1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)sys_generic.c 8.5 (Berkeley) 1/21/94 37 */ 38 39 #include <sys/cdefs.h> 40 #include "opt_capsicum.h" 41 #include "opt_ktrace.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/sysproto.h> 46 #include <sys/capsicum.h> 47 #include <sys/filedesc.h> 48 #include <sys/filio.h> 49 #include <sys/fcntl.h> 50 #include <sys/file.h> 51 #include <sys/lock.h> 52 #include <sys/proc.h> 53 #include <sys/signalvar.h> 54 #include <sys/socketvar.h> 55 #include <sys/uio.h> 56 #include <sys/eventfd.h> 57 #include <sys/kernel.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/malloc.h> 61 #include <sys/poll.h> 62 #include <sys/resourcevar.h> 63 #include <sys/selinfo.h> 64 #include <sys/sleepqueue.h> 65 #include <sys/specialfd.h> 66 #include <sys/syscallsubr.h> 67 #include <sys/sysctl.h> 68 #include <sys/sysent.h> 69 #include <sys/vnode.h> 70 #include <sys/bio.h> 71 #include <sys/buf.h> 72 #include <sys/condvar.h> 73 #ifdef KTRACE 74 #include <sys/ktrace.h> 75 #endif 76 77 #include <security/audit/audit.h> 78 79 /* 80 * The following macro defines how many bytes will be allocated from 81 * the stack instead of memory allocated when passing the IOCTL data 82 * structures from userspace and to the kernel. Some IOCTLs having 83 * small data structures are used very frequently and this small 84 * buffer on the stack gives a significant speedup improvement for 85 * those requests. The value of this define should be greater or equal 86 * to 64 bytes and should also be power of two. The data structure is 87 * currently hard-aligned to a 8-byte boundary on the stack. This 88 * should currently be sufficient for all supported platforms. 89 */ 90 #define SYS_IOCTL_SMALL_SIZE 128 /* bytes */ 91 #define SYS_IOCTL_SMALL_ALIGN 8 /* bytes */ 92 93 #ifdef __LP64__ 94 static int iosize_max_clamp = 0; 95 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW, 96 &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX"); 97 static int devfs_iosize_max_clamp = 1; 98 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW, 99 &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices"); 100 #endif 101 102 /* 103 * Assert that the return value of read(2) and write(2) syscalls fits 104 * into a register. If not, an architecture will need to provide the 105 * usermode wrappers to reconstruct the result. 106 */ 107 CTASSERT(sizeof(register_t) >= sizeof(size_t)); 108 109 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer"); 110 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer"); 111 MALLOC_DEFINE(M_IOV, "iov", "large iov's"); 112 113 static int pollout(struct thread *, struct pollfd *, struct pollfd *, 114 u_int); 115 static int pollscan(struct thread *, struct pollfd *, u_int); 116 static int pollrescan(struct thread *); 117 static int selscan(struct thread *, fd_mask **, fd_mask **, int); 118 static int selrescan(struct thread *, fd_mask **, fd_mask **); 119 static void selfdalloc(struct thread *, void *); 120 static void selfdfree(struct seltd *, struct selfd *); 121 static int dofileread(struct thread *, int, struct file *, struct uio *, 122 off_t, int); 123 static int dofilewrite(struct thread *, int, struct file *, struct uio *, 124 off_t, int); 125 static void doselwakeup(struct selinfo *, int); 126 static void seltdinit(struct thread *); 127 static int seltdwait(struct thread *, sbintime_t, sbintime_t); 128 static void seltdclear(struct thread *); 129 130 /* 131 * One seltd per-thread allocated on demand as needed. 132 * 133 * t - protected by st_mtx 134 * k - Only accessed by curthread or read-only 135 */ 136 struct seltd { 137 STAILQ_HEAD(, selfd) st_selq; /* (k) List of selfds. */ 138 struct selfd *st_free1; /* (k) free fd for read set. */ 139 struct selfd *st_free2; /* (k) free fd for write set. */ 140 struct mtx st_mtx; /* Protects struct seltd */ 141 struct cv st_wait; /* (t) Wait channel. */ 142 int st_flags; /* (t) SELTD_ flags. */ 143 }; 144 145 #define SELTD_PENDING 0x0001 /* We have pending events. */ 146 #define SELTD_RESCAN 0x0002 /* Doing a rescan. */ 147 148 /* 149 * One selfd allocated per-thread per-file-descriptor. 150 * f - protected by sf_mtx 151 */ 152 struct selfd { 153 STAILQ_ENTRY(selfd) sf_link; /* (k) fds owned by this td. */ 154 TAILQ_ENTRY(selfd) sf_threads; /* (f) fds on this selinfo. */ 155 struct selinfo *sf_si; /* (f) selinfo when linked. */ 156 struct mtx *sf_mtx; /* Pointer to selinfo mtx. */ 157 struct seltd *sf_td; /* (k) owning seltd. */ 158 void *sf_cookie; /* (k) fd or pollfd. */ 159 }; 160 161 MALLOC_DEFINE(M_SELFD, "selfd", "selfd"); 162 static struct mtx_pool *mtxpool_select; 163 164 #ifdef __LP64__ 165 size_t 166 devfs_iosize_max(void) 167 { 168 169 return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ? 170 INT_MAX : SSIZE_MAX); 171 } 172 173 size_t 174 iosize_max(void) 175 { 176 177 return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ? 178 INT_MAX : SSIZE_MAX); 179 } 180 #endif 181 182 #ifndef _SYS_SYSPROTO_H_ 183 struct read_args { 184 int fd; 185 void *buf; 186 size_t nbyte; 187 }; 188 #endif 189 int 190 sys_read(struct thread *td, struct read_args *uap) 191 { 192 struct uio auio; 193 struct iovec aiov; 194 int error; 195 196 if (uap->nbyte > IOSIZE_MAX) 197 return (EINVAL); 198 aiov.iov_base = uap->buf; 199 aiov.iov_len = uap->nbyte; 200 auio.uio_iov = &aiov; 201 auio.uio_iovcnt = 1; 202 auio.uio_resid = uap->nbyte; 203 auio.uio_segflg = UIO_USERSPACE; 204 error = kern_readv(td, uap->fd, &auio); 205 return (error); 206 } 207 208 /* 209 * Positioned read system call 210 */ 211 #ifndef _SYS_SYSPROTO_H_ 212 struct pread_args { 213 int fd; 214 void *buf; 215 size_t nbyte; 216 int pad; 217 off_t offset; 218 }; 219 #endif 220 int 221 sys_pread(struct thread *td, struct pread_args *uap) 222 { 223 224 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); 225 } 226 227 int 228 kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset) 229 { 230 struct uio auio; 231 struct iovec aiov; 232 int error; 233 234 if (nbyte > IOSIZE_MAX) 235 return (EINVAL); 236 aiov.iov_base = buf; 237 aiov.iov_len = nbyte; 238 auio.uio_iov = &aiov; 239 auio.uio_iovcnt = 1; 240 auio.uio_resid = nbyte; 241 auio.uio_segflg = UIO_USERSPACE; 242 error = kern_preadv(td, fd, &auio, offset); 243 return (error); 244 } 245 246 #if defined(COMPAT_FREEBSD6) 247 int 248 freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap) 249 { 250 251 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); 252 } 253 #endif 254 255 /* 256 * Scatter read system call. 257 */ 258 #ifndef _SYS_SYSPROTO_H_ 259 struct readv_args { 260 int fd; 261 struct iovec *iovp; 262 u_int iovcnt; 263 }; 264 #endif 265 int 266 sys_readv(struct thread *td, struct readv_args *uap) 267 { 268 struct uio *auio; 269 int error; 270 271 error = copyinuio(uap->iovp, uap->iovcnt, &auio); 272 if (error) 273 return (error); 274 error = kern_readv(td, uap->fd, auio); 275 free(auio, M_IOV); 276 return (error); 277 } 278 279 int 280 kern_readv(struct thread *td, int fd, struct uio *auio) 281 { 282 struct file *fp; 283 int error; 284 285 error = fget_read(td, fd, &cap_read_rights, &fp); 286 if (error) 287 return (error); 288 error = dofileread(td, fd, fp, auio, (off_t)-1, 0); 289 fdrop(fp, td); 290 return (error); 291 } 292 293 /* 294 * Scatter positioned read system call. 295 */ 296 #ifndef _SYS_SYSPROTO_H_ 297 struct preadv_args { 298 int fd; 299 struct iovec *iovp; 300 u_int iovcnt; 301 off_t offset; 302 }; 303 #endif 304 int 305 sys_preadv(struct thread *td, struct preadv_args *uap) 306 { 307 struct uio *auio; 308 int error; 309 310 error = copyinuio(uap->iovp, uap->iovcnt, &auio); 311 if (error) 312 return (error); 313 error = kern_preadv(td, uap->fd, auio, uap->offset); 314 free(auio, M_IOV); 315 return (error); 316 } 317 318 int 319 kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset) 320 { 321 struct file *fp; 322 int error; 323 324 error = fget_read(td, fd, &cap_pread_rights, &fp); 325 if (error) 326 return (error); 327 if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE)) 328 error = ESPIPE; 329 else if (offset < 0 && 330 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) 331 error = EINVAL; 332 else 333 error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET); 334 fdrop(fp, td); 335 return (error); 336 } 337 338 /* 339 * Common code for readv and preadv that reads data in 340 * from a file using the passed in uio, offset, and flags. 341 */ 342 static int 343 dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio, 344 off_t offset, int flags) 345 { 346 ssize_t cnt; 347 int error; 348 #ifdef KTRACE 349 struct uio *ktruio = NULL; 350 #endif 351 352 AUDIT_ARG_FD(fd); 353 354 /* Finish zero length reads right here */ 355 if (auio->uio_resid == 0) { 356 td->td_retval[0] = 0; 357 return (0); 358 } 359 auio->uio_rw = UIO_READ; 360 auio->uio_offset = offset; 361 auio->uio_td = td; 362 #ifdef KTRACE 363 if (KTRPOINT(td, KTR_GENIO)) 364 ktruio = cloneuio(auio); 365 #endif 366 cnt = auio->uio_resid; 367 if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) { 368 if (auio->uio_resid != cnt && (error == ERESTART || 369 error == EINTR || error == EWOULDBLOCK)) 370 error = 0; 371 } 372 cnt -= auio->uio_resid; 373 #ifdef KTRACE 374 if (ktruio != NULL) { 375 ktruio->uio_resid = cnt; 376 ktrgenio(fd, UIO_READ, ktruio, error); 377 } 378 #endif 379 td->td_retval[0] = cnt; 380 return (error); 381 } 382 383 #ifndef _SYS_SYSPROTO_H_ 384 struct write_args { 385 int fd; 386 const void *buf; 387 size_t nbyte; 388 }; 389 #endif 390 int 391 sys_write(struct thread *td, struct write_args *uap) 392 { 393 struct uio auio; 394 struct iovec aiov; 395 int error; 396 397 if (uap->nbyte > IOSIZE_MAX) 398 return (EINVAL); 399 aiov.iov_base = (void *)(uintptr_t)uap->buf; 400 aiov.iov_len = uap->nbyte; 401 auio.uio_iov = &aiov; 402 auio.uio_iovcnt = 1; 403 auio.uio_resid = uap->nbyte; 404 auio.uio_segflg = UIO_USERSPACE; 405 error = kern_writev(td, uap->fd, &auio); 406 return (error); 407 } 408 409 /* 410 * Positioned write system call. 411 */ 412 #ifndef _SYS_SYSPROTO_H_ 413 struct pwrite_args { 414 int fd; 415 const void *buf; 416 size_t nbyte; 417 int pad; 418 off_t offset; 419 }; 420 #endif 421 int 422 sys_pwrite(struct thread *td, struct pwrite_args *uap) 423 { 424 425 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); 426 } 427 428 int 429 kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte, 430 off_t offset) 431 { 432 struct uio auio; 433 struct iovec aiov; 434 int error; 435 436 if (nbyte > IOSIZE_MAX) 437 return (EINVAL); 438 aiov.iov_base = (void *)(uintptr_t)buf; 439 aiov.iov_len = nbyte; 440 auio.uio_iov = &aiov; 441 auio.uio_iovcnt = 1; 442 auio.uio_resid = nbyte; 443 auio.uio_segflg = UIO_USERSPACE; 444 error = kern_pwritev(td, fd, &auio, offset); 445 return (error); 446 } 447 448 #if defined(COMPAT_FREEBSD6) 449 int 450 freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap) 451 { 452 453 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); 454 } 455 #endif 456 457 /* 458 * Gather write system call. 459 */ 460 #ifndef _SYS_SYSPROTO_H_ 461 struct writev_args { 462 int fd; 463 struct iovec *iovp; 464 u_int iovcnt; 465 }; 466 #endif 467 int 468 sys_writev(struct thread *td, struct writev_args *uap) 469 { 470 struct uio *auio; 471 int error; 472 473 error = copyinuio(uap->iovp, uap->iovcnt, &auio); 474 if (error) 475 return (error); 476 error = kern_writev(td, uap->fd, auio); 477 free(auio, M_IOV); 478 return (error); 479 } 480 481 int 482 kern_writev(struct thread *td, int fd, struct uio *auio) 483 { 484 struct file *fp; 485 int error; 486 487 error = fget_write(td, fd, &cap_write_rights, &fp); 488 if (error) 489 return (error); 490 error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0); 491 fdrop(fp, td); 492 return (error); 493 } 494 495 /* 496 * Gather positioned write system call. 497 */ 498 #ifndef _SYS_SYSPROTO_H_ 499 struct pwritev_args { 500 int fd; 501 struct iovec *iovp; 502 u_int iovcnt; 503 off_t offset; 504 }; 505 #endif 506 int 507 sys_pwritev(struct thread *td, struct pwritev_args *uap) 508 { 509 struct uio *auio; 510 int error; 511 512 error = copyinuio(uap->iovp, uap->iovcnt, &auio); 513 if (error) 514 return (error); 515 error = kern_pwritev(td, uap->fd, auio, uap->offset); 516 free(auio, M_IOV); 517 return (error); 518 } 519 520 int 521 kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset) 522 { 523 struct file *fp; 524 int error; 525 526 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 527 if (error) 528 return (error); 529 if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE)) 530 error = ESPIPE; 531 else if (offset < 0 && 532 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) 533 error = EINVAL; 534 else 535 error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET); 536 fdrop(fp, td); 537 return (error); 538 } 539 540 /* 541 * Common code for writev and pwritev that writes data to 542 * a file using the passed in uio, offset, and flags. 543 */ 544 static int 545 dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio, 546 off_t offset, int flags) 547 { 548 ssize_t cnt; 549 int error; 550 #ifdef KTRACE 551 struct uio *ktruio = NULL; 552 #endif 553 554 AUDIT_ARG_FD(fd); 555 auio->uio_rw = UIO_WRITE; 556 auio->uio_td = td; 557 auio->uio_offset = offset; 558 #ifdef KTRACE 559 if (KTRPOINT(td, KTR_GENIO)) 560 ktruio = cloneuio(auio); 561 #endif 562 cnt = auio->uio_resid; 563 error = fo_write(fp, auio, td->td_ucred, flags, td); 564 /* 565 * Socket layer is responsible for special error handling, 566 * see sousrsend(). 567 */ 568 if (error != 0 && fp->f_type != DTYPE_SOCKET) { 569 if (auio->uio_resid != cnt && (error == ERESTART || 570 error == EINTR || error == EWOULDBLOCK)) 571 error = 0; 572 if (error == EPIPE) { 573 PROC_LOCK(td->td_proc); 574 tdsignal(td, SIGPIPE); 575 PROC_UNLOCK(td->td_proc); 576 } 577 } 578 cnt -= auio->uio_resid; 579 #ifdef KTRACE 580 if (ktruio != NULL) { 581 ktruio->uio_resid = cnt; 582 ktrgenio(fd, UIO_WRITE, ktruio, error); 583 } 584 #endif 585 td->td_retval[0] = cnt; 586 return (error); 587 } 588 589 /* 590 * Truncate a file given a file descriptor. 591 * 592 * Can't use fget_write() here, since must return EINVAL and not EBADF if the 593 * descriptor isn't writable. 594 */ 595 int 596 kern_ftruncate(struct thread *td, int fd, off_t length) 597 { 598 struct file *fp; 599 int error; 600 601 AUDIT_ARG_FD(fd); 602 if (length < 0) 603 return (EINVAL); 604 error = fget(td, fd, &cap_ftruncate_rights, &fp); 605 if (error) 606 return (error); 607 AUDIT_ARG_FILE(td->td_proc, fp); 608 if (!(fp->f_flag & FWRITE)) { 609 fdrop(fp, td); 610 return (EINVAL); 611 } 612 error = fo_truncate(fp, length, td->td_ucred, td); 613 fdrop(fp, td); 614 return (error); 615 } 616 617 #ifndef _SYS_SYSPROTO_H_ 618 struct ftruncate_args { 619 int fd; 620 int pad; 621 off_t length; 622 }; 623 #endif 624 int 625 sys_ftruncate(struct thread *td, struct ftruncate_args *uap) 626 { 627 628 return (kern_ftruncate(td, uap->fd, uap->length)); 629 } 630 631 #if defined(COMPAT_43) 632 #ifndef _SYS_SYSPROTO_H_ 633 struct oftruncate_args { 634 int fd; 635 long length; 636 }; 637 #endif 638 int 639 oftruncate(struct thread *td, struct oftruncate_args *uap) 640 { 641 642 return (kern_ftruncate(td, uap->fd, uap->length)); 643 } 644 #endif /* COMPAT_43 */ 645 646 #ifndef _SYS_SYSPROTO_H_ 647 struct ioctl_args { 648 int fd; 649 u_long com; 650 caddr_t data; 651 }; 652 #endif 653 /* ARGSUSED */ 654 int 655 sys_ioctl(struct thread *td, struct ioctl_args *uap) 656 { 657 u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN); 658 uint32_t com; 659 int arg, error; 660 u_int size; 661 caddr_t data; 662 663 #ifdef INVARIANTS 664 if (uap->com > 0xffffffff) { 665 printf( 666 "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n", 667 td->td_proc->p_pid, td->td_name, uap->com); 668 } 669 #endif 670 com = (uint32_t)uap->com; 671 672 /* 673 * Interpret high order word to find amount of data to be 674 * copied to/from the user's address space. 675 */ 676 size = IOCPARM_LEN(com); 677 if ((size > IOCPARM_MAX) || 678 ((com & (IOC_VOID | IOC_IN | IOC_OUT)) == 0) || 679 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43) 680 ((com & IOC_OUT) && size == 0) || 681 #else 682 ((com & (IOC_IN | IOC_OUT)) && size == 0) || 683 #endif 684 ((com & IOC_VOID) && size > 0 && size != sizeof(int))) 685 return (ENOTTY); 686 687 if (size > 0) { 688 if (com & IOC_VOID) { 689 /* Integer argument. */ 690 arg = (intptr_t)uap->data; 691 data = (void *)&arg; 692 size = 0; 693 } else { 694 if (size > SYS_IOCTL_SMALL_SIZE) 695 data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK); 696 else 697 data = smalldata; 698 } 699 } else 700 data = (void *)&uap->data; 701 if (com & IOC_IN) { 702 error = copyin(uap->data, data, (u_int)size); 703 if (error != 0) 704 goto out; 705 } else if (com & IOC_OUT) { 706 /* 707 * Zero the buffer so the user always 708 * gets back something deterministic. 709 */ 710 bzero(data, size); 711 } 712 713 error = kern_ioctl(td, uap->fd, com, data); 714 715 if (error == 0 && (com & IOC_OUT)) 716 error = copyout(data, uap->data, (u_int)size); 717 718 out: 719 if (size > SYS_IOCTL_SMALL_SIZE) 720 free(data, M_IOCTLOPS); 721 return (error); 722 } 723 724 int 725 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data) 726 { 727 struct file *fp; 728 struct filedesc *fdp; 729 int error, tmp, locked; 730 731 AUDIT_ARG_FD(fd); 732 AUDIT_ARG_CMD(com); 733 734 fdp = td->td_proc->p_fd; 735 736 switch (com) { 737 case FIONCLEX: 738 case FIOCLEX: 739 FILEDESC_XLOCK(fdp); 740 locked = LA_XLOCKED; 741 break; 742 default: 743 #ifdef CAPABILITIES 744 FILEDESC_SLOCK(fdp); 745 locked = LA_SLOCKED; 746 #else 747 locked = LA_UNLOCKED; 748 #endif 749 break; 750 } 751 752 #ifdef CAPABILITIES 753 if ((fp = fget_noref(fdp, fd)) == NULL) { 754 error = EBADF; 755 goto out; 756 } 757 if ((error = cap_ioctl_check(fdp, fd, com)) != 0) { 758 fp = NULL; /* fhold() was not called yet */ 759 goto out; 760 } 761 if (!fhold(fp)) { 762 error = EBADF; 763 fp = NULL; 764 goto out; 765 } 766 if (locked == LA_SLOCKED) { 767 FILEDESC_SUNLOCK(fdp); 768 locked = LA_UNLOCKED; 769 } 770 #else 771 error = fget(td, fd, &cap_ioctl_rights, &fp); 772 if (error != 0) { 773 fp = NULL; 774 goto out; 775 } 776 #endif 777 if ((fp->f_flag & (FREAD | FWRITE)) == 0) { 778 error = EBADF; 779 goto out; 780 } 781 782 switch (com) { 783 case FIONCLEX: 784 fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE; 785 goto out; 786 case FIOCLEX: 787 fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE; 788 goto out; 789 case FIONBIO: 790 if ((tmp = *(int *)data)) 791 atomic_set_int(&fp->f_flag, FNONBLOCK); 792 else 793 atomic_clear_int(&fp->f_flag, FNONBLOCK); 794 data = (void *)&tmp; 795 break; 796 case FIOASYNC: 797 if ((tmp = *(int *)data)) 798 atomic_set_int(&fp->f_flag, FASYNC); 799 else 800 atomic_clear_int(&fp->f_flag, FASYNC); 801 data = (void *)&tmp; 802 break; 803 } 804 805 error = fo_ioctl(fp, com, data, td->td_ucred, td); 806 out: 807 switch (locked) { 808 case LA_XLOCKED: 809 FILEDESC_XUNLOCK(fdp); 810 break; 811 #ifdef CAPABILITIES 812 case LA_SLOCKED: 813 FILEDESC_SUNLOCK(fdp); 814 break; 815 #endif 816 default: 817 FILEDESC_UNLOCK_ASSERT(fdp); 818 break; 819 } 820 if (fp != NULL) 821 fdrop(fp, td); 822 return (error); 823 } 824 825 int 826 sys_posix_fallocate(struct thread *td, struct posix_fallocate_args *uap) 827 { 828 int error; 829 830 error = kern_posix_fallocate(td, uap->fd, uap->offset, uap->len); 831 return (kern_posix_error(td, error)); 832 } 833 834 int 835 kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len) 836 { 837 struct file *fp; 838 int error; 839 840 AUDIT_ARG_FD(fd); 841 if (offset < 0 || len <= 0) 842 return (EINVAL); 843 /* Check for wrap. */ 844 if (offset > OFF_MAX - len) 845 return (EFBIG); 846 AUDIT_ARG_FD(fd); 847 error = fget(td, fd, &cap_pwrite_rights, &fp); 848 if (error != 0) 849 return (error); 850 AUDIT_ARG_FILE(td->td_proc, fp); 851 if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) { 852 error = ESPIPE; 853 goto out; 854 } 855 if ((fp->f_flag & FWRITE) == 0) { 856 error = EBADF; 857 goto out; 858 } 859 860 error = fo_fallocate(fp, offset, len, td); 861 out: 862 fdrop(fp, td); 863 return (error); 864 } 865 866 int 867 sys_fspacectl(struct thread *td, struct fspacectl_args *uap) 868 { 869 struct spacectl_range rqsr, rmsr; 870 int error, cerror; 871 872 error = copyin(uap->rqsr, &rqsr, sizeof(rqsr)); 873 if (error != 0) 874 return (error); 875 876 error = kern_fspacectl(td, uap->fd, uap->cmd, &rqsr, uap->flags, 877 &rmsr); 878 if (uap->rmsr != NULL) { 879 cerror = copyout(&rmsr, uap->rmsr, sizeof(rmsr)); 880 if (error == 0) 881 error = cerror; 882 } 883 return (error); 884 } 885 886 int 887 kern_fspacectl(struct thread *td, int fd, int cmd, 888 const struct spacectl_range *rqsr, int flags, struct spacectl_range *rmsrp) 889 { 890 struct file *fp; 891 struct spacectl_range rmsr; 892 int error; 893 894 AUDIT_ARG_FD(fd); 895 AUDIT_ARG_CMD(cmd); 896 AUDIT_ARG_FFLAGS(flags); 897 898 if (rqsr == NULL) 899 return (EINVAL); 900 rmsr = *rqsr; 901 if (rmsrp != NULL) 902 *rmsrp = rmsr; 903 904 if (cmd != SPACECTL_DEALLOC || 905 rqsr->r_offset < 0 || rqsr->r_len <= 0 || 906 rqsr->r_offset > OFF_MAX - rqsr->r_len || 907 (flags & ~SPACECTL_F_SUPPORTED) != 0) 908 return (EINVAL); 909 910 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 911 if (error != 0) 912 return (error); 913 AUDIT_ARG_FILE(td->td_proc, fp); 914 if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) { 915 error = ESPIPE; 916 goto out; 917 } 918 if ((fp->f_flag & FWRITE) == 0) { 919 error = EBADF; 920 goto out; 921 } 922 923 error = fo_fspacectl(fp, cmd, &rmsr.r_offset, &rmsr.r_len, flags, 924 td->td_ucred, td); 925 /* fspacectl is not restarted after signals if the file is modified. */ 926 if (rmsr.r_len != rqsr->r_len && (error == ERESTART || 927 error == EINTR || error == EWOULDBLOCK)) 928 error = 0; 929 if (rmsrp != NULL) 930 *rmsrp = rmsr; 931 out: 932 fdrop(fp, td); 933 return (error); 934 } 935 936 int 937 kern_specialfd(struct thread *td, int type, void *arg) 938 { 939 struct file *fp; 940 struct specialfd_eventfd *ae; 941 int error, fd, fflags; 942 943 fflags = 0; 944 error = falloc_noinstall(td, &fp); 945 if (error != 0) 946 return (error); 947 948 switch (type) { 949 case SPECIALFD_EVENTFD: 950 ae = arg; 951 if ((ae->flags & EFD_CLOEXEC) != 0) 952 fflags |= O_CLOEXEC; 953 error = eventfd_create_file(td, fp, ae->initval, ae->flags); 954 break; 955 default: 956 error = EINVAL; 957 break; 958 } 959 960 if (error == 0) 961 error = finstall(td, fp, &fd, fflags, NULL); 962 fdrop(fp, td); 963 if (error == 0) 964 td->td_retval[0] = fd; 965 return (error); 966 } 967 968 int 969 sys___specialfd(struct thread *td, struct __specialfd_args *args) 970 { 971 struct specialfd_eventfd ae; 972 int error; 973 974 switch (args->type) { 975 case SPECIALFD_EVENTFD: 976 if (args->len != sizeof(struct specialfd_eventfd)) { 977 error = EINVAL; 978 break; 979 } 980 error = copyin(args->req, &ae, sizeof(ae)); 981 if (error != 0) 982 break; 983 if ((ae.flags & ~(EFD_CLOEXEC | EFD_NONBLOCK | 984 EFD_SEMAPHORE)) != 0) { 985 error = EINVAL; 986 break; 987 } 988 error = kern_specialfd(td, args->type, &ae); 989 break; 990 default: 991 error = EINVAL; 992 break; 993 } 994 return (error); 995 } 996 997 int 998 poll_no_poll(int events) 999 { 1000 /* 1001 * Return true for read/write. If the user asked for something 1002 * special, return POLLNVAL, so that clients have a way of 1003 * determining reliably whether or not the extended 1004 * functionality is present without hard-coding knowledge 1005 * of specific filesystem implementations. 1006 */ 1007 if (events & ~POLLSTANDARD) 1008 return (POLLNVAL); 1009 1010 return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 1011 } 1012 1013 int 1014 sys_pselect(struct thread *td, struct pselect_args *uap) 1015 { 1016 struct timespec ts; 1017 struct timeval tv, *tvp; 1018 sigset_t set, *uset; 1019 int error; 1020 1021 if (uap->ts != NULL) { 1022 error = copyin(uap->ts, &ts, sizeof(ts)); 1023 if (error != 0) 1024 return (error); 1025 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1026 tvp = &tv; 1027 } else 1028 tvp = NULL; 1029 if (uap->sm != NULL) { 1030 error = copyin(uap->sm, &set, sizeof(set)); 1031 if (error != 0) 1032 return (error); 1033 uset = &set; 1034 } else 1035 uset = NULL; 1036 return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 1037 uset, NFDBITS)); 1038 } 1039 1040 int 1041 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex, 1042 struct timeval *tvp, sigset_t *uset, int abi_nfdbits) 1043 { 1044 int error; 1045 1046 if (uset != NULL) { 1047 error = kern_sigprocmask(td, SIG_SETMASK, uset, 1048 &td->td_oldsigmask, 0); 1049 if (error != 0) 1050 return (error); 1051 td->td_pflags |= TDP_OLDMASK; 1052 /* 1053 * Make sure that ast() is called on return to 1054 * usermode and TDP_OLDMASK is cleared, restoring old 1055 * sigmask. 1056 */ 1057 ast_sched(td, TDA_SIGSUSPEND); 1058 } 1059 error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits); 1060 return (error); 1061 } 1062 1063 #ifndef _SYS_SYSPROTO_H_ 1064 struct select_args { 1065 int nd; 1066 fd_set *in, *ou, *ex; 1067 struct timeval *tv; 1068 }; 1069 #endif 1070 int 1071 sys_select(struct thread *td, struct select_args *uap) 1072 { 1073 struct timeval tv, *tvp; 1074 int error; 1075 1076 if (uap->tv != NULL) { 1077 error = copyin(uap->tv, &tv, sizeof(tv)); 1078 if (error) 1079 return (error); 1080 tvp = &tv; 1081 } else 1082 tvp = NULL; 1083 1084 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 1085 NFDBITS)); 1086 } 1087 1088 /* 1089 * In the unlikely case when user specified n greater then the last 1090 * open file descriptor, check that no bits are set after the last 1091 * valid fd. We must return EBADF if any is set. 1092 * 1093 * There are applications that rely on the behaviour. 1094 * 1095 * nd is fd_nfiles. 1096 */ 1097 static int 1098 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits) 1099 { 1100 char *addr, *oaddr; 1101 int b, i, res; 1102 uint8_t bits; 1103 1104 if (nd >= ndu || fd_in == NULL) 1105 return (0); 1106 1107 oaddr = NULL; 1108 bits = 0; /* silence gcc */ 1109 for (i = nd; i < ndu; i++) { 1110 b = i / NBBY; 1111 #if BYTE_ORDER == LITTLE_ENDIAN 1112 addr = (char *)fd_in + b; 1113 #else 1114 addr = (char *)fd_in; 1115 if (abi_nfdbits == NFDBITS) { 1116 addr += rounddown(b, sizeof(fd_mask)) + 1117 sizeof(fd_mask) - 1 - b % sizeof(fd_mask); 1118 } else { 1119 addr += rounddown(b, sizeof(uint32_t)) + 1120 sizeof(uint32_t) - 1 - b % sizeof(uint32_t); 1121 } 1122 #endif 1123 if (addr != oaddr) { 1124 res = fubyte(addr); 1125 if (res == -1) 1126 return (EFAULT); 1127 oaddr = addr; 1128 bits = res; 1129 } 1130 if ((bits & (1 << (i % NBBY))) != 0) 1131 return (EBADF); 1132 } 1133 return (0); 1134 } 1135 1136 int 1137 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou, 1138 fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits) 1139 { 1140 struct filedesc *fdp; 1141 /* 1142 * The magic 2048 here is chosen to be just enough for FD_SETSIZE 1143 * infds with the new FD_SETSIZE of 1024, and more than enough for 1144 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE 1145 * of 256. 1146 */ 1147 fd_mask s_selbits[howmany(2048, NFDBITS)]; 1148 fd_mask *ibits[3], *obits[3], *selbits, *sbp; 1149 struct timeval rtv; 1150 sbintime_t asbt, precision, rsbt; 1151 u_int nbufbytes, ncpbytes, ncpubytes, nfdbits; 1152 int error, lf, ndu; 1153 1154 if (nd < 0) 1155 return (EINVAL); 1156 fdp = td->td_proc->p_fd; 1157 ndu = nd; 1158 lf = fdp->fd_nfiles; 1159 if (nd > lf) 1160 nd = lf; 1161 1162 error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits); 1163 if (error != 0) 1164 return (error); 1165 error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits); 1166 if (error != 0) 1167 return (error); 1168 error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits); 1169 if (error != 0) 1170 return (error); 1171 1172 /* 1173 * Allocate just enough bits for the non-null fd_sets. Use the 1174 * preallocated auto buffer if possible. 1175 */ 1176 nfdbits = roundup(nd, NFDBITS); 1177 ncpbytes = nfdbits / NBBY; 1178 ncpubytes = roundup(nd, abi_nfdbits) / NBBY; 1179 nbufbytes = 0; 1180 if (fd_in != NULL) 1181 nbufbytes += 2 * ncpbytes; 1182 if (fd_ou != NULL) 1183 nbufbytes += 2 * ncpbytes; 1184 if (fd_ex != NULL) 1185 nbufbytes += 2 * ncpbytes; 1186 if (nbufbytes <= sizeof s_selbits) 1187 selbits = &s_selbits[0]; 1188 else 1189 selbits = malloc(nbufbytes, M_SELECT, M_WAITOK); 1190 1191 /* 1192 * Assign pointers into the bit buffers and fetch the input bits. 1193 * Put the output buffers together so that they can be bzeroed 1194 * together. 1195 */ 1196 sbp = selbits; 1197 #define getbits(name, x) \ 1198 do { \ 1199 if (name == NULL) { \ 1200 ibits[x] = NULL; \ 1201 obits[x] = NULL; \ 1202 } else { \ 1203 ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp; \ 1204 obits[x] = sbp; \ 1205 sbp += ncpbytes / sizeof *sbp; \ 1206 error = copyin(name, ibits[x], ncpubytes); \ 1207 if (error != 0) \ 1208 goto done; \ 1209 if (ncpbytes != ncpubytes) \ 1210 bzero((char *)ibits[x] + ncpubytes, \ 1211 ncpbytes - ncpubytes); \ 1212 } \ 1213 } while (0) 1214 getbits(fd_in, 0); 1215 getbits(fd_ou, 1); 1216 getbits(fd_ex, 2); 1217 #undef getbits 1218 1219 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__) 1220 /* 1221 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS, 1222 * we are running under 32-bit emulation. This should be more 1223 * generic. 1224 */ 1225 #define swizzle_fdset(bits) \ 1226 if (abi_nfdbits != NFDBITS && bits != NULL) { \ 1227 int i; \ 1228 for (i = 0; i < ncpbytes / sizeof *sbp; i++) \ 1229 bits[i] = (bits[i] >> 32) | (bits[i] << 32); \ 1230 } 1231 #else 1232 #define swizzle_fdset(bits) 1233 #endif 1234 1235 /* Make sure the bit order makes it through an ABI transition */ 1236 swizzle_fdset(ibits[0]); 1237 swizzle_fdset(ibits[1]); 1238 swizzle_fdset(ibits[2]); 1239 1240 if (nbufbytes != 0) 1241 bzero(selbits, nbufbytes / 2); 1242 1243 precision = 0; 1244 if (tvp != NULL) { 1245 rtv = *tvp; 1246 if (rtv.tv_sec < 0 || rtv.tv_usec < 0 || 1247 rtv.tv_usec >= 1000000) { 1248 error = EINVAL; 1249 goto done; 1250 } 1251 if (!timevalisset(&rtv)) 1252 asbt = 0; 1253 else if (rtv.tv_sec <= INT32_MAX) { 1254 rsbt = tvtosbt(rtv); 1255 precision = rsbt; 1256 precision >>= tc_precexp; 1257 if (TIMESEL(&asbt, rsbt)) 1258 asbt += tc_tick_sbt; 1259 if (asbt <= SBT_MAX - rsbt) 1260 asbt += rsbt; 1261 else 1262 asbt = -1; 1263 } else 1264 asbt = -1; 1265 } else 1266 asbt = -1; 1267 seltdinit(td); 1268 /* Iterate until the timeout expires or descriptors become ready. */ 1269 for (;;) { 1270 error = selscan(td, ibits, obits, nd); 1271 if (error || td->td_retval[0] != 0) 1272 break; 1273 error = seltdwait(td, asbt, precision); 1274 if (error) 1275 break; 1276 error = selrescan(td, ibits, obits); 1277 if (error || td->td_retval[0] != 0) 1278 break; 1279 } 1280 seltdclear(td); 1281 1282 done: 1283 /* select is not restarted after signals... */ 1284 if (error == ERESTART) 1285 error = EINTR; 1286 if (error == EWOULDBLOCK) 1287 error = 0; 1288 1289 /* swizzle bit order back, if necessary */ 1290 swizzle_fdset(obits[0]); 1291 swizzle_fdset(obits[1]); 1292 swizzle_fdset(obits[2]); 1293 #undef swizzle_fdset 1294 1295 #define putbits(name, x) \ 1296 if (name && (error2 = copyout(obits[x], name, ncpubytes))) \ 1297 error = error2; 1298 if (error == 0) { 1299 int error2; 1300 1301 putbits(fd_in, 0); 1302 putbits(fd_ou, 1); 1303 putbits(fd_ex, 2); 1304 #undef putbits 1305 } 1306 if (selbits != &s_selbits[0]) 1307 free(selbits, M_SELECT); 1308 1309 return (error); 1310 } 1311 /* 1312 * Convert a select bit set to poll flags. 1313 * 1314 * The backend always returns POLLHUP/POLLERR if appropriate and we 1315 * return this as a set bit in any set. 1316 */ 1317 static const int select_flags[3] = { 1318 POLLRDNORM | POLLHUP | POLLERR, 1319 POLLWRNORM | POLLHUP | POLLERR, 1320 POLLRDBAND | POLLERR 1321 }; 1322 1323 /* 1324 * Compute the fo_poll flags required for a fd given by the index and 1325 * bit position in the fd_mask array. 1326 */ 1327 static __inline int 1328 selflags(fd_mask **ibits, int idx, fd_mask bit) 1329 { 1330 int flags; 1331 int msk; 1332 1333 flags = 0; 1334 for (msk = 0; msk < 3; msk++) { 1335 if (ibits[msk] == NULL) 1336 continue; 1337 if ((ibits[msk][idx] & bit) == 0) 1338 continue; 1339 flags |= select_flags[msk]; 1340 } 1341 return (flags); 1342 } 1343 1344 /* 1345 * Set the appropriate output bits given a mask of fired events and the 1346 * input bits originally requested. 1347 */ 1348 static __inline int 1349 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events) 1350 { 1351 int msk; 1352 int n; 1353 1354 n = 0; 1355 for (msk = 0; msk < 3; msk++) { 1356 if ((events & select_flags[msk]) == 0) 1357 continue; 1358 if (ibits[msk] == NULL) 1359 continue; 1360 if ((ibits[msk][idx] & bit) == 0) 1361 continue; 1362 /* 1363 * XXX Check for a duplicate set. This can occur because a 1364 * socket calls selrecord() twice for each poll() call 1365 * resulting in two selfds per real fd. selrescan() will 1366 * call selsetbits twice as a result. 1367 */ 1368 if ((obits[msk][idx] & bit) != 0) 1369 continue; 1370 obits[msk][idx] |= bit; 1371 n++; 1372 } 1373 1374 return (n); 1375 } 1376 1377 /* 1378 * Traverse the list of fds attached to this thread's seltd and check for 1379 * completion. 1380 */ 1381 static int 1382 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits) 1383 { 1384 struct filedesc *fdp; 1385 struct selinfo *si; 1386 struct seltd *stp; 1387 struct selfd *sfp; 1388 struct selfd *sfn; 1389 struct file *fp; 1390 fd_mask bit; 1391 int fd, ev, n, idx; 1392 int error; 1393 bool only_user; 1394 1395 fdp = td->td_proc->p_fd; 1396 stp = td->td_sel; 1397 n = 0; 1398 only_user = FILEDESC_IS_ONLY_USER(fdp); 1399 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) { 1400 fd = (int)(uintptr_t)sfp->sf_cookie; 1401 si = sfp->sf_si; 1402 selfdfree(stp, sfp); 1403 /* If the selinfo wasn't cleared the event didn't fire. */ 1404 if (si != NULL) 1405 continue; 1406 if (only_user) 1407 error = fget_only_user(fdp, fd, &cap_event_rights, &fp); 1408 else 1409 error = fget_unlocked(td, fd, &cap_event_rights, &fp); 1410 if (__predict_false(error != 0)) 1411 return (error); 1412 idx = fd / NFDBITS; 1413 bit = (fd_mask)1 << (fd % NFDBITS); 1414 ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td); 1415 if (only_user) 1416 fput_only_user(fdp, fp); 1417 else 1418 fdrop(fp, td); 1419 if (ev != 0) 1420 n += selsetbits(ibits, obits, idx, bit, ev); 1421 } 1422 stp->st_flags = 0; 1423 td->td_retval[0] = n; 1424 return (0); 1425 } 1426 1427 /* 1428 * Perform the initial filedescriptor scan and register ourselves with 1429 * each selinfo. 1430 */ 1431 static int 1432 selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd) 1433 { 1434 struct filedesc *fdp; 1435 struct file *fp; 1436 fd_mask bit; 1437 int ev, flags, end, fd; 1438 int n, idx; 1439 int error; 1440 bool only_user; 1441 1442 fdp = td->td_proc->p_fd; 1443 n = 0; 1444 only_user = FILEDESC_IS_ONLY_USER(fdp); 1445 for (idx = 0, fd = 0; fd < nfd; idx++) { 1446 end = imin(fd + NFDBITS, nfd); 1447 for (bit = 1; fd < end; bit <<= 1, fd++) { 1448 /* Compute the list of events we're interested in. */ 1449 flags = selflags(ibits, idx, bit); 1450 if (flags == 0) 1451 continue; 1452 if (only_user) 1453 error = fget_only_user(fdp, fd, &cap_event_rights, &fp); 1454 else 1455 error = fget_unlocked(td, fd, &cap_event_rights, &fp); 1456 if (__predict_false(error != 0)) 1457 return (error); 1458 selfdalloc(td, (void *)(uintptr_t)fd); 1459 ev = fo_poll(fp, flags, td->td_ucred, td); 1460 if (only_user) 1461 fput_only_user(fdp, fp); 1462 else 1463 fdrop(fp, td); 1464 if (ev != 0) 1465 n += selsetbits(ibits, obits, idx, bit, ev); 1466 } 1467 } 1468 1469 td->td_retval[0] = n; 1470 return (0); 1471 } 1472 1473 int 1474 sys_poll(struct thread *td, struct poll_args *uap) 1475 { 1476 struct timespec ts, *tsp; 1477 1478 if (uap->timeout != INFTIM) { 1479 if (uap->timeout < 0) 1480 return (EINVAL); 1481 ts.tv_sec = uap->timeout / 1000; 1482 ts.tv_nsec = (uap->timeout % 1000) * 1000000; 1483 tsp = &ts; 1484 } else 1485 tsp = NULL; 1486 1487 return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL)); 1488 } 1489 1490 /* 1491 * kfds points to an array in the kernel. 1492 */ 1493 int 1494 kern_poll_kfds(struct thread *td, struct pollfd *kfds, u_int nfds, 1495 struct timespec *tsp, sigset_t *uset) 1496 { 1497 sbintime_t sbt, precision, tmp; 1498 time_t over; 1499 struct timespec ts; 1500 int error; 1501 1502 precision = 0; 1503 if (tsp != NULL) { 1504 if (!timespecvalid_interval(tsp)) 1505 return (EINVAL); 1506 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) 1507 sbt = 0; 1508 else { 1509 ts = *tsp; 1510 if (ts.tv_sec > INT32_MAX / 2) { 1511 over = ts.tv_sec - INT32_MAX / 2; 1512 ts.tv_sec -= over; 1513 } else 1514 over = 0; 1515 tmp = tstosbt(ts); 1516 precision = tmp; 1517 precision >>= tc_precexp; 1518 if (TIMESEL(&sbt, tmp)) 1519 sbt += tc_tick_sbt; 1520 sbt += tmp; 1521 } 1522 } else 1523 sbt = -1; 1524 1525 if (uset != NULL) { 1526 error = kern_sigprocmask(td, SIG_SETMASK, uset, 1527 &td->td_oldsigmask, 0); 1528 if (error) 1529 return (error); 1530 td->td_pflags |= TDP_OLDMASK; 1531 /* 1532 * Make sure that ast() is called on return to 1533 * usermode and TDP_OLDMASK is cleared, restoring old 1534 * sigmask. 1535 */ 1536 ast_sched(td, TDA_SIGSUSPEND); 1537 } 1538 1539 seltdinit(td); 1540 /* Iterate until the timeout expires or descriptors become ready. */ 1541 for (;;) { 1542 error = pollscan(td, kfds, nfds); 1543 if (error || td->td_retval[0] != 0) 1544 break; 1545 error = seltdwait(td, sbt, precision); 1546 if (error) 1547 break; 1548 error = pollrescan(td); 1549 if (error || td->td_retval[0] != 0) 1550 break; 1551 } 1552 seltdclear(td); 1553 1554 /* poll is not restarted after signals... */ 1555 if (error == ERESTART) 1556 error = EINTR; 1557 if (error == EWOULDBLOCK) 1558 error = 0; 1559 return (error); 1560 } 1561 1562 int 1563 sys_ppoll(struct thread *td, struct ppoll_args *uap) 1564 { 1565 struct timespec ts, *tsp; 1566 sigset_t set, *ssp; 1567 int error; 1568 1569 if (uap->ts != NULL) { 1570 error = copyin(uap->ts, &ts, sizeof(ts)); 1571 if (error) 1572 return (error); 1573 tsp = &ts; 1574 } else 1575 tsp = NULL; 1576 if (uap->set != NULL) { 1577 error = copyin(uap->set, &set, sizeof(set)); 1578 if (error) 1579 return (error); 1580 ssp = &set; 1581 } else 1582 ssp = NULL; 1583 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 1584 } 1585 1586 /* 1587 * ufds points to an array in user space. 1588 */ 1589 int 1590 kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds, 1591 struct timespec *tsp, sigset_t *set) 1592 { 1593 struct pollfd *kfds; 1594 struct pollfd stackfds[32]; 1595 int error; 1596 1597 if (kern_poll_maxfds(nfds)) 1598 return (EINVAL); 1599 if (nfds > nitems(stackfds)) 1600 kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK); 1601 else 1602 kfds = stackfds; 1603 error = copyin(ufds, kfds, nfds * sizeof(*kfds)); 1604 if (error != 0) 1605 goto out; 1606 1607 error = kern_poll_kfds(td, kfds, nfds, tsp, set); 1608 if (error == 0) 1609 error = pollout(td, kfds, ufds, nfds); 1610 1611 out: 1612 if (nfds > nitems(stackfds)) 1613 free(kfds, M_TEMP); 1614 return (error); 1615 } 1616 1617 bool 1618 kern_poll_maxfds(u_int nfds) 1619 { 1620 1621 /* 1622 * This is kinda bogus. We have fd limits, but that is not 1623 * really related to the size of the pollfd array. Make sure 1624 * we let the process use at least FD_SETSIZE entries and at 1625 * least enough for the system-wide limits. We want to be reasonably 1626 * safe, but not overly restrictive. 1627 */ 1628 return (nfds > maxfilesperproc && nfds > FD_SETSIZE); 1629 } 1630 1631 static int 1632 pollrescan(struct thread *td) 1633 { 1634 struct seltd *stp; 1635 struct selfd *sfp; 1636 struct selfd *sfn; 1637 struct selinfo *si; 1638 struct filedesc *fdp; 1639 struct file *fp; 1640 struct pollfd *fd; 1641 int n, error; 1642 bool only_user; 1643 1644 n = 0; 1645 fdp = td->td_proc->p_fd; 1646 stp = td->td_sel; 1647 only_user = FILEDESC_IS_ONLY_USER(fdp); 1648 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) { 1649 fd = (struct pollfd *)sfp->sf_cookie; 1650 si = sfp->sf_si; 1651 selfdfree(stp, sfp); 1652 /* If the selinfo wasn't cleared the event didn't fire. */ 1653 if (si != NULL) 1654 continue; 1655 if (only_user) 1656 error = fget_only_user(fdp, fd->fd, &cap_event_rights, &fp); 1657 else 1658 error = fget_unlocked(td, fd->fd, &cap_event_rights, &fp); 1659 if (__predict_false(error != 0)) { 1660 fd->revents = POLLNVAL; 1661 n++; 1662 continue; 1663 } 1664 /* 1665 * Note: backend also returns POLLHUP and 1666 * POLLERR if appropriate. 1667 */ 1668 fd->revents = fo_poll(fp, fd->events, td->td_ucred, td); 1669 if (only_user) 1670 fput_only_user(fdp, fp); 1671 else 1672 fdrop(fp, td); 1673 if (fd->revents != 0) 1674 n++; 1675 } 1676 stp->st_flags = 0; 1677 td->td_retval[0] = n; 1678 return (0); 1679 } 1680 1681 static int 1682 pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) 1683 { 1684 int error = 0; 1685 u_int i = 0; 1686 u_int n = 0; 1687 1688 for (i = 0; i < nfd; i++) { 1689 error = copyout(&fds->revents, &ufds->revents, 1690 sizeof(ufds->revents)); 1691 if (error) 1692 return (error); 1693 if (fds->revents != 0) 1694 n++; 1695 fds++; 1696 ufds++; 1697 } 1698 td->td_retval[0] = n; 1699 return (0); 1700 } 1701 1702 static int 1703 pollscan(struct thread *td, struct pollfd *fds, u_int nfd) 1704 { 1705 struct filedesc *fdp; 1706 struct file *fp; 1707 int i, n, error; 1708 bool only_user; 1709 1710 n = 0; 1711 fdp = td->td_proc->p_fd; 1712 only_user = FILEDESC_IS_ONLY_USER(fdp); 1713 for (i = 0; i < nfd; i++, fds++) { 1714 if (fds->fd < 0) { 1715 fds->revents = 0; 1716 continue; 1717 } 1718 if (only_user) 1719 error = fget_only_user(fdp, fds->fd, &cap_event_rights, &fp); 1720 else 1721 error = fget_unlocked(td, fds->fd, &cap_event_rights, &fp); 1722 if (__predict_false(error != 0)) { 1723 fds->revents = POLLNVAL; 1724 n++; 1725 continue; 1726 } 1727 /* 1728 * Note: backend also returns POLLHUP and 1729 * POLLERR if appropriate. 1730 */ 1731 selfdalloc(td, fds); 1732 fds->revents = fo_poll(fp, fds->events, 1733 td->td_ucred, td); 1734 if (only_user) 1735 fput_only_user(fdp, fp); 1736 else 1737 fdrop(fp, td); 1738 /* 1739 * POSIX requires POLLOUT to be never 1740 * set simultaneously with POLLHUP. 1741 */ 1742 if ((fds->revents & POLLHUP) != 0) 1743 fds->revents &= ~POLLOUT; 1744 1745 if (fds->revents != 0) 1746 n++; 1747 } 1748 td->td_retval[0] = n; 1749 return (0); 1750 } 1751 1752 /* 1753 * XXX This was created specifically to support netncp and netsmb. This 1754 * allows the caller to specify a socket to wait for events on. It returns 1755 * 0 if any events matched and an error otherwise. There is no way to 1756 * determine which events fired. 1757 */ 1758 int 1759 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td) 1760 { 1761 struct timeval rtv; 1762 sbintime_t asbt, precision, rsbt; 1763 int error; 1764 1765 precision = 0; /* stupid gcc! */ 1766 if (tvp != NULL) { 1767 rtv = *tvp; 1768 if (rtv.tv_sec < 0 || rtv.tv_usec < 0 || 1769 rtv.tv_usec >= 1000000) 1770 return (EINVAL); 1771 if (!timevalisset(&rtv)) 1772 asbt = 0; 1773 else if (rtv.tv_sec <= INT32_MAX) { 1774 rsbt = tvtosbt(rtv); 1775 precision = rsbt; 1776 precision >>= tc_precexp; 1777 if (TIMESEL(&asbt, rsbt)) 1778 asbt += tc_tick_sbt; 1779 if (asbt <= SBT_MAX - rsbt) 1780 asbt += rsbt; 1781 else 1782 asbt = -1; 1783 } else 1784 asbt = -1; 1785 } else 1786 asbt = -1; 1787 seltdinit(td); 1788 /* 1789 * Iterate until the timeout expires or the socket becomes ready. 1790 */ 1791 for (;;) { 1792 selfdalloc(td, NULL); 1793 if (sopoll(so, events, NULL, td) != 0) { 1794 error = 0; 1795 break; 1796 } 1797 error = seltdwait(td, asbt, precision); 1798 if (error) 1799 break; 1800 } 1801 seltdclear(td); 1802 /* XXX Duplicates ncp/smb behavior. */ 1803 if (error == ERESTART) 1804 error = 0; 1805 return (error); 1806 } 1807 1808 /* 1809 * Preallocate two selfds associated with 'cookie'. Some fo_poll routines 1810 * have two select sets, one for read and another for write. 1811 */ 1812 static void 1813 selfdalloc(struct thread *td, void *cookie) 1814 { 1815 struct seltd *stp; 1816 1817 stp = td->td_sel; 1818 if (stp->st_free1 == NULL) 1819 stp->st_free1 = malloc(sizeof(*stp->st_free1), M_SELFD, M_WAITOK|M_ZERO); 1820 stp->st_free1->sf_td = stp; 1821 stp->st_free1->sf_cookie = cookie; 1822 if (stp->st_free2 == NULL) 1823 stp->st_free2 = malloc(sizeof(*stp->st_free2), M_SELFD, M_WAITOK|M_ZERO); 1824 stp->st_free2->sf_td = stp; 1825 stp->st_free2->sf_cookie = cookie; 1826 } 1827 1828 static void 1829 selfdfree(struct seltd *stp, struct selfd *sfp) 1830 { 1831 STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link); 1832 /* 1833 * Paired with doselwakeup. 1834 */ 1835 if (atomic_load_acq_ptr((uintptr_t *)&sfp->sf_si) != (uintptr_t)NULL) { 1836 mtx_lock(sfp->sf_mtx); 1837 if (sfp->sf_si != NULL) { 1838 TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads); 1839 } 1840 mtx_unlock(sfp->sf_mtx); 1841 } 1842 free(sfp, M_SELFD); 1843 } 1844 1845 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */ 1846 void 1847 seldrain(struct selinfo *sip) 1848 { 1849 1850 /* 1851 * This feature is already provided by doselwakeup(), thus it is 1852 * enough to go for it. 1853 * Eventually, the context, should take care to avoid races 1854 * between thread calling select()/poll() and file descriptor 1855 * detaching, but, again, the races are just the same as 1856 * selwakeup(). 1857 */ 1858 doselwakeup(sip, -1); 1859 } 1860 1861 /* 1862 * Record a select request. 1863 */ 1864 void 1865 selrecord(struct thread *selector, struct selinfo *sip) 1866 { 1867 struct selfd *sfp; 1868 struct seltd *stp; 1869 struct mtx *mtxp; 1870 1871 stp = selector->td_sel; 1872 /* 1873 * Don't record when doing a rescan. 1874 */ 1875 if (stp->st_flags & SELTD_RESCAN) 1876 return; 1877 /* 1878 * Grab one of the preallocated descriptors. 1879 */ 1880 sfp = NULL; 1881 if ((sfp = stp->st_free1) != NULL) 1882 stp->st_free1 = NULL; 1883 else if ((sfp = stp->st_free2) != NULL) 1884 stp->st_free2 = NULL; 1885 else 1886 panic("selrecord: No free selfd on selq"); 1887 mtxp = sip->si_mtx; 1888 if (mtxp == NULL) 1889 mtxp = mtx_pool_find(mtxpool_select, sip); 1890 /* 1891 * Initialize the sfp and queue it in the thread. 1892 */ 1893 sfp->sf_si = sip; 1894 sfp->sf_mtx = mtxp; 1895 STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link); 1896 /* 1897 * Now that we've locked the sip, check for initialization. 1898 */ 1899 mtx_lock(mtxp); 1900 if (sip->si_mtx == NULL) { 1901 sip->si_mtx = mtxp; 1902 TAILQ_INIT(&sip->si_tdlist); 1903 } 1904 /* 1905 * Add this thread to the list of selfds listening on this selinfo. 1906 */ 1907 TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads); 1908 mtx_unlock(sip->si_mtx); 1909 } 1910 1911 /* Wake up a selecting thread. */ 1912 void 1913 selwakeup(struct selinfo *sip) 1914 { 1915 doselwakeup(sip, -1); 1916 } 1917 1918 /* Wake up a selecting thread, and set its priority. */ 1919 void 1920 selwakeuppri(struct selinfo *sip, int pri) 1921 { 1922 doselwakeup(sip, pri); 1923 } 1924 1925 /* 1926 * Do a wakeup when a selectable event occurs. 1927 */ 1928 static void 1929 doselwakeup(struct selinfo *sip, int pri) 1930 { 1931 struct selfd *sfp; 1932 struct selfd *sfn; 1933 struct seltd *stp; 1934 1935 /* If it's not initialized there can't be any waiters. */ 1936 if (sip->si_mtx == NULL) 1937 return; 1938 /* 1939 * Locking the selinfo locks all selfds associated with it. 1940 */ 1941 mtx_lock(sip->si_mtx); 1942 TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) { 1943 /* 1944 * Once we remove this sfp from the list and clear the 1945 * sf_si seltdclear will know to ignore this si. 1946 */ 1947 TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads); 1948 stp = sfp->sf_td; 1949 mtx_lock(&stp->st_mtx); 1950 stp->st_flags |= SELTD_PENDING; 1951 cv_broadcastpri(&stp->st_wait, pri); 1952 mtx_unlock(&stp->st_mtx); 1953 /* 1954 * Paired with selfdfree. 1955 * 1956 * Storing this only after the wakeup provides an invariant that 1957 * stp is not used after selfdfree returns. 1958 */ 1959 atomic_store_rel_ptr((uintptr_t *)&sfp->sf_si, (uintptr_t)NULL); 1960 } 1961 mtx_unlock(sip->si_mtx); 1962 } 1963 1964 static void 1965 seltdinit(struct thread *td) 1966 { 1967 struct seltd *stp; 1968 1969 stp = td->td_sel; 1970 if (stp != NULL) { 1971 MPASS(stp->st_flags == 0); 1972 MPASS(STAILQ_EMPTY(&stp->st_selq)); 1973 return; 1974 } 1975 stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO); 1976 mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF); 1977 cv_init(&stp->st_wait, "select"); 1978 stp->st_flags = 0; 1979 STAILQ_INIT(&stp->st_selq); 1980 td->td_sel = stp; 1981 } 1982 1983 static int 1984 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision) 1985 { 1986 struct seltd *stp; 1987 int error; 1988 1989 stp = td->td_sel; 1990 /* 1991 * An event of interest may occur while we do not hold the seltd 1992 * locked so check the pending flag before we sleep. 1993 */ 1994 mtx_lock(&stp->st_mtx); 1995 /* 1996 * Any further calls to selrecord will be a rescan. 1997 */ 1998 stp->st_flags |= SELTD_RESCAN; 1999 if (stp->st_flags & SELTD_PENDING) { 2000 mtx_unlock(&stp->st_mtx); 2001 return (0); 2002 } 2003 if (sbt == 0) 2004 error = EWOULDBLOCK; 2005 else if (sbt != -1) 2006 error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx, 2007 sbt, precision, C_ABSOLUTE); 2008 else 2009 error = cv_wait_sig(&stp->st_wait, &stp->st_mtx); 2010 mtx_unlock(&stp->st_mtx); 2011 2012 return (error); 2013 } 2014 2015 void 2016 seltdfini(struct thread *td) 2017 { 2018 struct seltd *stp; 2019 2020 stp = td->td_sel; 2021 if (stp == NULL) 2022 return; 2023 MPASS(stp->st_flags == 0); 2024 MPASS(STAILQ_EMPTY(&stp->st_selq)); 2025 if (stp->st_free1) 2026 free(stp->st_free1, M_SELFD); 2027 if (stp->st_free2) 2028 free(stp->st_free2, M_SELFD); 2029 td->td_sel = NULL; 2030 cv_destroy(&stp->st_wait); 2031 mtx_destroy(&stp->st_mtx); 2032 free(stp, M_SELECT); 2033 } 2034 2035 /* 2036 * Remove the references to the thread from all of the objects we were 2037 * polling. 2038 */ 2039 static void 2040 seltdclear(struct thread *td) 2041 { 2042 struct seltd *stp; 2043 struct selfd *sfp; 2044 struct selfd *sfn; 2045 2046 stp = td->td_sel; 2047 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) 2048 selfdfree(stp, sfp); 2049 stp->st_flags = 0; 2050 } 2051 2052 static void selectinit(void *); 2053 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL); 2054 static void 2055 selectinit(void *dummy __unused) 2056 { 2057 2058 mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF); 2059 } 2060 2061 /* 2062 * Set up a syscall return value that follows the convention specified for 2063 * posix_* functions. 2064 */ 2065 int 2066 kern_posix_error(struct thread *td, int error) 2067 { 2068 2069 if (error <= 0) 2070 return (error); 2071 td->td_errno = error; 2072 td->td_pflags |= TDP_NERRNO; 2073 td->td_retval[0] = error; 2074 return (0); 2075 } 2076