1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)sys_generic.c 8.5 (Berkeley) 1/21/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_capsicum.h" 43 #include "opt_ktrace.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysproto.h> 48 #include <sys/capsicum.h> 49 #include <sys/filedesc.h> 50 #include <sys/filio.h> 51 #include <sys/fcntl.h> 52 #include <sys/file.h> 53 #include <sys/lock.h> 54 #include <sys/proc.h> 55 #include <sys/signalvar.h> 56 #include <sys/socketvar.h> 57 #include <sys/uio.h> 58 #include <sys/kernel.h> 59 #include <sys/ktr.h> 60 #include <sys/limits.h> 61 #include <sys/malloc.h> 62 #include <sys/poll.h> 63 #include <sys/resourcevar.h> 64 #include <sys/selinfo.h> 65 #include <sys/sleepqueue.h> 66 #include <sys/syscallsubr.h> 67 #include <sys/sysctl.h> 68 #include <sys/sysent.h> 69 #include <sys/vnode.h> 70 #include <sys/bio.h> 71 #include <sys/buf.h> 72 #include <sys/condvar.h> 73 #ifdef KTRACE 74 #include <sys/ktrace.h> 75 #endif 76 77 #include <security/audit/audit.h> 78 79 /* 80 * The following macro defines how many bytes will be allocated from 81 * the stack instead of memory allocated when passing the IOCTL data 82 * structures from userspace and to the kernel. Some IOCTLs having 83 * small data structures are used very frequently and this small 84 * buffer on the stack gives a significant speedup improvement for 85 * those requests. The value of this define should be greater or equal 86 * to 64 bytes and should also be power of two. The data structure is 87 * currently hard-aligned to a 8-byte boundary on the stack. This 88 * should currently be sufficient for all supported platforms. 89 */ 90 #define SYS_IOCTL_SMALL_SIZE 128 /* bytes */ 91 #define SYS_IOCTL_SMALL_ALIGN 8 /* bytes */ 92 93 #ifdef __LP64__ 94 static int iosize_max_clamp = 0; 95 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW, 96 &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX"); 97 static int devfs_iosize_max_clamp = 1; 98 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW, 99 &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices"); 100 #endif 101 102 /* 103 * Assert that the return value of read(2) and write(2) syscalls fits 104 * into a register. If not, an architecture will need to provide the 105 * usermode wrappers to reconstruct the result. 106 */ 107 CTASSERT(sizeof(register_t) >= sizeof(size_t)); 108 109 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer"); 110 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer"); 111 MALLOC_DEFINE(M_IOV, "iov", "large iov's"); 112 113 static int pollout(struct thread *, struct pollfd *, struct pollfd *, 114 u_int); 115 static int pollscan(struct thread *, struct pollfd *, u_int); 116 static int pollrescan(struct thread *); 117 static int selscan(struct thread *, fd_mask **, fd_mask **, int); 118 static int selrescan(struct thread *, fd_mask **, fd_mask **); 119 static void selfdalloc(struct thread *, void *); 120 static void selfdfree(struct seltd *, struct selfd *); 121 static int dofileread(struct thread *, int, struct file *, struct uio *, 122 off_t, int); 123 static int dofilewrite(struct thread *, int, struct file *, struct uio *, 124 off_t, int); 125 static void doselwakeup(struct selinfo *, int); 126 static void seltdinit(struct thread *); 127 static int seltdwait(struct thread *, sbintime_t, sbintime_t); 128 static void seltdclear(struct thread *); 129 130 /* 131 * One seltd per-thread allocated on demand as needed. 132 * 133 * t - protected by st_mtx 134 * k - Only accessed by curthread or read-only 135 */ 136 struct seltd { 137 STAILQ_HEAD(, selfd) st_selq; /* (k) List of selfds. */ 138 struct selfd *st_free1; /* (k) free fd for read set. */ 139 struct selfd *st_free2; /* (k) free fd for write set. */ 140 struct mtx st_mtx; /* Protects struct seltd */ 141 struct cv st_wait; /* (t) Wait channel. */ 142 int st_flags; /* (t) SELTD_ flags. */ 143 }; 144 145 #define SELTD_PENDING 0x0001 /* We have pending events. */ 146 #define SELTD_RESCAN 0x0002 /* Doing a rescan. */ 147 148 /* 149 * One selfd allocated per-thread per-file-descriptor. 150 * f - protected by sf_mtx 151 */ 152 struct selfd { 153 STAILQ_ENTRY(selfd) sf_link; /* (k) fds owned by this td. */ 154 TAILQ_ENTRY(selfd) sf_threads; /* (f) fds on this selinfo. */ 155 struct selinfo *sf_si; /* (f) selinfo when linked. */ 156 struct mtx *sf_mtx; /* Pointer to selinfo mtx. */ 157 struct seltd *sf_td; /* (k) owning seltd. */ 158 void *sf_cookie; /* (k) fd or pollfd. */ 159 u_int sf_refs; 160 }; 161 162 static uma_zone_t selfd_zone; 163 static struct mtx_pool *mtxpool_select; 164 165 #ifdef __LP64__ 166 size_t 167 devfs_iosize_max(void) 168 { 169 170 return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ? 171 INT_MAX : SSIZE_MAX); 172 } 173 174 size_t 175 iosize_max(void) 176 { 177 178 return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ? 179 INT_MAX : SSIZE_MAX); 180 } 181 #endif 182 183 #ifndef _SYS_SYSPROTO_H_ 184 struct read_args { 185 int fd; 186 void *buf; 187 size_t nbyte; 188 }; 189 #endif 190 int 191 sys_read(struct thread *td, struct read_args *uap) 192 { 193 struct uio auio; 194 struct iovec aiov; 195 int error; 196 197 if (uap->nbyte > IOSIZE_MAX) 198 return (EINVAL); 199 aiov.iov_base = uap->buf; 200 aiov.iov_len = uap->nbyte; 201 auio.uio_iov = &aiov; 202 auio.uio_iovcnt = 1; 203 auio.uio_resid = uap->nbyte; 204 auio.uio_segflg = UIO_USERSPACE; 205 error = kern_readv(td, uap->fd, &auio); 206 return (error); 207 } 208 209 /* 210 * Positioned read system call 211 */ 212 #ifndef _SYS_SYSPROTO_H_ 213 struct pread_args { 214 int fd; 215 void *buf; 216 size_t nbyte; 217 int pad; 218 off_t offset; 219 }; 220 #endif 221 int 222 sys_pread(struct thread *td, struct pread_args *uap) 223 { 224 225 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); 226 } 227 228 int 229 kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset) 230 { 231 struct uio auio; 232 struct iovec aiov; 233 int error; 234 235 if (nbyte > IOSIZE_MAX) 236 return (EINVAL); 237 aiov.iov_base = buf; 238 aiov.iov_len = nbyte; 239 auio.uio_iov = &aiov; 240 auio.uio_iovcnt = 1; 241 auio.uio_resid = nbyte; 242 auio.uio_segflg = UIO_USERSPACE; 243 error = kern_preadv(td, fd, &auio, offset); 244 return (error); 245 } 246 247 #if defined(COMPAT_FREEBSD6) 248 int 249 freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap) 250 { 251 252 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); 253 } 254 #endif 255 256 /* 257 * Scatter read system call. 258 */ 259 #ifndef _SYS_SYSPROTO_H_ 260 struct readv_args { 261 int fd; 262 struct iovec *iovp; 263 u_int iovcnt; 264 }; 265 #endif 266 int 267 sys_readv(struct thread *td, struct readv_args *uap) 268 { 269 struct uio *auio; 270 int error; 271 272 error = copyinuio(uap->iovp, uap->iovcnt, &auio); 273 if (error) 274 return (error); 275 error = kern_readv(td, uap->fd, auio); 276 free(auio, M_IOV); 277 return (error); 278 } 279 280 int 281 kern_readv(struct thread *td, int fd, struct uio *auio) 282 { 283 struct file *fp; 284 int error; 285 286 error = fget_read(td, fd, &cap_read_rights, &fp); 287 if (error) 288 return (error); 289 error = dofileread(td, fd, fp, auio, (off_t)-1, 0); 290 fdrop(fp, td); 291 return (error); 292 } 293 294 /* 295 * Scatter positioned read system call. 296 */ 297 #ifndef _SYS_SYSPROTO_H_ 298 struct preadv_args { 299 int fd; 300 struct iovec *iovp; 301 u_int iovcnt; 302 off_t offset; 303 }; 304 #endif 305 int 306 sys_preadv(struct thread *td, struct preadv_args *uap) 307 { 308 struct uio *auio; 309 int error; 310 311 error = copyinuio(uap->iovp, uap->iovcnt, &auio); 312 if (error) 313 return (error); 314 error = kern_preadv(td, uap->fd, auio, uap->offset); 315 free(auio, M_IOV); 316 return (error); 317 } 318 319 int 320 kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset) 321 { 322 struct file *fp; 323 int error; 324 325 error = fget_read(td, fd, &cap_pread_rights, &fp); 326 if (error) 327 return (error); 328 if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE)) 329 error = ESPIPE; 330 else if (offset < 0 && 331 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) 332 error = EINVAL; 333 else 334 error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET); 335 fdrop(fp, td); 336 return (error); 337 } 338 339 /* 340 * Common code for readv and preadv that reads data in 341 * from a file using the passed in uio, offset, and flags. 342 */ 343 static int 344 dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio, 345 off_t offset, int flags) 346 { 347 ssize_t cnt; 348 int error; 349 #ifdef KTRACE 350 struct uio *ktruio = NULL; 351 #endif 352 353 AUDIT_ARG_FD(fd); 354 355 /* Finish zero length reads right here */ 356 if (auio->uio_resid == 0) { 357 td->td_retval[0] = 0; 358 return (0); 359 } 360 auio->uio_rw = UIO_READ; 361 auio->uio_offset = offset; 362 auio->uio_td = td; 363 #ifdef KTRACE 364 if (KTRPOINT(td, KTR_GENIO)) 365 ktruio = cloneuio(auio); 366 #endif 367 cnt = auio->uio_resid; 368 if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) { 369 if (auio->uio_resid != cnt && (error == ERESTART || 370 error == EINTR || error == EWOULDBLOCK)) 371 error = 0; 372 } 373 cnt -= auio->uio_resid; 374 #ifdef KTRACE 375 if (ktruio != NULL) { 376 ktruio->uio_resid = cnt; 377 ktrgenio(fd, UIO_READ, ktruio, error); 378 } 379 #endif 380 td->td_retval[0] = cnt; 381 return (error); 382 } 383 384 #ifndef _SYS_SYSPROTO_H_ 385 struct write_args { 386 int fd; 387 const void *buf; 388 size_t nbyte; 389 }; 390 #endif 391 int 392 sys_write(struct thread *td, struct write_args *uap) 393 { 394 struct uio auio; 395 struct iovec aiov; 396 int error; 397 398 if (uap->nbyte > IOSIZE_MAX) 399 return (EINVAL); 400 aiov.iov_base = (void *)(uintptr_t)uap->buf; 401 aiov.iov_len = uap->nbyte; 402 auio.uio_iov = &aiov; 403 auio.uio_iovcnt = 1; 404 auio.uio_resid = uap->nbyte; 405 auio.uio_segflg = UIO_USERSPACE; 406 error = kern_writev(td, uap->fd, &auio); 407 return (error); 408 } 409 410 /* 411 * Positioned write system call. 412 */ 413 #ifndef _SYS_SYSPROTO_H_ 414 struct pwrite_args { 415 int fd; 416 const void *buf; 417 size_t nbyte; 418 int pad; 419 off_t offset; 420 }; 421 #endif 422 int 423 sys_pwrite(struct thread *td, struct pwrite_args *uap) 424 { 425 426 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); 427 } 428 429 int 430 kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte, 431 off_t offset) 432 { 433 struct uio auio; 434 struct iovec aiov; 435 int error; 436 437 if (nbyte > IOSIZE_MAX) 438 return (EINVAL); 439 aiov.iov_base = (void *)(uintptr_t)buf; 440 aiov.iov_len = nbyte; 441 auio.uio_iov = &aiov; 442 auio.uio_iovcnt = 1; 443 auio.uio_resid = nbyte; 444 auio.uio_segflg = UIO_USERSPACE; 445 error = kern_pwritev(td, fd, &auio, offset); 446 return (error); 447 } 448 449 #if defined(COMPAT_FREEBSD6) 450 int 451 freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap) 452 { 453 454 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); 455 } 456 #endif 457 458 /* 459 * Gather write system call. 460 */ 461 #ifndef _SYS_SYSPROTO_H_ 462 struct writev_args { 463 int fd; 464 struct iovec *iovp; 465 u_int iovcnt; 466 }; 467 #endif 468 int 469 sys_writev(struct thread *td, struct writev_args *uap) 470 { 471 struct uio *auio; 472 int error; 473 474 error = copyinuio(uap->iovp, uap->iovcnt, &auio); 475 if (error) 476 return (error); 477 error = kern_writev(td, uap->fd, auio); 478 free(auio, M_IOV); 479 return (error); 480 } 481 482 int 483 kern_writev(struct thread *td, int fd, struct uio *auio) 484 { 485 struct file *fp; 486 int error; 487 488 error = fget_write(td, fd, &cap_write_rights, &fp); 489 if (error) 490 return (error); 491 error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0); 492 fdrop(fp, td); 493 return (error); 494 } 495 496 /* 497 * Gather positioned write system call. 498 */ 499 #ifndef _SYS_SYSPROTO_H_ 500 struct pwritev_args { 501 int fd; 502 struct iovec *iovp; 503 u_int iovcnt; 504 off_t offset; 505 }; 506 #endif 507 int 508 sys_pwritev(struct thread *td, struct pwritev_args *uap) 509 { 510 struct uio *auio; 511 int error; 512 513 error = copyinuio(uap->iovp, uap->iovcnt, &auio); 514 if (error) 515 return (error); 516 error = kern_pwritev(td, uap->fd, auio, uap->offset); 517 free(auio, M_IOV); 518 return (error); 519 } 520 521 int 522 kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset) 523 { 524 struct file *fp; 525 int error; 526 527 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 528 if (error) 529 return (error); 530 if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE)) 531 error = ESPIPE; 532 else if (offset < 0 && 533 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) 534 error = EINVAL; 535 else 536 error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET); 537 fdrop(fp, td); 538 return (error); 539 } 540 541 /* 542 * Common code for writev and pwritev that writes data to 543 * a file using the passed in uio, offset, and flags. 544 */ 545 static int 546 dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio, 547 off_t offset, int flags) 548 { 549 ssize_t cnt; 550 int error; 551 #ifdef KTRACE 552 struct uio *ktruio = NULL; 553 #endif 554 555 AUDIT_ARG_FD(fd); 556 auio->uio_rw = UIO_WRITE; 557 auio->uio_td = td; 558 auio->uio_offset = offset; 559 #ifdef KTRACE 560 if (KTRPOINT(td, KTR_GENIO)) 561 ktruio = cloneuio(auio); 562 #endif 563 cnt = auio->uio_resid; 564 if (fp->f_type == DTYPE_VNODE && 565 (fp->f_vnread_flags & FDEVFS_VNODE) == 0) 566 bwillwrite(); 567 if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) { 568 if (auio->uio_resid != cnt && (error == ERESTART || 569 error == EINTR || error == EWOULDBLOCK)) 570 error = 0; 571 /* Socket layer is responsible for issuing SIGPIPE. */ 572 if (fp->f_type != DTYPE_SOCKET && error == EPIPE) { 573 PROC_LOCK(td->td_proc); 574 tdsignal(td, SIGPIPE); 575 PROC_UNLOCK(td->td_proc); 576 } 577 } 578 cnt -= auio->uio_resid; 579 #ifdef KTRACE 580 if (ktruio != NULL) { 581 ktruio->uio_resid = cnt; 582 ktrgenio(fd, UIO_WRITE, ktruio, error); 583 } 584 #endif 585 td->td_retval[0] = cnt; 586 return (error); 587 } 588 589 /* 590 * Truncate a file given a file descriptor. 591 * 592 * Can't use fget_write() here, since must return EINVAL and not EBADF if the 593 * descriptor isn't writable. 594 */ 595 int 596 kern_ftruncate(struct thread *td, int fd, off_t length) 597 { 598 struct file *fp; 599 int error; 600 601 AUDIT_ARG_FD(fd); 602 if (length < 0) 603 return (EINVAL); 604 error = fget(td, fd, &cap_ftruncate_rights, &fp); 605 if (error) 606 return (error); 607 AUDIT_ARG_FILE(td->td_proc, fp); 608 if (!(fp->f_flag & FWRITE)) { 609 fdrop(fp, td); 610 return (EINVAL); 611 } 612 error = fo_truncate(fp, length, td->td_ucred, td); 613 fdrop(fp, td); 614 return (error); 615 } 616 617 #ifndef _SYS_SYSPROTO_H_ 618 struct ftruncate_args { 619 int fd; 620 int pad; 621 off_t length; 622 }; 623 #endif 624 int 625 sys_ftruncate(struct thread *td, struct ftruncate_args *uap) 626 { 627 628 return (kern_ftruncate(td, uap->fd, uap->length)); 629 } 630 631 #if defined(COMPAT_43) 632 #ifndef _SYS_SYSPROTO_H_ 633 struct oftruncate_args { 634 int fd; 635 long length; 636 }; 637 #endif 638 int 639 oftruncate(struct thread *td, struct oftruncate_args *uap) 640 { 641 642 return (kern_ftruncate(td, uap->fd, uap->length)); 643 } 644 #endif /* COMPAT_43 */ 645 646 #ifndef _SYS_SYSPROTO_H_ 647 struct ioctl_args { 648 int fd; 649 u_long com; 650 caddr_t data; 651 }; 652 #endif 653 /* ARGSUSED */ 654 int 655 sys_ioctl(struct thread *td, struct ioctl_args *uap) 656 { 657 u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN); 658 u_long com; 659 int arg, error; 660 u_int size; 661 caddr_t data; 662 663 if (uap->com > 0xffffffff) { 664 printf( 665 "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n", 666 td->td_proc->p_pid, td->td_name, uap->com); 667 uap->com &= 0xffffffff; 668 } 669 com = uap->com; 670 671 /* 672 * Interpret high order word to find amount of data to be 673 * copied to/from the user's address space. 674 */ 675 size = IOCPARM_LEN(com); 676 if ((size > IOCPARM_MAX) || 677 ((com & (IOC_VOID | IOC_IN | IOC_OUT)) == 0) || 678 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43) 679 ((com & IOC_OUT) && size == 0) || 680 #else 681 ((com & (IOC_IN | IOC_OUT)) && size == 0) || 682 #endif 683 ((com & IOC_VOID) && size > 0 && size != sizeof(int))) 684 return (ENOTTY); 685 686 if (size > 0) { 687 if (com & IOC_VOID) { 688 /* Integer argument. */ 689 arg = (intptr_t)uap->data; 690 data = (void *)&arg; 691 size = 0; 692 } else { 693 if (size > SYS_IOCTL_SMALL_SIZE) 694 data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK); 695 else 696 data = smalldata; 697 } 698 } else 699 data = (void *)&uap->data; 700 if (com & IOC_IN) { 701 error = copyin(uap->data, data, (u_int)size); 702 if (error != 0) 703 goto out; 704 } else if (com & IOC_OUT) { 705 /* 706 * Zero the buffer so the user always 707 * gets back something deterministic. 708 */ 709 bzero(data, size); 710 } 711 712 error = kern_ioctl(td, uap->fd, com, data); 713 714 if (error == 0 && (com & IOC_OUT)) 715 error = copyout(data, uap->data, (u_int)size); 716 717 out: 718 if (size > SYS_IOCTL_SMALL_SIZE) 719 free(data, M_IOCTLOPS); 720 return (error); 721 } 722 723 int 724 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data) 725 { 726 struct file *fp; 727 struct filedesc *fdp; 728 int error, tmp, locked; 729 730 AUDIT_ARG_FD(fd); 731 AUDIT_ARG_CMD(com); 732 733 fdp = td->td_proc->p_fd; 734 735 switch (com) { 736 case FIONCLEX: 737 case FIOCLEX: 738 FILEDESC_XLOCK(fdp); 739 locked = LA_XLOCKED; 740 break; 741 default: 742 #ifdef CAPABILITIES 743 FILEDESC_SLOCK(fdp); 744 locked = LA_SLOCKED; 745 #else 746 locked = LA_UNLOCKED; 747 #endif 748 break; 749 } 750 751 #ifdef CAPABILITIES 752 if ((fp = fget_locked(fdp, fd)) == NULL) { 753 error = EBADF; 754 goto out; 755 } 756 if ((error = cap_ioctl_check(fdp, fd, com)) != 0) { 757 fp = NULL; /* fhold() was not called yet */ 758 goto out; 759 } 760 if (!fhold(fp)) { 761 error = EBADF; 762 fp = NULL; 763 goto out; 764 } 765 if (locked == LA_SLOCKED) { 766 FILEDESC_SUNLOCK(fdp); 767 locked = LA_UNLOCKED; 768 } 769 #else 770 error = fget(td, fd, &cap_ioctl_rights, &fp); 771 if (error != 0) { 772 fp = NULL; 773 goto out; 774 } 775 #endif 776 if ((fp->f_flag & (FREAD | FWRITE)) == 0) { 777 error = EBADF; 778 goto out; 779 } 780 781 switch (com) { 782 case FIONCLEX: 783 fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE; 784 goto out; 785 case FIOCLEX: 786 fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE; 787 goto out; 788 case FIONBIO: 789 if ((tmp = *(int *)data)) 790 atomic_set_int(&fp->f_flag, FNONBLOCK); 791 else 792 atomic_clear_int(&fp->f_flag, FNONBLOCK); 793 data = (void *)&tmp; 794 break; 795 case FIOASYNC: 796 if ((tmp = *(int *)data)) 797 atomic_set_int(&fp->f_flag, FASYNC); 798 else 799 atomic_clear_int(&fp->f_flag, FASYNC); 800 data = (void *)&tmp; 801 break; 802 } 803 804 error = fo_ioctl(fp, com, data, td->td_ucred, td); 805 out: 806 switch (locked) { 807 case LA_XLOCKED: 808 FILEDESC_XUNLOCK(fdp); 809 break; 810 #ifdef CAPABILITIES 811 case LA_SLOCKED: 812 FILEDESC_SUNLOCK(fdp); 813 break; 814 #endif 815 default: 816 FILEDESC_UNLOCK_ASSERT(fdp); 817 break; 818 } 819 if (fp != NULL) 820 fdrop(fp, td); 821 return (error); 822 } 823 824 int 825 poll_no_poll(int events) 826 { 827 /* 828 * Return true for read/write. If the user asked for something 829 * special, return POLLNVAL, so that clients have a way of 830 * determining reliably whether or not the extended 831 * functionality is present without hard-coding knowledge 832 * of specific filesystem implementations. 833 */ 834 if (events & ~POLLSTANDARD) 835 return (POLLNVAL); 836 837 return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 838 } 839 840 int 841 sys_pselect(struct thread *td, struct pselect_args *uap) 842 { 843 struct timespec ts; 844 struct timeval tv, *tvp; 845 sigset_t set, *uset; 846 int error; 847 848 if (uap->ts != NULL) { 849 error = copyin(uap->ts, &ts, sizeof(ts)); 850 if (error != 0) 851 return (error); 852 TIMESPEC_TO_TIMEVAL(&tv, &ts); 853 tvp = &tv; 854 } else 855 tvp = NULL; 856 if (uap->sm != NULL) { 857 error = copyin(uap->sm, &set, sizeof(set)); 858 if (error != 0) 859 return (error); 860 uset = &set; 861 } else 862 uset = NULL; 863 return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 864 uset, NFDBITS)); 865 } 866 867 int 868 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex, 869 struct timeval *tvp, sigset_t *uset, int abi_nfdbits) 870 { 871 int error; 872 873 if (uset != NULL) { 874 error = kern_sigprocmask(td, SIG_SETMASK, uset, 875 &td->td_oldsigmask, 0); 876 if (error != 0) 877 return (error); 878 td->td_pflags |= TDP_OLDMASK; 879 /* 880 * Make sure that ast() is called on return to 881 * usermode and TDP_OLDMASK is cleared, restoring old 882 * sigmask. 883 */ 884 thread_lock(td); 885 td->td_flags |= TDF_ASTPENDING; 886 thread_unlock(td); 887 } 888 error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits); 889 return (error); 890 } 891 892 #ifndef _SYS_SYSPROTO_H_ 893 struct select_args { 894 int nd; 895 fd_set *in, *ou, *ex; 896 struct timeval *tv; 897 }; 898 #endif 899 int 900 sys_select(struct thread *td, struct select_args *uap) 901 { 902 struct timeval tv, *tvp; 903 int error; 904 905 if (uap->tv != NULL) { 906 error = copyin(uap->tv, &tv, sizeof(tv)); 907 if (error) 908 return (error); 909 tvp = &tv; 910 } else 911 tvp = NULL; 912 913 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 914 NFDBITS)); 915 } 916 917 /* 918 * In the unlikely case when user specified n greater then the last 919 * open file descriptor, check that no bits are set after the last 920 * valid fd. We must return EBADF if any is set. 921 * 922 * There are applications that rely on the behaviour. 923 * 924 * nd is fd_lastfile + 1. 925 */ 926 static int 927 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits) 928 { 929 char *addr, *oaddr; 930 int b, i, res; 931 uint8_t bits; 932 933 if (nd >= ndu || fd_in == NULL) 934 return (0); 935 936 oaddr = NULL; 937 bits = 0; /* silence gcc */ 938 for (i = nd; i < ndu; i++) { 939 b = i / NBBY; 940 #if BYTE_ORDER == LITTLE_ENDIAN 941 addr = (char *)fd_in + b; 942 #else 943 addr = (char *)fd_in; 944 if (abi_nfdbits == NFDBITS) { 945 addr += rounddown(b, sizeof(fd_mask)) + 946 sizeof(fd_mask) - 1 - b % sizeof(fd_mask); 947 } else { 948 addr += rounddown(b, sizeof(uint32_t)) + 949 sizeof(uint32_t) - 1 - b % sizeof(uint32_t); 950 } 951 #endif 952 if (addr != oaddr) { 953 res = fubyte(addr); 954 if (res == -1) 955 return (EFAULT); 956 oaddr = addr; 957 bits = res; 958 } 959 if ((bits & (1 << (i % NBBY))) != 0) 960 return (EBADF); 961 } 962 return (0); 963 } 964 965 int 966 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou, 967 fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits) 968 { 969 struct filedesc *fdp; 970 /* 971 * The magic 2048 here is chosen to be just enough for FD_SETSIZE 972 * infds with the new FD_SETSIZE of 1024, and more than enough for 973 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE 974 * of 256. 975 */ 976 fd_mask s_selbits[howmany(2048, NFDBITS)]; 977 fd_mask *ibits[3], *obits[3], *selbits, *sbp; 978 struct timeval rtv; 979 sbintime_t asbt, precision, rsbt; 980 u_int nbufbytes, ncpbytes, ncpubytes, nfdbits; 981 int error, lf, ndu; 982 983 if (nd < 0) 984 return (EINVAL); 985 fdp = td->td_proc->p_fd; 986 ndu = nd; 987 lf = fdp->fd_lastfile; 988 if (nd > lf + 1) 989 nd = lf + 1; 990 991 error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits); 992 if (error != 0) 993 return (error); 994 error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits); 995 if (error != 0) 996 return (error); 997 error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits); 998 if (error != 0) 999 return (error); 1000 1001 /* 1002 * Allocate just enough bits for the non-null fd_sets. Use the 1003 * preallocated auto buffer if possible. 1004 */ 1005 nfdbits = roundup(nd, NFDBITS); 1006 ncpbytes = nfdbits / NBBY; 1007 ncpubytes = roundup(nd, abi_nfdbits) / NBBY; 1008 nbufbytes = 0; 1009 if (fd_in != NULL) 1010 nbufbytes += 2 * ncpbytes; 1011 if (fd_ou != NULL) 1012 nbufbytes += 2 * ncpbytes; 1013 if (fd_ex != NULL) 1014 nbufbytes += 2 * ncpbytes; 1015 if (nbufbytes <= sizeof s_selbits) 1016 selbits = &s_selbits[0]; 1017 else 1018 selbits = malloc(nbufbytes, M_SELECT, M_WAITOK); 1019 1020 /* 1021 * Assign pointers into the bit buffers and fetch the input bits. 1022 * Put the output buffers together so that they can be bzeroed 1023 * together. 1024 */ 1025 sbp = selbits; 1026 #define getbits(name, x) \ 1027 do { \ 1028 if (name == NULL) { \ 1029 ibits[x] = NULL; \ 1030 obits[x] = NULL; \ 1031 } else { \ 1032 ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp; \ 1033 obits[x] = sbp; \ 1034 sbp += ncpbytes / sizeof *sbp; \ 1035 error = copyin(name, ibits[x], ncpubytes); \ 1036 if (error != 0) \ 1037 goto done; \ 1038 if (ncpbytes != ncpubytes) \ 1039 bzero((char *)ibits[x] + ncpubytes, \ 1040 ncpbytes - ncpubytes); \ 1041 } \ 1042 } while (0) 1043 getbits(fd_in, 0); 1044 getbits(fd_ou, 1); 1045 getbits(fd_ex, 2); 1046 #undef getbits 1047 1048 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__) 1049 /* 1050 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS, 1051 * we are running under 32-bit emulation. This should be more 1052 * generic. 1053 */ 1054 #define swizzle_fdset(bits) \ 1055 if (abi_nfdbits != NFDBITS && bits != NULL) { \ 1056 int i; \ 1057 for (i = 0; i < ncpbytes / sizeof *sbp; i++) \ 1058 bits[i] = (bits[i] >> 32) | (bits[i] << 32); \ 1059 } 1060 #else 1061 #define swizzle_fdset(bits) 1062 #endif 1063 1064 /* Make sure the bit order makes it through an ABI transition */ 1065 swizzle_fdset(ibits[0]); 1066 swizzle_fdset(ibits[1]); 1067 swizzle_fdset(ibits[2]); 1068 1069 if (nbufbytes != 0) 1070 bzero(selbits, nbufbytes / 2); 1071 1072 precision = 0; 1073 if (tvp != NULL) { 1074 rtv = *tvp; 1075 if (rtv.tv_sec < 0 || rtv.tv_usec < 0 || 1076 rtv.tv_usec >= 1000000) { 1077 error = EINVAL; 1078 goto done; 1079 } 1080 if (!timevalisset(&rtv)) 1081 asbt = 0; 1082 else if (rtv.tv_sec <= INT32_MAX) { 1083 rsbt = tvtosbt(rtv); 1084 precision = rsbt; 1085 precision >>= tc_precexp; 1086 if (TIMESEL(&asbt, rsbt)) 1087 asbt += tc_tick_sbt; 1088 if (asbt <= SBT_MAX - rsbt) 1089 asbt += rsbt; 1090 else 1091 asbt = -1; 1092 } else 1093 asbt = -1; 1094 } else 1095 asbt = -1; 1096 seltdinit(td); 1097 /* Iterate until the timeout expires or descriptors become ready. */ 1098 for (;;) { 1099 error = selscan(td, ibits, obits, nd); 1100 if (error || td->td_retval[0] != 0) 1101 break; 1102 error = seltdwait(td, asbt, precision); 1103 if (error) 1104 break; 1105 error = selrescan(td, ibits, obits); 1106 if (error || td->td_retval[0] != 0) 1107 break; 1108 } 1109 seltdclear(td); 1110 1111 done: 1112 /* select is not restarted after signals... */ 1113 if (error == ERESTART) 1114 error = EINTR; 1115 if (error == EWOULDBLOCK) 1116 error = 0; 1117 1118 /* swizzle bit order back, if necessary */ 1119 swizzle_fdset(obits[0]); 1120 swizzle_fdset(obits[1]); 1121 swizzle_fdset(obits[2]); 1122 #undef swizzle_fdset 1123 1124 #define putbits(name, x) \ 1125 if (name && (error2 = copyout(obits[x], name, ncpubytes))) \ 1126 error = error2; 1127 if (error == 0) { 1128 int error2; 1129 1130 putbits(fd_in, 0); 1131 putbits(fd_ou, 1); 1132 putbits(fd_ex, 2); 1133 #undef putbits 1134 } 1135 if (selbits != &s_selbits[0]) 1136 free(selbits, M_SELECT); 1137 1138 return (error); 1139 } 1140 /* 1141 * Convert a select bit set to poll flags. 1142 * 1143 * The backend always returns POLLHUP/POLLERR if appropriate and we 1144 * return this as a set bit in any set. 1145 */ 1146 static int select_flags[3] = { 1147 POLLRDNORM | POLLHUP | POLLERR, 1148 POLLWRNORM | POLLHUP | POLLERR, 1149 POLLRDBAND | POLLERR 1150 }; 1151 1152 /* 1153 * Compute the fo_poll flags required for a fd given by the index and 1154 * bit position in the fd_mask array. 1155 */ 1156 static __inline int 1157 selflags(fd_mask **ibits, int idx, fd_mask bit) 1158 { 1159 int flags; 1160 int msk; 1161 1162 flags = 0; 1163 for (msk = 0; msk < 3; msk++) { 1164 if (ibits[msk] == NULL) 1165 continue; 1166 if ((ibits[msk][idx] & bit) == 0) 1167 continue; 1168 flags |= select_flags[msk]; 1169 } 1170 return (flags); 1171 } 1172 1173 /* 1174 * Set the appropriate output bits given a mask of fired events and the 1175 * input bits originally requested. 1176 */ 1177 static __inline int 1178 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events) 1179 { 1180 int msk; 1181 int n; 1182 1183 n = 0; 1184 for (msk = 0; msk < 3; msk++) { 1185 if ((events & select_flags[msk]) == 0) 1186 continue; 1187 if (ibits[msk] == NULL) 1188 continue; 1189 if ((ibits[msk][idx] & bit) == 0) 1190 continue; 1191 /* 1192 * XXX Check for a duplicate set. This can occur because a 1193 * socket calls selrecord() twice for each poll() call 1194 * resulting in two selfds per real fd. selrescan() will 1195 * call selsetbits twice as a result. 1196 */ 1197 if ((obits[msk][idx] & bit) != 0) 1198 continue; 1199 obits[msk][idx] |= bit; 1200 n++; 1201 } 1202 1203 return (n); 1204 } 1205 1206 static __inline int 1207 getselfd_cap(struct filedesc *fdp, int fd, struct file **fpp) 1208 { 1209 1210 return (fget_unlocked(fdp, fd, &cap_event_rights, fpp, NULL)); 1211 } 1212 1213 /* 1214 * Traverse the list of fds attached to this thread's seltd and check for 1215 * completion. 1216 */ 1217 static int 1218 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits) 1219 { 1220 struct filedesc *fdp; 1221 struct selinfo *si; 1222 struct seltd *stp; 1223 struct selfd *sfp; 1224 struct selfd *sfn; 1225 struct file *fp; 1226 fd_mask bit; 1227 int fd, ev, n, idx; 1228 int error; 1229 1230 fdp = td->td_proc->p_fd; 1231 stp = td->td_sel; 1232 n = 0; 1233 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) { 1234 fd = (int)(uintptr_t)sfp->sf_cookie; 1235 si = sfp->sf_si; 1236 selfdfree(stp, sfp); 1237 /* If the selinfo wasn't cleared the event didn't fire. */ 1238 if (si != NULL) 1239 continue; 1240 error = getselfd_cap(fdp, fd, &fp); 1241 if (error) 1242 return (error); 1243 idx = fd / NFDBITS; 1244 bit = (fd_mask)1 << (fd % NFDBITS); 1245 ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td); 1246 fdrop(fp, td); 1247 if (ev != 0) 1248 n += selsetbits(ibits, obits, idx, bit, ev); 1249 } 1250 stp->st_flags = 0; 1251 td->td_retval[0] = n; 1252 return (0); 1253 } 1254 1255 /* 1256 * Perform the initial filedescriptor scan and register ourselves with 1257 * each selinfo. 1258 */ 1259 static int 1260 selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd) 1261 { 1262 struct filedesc *fdp; 1263 struct file *fp; 1264 fd_mask bit; 1265 int ev, flags, end, fd; 1266 int n, idx; 1267 int error; 1268 1269 fdp = td->td_proc->p_fd; 1270 n = 0; 1271 for (idx = 0, fd = 0; fd < nfd; idx++) { 1272 end = imin(fd + NFDBITS, nfd); 1273 for (bit = 1; fd < end; bit <<= 1, fd++) { 1274 /* Compute the list of events we're interested in. */ 1275 flags = selflags(ibits, idx, bit); 1276 if (flags == 0) 1277 continue; 1278 error = getselfd_cap(fdp, fd, &fp); 1279 if (error) 1280 return (error); 1281 selfdalloc(td, (void *)(uintptr_t)fd); 1282 ev = fo_poll(fp, flags, td->td_ucred, td); 1283 fdrop(fp, td); 1284 if (ev != 0) 1285 n += selsetbits(ibits, obits, idx, bit, ev); 1286 } 1287 } 1288 1289 td->td_retval[0] = n; 1290 return (0); 1291 } 1292 1293 int 1294 sys_poll(struct thread *td, struct poll_args *uap) 1295 { 1296 struct timespec ts, *tsp; 1297 1298 if (uap->timeout != INFTIM) { 1299 if (uap->timeout < 0) 1300 return (EINVAL); 1301 ts.tv_sec = uap->timeout / 1000; 1302 ts.tv_nsec = (uap->timeout % 1000) * 1000000; 1303 tsp = &ts; 1304 } else 1305 tsp = NULL; 1306 1307 return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL)); 1308 } 1309 1310 int 1311 kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds, 1312 struct timespec *tsp, sigset_t *uset) 1313 { 1314 struct pollfd *kfds; 1315 struct pollfd stackfds[32]; 1316 sbintime_t sbt, precision, tmp; 1317 time_t over; 1318 struct timespec ts; 1319 int error; 1320 1321 precision = 0; 1322 if (tsp != NULL) { 1323 if (tsp->tv_sec < 0) 1324 return (EINVAL); 1325 if (tsp->tv_nsec < 0 || tsp->tv_nsec >= 1000000000) 1326 return (EINVAL); 1327 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) 1328 sbt = 0; 1329 else { 1330 ts = *tsp; 1331 if (ts.tv_sec > INT32_MAX / 2) { 1332 over = ts.tv_sec - INT32_MAX / 2; 1333 ts.tv_sec -= over; 1334 } else 1335 over = 0; 1336 tmp = tstosbt(ts); 1337 precision = tmp; 1338 precision >>= tc_precexp; 1339 if (TIMESEL(&sbt, tmp)) 1340 sbt += tc_tick_sbt; 1341 sbt += tmp; 1342 } 1343 } else 1344 sbt = -1; 1345 1346 /* 1347 * This is kinda bogus. We have fd limits, but that is not 1348 * really related to the size of the pollfd array. Make sure 1349 * we let the process use at least FD_SETSIZE entries and at 1350 * least enough for the system-wide limits. We want to be reasonably 1351 * safe, but not overly restrictive. 1352 */ 1353 if (nfds > maxfilesperproc && nfds > FD_SETSIZE) 1354 return (EINVAL); 1355 if (nfds > nitems(stackfds)) 1356 kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK); 1357 else 1358 kfds = stackfds; 1359 error = copyin(ufds, kfds, nfds * sizeof(*kfds)); 1360 if (error) 1361 goto done; 1362 1363 if (uset != NULL) { 1364 error = kern_sigprocmask(td, SIG_SETMASK, uset, 1365 &td->td_oldsigmask, 0); 1366 if (error) 1367 goto done; 1368 td->td_pflags |= TDP_OLDMASK; 1369 /* 1370 * Make sure that ast() is called on return to 1371 * usermode and TDP_OLDMASK is cleared, restoring old 1372 * sigmask. 1373 */ 1374 thread_lock(td); 1375 td->td_flags |= TDF_ASTPENDING; 1376 thread_unlock(td); 1377 } 1378 1379 seltdinit(td); 1380 /* Iterate until the timeout expires or descriptors become ready. */ 1381 for (;;) { 1382 error = pollscan(td, kfds, nfds); 1383 if (error || td->td_retval[0] != 0) 1384 break; 1385 error = seltdwait(td, sbt, precision); 1386 if (error) 1387 break; 1388 error = pollrescan(td); 1389 if (error || td->td_retval[0] != 0) 1390 break; 1391 } 1392 seltdclear(td); 1393 1394 done: 1395 /* poll is not restarted after signals... */ 1396 if (error == ERESTART) 1397 error = EINTR; 1398 if (error == EWOULDBLOCK) 1399 error = 0; 1400 if (error == 0) { 1401 error = pollout(td, kfds, ufds, nfds); 1402 if (error) 1403 goto out; 1404 } 1405 out: 1406 if (nfds > nitems(stackfds)) 1407 free(kfds, M_TEMP); 1408 return (error); 1409 } 1410 1411 int 1412 sys_ppoll(struct thread *td, struct ppoll_args *uap) 1413 { 1414 struct timespec ts, *tsp; 1415 sigset_t set, *ssp; 1416 int error; 1417 1418 if (uap->ts != NULL) { 1419 error = copyin(uap->ts, &ts, sizeof(ts)); 1420 if (error) 1421 return (error); 1422 tsp = &ts; 1423 } else 1424 tsp = NULL; 1425 if (uap->set != NULL) { 1426 error = copyin(uap->set, &set, sizeof(set)); 1427 if (error) 1428 return (error); 1429 ssp = &set; 1430 } else 1431 ssp = NULL; 1432 /* 1433 * fds is still a pointer to user space. kern_poll() will 1434 * take care of copyin that array to the kernel space. 1435 */ 1436 1437 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 1438 } 1439 1440 static int 1441 pollrescan(struct thread *td) 1442 { 1443 struct seltd *stp; 1444 struct selfd *sfp; 1445 struct selfd *sfn; 1446 struct selinfo *si; 1447 struct filedesc *fdp; 1448 struct file *fp; 1449 struct pollfd *fd; 1450 int n; 1451 1452 n = 0; 1453 fdp = td->td_proc->p_fd; 1454 stp = td->td_sel; 1455 FILEDESC_SLOCK(fdp); 1456 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) { 1457 fd = (struct pollfd *)sfp->sf_cookie; 1458 si = sfp->sf_si; 1459 selfdfree(stp, sfp); 1460 /* If the selinfo wasn't cleared the event didn't fire. */ 1461 if (si != NULL) 1462 continue; 1463 fp = fdp->fd_ofiles[fd->fd].fde_file; 1464 #ifdef CAPABILITIES 1465 if (fp == NULL || 1466 cap_check(cap_rights(fdp, fd->fd), &cap_event_rights) != 0) 1467 #else 1468 if (fp == NULL) 1469 #endif 1470 { 1471 fd->revents = POLLNVAL; 1472 n++; 1473 continue; 1474 } 1475 1476 /* 1477 * Note: backend also returns POLLHUP and 1478 * POLLERR if appropriate. 1479 */ 1480 fd->revents = fo_poll(fp, fd->events, td->td_ucred, td); 1481 if (fd->revents != 0) 1482 n++; 1483 } 1484 FILEDESC_SUNLOCK(fdp); 1485 stp->st_flags = 0; 1486 td->td_retval[0] = n; 1487 return (0); 1488 } 1489 1490 1491 static int 1492 pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) 1493 { 1494 int error = 0; 1495 u_int i = 0; 1496 u_int n = 0; 1497 1498 for (i = 0; i < nfd; i++) { 1499 error = copyout(&fds->revents, &ufds->revents, 1500 sizeof(ufds->revents)); 1501 if (error) 1502 return (error); 1503 if (fds->revents != 0) 1504 n++; 1505 fds++; 1506 ufds++; 1507 } 1508 td->td_retval[0] = n; 1509 return (0); 1510 } 1511 1512 static int 1513 pollscan(struct thread *td, struct pollfd *fds, u_int nfd) 1514 { 1515 struct filedesc *fdp = td->td_proc->p_fd; 1516 struct file *fp; 1517 int i, n = 0; 1518 1519 FILEDESC_SLOCK(fdp); 1520 for (i = 0; i < nfd; i++, fds++) { 1521 if (fds->fd > fdp->fd_lastfile) { 1522 fds->revents = POLLNVAL; 1523 n++; 1524 } else if (fds->fd < 0) { 1525 fds->revents = 0; 1526 } else { 1527 fp = fdp->fd_ofiles[fds->fd].fde_file; 1528 #ifdef CAPABILITIES 1529 if (fp == NULL || 1530 cap_check(cap_rights(fdp, fds->fd), &cap_event_rights) != 0) 1531 #else 1532 if (fp == NULL) 1533 #endif 1534 { 1535 fds->revents = POLLNVAL; 1536 n++; 1537 } else { 1538 /* 1539 * Note: backend also returns POLLHUP and 1540 * POLLERR if appropriate. 1541 */ 1542 selfdalloc(td, fds); 1543 fds->revents = fo_poll(fp, fds->events, 1544 td->td_ucred, td); 1545 /* 1546 * POSIX requires POLLOUT to be never 1547 * set simultaneously with POLLHUP. 1548 */ 1549 if ((fds->revents & POLLHUP) != 0) 1550 fds->revents &= ~POLLOUT; 1551 1552 if (fds->revents != 0) 1553 n++; 1554 } 1555 } 1556 } 1557 FILEDESC_SUNLOCK(fdp); 1558 td->td_retval[0] = n; 1559 return (0); 1560 } 1561 1562 /* 1563 * XXX This was created specifically to support netncp and netsmb. This 1564 * allows the caller to specify a socket to wait for events on. It returns 1565 * 0 if any events matched and an error otherwise. There is no way to 1566 * determine which events fired. 1567 */ 1568 int 1569 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td) 1570 { 1571 struct timeval rtv; 1572 sbintime_t asbt, precision, rsbt; 1573 int error; 1574 1575 precision = 0; /* stupid gcc! */ 1576 if (tvp != NULL) { 1577 rtv = *tvp; 1578 if (rtv.tv_sec < 0 || rtv.tv_usec < 0 || 1579 rtv.tv_usec >= 1000000) 1580 return (EINVAL); 1581 if (!timevalisset(&rtv)) 1582 asbt = 0; 1583 else if (rtv.tv_sec <= INT32_MAX) { 1584 rsbt = tvtosbt(rtv); 1585 precision = rsbt; 1586 precision >>= tc_precexp; 1587 if (TIMESEL(&asbt, rsbt)) 1588 asbt += tc_tick_sbt; 1589 if (asbt <= SBT_MAX - rsbt) 1590 asbt += rsbt; 1591 else 1592 asbt = -1; 1593 } else 1594 asbt = -1; 1595 } else 1596 asbt = -1; 1597 seltdinit(td); 1598 /* 1599 * Iterate until the timeout expires or the socket becomes ready. 1600 */ 1601 for (;;) { 1602 selfdalloc(td, NULL); 1603 error = sopoll(so, events, NULL, td); 1604 /* error here is actually the ready events. */ 1605 if (error) 1606 return (0); 1607 error = seltdwait(td, asbt, precision); 1608 if (error) 1609 break; 1610 } 1611 seltdclear(td); 1612 /* XXX Duplicates ncp/smb behavior. */ 1613 if (error == ERESTART) 1614 error = 0; 1615 return (error); 1616 } 1617 1618 /* 1619 * Preallocate two selfds associated with 'cookie'. Some fo_poll routines 1620 * have two select sets, one for read and another for write. 1621 */ 1622 static void 1623 selfdalloc(struct thread *td, void *cookie) 1624 { 1625 struct seltd *stp; 1626 1627 stp = td->td_sel; 1628 if (stp->st_free1 == NULL) 1629 stp->st_free1 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO); 1630 stp->st_free1->sf_td = stp; 1631 stp->st_free1->sf_cookie = cookie; 1632 if (stp->st_free2 == NULL) 1633 stp->st_free2 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO); 1634 stp->st_free2->sf_td = stp; 1635 stp->st_free2->sf_cookie = cookie; 1636 } 1637 1638 static void 1639 selfdfree(struct seltd *stp, struct selfd *sfp) 1640 { 1641 STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link); 1642 if (sfp->sf_si != NULL) { 1643 mtx_lock(sfp->sf_mtx); 1644 if (sfp->sf_si != NULL) { 1645 TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads); 1646 refcount_release(&sfp->sf_refs); 1647 } 1648 mtx_unlock(sfp->sf_mtx); 1649 } 1650 if (refcount_release(&sfp->sf_refs)) 1651 uma_zfree(selfd_zone, sfp); 1652 } 1653 1654 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */ 1655 void 1656 seldrain(struct selinfo *sip) 1657 { 1658 1659 /* 1660 * This feature is already provided by doselwakeup(), thus it is 1661 * enough to go for it. 1662 * Eventually, the context, should take care to avoid races 1663 * between thread calling select()/poll() and file descriptor 1664 * detaching, but, again, the races are just the same as 1665 * selwakeup(). 1666 */ 1667 doselwakeup(sip, -1); 1668 } 1669 1670 /* 1671 * Record a select request. 1672 */ 1673 void 1674 selrecord(struct thread *selector, struct selinfo *sip) 1675 { 1676 struct selfd *sfp; 1677 struct seltd *stp; 1678 struct mtx *mtxp; 1679 1680 stp = selector->td_sel; 1681 /* 1682 * Don't record when doing a rescan. 1683 */ 1684 if (stp->st_flags & SELTD_RESCAN) 1685 return; 1686 /* 1687 * Grab one of the preallocated descriptors. 1688 */ 1689 sfp = NULL; 1690 if ((sfp = stp->st_free1) != NULL) 1691 stp->st_free1 = NULL; 1692 else if ((sfp = stp->st_free2) != NULL) 1693 stp->st_free2 = NULL; 1694 else 1695 panic("selrecord: No free selfd on selq"); 1696 mtxp = sip->si_mtx; 1697 if (mtxp == NULL) 1698 mtxp = mtx_pool_find(mtxpool_select, sip); 1699 /* 1700 * Initialize the sfp and queue it in the thread. 1701 */ 1702 sfp->sf_si = sip; 1703 sfp->sf_mtx = mtxp; 1704 refcount_init(&sfp->sf_refs, 2); 1705 STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link); 1706 /* 1707 * Now that we've locked the sip, check for initialization. 1708 */ 1709 mtx_lock(mtxp); 1710 if (sip->si_mtx == NULL) { 1711 sip->si_mtx = mtxp; 1712 TAILQ_INIT(&sip->si_tdlist); 1713 } 1714 /* 1715 * Add this thread to the list of selfds listening on this selinfo. 1716 */ 1717 TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads); 1718 mtx_unlock(sip->si_mtx); 1719 } 1720 1721 /* Wake up a selecting thread. */ 1722 void 1723 selwakeup(struct selinfo *sip) 1724 { 1725 doselwakeup(sip, -1); 1726 } 1727 1728 /* Wake up a selecting thread, and set its priority. */ 1729 void 1730 selwakeuppri(struct selinfo *sip, int pri) 1731 { 1732 doselwakeup(sip, pri); 1733 } 1734 1735 /* 1736 * Do a wakeup when a selectable event occurs. 1737 */ 1738 static void 1739 doselwakeup(struct selinfo *sip, int pri) 1740 { 1741 struct selfd *sfp; 1742 struct selfd *sfn; 1743 struct seltd *stp; 1744 1745 /* If it's not initialized there can't be any waiters. */ 1746 if (sip->si_mtx == NULL) 1747 return; 1748 /* 1749 * Locking the selinfo locks all selfds associated with it. 1750 */ 1751 mtx_lock(sip->si_mtx); 1752 TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) { 1753 /* 1754 * Once we remove this sfp from the list and clear the 1755 * sf_si seltdclear will know to ignore this si. 1756 */ 1757 TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads); 1758 sfp->sf_si = NULL; 1759 stp = sfp->sf_td; 1760 mtx_lock(&stp->st_mtx); 1761 stp->st_flags |= SELTD_PENDING; 1762 cv_broadcastpri(&stp->st_wait, pri); 1763 mtx_unlock(&stp->st_mtx); 1764 if (refcount_release(&sfp->sf_refs)) 1765 uma_zfree(selfd_zone, sfp); 1766 } 1767 mtx_unlock(sip->si_mtx); 1768 } 1769 1770 static void 1771 seltdinit(struct thread *td) 1772 { 1773 struct seltd *stp; 1774 1775 if ((stp = td->td_sel) != NULL) 1776 goto out; 1777 td->td_sel = stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO); 1778 mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF); 1779 cv_init(&stp->st_wait, "select"); 1780 out: 1781 stp->st_flags = 0; 1782 STAILQ_INIT(&stp->st_selq); 1783 } 1784 1785 static int 1786 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision) 1787 { 1788 struct seltd *stp; 1789 int error; 1790 1791 stp = td->td_sel; 1792 /* 1793 * An event of interest may occur while we do not hold the seltd 1794 * locked so check the pending flag before we sleep. 1795 */ 1796 mtx_lock(&stp->st_mtx); 1797 /* 1798 * Any further calls to selrecord will be a rescan. 1799 */ 1800 stp->st_flags |= SELTD_RESCAN; 1801 if (stp->st_flags & SELTD_PENDING) { 1802 mtx_unlock(&stp->st_mtx); 1803 return (0); 1804 } 1805 if (sbt == 0) 1806 error = EWOULDBLOCK; 1807 else if (sbt != -1) 1808 error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx, 1809 sbt, precision, C_ABSOLUTE); 1810 else 1811 error = cv_wait_sig(&stp->st_wait, &stp->st_mtx); 1812 mtx_unlock(&stp->st_mtx); 1813 1814 return (error); 1815 } 1816 1817 void 1818 seltdfini(struct thread *td) 1819 { 1820 struct seltd *stp; 1821 1822 stp = td->td_sel; 1823 if (stp == NULL) 1824 return; 1825 if (stp->st_free1) 1826 uma_zfree(selfd_zone, stp->st_free1); 1827 if (stp->st_free2) 1828 uma_zfree(selfd_zone, stp->st_free2); 1829 td->td_sel = NULL; 1830 cv_destroy(&stp->st_wait); 1831 mtx_destroy(&stp->st_mtx); 1832 free(stp, M_SELECT); 1833 } 1834 1835 /* 1836 * Remove the references to the thread from all of the objects we were 1837 * polling. 1838 */ 1839 static void 1840 seltdclear(struct thread *td) 1841 { 1842 struct seltd *stp; 1843 struct selfd *sfp; 1844 struct selfd *sfn; 1845 1846 stp = td->td_sel; 1847 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) 1848 selfdfree(stp, sfp); 1849 stp->st_flags = 0; 1850 } 1851 1852 static void selectinit(void *); 1853 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL); 1854 static void 1855 selectinit(void *dummy __unused) 1856 { 1857 1858 selfd_zone = uma_zcreate("selfd", sizeof(struct selfd), NULL, NULL, 1859 NULL, NULL, UMA_ALIGN_PTR, 0); 1860 mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF); 1861 } 1862 1863 /* 1864 * Set up a syscall return value that follows the convention specified for 1865 * posix_* functions. 1866 */ 1867 int 1868 kern_posix_error(struct thread *td, int error) 1869 { 1870 1871 if (error <= 0) 1872 return (error); 1873 td->td_errno = error; 1874 td->td_pflags |= TDP_NERRNO; 1875 td->td_retval[0] = error; 1876 return (0); 1877 } 1878