xref: /freebsd/sys/kern/sys_generic.c (revision 0bf48626aaa33768078f5872b922b1487b3a9296)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)sys_generic.c	8.5 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_capsicum.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/capsicum.h>
49 #include <sys/filedesc.h>
50 #include <sys/filio.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/lock.h>
54 #include <sys/proc.h>
55 #include <sys/signalvar.h>
56 #include <sys/socketvar.h>
57 #include <sys/uio.h>
58 #include <sys/kernel.h>
59 #include <sys/ktr.h>
60 #include <sys/limits.h>
61 #include <sys/malloc.h>
62 #include <sys/poll.h>
63 #include <sys/resourcevar.h>
64 #include <sys/selinfo.h>
65 #include <sys/sleepqueue.h>
66 #include <sys/syscallsubr.h>
67 #include <sys/sysctl.h>
68 #include <sys/sysent.h>
69 #include <sys/vnode.h>
70 #include <sys/bio.h>
71 #include <sys/buf.h>
72 #include <sys/condvar.h>
73 #ifdef KTRACE
74 #include <sys/ktrace.h>
75 #endif
76 
77 #include <security/audit/audit.h>
78 
79 /*
80  * The following macro defines how many bytes will be allocated from
81  * the stack instead of memory allocated when passing the IOCTL data
82  * structures from userspace and to the kernel. Some IOCTLs having
83  * small data structures are used very frequently and this small
84  * buffer on the stack gives a significant speedup improvement for
85  * those requests. The value of this define should be greater or equal
86  * to 64 bytes and should also be power of two. The data structure is
87  * currently hard-aligned to a 8-byte boundary on the stack. This
88  * should currently be sufficient for all supported platforms.
89  */
90 #define	SYS_IOCTL_SMALL_SIZE	128	/* bytes */
91 #define	SYS_IOCTL_SMALL_ALIGN	8	/* bytes */
92 
93 #ifdef __LP64__
94 static int iosize_max_clamp = 0;
95 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW,
96     &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX");
97 static int devfs_iosize_max_clamp = 1;
98 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW,
99     &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices");
100 #endif
101 
102 /*
103  * Assert that the return value of read(2) and write(2) syscalls fits
104  * into a register.  If not, an architecture will need to provide the
105  * usermode wrappers to reconstruct the result.
106  */
107 CTASSERT(sizeof(register_t) >= sizeof(size_t));
108 
109 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
110 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
111 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
112 
113 static int	pollout(struct thread *, struct pollfd *, struct pollfd *,
114 		    u_int);
115 static int	pollscan(struct thread *, struct pollfd *, u_int);
116 static int	pollrescan(struct thread *);
117 static int	selscan(struct thread *, fd_mask **, fd_mask **, int);
118 static int	selrescan(struct thread *, fd_mask **, fd_mask **);
119 static void	selfdalloc(struct thread *, void *);
120 static void	selfdfree(struct seltd *, struct selfd *);
121 static int	dofileread(struct thread *, int, struct file *, struct uio *,
122 		    off_t, int);
123 static int	dofilewrite(struct thread *, int, struct file *, struct uio *,
124 		    off_t, int);
125 static void	doselwakeup(struct selinfo *, int);
126 static void	seltdinit(struct thread *);
127 static int	seltdwait(struct thread *, sbintime_t, sbintime_t);
128 static void	seltdclear(struct thread *);
129 
130 /*
131  * One seltd per-thread allocated on demand as needed.
132  *
133  *	t - protected by st_mtx
134  * 	k - Only accessed by curthread or read-only
135  */
136 struct seltd {
137 	STAILQ_HEAD(, selfd)	st_selq;	/* (k) List of selfds. */
138 	struct selfd		*st_free1;	/* (k) free fd for read set. */
139 	struct selfd		*st_free2;	/* (k) free fd for write set. */
140 	struct mtx		st_mtx;		/* Protects struct seltd */
141 	struct cv		st_wait;	/* (t) Wait channel. */
142 	int			st_flags;	/* (t) SELTD_ flags. */
143 };
144 
145 #define	SELTD_PENDING	0x0001			/* We have pending events. */
146 #define	SELTD_RESCAN	0x0002			/* Doing a rescan. */
147 
148 /*
149  * One selfd allocated per-thread per-file-descriptor.
150  *	f - protected by sf_mtx
151  */
152 struct selfd {
153 	STAILQ_ENTRY(selfd)	sf_link;	/* (k) fds owned by this td. */
154 	TAILQ_ENTRY(selfd)	sf_threads;	/* (f) fds on this selinfo. */
155 	struct selinfo		*sf_si;		/* (f) selinfo when linked. */
156 	struct mtx		*sf_mtx;	/* Pointer to selinfo mtx. */
157 	struct seltd		*sf_td;		/* (k) owning seltd. */
158 	void			*sf_cookie;	/* (k) fd or pollfd. */
159 	u_int			sf_refs;
160 };
161 
162 static uma_zone_t selfd_zone;
163 static struct mtx_pool *mtxpool_select;
164 
165 #ifdef __LP64__
166 size_t
167 devfs_iosize_max(void)
168 {
169 
170 	return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
171 	    INT_MAX : SSIZE_MAX);
172 }
173 
174 size_t
175 iosize_max(void)
176 {
177 
178 	return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
179 	    INT_MAX : SSIZE_MAX);
180 }
181 #endif
182 
183 #ifndef _SYS_SYSPROTO_H_
184 struct read_args {
185 	int	fd;
186 	void	*buf;
187 	size_t	nbyte;
188 };
189 #endif
190 int
191 sys_read(struct thread *td, struct read_args *uap)
192 {
193 	struct uio auio;
194 	struct iovec aiov;
195 	int error;
196 
197 	if (uap->nbyte > IOSIZE_MAX)
198 		return (EINVAL);
199 	aiov.iov_base = uap->buf;
200 	aiov.iov_len = uap->nbyte;
201 	auio.uio_iov = &aiov;
202 	auio.uio_iovcnt = 1;
203 	auio.uio_resid = uap->nbyte;
204 	auio.uio_segflg = UIO_USERSPACE;
205 	error = kern_readv(td, uap->fd, &auio);
206 	return (error);
207 }
208 
209 /*
210  * Positioned read system call
211  */
212 #ifndef _SYS_SYSPROTO_H_
213 struct pread_args {
214 	int	fd;
215 	void	*buf;
216 	size_t	nbyte;
217 	int	pad;
218 	off_t	offset;
219 };
220 #endif
221 int
222 sys_pread(struct thread *td, struct pread_args *uap)
223 {
224 
225 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
226 }
227 
228 int
229 kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset)
230 {
231 	struct uio auio;
232 	struct iovec aiov;
233 	int error;
234 
235 	if (nbyte > IOSIZE_MAX)
236 		return (EINVAL);
237 	aiov.iov_base = buf;
238 	aiov.iov_len = nbyte;
239 	auio.uio_iov = &aiov;
240 	auio.uio_iovcnt = 1;
241 	auio.uio_resid = nbyte;
242 	auio.uio_segflg = UIO_USERSPACE;
243 	error = kern_preadv(td, fd, &auio, offset);
244 	return (error);
245 }
246 
247 #if defined(COMPAT_FREEBSD6)
248 int
249 freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap)
250 {
251 
252 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
253 }
254 #endif
255 
256 /*
257  * Scatter read system call.
258  */
259 #ifndef _SYS_SYSPROTO_H_
260 struct readv_args {
261 	int	fd;
262 	struct	iovec *iovp;
263 	u_int	iovcnt;
264 };
265 #endif
266 int
267 sys_readv(struct thread *td, struct readv_args *uap)
268 {
269 	struct uio *auio;
270 	int error;
271 
272 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
273 	if (error)
274 		return (error);
275 	error = kern_readv(td, uap->fd, auio);
276 	free(auio, M_IOV);
277 	return (error);
278 }
279 
280 int
281 kern_readv(struct thread *td, int fd, struct uio *auio)
282 {
283 	struct file *fp;
284 	int error;
285 
286 	error = fget_read(td, fd, &cap_read_rights, &fp);
287 	if (error)
288 		return (error);
289 	error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
290 	fdrop(fp, td);
291 	return (error);
292 }
293 
294 /*
295  * Scatter positioned read system call.
296  */
297 #ifndef _SYS_SYSPROTO_H_
298 struct preadv_args {
299 	int	fd;
300 	struct	iovec *iovp;
301 	u_int	iovcnt;
302 	off_t	offset;
303 };
304 #endif
305 int
306 sys_preadv(struct thread *td, struct preadv_args *uap)
307 {
308 	struct uio *auio;
309 	int error;
310 
311 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
312 	if (error)
313 		return (error);
314 	error = kern_preadv(td, uap->fd, auio, uap->offset);
315 	free(auio, M_IOV);
316 	return (error);
317 }
318 
319 int
320 kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset)
321 {
322 	struct file *fp;
323 	int error;
324 
325 	error = fget_read(td, fd, &cap_pread_rights, &fp);
326 	if (error)
327 		return (error);
328 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
329 		error = ESPIPE;
330 	else if (offset < 0 &&
331 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
332 		error = EINVAL;
333 	else
334 		error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
335 	fdrop(fp, td);
336 	return (error);
337 }
338 
339 /*
340  * Common code for readv and preadv that reads data in
341  * from a file using the passed in uio, offset, and flags.
342  */
343 static int
344 dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio,
345     off_t offset, int flags)
346 {
347 	ssize_t cnt;
348 	int error;
349 #ifdef KTRACE
350 	struct uio *ktruio = NULL;
351 #endif
352 
353 	AUDIT_ARG_FD(fd);
354 
355 	/* Finish zero length reads right here */
356 	if (auio->uio_resid == 0) {
357 		td->td_retval[0] = 0;
358 		return (0);
359 	}
360 	auio->uio_rw = UIO_READ;
361 	auio->uio_offset = offset;
362 	auio->uio_td = td;
363 #ifdef KTRACE
364 	if (KTRPOINT(td, KTR_GENIO))
365 		ktruio = cloneuio(auio);
366 #endif
367 	cnt = auio->uio_resid;
368 	if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
369 		if (auio->uio_resid != cnt && (error == ERESTART ||
370 		    error == EINTR || error == EWOULDBLOCK))
371 			error = 0;
372 	}
373 	cnt -= auio->uio_resid;
374 #ifdef KTRACE
375 	if (ktruio != NULL) {
376 		ktruio->uio_resid = cnt;
377 		ktrgenio(fd, UIO_READ, ktruio, error);
378 	}
379 #endif
380 	td->td_retval[0] = cnt;
381 	return (error);
382 }
383 
384 #ifndef _SYS_SYSPROTO_H_
385 struct write_args {
386 	int	fd;
387 	const void *buf;
388 	size_t	nbyte;
389 };
390 #endif
391 int
392 sys_write(struct thread *td, struct write_args *uap)
393 {
394 	struct uio auio;
395 	struct iovec aiov;
396 	int error;
397 
398 	if (uap->nbyte > IOSIZE_MAX)
399 		return (EINVAL);
400 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
401 	aiov.iov_len = uap->nbyte;
402 	auio.uio_iov = &aiov;
403 	auio.uio_iovcnt = 1;
404 	auio.uio_resid = uap->nbyte;
405 	auio.uio_segflg = UIO_USERSPACE;
406 	error = kern_writev(td, uap->fd, &auio);
407 	return (error);
408 }
409 
410 /*
411  * Positioned write system call.
412  */
413 #ifndef _SYS_SYSPROTO_H_
414 struct pwrite_args {
415 	int	fd;
416 	const void *buf;
417 	size_t	nbyte;
418 	int	pad;
419 	off_t	offset;
420 };
421 #endif
422 int
423 sys_pwrite(struct thread *td, struct pwrite_args *uap)
424 {
425 
426 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
427 }
428 
429 int
430 kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte,
431     off_t offset)
432 {
433 	struct uio auio;
434 	struct iovec aiov;
435 	int error;
436 
437 	if (nbyte > IOSIZE_MAX)
438 		return (EINVAL);
439 	aiov.iov_base = (void *)(uintptr_t)buf;
440 	aiov.iov_len = nbyte;
441 	auio.uio_iov = &aiov;
442 	auio.uio_iovcnt = 1;
443 	auio.uio_resid = nbyte;
444 	auio.uio_segflg = UIO_USERSPACE;
445 	error = kern_pwritev(td, fd, &auio, offset);
446 	return (error);
447 }
448 
449 #if defined(COMPAT_FREEBSD6)
450 int
451 freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap)
452 {
453 
454 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
455 }
456 #endif
457 
458 /*
459  * Gather write system call.
460  */
461 #ifndef _SYS_SYSPROTO_H_
462 struct writev_args {
463 	int	fd;
464 	struct	iovec *iovp;
465 	u_int	iovcnt;
466 };
467 #endif
468 int
469 sys_writev(struct thread *td, struct writev_args *uap)
470 {
471 	struct uio *auio;
472 	int error;
473 
474 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
475 	if (error)
476 		return (error);
477 	error = kern_writev(td, uap->fd, auio);
478 	free(auio, M_IOV);
479 	return (error);
480 }
481 
482 int
483 kern_writev(struct thread *td, int fd, struct uio *auio)
484 {
485 	struct file *fp;
486 	int error;
487 
488 	error = fget_write(td, fd, &cap_write_rights, &fp);
489 	if (error)
490 		return (error);
491 	error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
492 	fdrop(fp, td);
493 	return (error);
494 }
495 
496 /*
497  * Gather positioned write system call.
498  */
499 #ifndef _SYS_SYSPROTO_H_
500 struct pwritev_args {
501 	int	fd;
502 	struct	iovec *iovp;
503 	u_int	iovcnt;
504 	off_t	offset;
505 };
506 #endif
507 int
508 sys_pwritev(struct thread *td, struct pwritev_args *uap)
509 {
510 	struct uio *auio;
511 	int error;
512 
513 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
514 	if (error)
515 		return (error);
516 	error = kern_pwritev(td, uap->fd, auio, uap->offset);
517 	free(auio, M_IOV);
518 	return (error);
519 }
520 
521 int
522 kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset)
523 {
524 	struct file *fp;
525 	int error;
526 
527 	error = fget_write(td, fd, &cap_pwrite_rights, &fp);
528 	if (error)
529 		return (error);
530 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
531 		error = ESPIPE;
532 	else if (offset < 0 &&
533 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
534 		error = EINVAL;
535 	else
536 		error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
537 	fdrop(fp, td);
538 	return (error);
539 }
540 
541 /*
542  * Common code for writev and pwritev that writes data to
543  * a file using the passed in uio, offset, and flags.
544  */
545 static int
546 dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio,
547     off_t offset, int flags)
548 {
549 	ssize_t cnt;
550 	int error;
551 #ifdef KTRACE
552 	struct uio *ktruio = NULL;
553 #endif
554 
555 	AUDIT_ARG_FD(fd);
556 	auio->uio_rw = UIO_WRITE;
557 	auio->uio_td = td;
558 	auio->uio_offset = offset;
559 #ifdef KTRACE
560 	if (KTRPOINT(td, KTR_GENIO))
561 		ktruio = cloneuio(auio);
562 #endif
563 	cnt = auio->uio_resid;
564 	if (fp->f_type == DTYPE_VNODE &&
565 	    (fp->f_vnread_flags & FDEVFS_VNODE) == 0)
566 		bwillwrite();
567 	if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) {
568 		if (auio->uio_resid != cnt && (error == ERESTART ||
569 		    error == EINTR || error == EWOULDBLOCK))
570 			error = 0;
571 		/* Socket layer is responsible for issuing SIGPIPE. */
572 		if (fp->f_type != DTYPE_SOCKET && error == EPIPE) {
573 			PROC_LOCK(td->td_proc);
574 			tdsignal(td, SIGPIPE);
575 			PROC_UNLOCK(td->td_proc);
576 		}
577 	}
578 	cnt -= auio->uio_resid;
579 #ifdef KTRACE
580 	if (ktruio != NULL) {
581 		ktruio->uio_resid = cnt;
582 		ktrgenio(fd, UIO_WRITE, ktruio, error);
583 	}
584 #endif
585 	td->td_retval[0] = cnt;
586 	return (error);
587 }
588 
589 /*
590  * Truncate a file given a file descriptor.
591  *
592  * Can't use fget_write() here, since must return EINVAL and not EBADF if the
593  * descriptor isn't writable.
594  */
595 int
596 kern_ftruncate(struct thread *td, int fd, off_t length)
597 {
598 	struct file *fp;
599 	int error;
600 
601 	AUDIT_ARG_FD(fd);
602 	if (length < 0)
603 		return (EINVAL);
604 	error = fget(td, fd, &cap_ftruncate_rights, &fp);
605 	if (error)
606 		return (error);
607 	AUDIT_ARG_FILE(td->td_proc, fp);
608 	if (!(fp->f_flag & FWRITE)) {
609 		fdrop(fp, td);
610 		return (EINVAL);
611 	}
612 	error = fo_truncate(fp, length, td->td_ucred, td);
613 	fdrop(fp, td);
614 	return (error);
615 }
616 
617 #ifndef _SYS_SYSPROTO_H_
618 struct ftruncate_args {
619 	int	fd;
620 	int	pad;
621 	off_t	length;
622 };
623 #endif
624 int
625 sys_ftruncate(struct thread *td, struct ftruncate_args *uap)
626 {
627 
628 	return (kern_ftruncate(td, uap->fd, uap->length));
629 }
630 
631 #if defined(COMPAT_43)
632 #ifndef _SYS_SYSPROTO_H_
633 struct oftruncate_args {
634 	int	fd;
635 	long	length;
636 };
637 #endif
638 int
639 oftruncate(struct thread *td, struct oftruncate_args *uap)
640 {
641 
642 	return (kern_ftruncate(td, uap->fd, uap->length));
643 }
644 #endif /* COMPAT_43 */
645 
646 #ifndef _SYS_SYSPROTO_H_
647 struct ioctl_args {
648 	int	fd;
649 	u_long	com;
650 	caddr_t	data;
651 };
652 #endif
653 /* ARGSUSED */
654 int
655 sys_ioctl(struct thread *td, struct ioctl_args *uap)
656 {
657 	u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN);
658 	u_long com;
659 	int arg, error;
660 	u_int size;
661 	caddr_t data;
662 
663 	if (uap->com > 0xffffffff) {
664 		printf(
665 		    "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
666 		    td->td_proc->p_pid, td->td_name, uap->com);
667 		uap->com &= 0xffffffff;
668 	}
669 	com = uap->com;
670 
671 	/*
672 	 * Interpret high order word to find amount of data to be
673 	 * copied to/from the user's address space.
674 	 */
675 	size = IOCPARM_LEN(com);
676 	if ((size > IOCPARM_MAX) ||
677 	    ((com & (IOC_VOID  | IOC_IN | IOC_OUT)) == 0) ||
678 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
679 	    ((com & IOC_OUT) && size == 0) ||
680 #else
681 	    ((com & (IOC_IN | IOC_OUT)) && size == 0) ||
682 #endif
683 	    ((com & IOC_VOID) && size > 0 && size != sizeof(int)))
684 		return (ENOTTY);
685 
686 	if (size > 0) {
687 		if (com & IOC_VOID) {
688 			/* Integer argument. */
689 			arg = (intptr_t)uap->data;
690 			data = (void *)&arg;
691 			size = 0;
692 		} else {
693 			if (size > SYS_IOCTL_SMALL_SIZE)
694 				data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
695 			else
696 				data = smalldata;
697 		}
698 	} else
699 		data = (void *)&uap->data;
700 	if (com & IOC_IN) {
701 		error = copyin(uap->data, data, (u_int)size);
702 		if (error != 0)
703 			goto out;
704 	} else if (com & IOC_OUT) {
705 		/*
706 		 * Zero the buffer so the user always
707 		 * gets back something deterministic.
708 		 */
709 		bzero(data, size);
710 	}
711 
712 	error = kern_ioctl(td, uap->fd, com, data);
713 
714 	if (error == 0 && (com & IOC_OUT))
715 		error = copyout(data, uap->data, (u_int)size);
716 
717 out:
718 	if (size > SYS_IOCTL_SMALL_SIZE)
719 		free(data, M_IOCTLOPS);
720 	return (error);
721 }
722 
723 int
724 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
725 {
726 	struct file *fp;
727 	struct filedesc *fdp;
728 	int error, tmp, locked;
729 
730 	AUDIT_ARG_FD(fd);
731 	AUDIT_ARG_CMD(com);
732 
733 	fdp = td->td_proc->p_fd;
734 
735 	switch (com) {
736 	case FIONCLEX:
737 	case FIOCLEX:
738 		FILEDESC_XLOCK(fdp);
739 		locked = LA_XLOCKED;
740 		break;
741 	default:
742 #ifdef CAPABILITIES
743 		FILEDESC_SLOCK(fdp);
744 		locked = LA_SLOCKED;
745 #else
746 		locked = LA_UNLOCKED;
747 #endif
748 		break;
749 	}
750 
751 #ifdef CAPABILITIES
752 	if ((fp = fget_locked(fdp, fd)) == NULL) {
753 		error = EBADF;
754 		goto out;
755 	}
756 	if ((error = cap_ioctl_check(fdp, fd, com)) != 0) {
757 		fp = NULL;	/* fhold() was not called yet */
758 		goto out;
759 	}
760 	if (!fhold(fp)) {
761 		error = EBADF;
762 		fp = NULL;
763 		goto out;
764 	}
765 	if (locked == LA_SLOCKED) {
766 		FILEDESC_SUNLOCK(fdp);
767 		locked = LA_UNLOCKED;
768 	}
769 #else
770 	error = fget(td, fd, &cap_ioctl_rights, &fp);
771 	if (error != 0) {
772 		fp = NULL;
773 		goto out;
774 	}
775 #endif
776 	if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
777 		error = EBADF;
778 		goto out;
779 	}
780 
781 	switch (com) {
782 	case FIONCLEX:
783 		fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE;
784 		goto out;
785 	case FIOCLEX:
786 		fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE;
787 		goto out;
788 	case FIONBIO:
789 		if ((tmp = *(int *)data))
790 			atomic_set_int(&fp->f_flag, FNONBLOCK);
791 		else
792 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
793 		data = (void *)&tmp;
794 		break;
795 	case FIOASYNC:
796 		if ((tmp = *(int *)data))
797 			atomic_set_int(&fp->f_flag, FASYNC);
798 		else
799 			atomic_clear_int(&fp->f_flag, FASYNC);
800 		data = (void *)&tmp;
801 		break;
802 	}
803 
804 	error = fo_ioctl(fp, com, data, td->td_ucred, td);
805 out:
806 	switch (locked) {
807 	case LA_XLOCKED:
808 		FILEDESC_XUNLOCK(fdp);
809 		break;
810 #ifdef CAPABILITIES
811 	case LA_SLOCKED:
812 		FILEDESC_SUNLOCK(fdp);
813 		break;
814 #endif
815 	default:
816 		FILEDESC_UNLOCK_ASSERT(fdp);
817 		break;
818 	}
819 	if (fp != NULL)
820 		fdrop(fp, td);
821 	return (error);
822 }
823 
824 int
825 poll_no_poll(int events)
826 {
827 	/*
828 	 * Return true for read/write.  If the user asked for something
829 	 * special, return POLLNVAL, so that clients have a way of
830 	 * determining reliably whether or not the extended
831 	 * functionality is present without hard-coding knowledge
832 	 * of specific filesystem implementations.
833 	 */
834 	if (events & ~POLLSTANDARD)
835 		return (POLLNVAL);
836 
837 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
838 }
839 
840 int
841 sys_pselect(struct thread *td, struct pselect_args *uap)
842 {
843 	struct timespec ts;
844 	struct timeval tv, *tvp;
845 	sigset_t set, *uset;
846 	int error;
847 
848 	if (uap->ts != NULL) {
849 		error = copyin(uap->ts, &ts, sizeof(ts));
850 		if (error != 0)
851 		    return (error);
852 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
853 		tvp = &tv;
854 	} else
855 		tvp = NULL;
856 	if (uap->sm != NULL) {
857 		error = copyin(uap->sm, &set, sizeof(set));
858 		if (error != 0)
859 			return (error);
860 		uset = &set;
861 	} else
862 		uset = NULL;
863 	return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
864 	    uset, NFDBITS));
865 }
866 
867 int
868 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex,
869     struct timeval *tvp, sigset_t *uset, int abi_nfdbits)
870 {
871 	int error;
872 
873 	if (uset != NULL) {
874 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
875 		    &td->td_oldsigmask, 0);
876 		if (error != 0)
877 			return (error);
878 		td->td_pflags |= TDP_OLDMASK;
879 		/*
880 		 * Make sure that ast() is called on return to
881 		 * usermode and TDP_OLDMASK is cleared, restoring old
882 		 * sigmask.
883 		 */
884 		thread_lock(td);
885 		td->td_flags |= TDF_ASTPENDING;
886 		thread_unlock(td);
887 	}
888 	error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits);
889 	return (error);
890 }
891 
892 #ifndef _SYS_SYSPROTO_H_
893 struct select_args {
894 	int	nd;
895 	fd_set	*in, *ou, *ex;
896 	struct	timeval *tv;
897 };
898 #endif
899 int
900 sys_select(struct thread *td, struct select_args *uap)
901 {
902 	struct timeval tv, *tvp;
903 	int error;
904 
905 	if (uap->tv != NULL) {
906 		error = copyin(uap->tv, &tv, sizeof(tv));
907 		if (error)
908 			return (error);
909 		tvp = &tv;
910 	} else
911 		tvp = NULL;
912 
913 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
914 	    NFDBITS));
915 }
916 
917 /*
918  * In the unlikely case when user specified n greater then the last
919  * open file descriptor, check that no bits are set after the last
920  * valid fd.  We must return EBADF if any is set.
921  *
922  * There are applications that rely on the behaviour.
923  *
924  * nd is fd_lastfile + 1.
925  */
926 static int
927 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits)
928 {
929 	char *addr, *oaddr;
930 	int b, i, res;
931 	uint8_t bits;
932 
933 	if (nd >= ndu || fd_in == NULL)
934 		return (0);
935 
936 	oaddr = NULL;
937 	bits = 0; /* silence gcc */
938 	for (i = nd; i < ndu; i++) {
939 		b = i / NBBY;
940 #if BYTE_ORDER == LITTLE_ENDIAN
941 		addr = (char *)fd_in + b;
942 #else
943 		addr = (char *)fd_in;
944 		if (abi_nfdbits == NFDBITS) {
945 			addr += rounddown(b, sizeof(fd_mask)) +
946 			    sizeof(fd_mask) - 1 - b % sizeof(fd_mask);
947 		} else {
948 			addr += rounddown(b, sizeof(uint32_t)) +
949 			    sizeof(uint32_t) - 1 - b % sizeof(uint32_t);
950 		}
951 #endif
952 		if (addr != oaddr) {
953 			res = fubyte(addr);
954 			if (res == -1)
955 				return (EFAULT);
956 			oaddr = addr;
957 			bits = res;
958 		}
959 		if ((bits & (1 << (i % NBBY))) != 0)
960 			return (EBADF);
961 	}
962 	return (0);
963 }
964 
965 int
966 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
967     fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits)
968 {
969 	struct filedesc *fdp;
970 	/*
971 	 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
972 	 * infds with the new FD_SETSIZE of 1024, and more than enough for
973 	 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
974 	 * of 256.
975 	 */
976 	fd_mask s_selbits[howmany(2048, NFDBITS)];
977 	fd_mask *ibits[3], *obits[3], *selbits, *sbp;
978 	struct timeval rtv;
979 	sbintime_t asbt, precision, rsbt;
980 	u_int nbufbytes, ncpbytes, ncpubytes, nfdbits;
981 	int error, lf, ndu;
982 
983 	if (nd < 0)
984 		return (EINVAL);
985 	fdp = td->td_proc->p_fd;
986 	ndu = nd;
987 	lf = fdp->fd_lastfile;
988 	if (nd > lf + 1)
989 		nd = lf + 1;
990 
991 	error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);
992 	if (error != 0)
993 		return (error);
994 	error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits);
995 	if (error != 0)
996 		return (error);
997 	error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits);
998 	if (error != 0)
999 		return (error);
1000 
1001 	/*
1002 	 * Allocate just enough bits for the non-null fd_sets.  Use the
1003 	 * preallocated auto buffer if possible.
1004 	 */
1005 	nfdbits = roundup(nd, NFDBITS);
1006 	ncpbytes = nfdbits / NBBY;
1007 	ncpubytes = roundup(nd, abi_nfdbits) / NBBY;
1008 	nbufbytes = 0;
1009 	if (fd_in != NULL)
1010 		nbufbytes += 2 * ncpbytes;
1011 	if (fd_ou != NULL)
1012 		nbufbytes += 2 * ncpbytes;
1013 	if (fd_ex != NULL)
1014 		nbufbytes += 2 * ncpbytes;
1015 	if (nbufbytes <= sizeof s_selbits)
1016 		selbits = &s_selbits[0];
1017 	else
1018 		selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
1019 
1020 	/*
1021 	 * Assign pointers into the bit buffers and fetch the input bits.
1022 	 * Put the output buffers together so that they can be bzeroed
1023 	 * together.
1024 	 */
1025 	sbp = selbits;
1026 #define	getbits(name, x) \
1027 	do {								\
1028 		if (name == NULL) {					\
1029 			ibits[x] = NULL;				\
1030 			obits[x] = NULL;				\
1031 		} else {						\
1032 			ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;	\
1033 			obits[x] = sbp;					\
1034 			sbp += ncpbytes / sizeof *sbp;			\
1035 			error = copyin(name, ibits[x], ncpubytes);	\
1036 			if (error != 0)					\
1037 				goto done;				\
1038 			if (ncpbytes != ncpubytes)			\
1039 				bzero((char *)ibits[x] + ncpubytes,	\
1040 				    ncpbytes - ncpubytes);		\
1041 		}							\
1042 	} while (0)
1043 	getbits(fd_in, 0);
1044 	getbits(fd_ou, 1);
1045 	getbits(fd_ex, 2);
1046 #undef	getbits
1047 
1048 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__)
1049 	/*
1050 	 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS,
1051 	 * we are running under 32-bit emulation. This should be more
1052 	 * generic.
1053 	 */
1054 #define swizzle_fdset(bits)						\
1055 	if (abi_nfdbits != NFDBITS && bits != NULL) {			\
1056 		int i;							\
1057 		for (i = 0; i < ncpbytes / sizeof *sbp; i++)		\
1058 			bits[i] = (bits[i] >> 32) | (bits[i] << 32);	\
1059 	}
1060 #else
1061 #define swizzle_fdset(bits)
1062 #endif
1063 
1064 	/* Make sure the bit order makes it through an ABI transition */
1065 	swizzle_fdset(ibits[0]);
1066 	swizzle_fdset(ibits[1]);
1067 	swizzle_fdset(ibits[2]);
1068 
1069 	if (nbufbytes != 0)
1070 		bzero(selbits, nbufbytes / 2);
1071 
1072 	precision = 0;
1073 	if (tvp != NULL) {
1074 		rtv = *tvp;
1075 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1076 		    rtv.tv_usec >= 1000000) {
1077 			error = EINVAL;
1078 			goto done;
1079 		}
1080 		if (!timevalisset(&rtv))
1081 			asbt = 0;
1082 		else if (rtv.tv_sec <= INT32_MAX) {
1083 			rsbt = tvtosbt(rtv);
1084 			precision = rsbt;
1085 			precision >>= tc_precexp;
1086 			if (TIMESEL(&asbt, rsbt))
1087 				asbt += tc_tick_sbt;
1088 			if (asbt <= SBT_MAX - rsbt)
1089 				asbt += rsbt;
1090 			else
1091 				asbt = -1;
1092 		} else
1093 			asbt = -1;
1094 	} else
1095 		asbt = -1;
1096 	seltdinit(td);
1097 	/* Iterate until the timeout expires or descriptors become ready. */
1098 	for (;;) {
1099 		error = selscan(td, ibits, obits, nd);
1100 		if (error || td->td_retval[0] != 0)
1101 			break;
1102 		error = seltdwait(td, asbt, precision);
1103 		if (error)
1104 			break;
1105 		error = selrescan(td, ibits, obits);
1106 		if (error || td->td_retval[0] != 0)
1107 			break;
1108 	}
1109 	seltdclear(td);
1110 
1111 done:
1112 	/* select is not restarted after signals... */
1113 	if (error == ERESTART)
1114 		error = EINTR;
1115 	if (error == EWOULDBLOCK)
1116 		error = 0;
1117 
1118 	/* swizzle bit order back, if necessary */
1119 	swizzle_fdset(obits[0]);
1120 	swizzle_fdset(obits[1]);
1121 	swizzle_fdset(obits[2]);
1122 #undef swizzle_fdset
1123 
1124 #define	putbits(name, x) \
1125 	if (name && (error2 = copyout(obits[x], name, ncpubytes))) \
1126 		error = error2;
1127 	if (error == 0) {
1128 		int error2;
1129 
1130 		putbits(fd_in, 0);
1131 		putbits(fd_ou, 1);
1132 		putbits(fd_ex, 2);
1133 #undef putbits
1134 	}
1135 	if (selbits != &s_selbits[0])
1136 		free(selbits, M_SELECT);
1137 
1138 	return (error);
1139 }
1140 /*
1141  * Convert a select bit set to poll flags.
1142  *
1143  * The backend always returns POLLHUP/POLLERR if appropriate and we
1144  * return this as a set bit in any set.
1145  */
1146 static int select_flags[3] = {
1147     POLLRDNORM | POLLHUP | POLLERR,
1148     POLLWRNORM | POLLHUP | POLLERR,
1149     POLLRDBAND | POLLERR
1150 };
1151 
1152 /*
1153  * Compute the fo_poll flags required for a fd given by the index and
1154  * bit position in the fd_mask array.
1155  */
1156 static __inline int
1157 selflags(fd_mask **ibits, int idx, fd_mask bit)
1158 {
1159 	int flags;
1160 	int msk;
1161 
1162 	flags = 0;
1163 	for (msk = 0; msk < 3; msk++) {
1164 		if (ibits[msk] == NULL)
1165 			continue;
1166 		if ((ibits[msk][idx] & bit) == 0)
1167 			continue;
1168 		flags |= select_flags[msk];
1169 	}
1170 	return (flags);
1171 }
1172 
1173 /*
1174  * Set the appropriate output bits given a mask of fired events and the
1175  * input bits originally requested.
1176  */
1177 static __inline int
1178 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events)
1179 {
1180 	int msk;
1181 	int n;
1182 
1183 	n = 0;
1184 	for (msk = 0; msk < 3; msk++) {
1185 		if ((events & select_flags[msk]) == 0)
1186 			continue;
1187 		if (ibits[msk] == NULL)
1188 			continue;
1189 		if ((ibits[msk][idx] & bit) == 0)
1190 			continue;
1191 		/*
1192 		 * XXX Check for a duplicate set.  This can occur because a
1193 		 * socket calls selrecord() twice for each poll() call
1194 		 * resulting in two selfds per real fd.  selrescan() will
1195 		 * call selsetbits twice as a result.
1196 		 */
1197 		if ((obits[msk][idx] & bit) != 0)
1198 			continue;
1199 		obits[msk][idx] |= bit;
1200 		n++;
1201 	}
1202 
1203 	return (n);
1204 }
1205 
1206 static __inline int
1207 getselfd_cap(struct filedesc *fdp, int fd, struct file **fpp)
1208 {
1209 
1210 	return (fget_unlocked(fdp, fd, &cap_event_rights, fpp, NULL));
1211 }
1212 
1213 /*
1214  * Traverse the list of fds attached to this thread's seltd and check for
1215  * completion.
1216  */
1217 static int
1218 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
1219 {
1220 	struct filedesc *fdp;
1221 	struct selinfo *si;
1222 	struct seltd *stp;
1223 	struct selfd *sfp;
1224 	struct selfd *sfn;
1225 	struct file *fp;
1226 	fd_mask bit;
1227 	int fd, ev, n, idx;
1228 	int error;
1229 
1230 	fdp = td->td_proc->p_fd;
1231 	stp = td->td_sel;
1232 	n = 0;
1233 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1234 		fd = (int)(uintptr_t)sfp->sf_cookie;
1235 		si = sfp->sf_si;
1236 		selfdfree(stp, sfp);
1237 		/* If the selinfo wasn't cleared the event didn't fire. */
1238 		if (si != NULL)
1239 			continue;
1240 		error = getselfd_cap(fdp, fd, &fp);
1241 		if (error)
1242 			return (error);
1243 		idx = fd / NFDBITS;
1244 		bit = (fd_mask)1 << (fd % NFDBITS);
1245 		ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td);
1246 		fdrop(fp, td);
1247 		if (ev != 0)
1248 			n += selsetbits(ibits, obits, idx, bit, ev);
1249 	}
1250 	stp->st_flags = 0;
1251 	td->td_retval[0] = n;
1252 	return (0);
1253 }
1254 
1255 /*
1256  * Perform the initial filedescriptor scan and register ourselves with
1257  * each selinfo.
1258  */
1259 static int
1260 selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd)
1261 {
1262 	struct filedesc *fdp;
1263 	struct file *fp;
1264 	fd_mask bit;
1265 	int ev, flags, end, fd;
1266 	int n, idx;
1267 	int error;
1268 
1269 	fdp = td->td_proc->p_fd;
1270 	n = 0;
1271 	for (idx = 0, fd = 0; fd < nfd; idx++) {
1272 		end = imin(fd + NFDBITS, nfd);
1273 		for (bit = 1; fd < end; bit <<= 1, fd++) {
1274 			/* Compute the list of events we're interested in. */
1275 			flags = selflags(ibits, idx, bit);
1276 			if (flags == 0)
1277 				continue;
1278 			error = getselfd_cap(fdp, fd, &fp);
1279 			if (error)
1280 				return (error);
1281 			selfdalloc(td, (void *)(uintptr_t)fd);
1282 			ev = fo_poll(fp, flags, td->td_ucred, td);
1283 			fdrop(fp, td);
1284 			if (ev != 0)
1285 				n += selsetbits(ibits, obits, idx, bit, ev);
1286 		}
1287 	}
1288 
1289 	td->td_retval[0] = n;
1290 	return (0);
1291 }
1292 
1293 int
1294 sys_poll(struct thread *td, struct poll_args *uap)
1295 {
1296 	struct timespec ts, *tsp;
1297 
1298 	if (uap->timeout != INFTIM) {
1299 		if (uap->timeout < 0)
1300 			return (EINVAL);
1301 		ts.tv_sec = uap->timeout / 1000;
1302 		ts.tv_nsec = (uap->timeout % 1000) * 1000000;
1303 		tsp = &ts;
1304 	} else
1305 		tsp = NULL;
1306 
1307 	return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL));
1308 }
1309 
1310 int
1311 kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds,
1312     struct timespec *tsp, sigset_t *uset)
1313 {
1314 	struct pollfd *kfds;
1315 	struct pollfd stackfds[32];
1316 	sbintime_t sbt, precision, tmp;
1317 	time_t over;
1318 	struct timespec ts;
1319 	int error;
1320 
1321 	precision = 0;
1322 	if (tsp != NULL) {
1323 		if (tsp->tv_sec < 0)
1324 			return (EINVAL);
1325 		if (tsp->tv_nsec < 0 || tsp->tv_nsec >= 1000000000)
1326 			return (EINVAL);
1327 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1328 			sbt = 0;
1329 		else {
1330 			ts = *tsp;
1331 			if (ts.tv_sec > INT32_MAX / 2) {
1332 				over = ts.tv_sec - INT32_MAX / 2;
1333 				ts.tv_sec -= over;
1334 			} else
1335 				over = 0;
1336 			tmp = tstosbt(ts);
1337 			precision = tmp;
1338 			precision >>= tc_precexp;
1339 			if (TIMESEL(&sbt, tmp))
1340 				sbt += tc_tick_sbt;
1341 			sbt += tmp;
1342 		}
1343 	} else
1344 		sbt = -1;
1345 
1346 	/*
1347 	 * This is kinda bogus.  We have fd limits, but that is not
1348 	 * really related to the size of the pollfd array.  Make sure
1349 	 * we let the process use at least FD_SETSIZE entries and at
1350 	 * least enough for the system-wide limits.  We want to be reasonably
1351 	 * safe, but not overly restrictive.
1352 	 */
1353 	if (nfds > maxfilesperproc && nfds > FD_SETSIZE)
1354 		return (EINVAL);
1355 	if (nfds > nitems(stackfds))
1356 		kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
1357 	else
1358 		kfds = stackfds;
1359 	error = copyin(ufds, kfds, nfds * sizeof(*kfds));
1360 	if (error)
1361 		goto done;
1362 
1363 	if (uset != NULL) {
1364 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
1365 		    &td->td_oldsigmask, 0);
1366 		if (error)
1367 			goto done;
1368 		td->td_pflags |= TDP_OLDMASK;
1369 		/*
1370 		 * Make sure that ast() is called on return to
1371 		 * usermode and TDP_OLDMASK is cleared, restoring old
1372 		 * sigmask.
1373 		 */
1374 		thread_lock(td);
1375 		td->td_flags |= TDF_ASTPENDING;
1376 		thread_unlock(td);
1377 	}
1378 
1379 	seltdinit(td);
1380 	/* Iterate until the timeout expires or descriptors become ready. */
1381 	for (;;) {
1382 		error = pollscan(td, kfds, nfds);
1383 		if (error || td->td_retval[0] != 0)
1384 			break;
1385 		error = seltdwait(td, sbt, precision);
1386 		if (error)
1387 			break;
1388 		error = pollrescan(td);
1389 		if (error || td->td_retval[0] != 0)
1390 			break;
1391 	}
1392 	seltdclear(td);
1393 
1394 done:
1395 	/* poll is not restarted after signals... */
1396 	if (error == ERESTART)
1397 		error = EINTR;
1398 	if (error == EWOULDBLOCK)
1399 		error = 0;
1400 	if (error == 0) {
1401 		error = pollout(td, kfds, ufds, nfds);
1402 		if (error)
1403 			goto out;
1404 	}
1405 out:
1406 	if (nfds > nitems(stackfds))
1407 		free(kfds, M_TEMP);
1408 	return (error);
1409 }
1410 
1411 int
1412 sys_ppoll(struct thread *td, struct ppoll_args *uap)
1413 {
1414 	struct timespec ts, *tsp;
1415 	sigset_t set, *ssp;
1416 	int error;
1417 
1418 	if (uap->ts != NULL) {
1419 		error = copyin(uap->ts, &ts, sizeof(ts));
1420 		if (error)
1421 			return (error);
1422 		tsp = &ts;
1423 	} else
1424 		tsp = NULL;
1425 	if (uap->set != NULL) {
1426 		error = copyin(uap->set, &set, sizeof(set));
1427 		if (error)
1428 			return (error);
1429 		ssp = &set;
1430 	} else
1431 		ssp = NULL;
1432 	/*
1433 	 * fds is still a pointer to user space. kern_poll() will
1434 	 * take care of copyin that array to the kernel space.
1435 	 */
1436 
1437 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
1438 }
1439 
1440 static int
1441 pollrescan(struct thread *td)
1442 {
1443 	struct seltd *stp;
1444 	struct selfd *sfp;
1445 	struct selfd *sfn;
1446 	struct selinfo *si;
1447 	struct filedesc *fdp;
1448 	struct file *fp;
1449 	struct pollfd *fd;
1450 	int n;
1451 
1452 	n = 0;
1453 	fdp = td->td_proc->p_fd;
1454 	stp = td->td_sel;
1455 	FILEDESC_SLOCK(fdp);
1456 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1457 		fd = (struct pollfd *)sfp->sf_cookie;
1458 		si = sfp->sf_si;
1459 		selfdfree(stp, sfp);
1460 		/* If the selinfo wasn't cleared the event didn't fire. */
1461 		if (si != NULL)
1462 			continue;
1463 		fp = fdp->fd_ofiles[fd->fd].fde_file;
1464 #ifdef CAPABILITIES
1465 		if (fp == NULL ||
1466 		    cap_check(cap_rights(fdp, fd->fd), &cap_event_rights) != 0)
1467 #else
1468 		if (fp == NULL)
1469 #endif
1470 		{
1471 			fd->revents = POLLNVAL;
1472 			n++;
1473 			continue;
1474 		}
1475 
1476 		/*
1477 		 * Note: backend also returns POLLHUP and
1478 		 * POLLERR if appropriate.
1479 		 */
1480 		fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
1481 		if (fd->revents != 0)
1482 			n++;
1483 	}
1484 	FILEDESC_SUNLOCK(fdp);
1485 	stp->st_flags = 0;
1486 	td->td_retval[0] = n;
1487 	return (0);
1488 }
1489 
1490 
1491 static int
1492 pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
1493 {
1494 	int error = 0;
1495 	u_int i = 0;
1496 	u_int n = 0;
1497 
1498 	for (i = 0; i < nfd; i++) {
1499 		error = copyout(&fds->revents, &ufds->revents,
1500 		    sizeof(ufds->revents));
1501 		if (error)
1502 			return (error);
1503 		if (fds->revents != 0)
1504 			n++;
1505 		fds++;
1506 		ufds++;
1507 	}
1508 	td->td_retval[0] = n;
1509 	return (0);
1510 }
1511 
1512 static int
1513 pollscan(struct thread *td, struct pollfd *fds, u_int nfd)
1514 {
1515 	struct filedesc *fdp = td->td_proc->p_fd;
1516 	struct file *fp;
1517 	int i, n = 0;
1518 
1519 	FILEDESC_SLOCK(fdp);
1520 	for (i = 0; i < nfd; i++, fds++) {
1521 		if (fds->fd > fdp->fd_lastfile) {
1522 			fds->revents = POLLNVAL;
1523 			n++;
1524 		} else if (fds->fd < 0) {
1525 			fds->revents = 0;
1526 		} else {
1527 			fp = fdp->fd_ofiles[fds->fd].fde_file;
1528 #ifdef CAPABILITIES
1529 			if (fp == NULL ||
1530 			    cap_check(cap_rights(fdp, fds->fd), &cap_event_rights) != 0)
1531 #else
1532 			if (fp == NULL)
1533 #endif
1534 			{
1535 				fds->revents = POLLNVAL;
1536 				n++;
1537 			} else {
1538 				/*
1539 				 * Note: backend also returns POLLHUP and
1540 				 * POLLERR if appropriate.
1541 				 */
1542 				selfdalloc(td, fds);
1543 				fds->revents = fo_poll(fp, fds->events,
1544 				    td->td_ucred, td);
1545 				/*
1546 				 * POSIX requires POLLOUT to be never
1547 				 * set simultaneously with POLLHUP.
1548 				 */
1549 				if ((fds->revents & POLLHUP) != 0)
1550 					fds->revents &= ~POLLOUT;
1551 
1552 				if (fds->revents != 0)
1553 					n++;
1554 			}
1555 		}
1556 	}
1557 	FILEDESC_SUNLOCK(fdp);
1558 	td->td_retval[0] = n;
1559 	return (0);
1560 }
1561 
1562 /*
1563  * XXX This was created specifically to support netncp and netsmb.  This
1564  * allows the caller to specify a socket to wait for events on.  It returns
1565  * 0 if any events matched and an error otherwise.  There is no way to
1566  * determine which events fired.
1567  */
1568 int
1569 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
1570 {
1571 	struct timeval rtv;
1572 	sbintime_t asbt, precision, rsbt;
1573 	int error;
1574 
1575 	precision = 0;	/* stupid gcc! */
1576 	if (tvp != NULL) {
1577 		rtv = *tvp;
1578 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1579 		    rtv.tv_usec >= 1000000)
1580 			return (EINVAL);
1581 		if (!timevalisset(&rtv))
1582 			asbt = 0;
1583 		else if (rtv.tv_sec <= INT32_MAX) {
1584 			rsbt = tvtosbt(rtv);
1585 			precision = rsbt;
1586 			precision >>= tc_precexp;
1587 			if (TIMESEL(&asbt, rsbt))
1588 				asbt += tc_tick_sbt;
1589 			if (asbt <= SBT_MAX - rsbt)
1590 				asbt += rsbt;
1591 			else
1592 				asbt = -1;
1593 		} else
1594 			asbt = -1;
1595 	} else
1596 		asbt = -1;
1597 	seltdinit(td);
1598 	/*
1599 	 * Iterate until the timeout expires or the socket becomes ready.
1600 	 */
1601 	for (;;) {
1602 		selfdalloc(td, NULL);
1603 		error = sopoll(so, events, NULL, td);
1604 		/* error here is actually the ready events. */
1605 		if (error)
1606 			return (0);
1607 		error = seltdwait(td, asbt, precision);
1608 		if (error)
1609 			break;
1610 	}
1611 	seltdclear(td);
1612 	/* XXX Duplicates ncp/smb behavior. */
1613 	if (error == ERESTART)
1614 		error = 0;
1615 	return (error);
1616 }
1617 
1618 /*
1619  * Preallocate two selfds associated with 'cookie'.  Some fo_poll routines
1620  * have two select sets, one for read and another for write.
1621  */
1622 static void
1623 selfdalloc(struct thread *td, void *cookie)
1624 {
1625 	struct seltd *stp;
1626 
1627 	stp = td->td_sel;
1628 	if (stp->st_free1 == NULL)
1629 		stp->st_free1 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
1630 	stp->st_free1->sf_td = stp;
1631 	stp->st_free1->sf_cookie = cookie;
1632 	if (stp->st_free2 == NULL)
1633 		stp->st_free2 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
1634 	stp->st_free2->sf_td = stp;
1635 	stp->st_free2->sf_cookie = cookie;
1636 }
1637 
1638 static void
1639 selfdfree(struct seltd *stp, struct selfd *sfp)
1640 {
1641 	STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
1642 	if (sfp->sf_si != NULL) {
1643 		mtx_lock(sfp->sf_mtx);
1644 		if (sfp->sf_si != NULL) {
1645 			TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
1646 			refcount_release(&sfp->sf_refs);
1647 		}
1648 		mtx_unlock(sfp->sf_mtx);
1649 	}
1650 	if (refcount_release(&sfp->sf_refs))
1651 		uma_zfree(selfd_zone, sfp);
1652 }
1653 
1654 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */
1655 void
1656 seldrain(struct selinfo *sip)
1657 {
1658 
1659 	/*
1660 	 * This feature is already provided by doselwakeup(), thus it is
1661 	 * enough to go for it.
1662 	 * Eventually, the context, should take care to avoid races
1663 	 * between thread calling select()/poll() and file descriptor
1664 	 * detaching, but, again, the races are just the same as
1665 	 * selwakeup().
1666 	 */
1667         doselwakeup(sip, -1);
1668 }
1669 
1670 /*
1671  * Record a select request.
1672  */
1673 void
1674 selrecord(struct thread *selector, struct selinfo *sip)
1675 {
1676 	struct selfd *sfp;
1677 	struct seltd *stp;
1678 	struct mtx *mtxp;
1679 
1680 	stp = selector->td_sel;
1681 	/*
1682 	 * Don't record when doing a rescan.
1683 	 */
1684 	if (stp->st_flags & SELTD_RESCAN)
1685 		return;
1686 	/*
1687 	 * Grab one of the preallocated descriptors.
1688 	 */
1689 	sfp = NULL;
1690 	if ((sfp = stp->st_free1) != NULL)
1691 		stp->st_free1 = NULL;
1692 	else if ((sfp = stp->st_free2) != NULL)
1693 		stp->st_free2 = NULL;
1694 	else
1695 		panic("selrecord: No free selfd on selq");
1696 	mtxp = sip->si_mtx;
1697 	if (mtxp == NULL)
1698 		mtxp = mtx_pool_find(mtxpool_select, sip);
1699 	/*
1700 	 * Initialize the sfp and queue it in the thread.
1701 	 */
1702 	sfp->sf_si = sip;
1703 	sfp->sf_mtx = mtxp;
1704 	refcount_init(&sfp->sf_refs, 2);
1705 	STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
1706 	/*
1707 	 * Now that we've locked the sip, check for initialization.
1708 	 */
1709 	mtx_lock(mtxp);
1710 	if (sip->si_mtx == NULL) {
1711 		sip->si_mtx = mtxp;
1712 		TAILQ_INIT(&sip->si_tdlist);
1713 	}
1714 	/*
1715 	 * Add this thread to the list of selfds listening on this selinfo.
1716 	 */
1717 	TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
1718 	mtx_unlock(sip->si_mtx);
1719 }
1720 
1721 /* Wake up a selecting thread. */
1722 void
1723 selwakeup(struct selinfo *sip)
1724 {
1725 	doselwakeup(sip, -1);
1726 }
1727 
1728 /* Wake up a selecting thread, and set its priority. */
1729 void
1730 selwakeuppri(struct selinfo *sip, int pri)
1731 {
1732 	doselwakeup(sip, pri);
1733 }
1734 
1735 /*
1736  * Do a wakeup when a selectable event occurs.
1737  */
1738 static void
1739 doselwakeup(struct selinfo *sip, int pri)
1740 {
1741 	struct selfd *sfp;
1742 	struct selfd *sfn;
1743 	struct seltd *stp;
1744 
1745 	/* If it's not initialized there can't be any waiters. */
1746 	if (sip->si_mtx == NULL)
1747 		return;
1748 	/*
1749 	 * Locking the selinfo locks all selfds associated with it.
1750 	 */
1751 	mtx_lock(sip->si_mtx);
1752 	TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
1753 		/*
1754 		 * Once we remove this sfp from the list and clear the
1755 		 * sf_si seltdclear will know to ignore this si.
1756 		 */
1757 		TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
1758 		sfp->sf_si = NULL;
1759 		stp = sfp->sf_td;
1760 		mtx_lock(&stp->st_mtx);
1761 		stp->st_flags |= SELTD_PENDING;
1762 		cv_broadcastpri(&stp->st_wait, pri);
1763 		mtx_unlock(&stp->st_mtx);
1764 		if (refcount_release(&sfp->sf_refs))
1765 			uma_zfree(selfd_zone, sfp);
1766 	}
1767 	mtx_unlock(sip->si_mtx);
1768 }
1769 
1770 static void
1771 seltdinit(struct thread *td)
1772 {
1773 	struct seltd *stp;
1774 
1775 	if ((stp = td->td_sel) != NULL)
1776 		goto out;
1777 	td->td_sel = stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
1778 	mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
1779 	cv_init(&stp->st_wait, "select");
1780 out:
1781 	stp->st_flags = 0;
1782 	STAILQ_INIT(&stp->st_selq);
1783 }
1784 
1785 static int
1786 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision)
1787 {
1788 	struct seltd *stp;
1789 	int error;
1790 
1791 	stp = td->td_sel;
1792 	/*
1793 	 * An event of interest may occur while we do not hold the seltd
1794 	 * locked so check the pending flag before we sleep.
1795 	 */
1796 	mtx_lock(&stp->st_mtx);
1797 	/*
1798 	 * Any further calls to selrecord will be a rescan.
1799 	 */
1800 	stp->st_flags |= SELTD_RESCAN;
1801 	if (stp->st_flags & SELTD_PENDING) {
1802 		mtx_unlock(&stp->st_mtx);
1803 		return (0);
1804 	}
1805 	if (sbt == 0)
1806 		error = EWOULDBLOCK;
1807 	else if (sbt != -1)
1808 		error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx,
1809 		    sbt, precision, C_ABSOLUTE);
1810 	else
1811 		error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
1812 	mtx_unlock(&stp->st_mtx);
1813 
1814 	return (error);
1815 }
1816 
1817 void
1818 seltdfini(struct thread *td)
1819 {
1820 	struct seltd *stp;
1821 
1822 	stp = td->td_sel;
1823 	if (stp == NULL)
1824 		return;
1825 	if (stp->st_free1)
1826 		uma_zfree(selfd_zone, stp->st_free1);
1827 	if (stp->st_free2)
1828 		uma_zfree(selfd_zone, stp->st_free2);
1829 	td->td_sel = NULL;
1830 	cv_destroy(&stp->st_wait);
1831 	mtx_destroy(&stp->st_mtx);
1832 	free(stp, M_SELECT);
1833 }
1834 
1835 /*
1836  * Remove the references to the thread from all of the objects we were
1837  * polling.
1838  */
1839 static void
1840 seltdclear(struct thread *td)
1841 {
1842 	struct seltd *stp;
1843 	struct selfd *sfp;
1844 	struct selfd *sfn;
1845 
1846 	stp = td->td_sel;
1847 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
1848 		selfdfree(stp, sfp);
1849 	stp->st_flags = 0;
1850 }
1851 
1852 static void selectinit(void *);
1853 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
1854 static void
1855 selectinit(void *dummy __unused)
1856 {
1857 
1858 	selfd_zone = uma_zcreate("selfd", sizeof(struct selfd), NULL, NULL,
1859 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1860 	mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF);
1861 }
1862 
1863 /*
1864  * Set up a syscall return value that follows the convention specified for
1865  * posix_* functions.
1866  */
1867 int
1868 kern_posix_error(struct thread *td, int error)
1869 {
1870 
1871 	if (error <= 0)
1872 		return (error);
1873 	td->td_errno = error;
1874 	td->td_pflags |= TDP_NERRNO;
1875 	td->td_retval[0] = error;
1876 	return (0);
1877 }
1878