376 	if (ktruio != NULL) {
377 		ktruio->uio_resid = cnt;
378 		ktrgenio(fd, UIO_READ, ktruio, error);
379 	}
380 #endif
381 	td->td_retval[0] = cnt;
382 	return (error);
383 }
384 
385 #ifndef _SYS_SYSPROTO_H_
386 struct write_args {
387 	int	fd;
388 	const void *buf;
389 	size_t	nbyte;
390 };
391 #endif
392 int
393 sys_write(struct thread *td, struct write_args *uap)
394 {
395 	struct uio auio;
396 	struct iovec aiov;
397 	int error;
398 
399 	if (uap->nbyte > IOSIZE_MAX)
400 		return (EINVAL);
401 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
402 	aiov.iov_len = uap->nbyte;
403 	auio.uio_iov = &aiov;
404 	auio.uio_iovcnt = 1;
405 	auio.uio_resid = uap->nbyte;
406 	auio.uio_segflg = UIO_USERSPACE;
407 	error = kern_writev(td, uap->fd, &auio);
408 	return (error);
409 }
410 
411 /*
412  * Positioned write system call.
413  */
414 #ifndef _SYS_SYSPROTO_H_
415 struct pwrite_args {
416 	int	fd;
417 	const void *buf;
418 	size_t	nbyte;
419 	int	pad;
420 	off_t	offset;
421 };
422 #endif
423 int
424 sys_pwrite(struct thread *td, struct pwrite_args *uap)
425 {
426 
427 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
428 }
429 
430 int
431 kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte,
432     off_t offset)
433 {
434 	struct uio auio;
435 	struct iovec aiov;
436 	int error;
437 
438 	if (nbyte > IOSIZE_MAX)
439 		return (EINVAL);
440 	aiov.iov_base = (void *)(uintptr_t)buf;
441 	aiov.iov_len = nbyte;
442 	auio.uio_iov = &aiov;
443 	auio.uio_iovcnt = 1;
444 	auio.uio_resid = nbyte;
445 	auio.uio_segflg = UIO_USERSPACE;
446 	error = kern_pwritev(td, fd, &auio, offset);
447 	return (error);
448 }
449 
450 #if defined(COMPAT_FREEBSD6)
451 int
452 freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap)
453 {
454 
455 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
456 }
457 #endif
458 
459 /*
460  * Gather write system call.
461  */
462 #ifndef _SYS_SYSPROTO_H_
463 struct writev_args {
464 	int	fd;
465 	struct	iovec *iovp;
466 	u_int	iovcnt;
467 };
468 #endif
469 int
470 sys_writev(struct thread *td, struct writev_args *uap)
471 {
472 	struct uio *auio;
473 	int error;
474 
475 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
476 	if (error)
477 		return (error);
478 	error = kern_writev(td, uap->fd, auio);
479 	free(auio, M_IOV);
480 	return (error);
481 }
482 
483 int
484 kern_writev(struct thread *td, int fd, struct uio *auio)
485 {
486 	struct file *fp;
487 	int error;
488 
489 	error = fget_write(td, fd, &cap_write_rights, &fp);
490 	if (error)
491 		return (error);
492 	error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
493 	fdrop(fp, td);
494 	return (error);
495 }
496 
497 /*
498  * Gather positioned write system call.
499  */
500 #ifndef _SYS_SYSPROTO_H_
501 struct pwritev_args {
502 	int	fd;
503 	struct	iovec *iovp;
504 	u_int	iovcnt;
505 	off_t	offset;
506 };
507 #endif
508 int
509 sys_pwritev(struct thread *td, struct pwritev_args *uap)
510 {
511 	struct uio *auio;
512 	int error;
513 
514 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
515 	if (error)
516 		return (error);
517 	error = kern_pwritev(td, uap->fd, auio, uap->offset);
518 	free(auio, M_IOV);
519 	return (error);
520 }
521 
522 int
523 kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset)
524 {
525 	struct file *fp;
526 	int error;
527 
528 	error = fget_write(td, fd, &cap_pwrite_rights, &fp);
529 	if (error)
530 		return (error);
531 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
532 		error = ESPIPE;
533 	else if (offset < 0 &&
534 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
535 		error = EINVAL;
536 	else
537 		error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
538 	fdrop(fp, td);
539 	return (error);
540 }
541 
542 /*
543  * Common code for writev and pwritev that writes data to
544  * a file using the passed in uio, offset, and flags.
545  */
546 static int
547 dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio,
548     off_t offset, int flags)
549 {
550 	ssize_t cnt;
551 	int error;
552 #ifdef KTRACE
553 	struct uio *ktruio = NULL;
554 #endif
555 
556 	AUDIT_ARG_FD(fd);
557 	auio->uio_rw = UIO_WRITE;
558 	auio->uio_td = td;
559 	auio->uio_offset = offset;
560 #ifdef KTRACE
561 	if (KTRPOINT(td, KTR_GENIO))
562 		ktruio = cloneuio(auio);
563 #endif
564 	cnt = auio->uio_resid;
565 	if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) {
566 		if (auio->uio_resid != cnt && (error == ERESTART ||
567 		    error == EINTR || error == EWOULDBLOCK))
568 			error = 0;
569 		/* Socket layer is responsible for issuing SIGPIPE. */
570 		if (fp->f_type != DTYPE_SOCKET && error == EPIPE) {
571 			PROC_LOCK(td->td_proc);
572 			tdsignal(td, SIGPIPE);
573 			PROC_UNLOCK(td->td_proc);
574 		}
575 	}
576 	cnt -= auio->uio_resid;
577 #ifdef KTRACE
578 	if (ktruio != NULL) {
579 		ktruio->uio_resid = cnt;
580 		ktrgenio(fd, UIO_WRITE, ktruio, error);
581 	}
582 #endif
583 	td->td_retval[0] = cnt;
584 	return (error);
585 }
586 
587 /*
588  * Truncate a file given a file descriptor.
589  *
590  * Can't use fget_write() here, since must return EINVAL and not EBADF if the
591  * descriptor isn't writable.
592  */
593 int
594 kern_ftruncate(struct thread *td, int fd, off_t length)
595 {
596 	struct file *fp;
597 	int error;
598 
599 	AUDIT_ARG_FD(fd);
600 	if (length < 0)
601 		return (EINVAL);
602 	error = fget(td, fd, &cap_ftruncate_rights, &fp);
603 	if (error)
604 		return (error);
605 	AUDIT_ARG_FILE(td->td_proc, fp);
606 	if (!(fp->f_flag & FWRITE)) {
607 		fdrop(fp, td);
608 		return (EINVAL);
609 	}
610 	error = fo_truncate(fp, length, td->td_ucred, td);
611 	fdrop(fp, td);
612 	return (error);
613 }
614 
615 #ifndef _SYS_SYSPROTO_H_
616 struct ftruncate_args {
617 	int	fd;
618 	int	pad;
619 	off_t	length;
620 };
621 #endif
622 int
623 sys_ftruncate(struct thread *td, struct ftruncate_args *uap)
624 {
625 
626 	return (kern_ftruncate(td, uap->fd, uap->length));
627 }
628 
629 #if defined(COMPAT_43)
630 #ifndef _SYS_SYSPROTO_H_
631 struct oftruncate_args {
632 	int	fd;
633 	long	length;
634 };
635 #endif
636 int
637 oftruncate(struct thread *td, struct oftruncate_args *uap)
638 {
639 
640 	return (kern_ftruncate(td, uap->fd, uap->length));
641 }
642 #endif /* COMPAT_43 */
643 
644 #ifndef _SYS_SYSPROTO_H_
645 struct ioctl_args {
646 	int	fd;
647 	u_long	com;
648 	caddr_t	data;
649 };
650 #endif
651 /* ARGSUSED */
652 int
653 sys_ioctl(struct thread *td, struct ioctl_args *uap)
654 {
655 	u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN);
656 	uint32_t com;
657 	int arg, error;
658 	u_int size;
659 	caddr_t data;
660 
661 #ifdef INVARIANTS
662 	if (uap->com > 0xffffffff) {
663 		printf(
664 		    "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
665 		    td->td_proc->p_pid, td->td_name, uap->com);
666 	}
667 #endif
668 	com = (uint32_t)uap->com;
669 
670 	/*
671 	 * Interpret high order word to find amount of data to be
672 	 * copied to/from the user's address space.
673 	 */
674 	size = IOCPARM_LEN(com);
675 	if ((size > IOCPARM_MAX) ||
676 	    ((com & (IOC_VOID  | IOC_IN | IOC_OUT)) == 0) ||
677 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
678 	    ((com & IOC_OUT) && size == 0) ||
679 #else
680 	    ((com & (IOC_IN | IOC_OUT)) && size == 0) ||
681 #endif
682 	    ((com & IOC_VOID) && size > 0 && size != sizeof(int)))
683 		return (ENOTTY);
684 
685 	if (size > 0) {
686 		if (com & IOC_VOID) {
687 			/* Integer argument. */
688 			arg = (intptr_t)uap->data;
689 			data = (void *)&arg;
690 			size = 0;
691 		} else {
692 			if (size > SYS_IOCTL_SMALL_SIZE)
693 				data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
694 			else
695 				data = smalldata;
696 		}
697 	} else
698 		data = (void *)&uap->data;
699 	if (com & IOC_IN) {
700 		error = copyin(uap->data, data, (u_int)size);
701 		if (error != 0)
702 			goto out;
703 	} else if (com & IOC_OUT) {
704 		/*
705 		 * Zero the buffer so the user always
706 		 * gets back something deterministic.
707 		 */
708 		bzero(data, size);
709 	}
710 
711 	error = kern_ioctl(td, uap->fd, com, data);
712 
713 	if (error == 0 && (com & IOC_OUT))
714 		error = copyout(data, uap->data, (u_int)size);
715 
716 out:
717 	if (size > SYS_IOCTL_SMALL_SIZE)
718 		free(data, M_IOCTLOPS);
719 	return (error);
720 }
721 
722 int
723 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
724 {
725 	struct file *fp;
726 	struct filedesc *fdp;
727 	int error, tmp, locked;
728 
729 	AUDIT_ARG_FD(fd);
730 	AUDIT_ARG_CMD(com);
731 
732 	fdp = td->td_proc->p_fd;
733 
734 	switch (com) {
735 	case FIONCLEX:
736 	case FIOCLEX:
737 		FILEDESC_XLOCK(fdp);
738 		locked = LA_XLOCKED;
739 		break;
740 	default:
741 #ifdef CAPABILITIES
742 		FILEDESC_SLOCK(fdp);
743 		locked = LA_SLOCKED;
744 #else
745 		locked = LA_UNLOCKED;
746 #endif
747 		break;
748 	}
749 
750 #ifdef CAPABILITIES
751 	if ((fp = fget_locked(fdp, fd)) == NULL) {
752 		error = EBADF;
753 		goto out;
754 	}
755 	if ((error = cap_ioctl_check(fdp, fd, com)) != 0) {
756 		fp = NULL;	/* fhold() was not called yet */
757 		goto out;
758 	}
759 	if (!fhold(fp)) {
760 		error = EBADF;
761 		fp = NULL;
762 		goto out;
763 	}
764 	if (locked == LA_SLOCKED) {
765 		FILEDESC_SUNLOCK(fdp);
766 		locked = LA_UNLOCKED;
767 	}
768 #else
769 	error = fget(td, fd, &cap_ioctl_rights, &fp);
770 	if (error != 0) {
771 		fp = NULL;
772 		goto out;
773 	}
774 #endif
775 	if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
776 		error = EBADF;
777 		goto out;
778 	}
779 
780 	switch (com) {
781 	case FIONCLEX:
782 		fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE;
783 		goto out;
784 	case FIOCLEX:
785 		fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE;
786 		goto out;
787 	case FIONBIO:
788 		if ((tmp = *(int *)data))
789 			atomic_set_int(&fp->f_flag, FNONBLOCK);
790 		else
791 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
792 		data = (void *)&tmp;
793 		break;
794 	case FIOASYNC:
795 		if ((tmp = *(int *)data))
796 			atomic_set_int(&fp->f_flag, FASYNC);
797 		else
798 			atomic_clear_int(&fp->f_flag, FASYNC);
799 		data = (void *)&tmp;
800 		break;
801 	}
802 
803 	error = fo_ioctl(fp, com, data, td->td_ucred, td);
804 out:
805 	switch (locked) {
806 	case LA_XLOCKED:
807 		FILEDESC_XUNLOCK(fdp);
808 		break;
809 #ifdef CAPABILITIES
810 	case LA_SLOCKED:
811 		FILEDESC_SUNLOCK(fdp);
812 		break;
813 #endif
814 	default:
815 		FILEDESC_UNLOCK_ASSERT(fdp);
816 		break;
817 	}
818 	if (fp != NULL)
819 		fdrop(fp, td);
820 	return (error);
821 }
822 
823 int
824 sys_posix_fallocate(struct thread *td, struct posix_fallocate_args *uap)
825 {
826 	int error;
827 
828 	error = kern_posix_fallocate(td, uap->fd, uap->offset, uap->len);
829 	return (kern_posix_error(td, error));
830 }
831 
832 int
833 kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len)
834 {
835 	struct file *fp;
836 	int error;
837 
838 	AUDIT_ARG_FD(fd);
839 	if (offset < 0 || len <= 0)
840 		return (EINVAL);
841 	/* Check for wrap. */
842 	if (offset > OFF_MAX - len)
843 		return (EFBIG);
844 	AUDIT_ARG_FD(fd);
845 	error = fget(td, fd, &cap_pwrite_rights, &fp);
846 	if (error != 0)
847 		return (error);
848 	AUDIT_ARG_FILE(td->td_proc, fp);
849 	if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) {
850 		error = ESPIPE;
851 		goto out;
852 	}
853 	if ((fp->f_flag & FWRITE) == 0) {
854 		error = EBADF;
855 		goto out;
856 	}
857 
858 	error = fo_fallocate(fp, offset, len, td);
859  out:
860 	fdrop(fp, td);
861 	return (error);
862 }
863 
864 int
865 sys_fspacectl(struct thread *td, struct fspacectl_args *uap)
866 {
867 	struct spacectl_range rqsr, rmsr;
868 	int error, cerror;
869 
870 	error = copyin(uap->rqsr, &rqsr, sizeof(rqsr));
871 	if (error != 0)
872 		return (error);
873 
874 	error = kern_fspacectl(td, uap->fd, uap->cmd, &rqsr, uap->flags,
875 	    &rmsr);
876 	if (uap->rmsr != NULL) {
877 		cerror = copyout(&rmsr, uap->rmsr, sizeof(rmsr));
878 		if (error == 0)
879 			error = cerror;
880 	}
881 	return (error);
882 }
883 
884 int
885 kern_fspacectl(struct thread *td, int fd, int cmd,
886     const struct spacectl_range *rqsr, int flags, struct spacectl_range *rmsrp)
887 {
888 	struct file *fp;
889 	struct spacectl_range rmsr;
890 	int error;
891 
892 	AUDIT_ARG_FD(fd);
893 	AUDIT_ARG_CMD(cmd);
894 	AUDIT_ARG_FFLAGS(flags);
895 
896 	if (rqsr == NULL)
897 		return (EINVAL);
898 	rmsr = *rqsr;
899 	if (rmsrp != NULL)
900 		*rmsrp = rmsr;
901 
902 	if (cmd != SPACECTL_DEALLOC ||
903 	    rqsr->r_offset < 0 || rqsr->r_len <= 0 ||
904 	    rqsr->r_offset > OFF_MAX - rqsr->r_len ||
905 	    (flags & ~SPACECTL_F_SUPPORTED) != 0)
906 		return (EINVAL);
907 
908 	error = fget_write(td, fd, &cap_pwrite_rights, &fp);
909 	if (error != 0)
910 		return (error);
911 	AUDIT_ARG_FILE(td->td_proc, fp);
912 	if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) {
913 		error = ESPIPE;
914 		goto out;
915 	}
916 	if ((fp->f_flag & FWRITE) == 0) {
917 		error = EBADF;
918 		goto out;
919 	}
920 
921 	error = fo_fspacectl(fp, cmd, &rmsr.r_offset, &rmsr.r_len, flags,
922 	    td->td_ucred, td);
923 	/* fspacectl is not restarted after signals if the file is modified. */
924 	if (rmsr.r_len != rqsr->r_len && (error == ERESTART ||
925 	    error == EINTR || error == EWOULDBLOCK))
926 		error = 0;
927 	if (rmsrp != NULL)
928 		*rmsrp = rmsr;
929 out:
930 	fdrop(fp, td);
931 	return (error);
932 }
933 
934 int
935 kern_specialfd(struct thread *td, int type, void *arg)
936 {
937 	struct file *fp;
938 	struct specialfd_eventfd *ae;
939 	int error, fd, fflags;
940 
941 	fflags = 0;
942 	error = falloc_noinstall(td, &fp);
943 	if (error != 0)
944 		return (error);
945 
946 	switch (type) {
947 	case SPECIALFD_EVENTFD:
948 		ae = arg;
949 		if ((ae->flags & EFD_CLOEXEC) != 0)
950 			fflags |= O_CLOEXEC;
951 		error = eventfd_create_file(td, fp, ae->initval, ae->flags);
952 		break;
953 	default:
954 		error = EINVAL;
955 		break;
956 	}
957 
958 	if (error == 0)
959 		error = finstall(td, fp, &fd, fflags, NULL);
960 	fdrop(fp, td);
961 	if (error == 0)
962 		td->td_retval[0] = fd;
963 	return (error);
964 }
965 
966 int
967 sys___specialfd(struct thread *td, struct __specialfd_args *args)
968 {
969 	struct specialfd_eventfd ae;
970 	int error;
971 
972 	switch (args->type) {
973 	case SPECIALFD_EVENTFD:
974 		if (args->len != sizeof(struct specialfd_eventfd)) {
975 			error = EINVAL;
976 			break;
977 		}
978 		error = copyin(args->req, &ae, sizeof(ae));
979 		if (error != 0)
980 			break;
981 		if ((ae.flags & ~(EFD_CLOEXEC | EFD_NONBLOCK |
982 		    EFD_SEMAPHORE)) != 0) {
983 			error = EINVAL;
984 			break;
985 		}
986 		error = kern_specialfd(td, args->type, &ae);
987 		break;
988 	default:
989 		error = EINVAL;
990 		break;
991 	}
992 	return (error);
993 }
994 
995 int
996 poll_no_poll(int events)
997 {
998 	/*
999 	 * Return true for read/write.  If the user asked for something
1000 	 * special, return POLLNVAL, so that clients have a way of
1001 	 * determining reliably whether or not the extended
1002 	 * functionality is present without hard-coding knowledge
1003 	 * of specific filesystem implementations.
1004 	 */
1005 	if (events & ~POLLSTANDARD)
1006 		return (POLLNVAL);
1007 
1008 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
1009 }
1010 
1011 int
1012 sys_pselect(struct thread *td, struct pselect_args *uap)
1013 {
1014 	struct timespec ts;
1015 	struct timeval tv, *tvp;
1016 	sigset_t set, *uset;
1017 	int error;
1018 
1019 	if (uap->ts != NULL) {
1020 		error = copyin(uap->ts, &ts, sizeof(ts));
1021 		if (error != 0)
1022 		    return (error);
1023 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1024 		tvp = &tv;
1025 	} else
1026 		tvp = NULL;
1027 	if (uap->sm != NULL) {
1028 		error = copyin(uap->sm, &set, sizeof(set));
1029 		if (error != 0)
1030 			return (error);
1031 		uset = &set;
1032 	} else
1033 		uset = NULL;
1034 	return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
1035 	    uset, NFDBITS));
1036 }
1037 
1038 int
1039 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex,
1040     struct timeval *tvp, sigset_t *uset, int abi_nfdbits)
1041 {
1042 	int error;
1043 
1044 	if (uset != NULL) {
1045 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
1046 		    &td->td_oldsigmask, 0);
1047 		if (error != 0)
1048 			return (error);
1049 		td->td_pflags |= TDP_OLDMASK;
1050 		/*
1051 		 * Make sure that ast() is called on return to
1052 		 * usermode and TDP_OLDMASK is cleared, restoring old
1053 		 * sigmask.
1054 		 */
1055 		thread_lock(td);
1056 		td->td_flags |= TDF_ASTPENDING;
1057 		thread_unlock(td);
1058 	}
1059 	error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits);
1060 	return (error);
1061 }
1062 
1063 #ifndef _SYS_SYSPROTO_H_
1064 struct select_args {
1065 	int	nd;
1066 	fd_set	*in, *ou, *ex;
1067 	struct	timeval *tv;
1068 };
1069 #endif
1070 int
1071 sys_select(struct thread *td, struct select_args *uap)
1072 {
1073 	struct timeval tv, *tvp;
1074 	int error;
1075 
1076 	if (uap->tv != NULL) {
1077 		error = copyin(uap->tv, &tv, sizeof(tv));
1078 		if (error)
1079 			return (error);
1080 		tvp = &tv;
1081 	} else
1082 		tvp = NULL;
1083 
1084 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
1085 	    NFDBITS));
1086 }
1087 
1088 /*
1089  * In the unlikely case when user specified n greater then the last
1090  * open file descriptor, check that no bits are set after the last
1091  * valid fd.  We must return EBADF if any is set.
1092  *
1093  * There are applications that rely on the behaviour.
1094  *
1095  * nd is fd_nfiles.
1096  */
1097 static int
1098 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits)
1099 {
1100 	char *addr, *oaddr;
1101 	int b, i, res;
1102 	uint8_t bits;
1103 
1104 	if (nd >= ndu || fd_in == NULL)
1105 		return (0);
1106 
1107 	oaddr = NULL;
1108 	bits = 0; /* silence gcc */
1109 	for (i = nd; i < ndu; i++) {
1110 		b = i / NBBY;
1111 #if BYTE_ORDER == LITTLE_ENDIAN
1112 		addr = (char *)fd_in + b;
1113 #else
1114 		addr = (char *)fd_in;
1115 		if (abi_nfdbits == NFDBITS) {
1116 			addr += rounddown(b, sizeof(fd_mask)) +
1117 			    sizeof(fd_mask) - 1 - b % sizeof(fd_mask);
1118 		} else {
1119 			addr += rounddown(b, sizeof(uint32_t)) +
1120 			    sizeof(uint32_t) - 1 - b % sizeof(uint32_t);
1121 		}
1122 #endif
1123 		if (addr != oaddr) {
1124 			res = fubyte(addr);
1125 			if (res == -1)
1126 				return (EFAULT);
1127 			oaddr = addr;
1128 			bits = res;
1129 		}
1130 		if ((bits & (1 << (i % NBBY))) != 0)
1131 			return (EBADF);
1132 	}
1133 	return (0);
1134 }
1135 
1136 int
1137 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
1138     fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits)
1139 {
1140 	struct filedesc *fdp;
1141 	/*
1142 	 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
1143 	 * infds with the new FD_SETSIZE of 1024, and more than enough for
1144 	 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
1145 	 * of 256.
1146 	 */
1147 	fd_mask s_selbits[howmany(2048, NFDBITS)];
1148 	fd_mask *ibits[3], *obits[3], *selbits, *sbp;
1149 	struct timeval rtv;
1150 	sbintime_t asbt, precision, rsbt;
1151 	u_int nbufbytes, ncpbytes, ncpubytes, nfdbits;
1152 	int error, lf, ndu;
1153 
1154 	if (nd < 0)
1155 		return (EINVAL);
1156 	fdp = td->td_proc->p_fd;
1157 	ndu = nd;
1158 	lf = fdp->fd_nfiles;
1159 	if (nd > lf)
1160 		nd = lf;
1161 
1162 	error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);
1163 	if (error != 0)
1164 		return (error);
1165 	error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits);
1166 	if (error != 0)
1167 		return (error);
1168 	error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits);
1169 	if (error != 0)
1170 		return (error);
1171 
1172 	/*
1173 	 * Allocate just enough bits for the non-null fd_sets.  Use the
1174 	 * preallocated auto buffer if possible.
1175 	 */
1176 	nfdbits = roundup(nd, NFDBITS);
1177 	ncpbytes = nfdbits / NBBY;
1178 	ncpubytes = roundup(nd, abi_nfdbits) / NBBY;
1179 	nbufbytes = 0;
1180 	if (fd_in != NULL)
1181 		nbufbytes += 2 * ncpbytes;
1182 	if (fd_ou != NULL)
1183 		nbufbytes += 2 * ncpbytes;
1184 	if (fd_ex != NULL)
1185 		nbufbytes += 2 * ncpbytes;
1186 	if (nbufbytes <= sizeof s_selbits)
1187 		selbits = &s_selbits[0];
1188 	else
1189 		selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
1190 
1191 	/*
1192 	 * Assign pointers into the bit buffers and fetch the input bits.
1193 	 * Put the output buffers together so that they can be bzeroed
1194 	 * together.
1195 	 */
1196 	sbp = selbits;
1197 #define	getbits(name, x) \
1198 	do {								\
1199 		if (name == NULL) {					\
1200 			ibits[x] = NULL;				\
1201 			obits[x] = NULL;				\
1202 		} else {						\
1203 			ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;	\
1204 			obits[x] = sbp;					\
1205 			sbp += ncpbytes / sizeof *sbp;			\
1206 			error = copyin(name, ibits[x], ncpubytes);	\
1207 			if (error != 0)					\
1208 				goto done;				\
1209 			if (ncpbytes != ncpubytes)			\
1210 				bzero((char *)ibits[x] + ncpubytes,	\
1211 				    ncpbytes - ncpubytes);		\
1212 		}							\
1213 	} while (0)
1214 	getbits(fd_in, 0);
1215 	getbits(fd_ou, 1);
1216 	getbits(fd_ex, 2);
1217 #undef	getbits
1218 
1219 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__)
1220 	/*
1221 	 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS,
1222 	 * we are running under 32-bit emulation. This should be more
1223 	 * generic.
1224 	 */
1225 #define swizzle_fdset(bits)						\
1226 	if (abi_nfdbits != NFDBITS && bits != NULL) {			\
1227 		int i;							\
1228 		for (i = 0; i < ncpbytes / sizeof *sbp; i++)		\
1229 			bits[i] = (bits[i] >> 32) | (bits[i] << 32);	\
1230 	}
1231 #else
1232 #define swizzle_fdset(bits)
1233 #endif
1234 
1235 	/* Make sure the bit order makes it through an ABI transition */
1236 	swizzle_fdset(ibits[0]);
1237 	swizzle_fdset(ibits[1]);
1238 	swizzle_fdset(ibits[2]);
1239 
1240 	if (nbufbytes != 0)
1241 		bzero(selbits, nbufbytes / 2);
1242 
1243 	precision = 0;
1244 	if (tvp != NULL) {
1245 		rtv = *tvp;
1246 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1247 		    rtv.tv_usec >= 1000000) {
1248 			error = EINVAL;
1249 			goto done;
1250 		}
1251 		if (!timevalisset(&rtv))
1252 			asbt = 0;
1253 		else if (rtv.tv_sec <= INT32_MAX) {
1254 			rsbt = tvtosbt(rtv);
1255 			precision = rsbt;
1256 			precision >>= tc_precexp;
1257 			if (TIMESEL(&asbt, rsbt))
1258 				asbt += tc_tick_sbt;
1259 			if (asbt <= SBT_MAX - rsbt)
1260 				asbt += rsbt;
1261 			else
1262 				asbt = -1;
1263 		} else
1264 			asbt = -1;
1265 	} else
1266 		asbt = -1;
1267 	seltdinit(td);
1268 	/* Iterate until the timeout expires or descriptors become ready. */
1269 	for (;;) {
1270 		error = selscan(td, ibits, obits, nd);
1271 		if (error || td->td_retval[0] != 0)
1272 			break;
1273 		error = seltdwait(td, asbt, precision);
1274 		if (error)
1275 			break;
1276 		error = selrescan(td, ibits, obits);
1277 		if (error || td->td_retval[0] != 0)
1278 			break;
1279 	}
1280 	seltdclear(td);
1281 
1282 done:
1283 	/* select is not restarted after signals... */
1284 	if (error == ERESTART)
1285 		error = EINTR;
1286 	if (error == EWOULDBLOCK)
1287 		error = 0;
1288 
1289 	/* swizzle bit order back, if necessary */
1290 	swizzle_fdset(obits[0]);
1291 	swizzle_fdset(obits[1]);
1292 	swizzle_fdset(obits[2]);
1293 #undef swizzle_fdset
1294 
1295 #define	putbits(name, x) \
1296 	if (name && (error2 = copyout(obits[x], name, ncpubytes))) \
1297 		error = error2;
1298 	if (error == 0) {
1299 		int error2;
1300 
1301 		putbits(fd_in, 0);
1302 		putbits(fd_ou, 1);
1303 		putbits(fd_ex, 2);
1304 #undef putbits
1305 	}
1306 	if (selbits != &s_selbits[0])
1307 		free(selbits, M_SELECT);
1308 
1309 	return (error);
1310 }
1311 /*
1312  * Convert a select bit set to poll flags.
1313  *
1314  * The backend always returns POLLHUP/POLLERR if appropriate and we
1315  * return this as a set bit in any set.
1316  */
1317 static const int select_flags[3] = {
1318     POLLRDNORM | POLLHUP | POLLERR,
1319     POLLWRNORM | POLLHUP | POLLERR,
1320     POLLRDBAND | POLLERR
1321 };
1322 
1323 /*
1324  * Compute the fo_poll flags required for a fd given by the index and
1325  * bit position in the fd_mask array.
1326  */
1327 static __inline int
1328 selflags(fd_mask **ibits, int idx, fd_mask bit)
1329 {
1330 	int flags;
1331 	int msk;
1332 
1333 	flags = 0;
1334 	for (msk = 0; msk < 3; msk++) {
1335 		if (ibits[msk] == NULL)
1336 			continue;
1337 		if ((ibits[msk][idx] & bit) == 0)
1338 			continue;
1339 		flags |= select_flags[msk];
1340 	}
1341 	return (flags);
1342 }
1343 
1344 /*
1345  * Set the appropriate output bits given a mask of fired events and the
1346  * input bits originally requested.
1347  */
1348 static __inline int
1349 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events)
1350 {
1351 	int msk;
1352 	int n;
1353 
1354 	n = 0;
1355 	for (msk = 0; msk < 3; msk++) {
1356 		if ((events & select_flags[msk]) == 0)
1357 			continue;
1358 		if (ibits[msk] == NULL)
1359 			continue;
1360 		if ((ibits[msk][idx] & bit) == 0)
1361 			continue;
1362 		/*
1363 		 * XXX Check for a duplicate set.  This can occur because a
1364 		 * socket calls selrecord() twice for each poll() call
1365 		 * resulting in two selfds per real fd.  selrescan() will
1366 		 * call selsetbits twice as a result.
1367 		 */
1368 		if ((obits[msk][idx] & bit) != 0)
1369 			continue;
1370 		obits[msk][idx] |= bit;
1371 		n++;
1372 	}
1373 
1374 	return (n);
1375 }
1376 
1377 /*
1378  * Traverse the list of fds attached to this thread's seltd and check for
1379  * completion.
1380  */
1381 static int
1382 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
1383 {
1384 	struct filedesc *fdp;
1385 	struct selinfo *si;
1386 	struct seltd *stp;
1387 	struct selfd *sfp;
1388 	struct selfd *sfn;
1389 	struct file *fp;
1390 	fd_mask bit;
1391 	int fd, ev, n, idx;
1392 	int error;
1393 	bool only_user;
1394 
1395 	fdp = td->td_proc->p_fd;
1396 	stp = td->td_sel;
1397 	n = 0;
1398 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1399 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1400 		fd = (int)(uintptr_t)sfp->sf_cookie;
1401 		si = sfp->sf_si;
1402 		selfdfree(stp, sfp);
1403 		/* If the selinfo wasn't cleared the event didn't fire. */
1404 		if (si != NULL)
1405 			continue;
1406 		if (only_user)
1407 			error = fget_only_user(fdp, fd, &cap_event_rights, &fp);
1408 		else
1409 			error = fget_unlocked(fdp, fd, &cap_event_rights, &fp);
1410 		if (__predict_false(error != 0))
1411 			return (error);
1412 		idx = fd / NFDBITS;
1413 		bit = (fd_mask)1 << (fd % NFDBITS);
1414 		ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td);
1415 		if (only_user)
1416 			fput_only_user(fdp, fp);
1417 		else
1418 			fdrop(fp, td);
1419 		if (ev != 0)
1420 			n += selsetbits(ibits, obits, idx, bit, ev);
1421 	}
1422 	stp->st_flags = 0;
1423 	td->td_retval[0] = n;
1424 	return (0);
1425 }
1426 
1427 /*
1428  * Perform the initial filedescriptor scan and register ourselves with
1429  * each selinfo.
1430  */
1431 static int
1432 selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd)
1433 {
1434 	struct filedesc *fdp;
1435 	struct file *fp;
1436 	fd_mask bit;
1437 	int ev, flags, end, fd;
1438 	int n, idx;
1439 	int error;
1440 	bool only_user;
1441 
1442 	fdp = td->td_proc->p_fd;
1443 	n = 0;
1444 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1445 	for (idx = 0, fd = 0; fd < nfd; idx++) {
1446 		end = imin(fd + NFDBITS, nfd);
1447 		for (bit = 1; fd < end; bit <<= 1, fd++) {
1448 			/* Compute the list of events we're interested in. */
1449 			flags = selflags(ibits, idx, bit);
1450 			if (flags == 0)
1451 				continue;
1452 			if (only_user)
1453 				error = fget_only_user(fdp, fd, &cap_event_rights, &fp);
1454 			else
1455 				error = fget_unlocked(fdp, fd, &cap_event_rights, &fp);
1456 			if (__predict_false(error != 0))
1457 				return (error);
1458 			selfdalloc(td, (void *)(uintptr_t)fd);
1459 			ev = fo_poll(fp, flags, td->td_ucred, td);
1460 			if (only_user)
1461 				fput_only_user(fdp, fp);
1462 			else
1463 				fdrop(fp, td);
1464 			if (ev != 0)
1465 				n += selsetbits(ibits, obits, idx, bit, ev);
1466 		}
1467 	}
1468 
1469 	td->td_retval[0] = n;
1470 	return (0);
1471 }
1472 
1473 int
1474 sys_poll(struct thread *td, struct poll_args *uap)
1475 {
1476 	struct timespec ts, *tsp;
1477 
1478 	if (uap->timeout != INFTIM) {
1479 		if (uap->timeout < 0)
1480 			return (EINVAL);
1481 		ts.tv_sec = uap->timeout / 1000;
1482 		ts.tv_nsec = (uap->timeout % 1000) * 1000000;
1483 		tsp = &ts;
1484 	} else
1485 		tsp = NULL;
1486 
1487 	return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL));
1488 }
1489 
1490 /*
1491  * kfds points to an array in the kernel.
1492  */
1493 int
1494 kern_poll_kfds(struct thread *td, struct pollfd *kfds, u_int nfds,
1495     struct timespec *tsp, sigset_t *uset)
1496 {
1497 	sbintime_t sbt, precision, tmp;
1498 	time_t over;
1499 	struct timespec ts;
1500 	int error;
1501 
1502 	precision = 0;
1503 	if (tsp != NULL) {
1504 		if (tsp->tv_sec < 0)
1505 			return (EINVAL);
1506 		if (tsp->tv_nsec < 0 || tsp->tv_nsec >= 1000000000)
1507 			return (EINVAL);
1508 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1509 			sbt = 0;
1510 		else {
1511 			ts = *tsp;
1512 			if (ts.tv_sec > INT32_MAX / 2) {
1513 				over = ts.tv_sec - INT32_MAX / 2;
1514 				ts.tv_sec -= over;
1515 			} else
1516 				over = 0;
1517 			tmp = tstosbt(ts);
1518 			precision = tmp;
1519 			precision >>= tc_precexp;
1520 			if (TIMESEL(&sbt, tmp))
1521 				sbt += tc_tick_sbt;
1522 			sbt += tmp;
1523 		}
1524 	} else
1525 		sbt = -1;
1526 
1527 	if (uset != NULL) {
1528 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
1529 		    &td->td_oldsigmask, 0);
1530 		if (error)
1531 			return (error);
1532 		td->td_pflags |= TDP_OLDMASK;
1533 		/*
1534 		 * Make sure that ast() is called on return to
1535 		 * usermode and TDP_OLDMASK is cleared, restoring old
1536 		 * sigmask.
1537 		 */
1538 		thread_lock(td);
1539 		td->td_flags |= TDF_ASTPENDING;
1540 		thread_unlock(td);
1541 	}
1542 
1543 	seltdinit(td);
1544 	/* Iterate until the timeout expires or descriptors become ready. */
1545 	for (;;) {
1546 		error = pollscan(td, kfds, nfds);
1547 		if (error || td->td_retval[0] != 0)
1548 			break;
1549 		error = seltdwait(td, sbt, precision);
1550 		if (error)
1551 			break;
1552 		error = pollrescan(td);
1553 		if (error || td->td_retval[0] != 0)
1554 			break;
1555 	}
1556 	seltdclear(td);
1557 
1558 	/* poll is not restarted after signals... */
1559 	if (error == ERESTART)
1560 		error = EINTR;
1561 	if (error == EWOULDBLOCK)
1562 		error = 0;
1563 	return (error);
1564 }
1565 
1566 int
1567 sys_ppoll(struct thread *td, struct ppoll_args *uap)
1568 {
1569 	struct timespec ts, *tsp;
1570 	sigset_t set, *ssp;
1571 	int error;
1572 
1573 	if (uap->ts != NULL) {
1574 		error = copyin(uap->ts, &ts, sizeof(ts));
1575 		if (error)
1576 			return (error);
1577 		tsp = &ts;
1578 	} else
1579 		tsp = NULL;
1580 	if (uap->set != NULL) {
1581 		error = copyin(uap->set, &set, sizeof(set));
1582 		if (error)
1583 			return (error);
1584 		ssp = &set;
1585 	} else
1586 		ssp = NULL;
1587 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
1588 }
1589 
1590 /*
1591  * ufds points to an array in user space.
1592  */
1593 int
1594 kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds,
1595     struct timespec *tsp, sigset_t *set)
1596 {
1597 	struct pollfd *kfds;
1598 	struct pollfd stackfds[32];
1599 	int error;
1600 
1601 	if (kern_poll_maxfds(nfds))
1602 		return (EINVAL);
1603 	if (nfds > nitems(stackfds))
1604 		kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
1605 	else
1606 		kfds = stackfds;
1607 	error = copyin(ufds, kfds, nfds * sizeof(*kfds));
1608 	if (error != 0)
1609 		goto out;
1610 
1611 	error = kern_poll_kfds(td, kfds, nfds, tsp, set);
1612 	if (error == 0)
1613 		error = pollout(td, kfds, ufds, nfds);
1614 
1615 out:
1616 	if (nfds > nitems(stackfds))
1617 		free(kfds, M_TEMP);
1618 	return (error);
1619 }
1620 
1621 bool
1622 kern_poll_maxfds(u_int nfds)
1623 {
1624 
1625 	/*
1626 	 * This is kinda bogus.  We have fd limits, but that is not
1627 	 * really related to the size of the pollfd array.  Make sure
1628 	 * we let the process use at least FD_SETSIZE entries and at
1629 	 * least enough for the system-wide limits.  We want to be reasonably
1630 	 * safe, but not overly restrictive.
1631 	 */
1632 	return (nfds > maxfilesperproc && nfds > FD_SETSIZE);
1633 }
1634 
1635 static int
1636 pollrescan(struct thread *td)
1637 {
1638 	struct seltd *stp;
1639 	struct selfd *sfp;
1640 	struct selfd *sfn;
1641 	struct selinfo *si;
1642 	struct filedesc *fdp;
1643 	struct file *fp;
1644 	struct pollfd *fd;
1645 	int n, error;
1646 	bool only_user;
1647 
1648 	n = 0;
1649 	fdp = td->td_proc->p_fd;
1650 	stp = td->td_sel;
1651 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1652 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1653 		fd = (struct pollfd *)sfp->sf_cookie;
1654 		si = sfp->sf_si;
1655 		selfdfree(stp, sfp);
1656 		/* If the selinfo wasn't cleared the event didn't fire. */
1657 		if (si != NULL)
1658 			continue;
1659 		if (only_user)
1660 			error = fget_only_user(fdp, fd->fd, &cap_event_rights, &fp);
1661 		else
1662 			error = fget_unlocked(fdp, fd->fd, &cap_event_rights, &fp);
1663 		if (__predict_false(error != 0)) {
1664 			fd->revents = POLLNVAL;
1665 			n++;
1666 			continue;
1667 		}
1668 		/*
1669 		 * Note: backend also returns POLLHUP and
1670 		 * POLLERR if appropriate.
1671 		 */
1672 		fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
1673 		if (only_user)
1674 			fput_only_user(fdp, fp);
1675 		else
1676 			fdrop(fp, td);
1677 		if (fd->revents != 0)
1678 			n++;
1679 	}
1680 	stp->st_flags = 0;
1681 	td->td_retval[0] = n;
1682 	return (0);
1683 }
1684 
1685 static int
1686 pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
1687 {
1688 	int error = 0;
1689 	u_int i = 0;
1690 	u_int n = 0;
1691 
1692 	for (i = 0; i < nfd; i++) {
1693 		error = copyout(&fds->revents, &ufds->revents,
1694 		    sizeof(ufds->revents));
1695 		if (error)
1696 			return (error);
1697 		if (fds->revents != 0)
1698 			n++;
1699 		fds++;
1700 		ufds++;
1701 	}
1702 	td->td_retval[0] = n;
1703 	return (0);
1704 }
1705 
1706 static int
1707 pollscan(struct thread *td, struct pollfd *fds, u_int nfd)
1708 {
1709 	struct filedesc *fdp;
1710 	struct file *fp;
1711 	int i, n, error;
1712 	bool only_user;
1713 
1714 	n = 0;
1715 	fdp = td->td_proc->p_fd;
1716 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1717 	for (i = 0; i < nfd; i++, fds++) {
1718 		if (fds->fd < 0) {
1719 			fds->revents = 0;
1720 			continue;
1721 		}
1722 		if (only_user)
1723 			error = fget_only_user(fdp, fds->fd, &cap_event_rights, &fp);
1724 		else
1725 			error = fget_unlocked(fdp, fds->fd, &cap_event_rights, &fp);
1726 		if (__predict_false(error != 0)) {
1727 			fds->revents = POLLNVAL;
1728 			n++;
1729 			continue;
1730 		}
1731 		/*
1732 		 * Note: backend also returns POLLHUP and
1733 		 * POLLERR if appropriate.
1734 		 */
1735 		selfdalloc(td, fds);
1736 		fds->revents = fo_poll(fp, fds->events,
1737 		    td->td_ucred, td);
1738 		if (only_user)
1739 			fput_only_user(fdp, fp);
1740 		else
1741 			fdrop(fp, td);
1742 		/*
1743 		 * POSIX requires POLLOUT to be never
1744 		 * set simultaneously with POLLHUP.
1745 		 */
1746 		if ((fds->revents & POLLHUP) != 0)
1747 			fds->revents &= ~POLLOUT;
1748 
1749 		if (fds->revents != 0)
1750 			n++;
1751 	}
1752 	td->td_retval[0] = n;
1753 	return (0);
1754 }
1755 
1756 /*
1757  * XXX This was created specifically to support netncp and netsmb.  This
1758  * allows the caller to specify a socket to wait for events on.  It returns
1759  * 0 if any events matched and an error otherwise.  There is no way to
1760  * determine which events fired.
1761  */
1762 int
1763 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
1764 {
1765 	struct timeval rtv;
1766 	sbintime_t asbt, precision, rsbt;
1767 	int error;
1768 
1769 	precision = 0;	/* stupid gcc! */
1770 	if (tvp != NULL) {
1771 		rtv = *tvp;
1772 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1773 		    rtv.tv_usec >= 1000000)
1774 			return (EINVAL);
1775 		if (!timevalisset(&rtv))
1776 			asbt = 0;
1777 		else if (rtv.tv_sec <= INT32_MAX) {
1778 			rsbt = tvtosbt(rtv);
1779 			precision = rsbt;
1780 			precision >>= tc_precexp;
1781 			if (TIMESEL(&asbt, rsbt))
1782 				asbt += tc_tick_sbt;
1783 			if (asbt <= SBT_MAX - rsbt)
1784 				asbt += rsbt;
1785 			else
1786 				asbt = -1;
1787 		} else
1788 			asbt = -1;
1789 	} else
1790 		asbt = -1;
1791 	seltdinit(td);
1792 	/*
1793 	 * Iterate until the timeout expires or the socket becomes ready.
1794 	 */
1795 	for (;;) {
1796 		selfdalloc(td, NULL);
1797 		if (sopoll(so, events, NULL, td) != 0) {
1798 			error = 0;
1799 			break;
1800 		}
1801 		error = seltdwait(td, asbt, precision);
1802 		if (error)
1803 			break;
1804 	}
1805 	seltdclear(td);
1806 	/* XXX Duplicates ncp/smb behavior. */
1807 	if (error == ERESTART)
1808 		error = 0;
1809 	return (error);
1810 }
1811 
1812 /*
1813  * Preallocate two selfds associated with 'cookie'.  Some fo_poll routines
1814  * have two select sets, one for read and another for write.
1815  */
1816 static void
1817 selfdalloc(struct thread *td, void *cookie)
1818 {
1819 	struct seltd *stp;
1820 
1821 	stp = td->td_sel;
1822 	if (stp->st_free1 == NULL)
1823 		stp->st_free1 = malloc(sizeof(*stp->st_free1), M_SELFD, M_WAITOK|M_ZERO);
1824 	stp->st_free1->sf_td = stp;
1825 	stp->st_free1->sf_cookie = cookie;
1826 	if (stp->st_free2 == NULL)
1827 		stp->st_free2 = malloc(sizeof(*stp->st_free2), M_SELFD, M_WAITOK|M_ZERO);
1828 	stp->st_free2->sf_td = stp;
1829 	stp->st_free2->sf_cookie = cookie;
1830 }
1831 
1832 static void
1833 selfdfree(struct seltd *stp, struct selfd *sfp)
1834 {
1835 	STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
1836 	/*
1837 	 * Paired with doselwakeup.
1838 	 */
1839 	if (atomic_load_acq_ptr((uintptr_t *)&sfp->sf_si) != (uintptr_t)NULL) {
1840 		mtx_lock(sfp->sf_mtx);
1841 		if (sfp->sf_si != NULL) {
1842 			TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
1843 		}
1844 		mtx_unlock(sfp->sf_mtx);
1845 	}
1846 	free(sfp, M_SELFD);
1847 }
1848 
1849 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */
1850 void
1851 seldrain(struct selinfo *sip)
1852 {
1853 
1854 	/*
1855 	 * This feature is already provided by doselwakeup(), thus it is
1856 	 * enough to go for it.
1857 	 * Eventually, the context, should take care to avoid races
1858 	 * between thread calling select()/poll() and file descriptor
1859 	 * detaching, but, again, the races are just the same as
1860 	 * selwakeup().
1861 	 */
1862         doselwakeup(sip, -1);
1863 }
1864 
1865 /*
1866  * Record a select request.
1867  */
1868 void
1869 selrecord(struct thread *selector, struct selinfo *sip)
1870 {
1871 	struct selfd *sfp;
1872 	struct seltd *stp;
1873 	struct mtx *mtxp;
1874 
1875 	stp = selector->td_sel;
1876 	/*
1877 	 * Don't record when doing a rescan.
1878 	 */
1879 	if (stp->st_flags & SELTD_RESCAN)
1880 		return;
1881 	/*
1882 	 * Grab one of the preallocated descriptors.
1883 	 */
1884 	sfp = NULL;
1885 	if ((sfp = stp->st_free1) != NULL)
1886 		stp->st_free1 = NULL;
1887 	else if ((sfp = stp->st_free2) != NULL)
1888 		stp->st_free2 = NULL;
1889 	else
1890 		panic("selrecord: No free selfd on selq");
1891 	mtxp = sip->si_mtx;
1892 	if (mtxp == NULL)
1893 		mtxp = mtx_pool_find(mtxpool_select, sip);
1894 	/*
1895 	 * Initialize the sfp and queue it in the thread.
1896 	 */
1897 	sfp->sf_si = sip;
1898 	sfp->sf_mtx = mtxp;
1899 	STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
1900 	/*
1901 	 * Now that we've locked the sip, check for initialization.
1902 	 */
1903 	mtx_lock(mtxp);
1904 	if (sip->si_mtx == NULL) {
1905 		sip->si_mtx = mtxp;
1906 		TAILQ_INIT(&sip->si_tdlist);
1907 	}
1908 	/*
1909 	 * Add this thread to the list of selfds listening on this selinfo.
1910 	 */
1911 	TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
1912 	mtx_unlock(sip->si_mtx);
1913 }
1914 
1915 /* Wake up a selecting thread. */
1916 void
1917 selwakeup(struct selinfo *sip)
1918 {
1919 	doselwakeup(sip, -1);
1920 }
1921 
1922 /* Wake up a selecting thread, and set its priority. */
1923 void
1924 selwakeuppri(struct selinfo *sip, int pri)
1925 {
1926 	doselwakeup(sip, pri);
1927 }
1928 
1929 /*
1930  * Do a wakeup when a selectable event occurs.
1931  */
1932 static void
1933 doselwakeup(struct selinfo *sip, int pri)
1934 {
1935 	struct selfd *sfp;
1936 	struct selfd *sfn;
1937 	struct seltd *stp;
1938 
1939 	/* If it's not initialized there can't be any waiters. */
1940 	if (sip->si_mtx == NULL)
1941 		return;
1942 	/*
1943 	 * Locking the selinfo locks all selfds associated with it.
1944 	 */
1945 	mtx_lock(sip->si_mtx);
1946 	TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
1947 		/*
1948 		 * Once we remove this sfp from the list and clear the
1949 		 * sf_si seltdclear will know to ignore this si.
1950 		 */
1951 		TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
1952 		stp = sfp->sf_td;
1953 		mtx_lock(&stp->st_mtx);
1954 		stp->st_flags |= SELTD_PENDING;
1955 		cv_broadcastpri(&stp->st_wait, pri);
1956 		mtx_unlock(&stp->st_mtx);
1957 		/*
1958 		 * Paired with selfdfree.
1959 		 *
1960 		 * Storing this only after the wakeup provides an invariant that
1961 		 * stp is not used after selfdfree returns.
1962 		 */
1963 		atomic_store_rel_ptr((uintptr_t *)&sfp->sf_si, (uintptr_t)NULL);
1964 	}
1965 	mtx_unlock(sip->si_mtx);
1966 }
1967 
1968 static void
1969 seltdinit(struct thread *td)
1970 {
1971 	struct seltd *stp;
1972 
1973 	stp = td->td_sel;
1974 	if (stp != NULL) {
1975 		MPASS(stp->st_flags == 0);
1976 		MPASS(STAILQ_EMPTY(&stp->st_selq));
1977 		return;
1978 	}
1979 	stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
1980 	mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
1981 	cv_init(&stp->st_wait, "select");
1982 	stp->st_flags = 0;
1983 	STAILQ_INIT(&stp->st_selq);
1984 	td->td_sel = stp;
1985 }
1986 
1987 static int
1988 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision)
1989 {
1990 	struct seltd *stp;
1991 	int error;
1992 
1993 	stp = td->td_sel;
1994 	/*
1995 	 * An event of interest may occur while we do not hold the seltd
1996 	 * locked so check the pending flag before we sleep.
1997 	 */
1998 	mtx_lock(&stp->st_mtx);
1999 	/*
2000 	 * Any further calls to selrecord will be a rescan.
2001 	 */
2002 	stp->st_flags |= SELTD_RESCAN;
2003 	if (stp->st_flags & SELTD_PENDING) {
2004 		mtx_unlock(&stp->st_mtx);
2005 		return (0);
2006 	}
2007 	if (sbt == 0)
2008 		error = EWOULDBLOCK;
2009 	else if (sbt != -1)
2010 		error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx,
2011 		    sbt, precision, C_ABSOLUTE);
2012 	else
2013 		error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
2014 	mtx_unlock(&stp->st_mtx);
2015 
2016 	return (error);
2017 }
2018 
2019 void
2020 seltdfini(struct thread *td)
2021 {
2022 	struct seltd *stp;
2023 
2024 	stp = td->td_sel;
2025 	if (stp == NULL)
2026 		return;
2027 	MPASS(stp->st_flags == 0);
2028 	MPASS(STAILQ_EMPTY(&stp->st_selq));
2029 	if (stp->st_free1)
2030 		free(stp->st_free1, M_SELFD);
2031 	if (stp->st_free2)
2032 		free(stp->st_free2, M_SELFD);
2033 	td->td_sel = NULL;
2034 	cv_destroy(&stp->st_wait);
2035 	mtx_destroy(&stp->st_mtx);
2036 	free(stp, M_SELECT);
2037 }
2038 
2039 /*
2040  * Remove the references to the thread from all of the objects we were
2041  * polling.
2042  */
2043 static void
2044 seltdclear(struct thread *td)
2045 {
2046 	struct seltd *stp;
2047 	struct selfd *sfp;
2048 	struct selfd *sfn;
2049 
2050 	stp = td->td_sel;
2051 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
2052 		selfdfree(stp, sfp);
2053 	stp->st_flags = 0;
2054 }
2055 
2056 static void selectinit(void *);
2057 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
2058 static void
2059 selectinit(void *dummy __unused)
2060 {
2061 
2062 	mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF);
2063 }
2064 
2065 /*
2066  * Set up a syscall return value that follows the convention specified for
2067  * posix_* functions.
2068  */
2069 int
2070 kern_posix_error(struct thread *td, int error)
2071 {
2072 
2073 	if (error <= 0)
2074 		return (error);
2075 	td->td_errno = error;
2076 	td->td_pflags |= TDP_NERRNO;
2077 	td->td_retval[0] = error;
2078 	return (0);
2079 }
2080