1 /*- 2 * Copyright (c) 2008 Isilon Systems, Inc. 3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com> 4 * Copyright (c) 1998 Berkeley Software Design, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Berkeley Software Design Inc's name may not be used to endorse or 16 * promote products derived from this software without specific prior 17 * written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 32 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 33 */ 34 35 /* 36 * Implementation of the `witness' lock verifier. Originally implemented for 37 * mutexes in BSD/OS. Extended to handle generic lock objects and lock 38 * classes in FreeBSD. 39 */ 40 41 /* 42 * Main Entry: witness 43 * Pronunciation: 'wit-n&s 44 * Function: noun 45 * Etymology: Middle English witnesse, from Old English witnes knowledge, 46 * testimony, witness, from 2wit 47 * Date: before 12th century 48 * 1 : attestation of a fact or event : TESTIMONY 49 * 2 : one that gives evidence; specifically : one who testifies in 50 * a cause or before a judicial tribunal 51 * 3 : one asked to be present at a transaction so as to be able to 52 * testify to its having taken place 53 * 4 : one who has personal knowledge of something 54 * 5 a : something serving as evidence or proof : SIGN 55 * b : public affirmation by word or example of usually 56 * religious faith or conviction <the heroic witness to divine 57 * life -- Pilot> 58 * 6 capitalized : a member of the Jehovah's Witnesses 59 */ 60 61 /* 62 * Special rules concerning Giant and lock orders: 63 * 64 * 1) Giant must be acquired before any other mutexes. Stated another way, 65 * no other mutex may be held when Giant is acquired. 66 * 67 * 2) Giant must be released when blocking on a sleepable lock. 68 * 69 * This rule is less obvious, but is a result of Giant providing the same 70 * semantics as spl(). Basically, when a thread sleeps, it must release 71 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule 72 * 2). 73 * 74 * 3) Giant may be acquired before or after sleepable locks. 75 * 76 * This rule is also not quite as obvious. Giant may be acquired after 77 * a sleepable lock because it is a non-sleepable lock and non-sleepable 78 * locks may always be acquired while holding a sleepable lock. The second 79 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose 80 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1 81 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and 82 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to 83 * execute. Thus, acquiring Giant both before and after a sleepable lock 84 * will not result in a lock order reversal. 85 */ 86 87 #include <sys/cdefs.h> 88 __FBSDID("$FreeBSD$"); 89 90 #include "opt_ddb.h" 91 #include "opt_hwpmc_hooks.h" 92 #include "opt_stack.h" 93 #include "opt_witness.h" 94 95 #include <sys/param.h> 96 #include <sys/bus.h> 97 #include <sys/kdb.h> 98 #include <sys/kernel.h> 99 #include <sys/ktr.h> 100 #include <sys/lock.h> 101 #include <sys/malloc.h> 102 #include <sys/mutex.h> 103 #include <sys/priv.h> 104 #include <sys/proc.h> 105 #include <sys/sbuf.h> 106 #include <sys/sched.h> 107 #include <sys/stack.h> 108 #include <sys/sysctl.h> 109 #include <sys/systm.h> 110 111 #ifdef DDB 112 #include <ddb/ddb.h> 113 #endif 114 115 #include <machine/stdarg.h> 116 117 #if !defined(DDB) && !defined(STACK) 118 #error "DDB or STACK options are required for WITNESS" 119 #endif 120 121 /* Note that these traces do not work with KTR_ALQ. */ 122 #if 0 123 #define KTR_WITNESS KTR_SUBSYS 124 #else 125 #define KTR_WITNESS 0 126 #endif 127 128 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */ 129 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */ 130 #define LI_NORELEASE 0x00020000 /* Lock not allowed to be released. */ 131 132 /* Define this to check for blessed mutexes */ 133 #undef BLESSING 134 135 #ifndef WITNESS_COUNT 136 #define WITNESS_COUNT 1536 137 #endif 138 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4) 139 #define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */ 140 #define WITNESS_PENDLIST (1024 + MAXCPU) 141 142 /* Allocate 256 KB of stack data space */ 143 #define WITNESS_LO_DATA_COUNT 2048 144 145 /* Prime, gives load factor of ~2 at full load */ 146 #define WITNESS_LO_HASH_SIZE 1021 147 148 /* 149 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads 150 * will hold LOCK_NCHILDREN locks. We handle failure ok, and we should 151 * probably be safe for the most part, but it's still a SWAG. 152 */ 153 #define LOCK_NCHILDREN 5 154 #define LOCK_CHILDCOUNT 2048 155 156 #define MAX_W_NAME 64 157 158 #define BADSTACK_SBUF_SIZE (256 * WITNESS_COUNT) 159 #define FULLGRAPH_SBUF_SIZE 512 160 161 /* 162 * These flags go in the witness relationship matrix and describe the 163 * relationship between any two struct witness objects. 164 */ 165 #define WITNESS_UNRELATED 0x00 /* No lock order relation. */ 166 #define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */ 167 #define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */ 168 #define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */ 169 #define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */ 170 #define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR) 171 #define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT) 172 #define WITNESS_RELATED_MASK \ 173 (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK) 174 #define WITNESS_REVERSAL 0x10 /* A lock order reversal has been 175 * observed. */ 176 #define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */ 177 #define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */ 178 #define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */ 179 180 /* Descendant to ancestor flags */ 181 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2) 182 183 /* Ancestor to descendant flags */ 184 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2) 185 186 #define WITNESS_INDEX_ASSERT(i) \ 187 MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT) 188 189 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness"); 190 191 /* 192 * Lock instances. A lock instance is the data associated with a lock while 193 * it is held by witness. For example, a lock instance will hold the 194 * recursion count of a lock. Lock instances are held in lists. Spin locks 195 * are held in a per-cpu list while sleep locks are held in per-thread list. 196 */ 197 struct lock_instance { 198 struct lock_object *li_lock; 199 const char *li_file; 200 int li_line; 201 u_int li_flags; 202 }; 203 204 /* 205 * A simple list type used to build the list of locks held by a thread 206 * or CPU. We can't simply embed the list in struct lock_object since a 207 * lock may be held by more than one thread if it is a shared lock. Locks 208 * are added to the head of the list, so we fill up each list entry from 209 * "the back" logically. To ease some of the arithmetic, we actually fill 210 * in each list entry the normal way (children[0] then children[1], etc.) but 211 * when we traverse the list we read children[count-1] as the first entry 212 * down to children[0] as the final entry. 213 */ 214 struct lock_list_entry { 215 struct lock_list_entry *ll_next; 216 struct lock_instance ll_children[LOCK_NCHILDREN]; 217 u_int ll_count; 218 }; 219 220 /* 221 * The main witness structure. One of these per named lock type in the system 222 * (for example, "vnode interlock"). 223 */ 224 struct witness { 225 char w_name[MAX_W_NAME]; 226 uint32_t w_index; /* Index in the relationship matrix */ 227 struct lock_class *w_class; 228 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */ 229 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */ 230 struct witness *w_hash_next; /* Linked list in hash buckets. */ 231 const char *w_file; /* File where last acquired */ 232 uint32_t w_line; /* Line where last acquired */ 233 uint32_t w_refcount; 234 uint16_t w_num_ancestors; /* direct/indirect 235 * ancestor count */ 236 uint16_t w_num_descendants; /* direct/indirect 237 * descendant count */ 238 int16_t w_ddb_level; 239 unsigned w_displayed:1; 240 unsigned w_reversed:1; 241 }; 242 243 STAILQ_HEAD(witness_list, witness); 244 245 /* 246 * The witness hash table. Keys are witness names (const char *), elements are 247 * witness objects (struct witness *). 248 */ 249 struct witness_hash { 250 struct witness *wh_array[WITNESS_HASH_SIZE]; 251 uint32_t wh_size; 252 uint32_t wh_count; 253 }; 254 255 /* 256 * Key type for the lock order data hash table. 257 */ 258 struct witness_lock_order_key { 259 uint16_t from; 260 uint16_t to; 261 }; 262 263 struct witness_lock_order_data { 264 struct stack wlod_stack; 265 struct witness_lock_order_key wlod_key; 266 struct witness_lock_order_data *wlod_next; 267 }; 268 269 /* 270 * The witness lock order data hash table. Keys are witness index tuples 271 * (struct witness_lock_order_key), elements are lock order data objects 272 * (struct witness_lock_order_data). 273 */ 274 struct witness_lock_order_hash { 275 struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE]; 276 u_int wloh_size; 277 u_int wloh_count; 278 }; 279 280 #ifdef BLESSING 281 struct witness_blessed { 282 const char *b_lock1; 283 const char *b_lock2; 284 }; 285 #endif 286 287 struct witness_pendhelp { 288 const char *wh_type; 289 struct lock_object *wh_lock; 290 }; 291 292 struct witness_order_list_entry { 293 const char *w_name; 294 struct lock_class *w_class; 295 }; 296 297 /* 298 * Returns 0 if one of the locks is a spin lock and the other is not. 299 * Returns 1 otherwise. 300 */ 301 static __inline int 302 witness_lock_type_equal(struct witness *w1, struct witness *w2) 303 { 304 305 return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) == 306 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK))); 307 } 308 309 static __inline int 310 witness_lock_order_key_equal(const struct witness_lock_order_key *a, 311 const struct witness_lock_order_key *b) 312 { 313 314 return (a->from == b->from && a->to == b->to); 315 } 316 317 static int _isitmyx(struct witness *w1, struct witness *w2, int rmask, 318 const char *fname); 319 #ifdef KDB 320 static void _witness_debugger(int cond, const char *msg); 321 #endif 322 static void adopt(struct witness *parent, struct witness *child); 323 #ifdef BLESSING 324 static int blessed(struct witness *, struct witness *); 325 #endif 326 static void depart(struct witness *w); 327 static struct witness *enroll(const char *description, 328 struct lock_class *lock_class); 329 static struct lock_instance *find_instance(struct lock_list_entry *list, 330 const struct lock_object *lock); 331 static int isitmychild(struct witness *parent, struct witness *child); 332 static int isitmydescendant(struct witness *parent, struct witness *child); 333 static void itismychild(struct witness *parent, struct witness *child); 334 static int sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS); 335 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS); 336 static int sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS); 337 static void witness_add_fullgraph(struct sbuf *sb, struct witness *parent); 338 #ifdef DDB 339 static void witness_ddb_compute_levels(void); 340 static void witness_ddb_display(int(*)(const char *fmt, ...)); 341 static void witness_ddb_display_descendants(int(*)(const char *fmt, ...), 342 struct witness *, int indent); 343 static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 344 struct witness_list *list); 345 static void witness_ddb_level_descendants(struct witness *parent, int l); 346 static void witness_ddb_list(struct thread *td); 347 #endif 348 static void witness_free(struct witness *m); 349 static struct witness *witness_get(void); 350 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size); 351 static struct witness *witness_hash_get(const char *key); 352 static void witness_hash_put(struct witness *w); 353 static void witness_init_hash_tables(void); 354 static void witness_increment_graph_generation(void); 355 static void witness_lock_list_free(struct lock_list_entry *lle); 356 static struct lock_list_entry *witness_lock_list_get(void); 357 static int witness_lock_order_add(struct witness *parent, 358 struct witness *child); 359 static int witness_lock_order_check(struct witness *parent, 360 struct witness *child); 361 static struct witness_lock_order_data *witness_lock_order_get( 362 struct witness *parent, 363 struct witness *child); 364 static void witness_list_lock(struct lock_instance *instance, 365 int (*prnt)(const char *fmt, ...)); 366 static void witness_setflag(struct lock_object *lock, int flag, int set); 367 368 #ifdef KDB 369 #define witness_debugger(c) _witness_debugger(c, __func__) 370 #else 371 #define witness_debugger(c) 372 #endif 373 374 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, 375 "Witness Locking"); 376 377 /* 378 * If set to 0, lock order checking is disabled. If set to -1, 379 * witness is completely disabled. Otherwise witness performs full 380 * lock order checking for all locks. At runtime, lock order checking 381 * may be toggled. However, witness cannot be reenabled once it is 382 * completely disabled. 383 */ 384 static int witness_watch = 1; 385 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0, 386 sysctl_debug_witness_watch, "I", "witness is watching lock operations"); 387 388 #ifdef KDB 389 /* 390 * When KDB is enabled and witness_kdb is 1, it will cause the system 391 * to drop into kdebug() when: 392 * - a lock hierarchy violation occurs 393 * - locks are held when going to sleep. 394 */ 395 #ifdef WITNESS_KDB 396 int witness_kdb = 1; 397 #else 398 int witness_kdb = 0; 399 #endif 400 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, ""); 401 402 /* 403 * When KDB is enabled and witness_trace is 1, it will cause the system 404 * to print a stack trace: 405 * - a lock hierarchy violation occurs 406 * - locks are held when going to sleep. 407 */ 408 int witness_trace = 1; 409 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, ""); 410 #endif /* KDB */ 411 412 #ifdef WITNESS_SKIPSPIN 413 int witness_skipspin = 1; 414 #else 415 int witness_skipspin = 0; 416 #endif 417 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, ""); 418 419 /* 420 * Call this to print out the relations between locks. 421 */ 422 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD, 423 NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs"); 424 425 /* 426 * Call this to print out the witness faulty stacks. 427 */ 428 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD, 429 NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks"); 430 431 static struct mtx w_mtx; 432 433 /* w_list */ 434 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free); 435 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all); 436 437 /* w_typelist */ 438 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin); 439 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep); 440 441 /* lock list */ 442 static struct lock_list_entry *w_lock_list_free = NULL; 443 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST]; 444 static u_int pending_cnt; 445 446 static int w_free_cnt, w_spin_cnt, w_sleep_cnt; 447 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, ""); 448 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, ""); 449 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0, 450 ""); 451 452 static struct witness *w_data; 453 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1]; 454 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT]; 455 static struct witness_hash w_hash; /* The witness hash table. */ 456 457 /* The lock order data hash */ 458 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT]; 459 static struct witness_lock_order_data *w_lofree = NULL; 460 static struct witness_lock_order_hash w_lohash; 461 static int w_max_used_index = 0; 462 static unsigned int w_generation = 0; 463 static const char w_notrunning[] = "Witness not running\n"; 464 static const char w_stillcold[] = "Witness is still cold\n"; 465 466 467 static struct witness_order_list_entry order_lists[] = { 468 /* 469 * sx locks 470 */ 471 { "proctree", &lock_class_sx }, 472 { "allproc", &lock_class_sx }, 473 { "allprison", &lock_class_sx }, 474 { NULL, NULL }, 475 /* 476 * Various mutexes 477 */ 478 { "Giant", &lock_class_mtx_sleep }, 479 { "pipe mutex", &lock_class_mtx_sleep }, 480 { "sigio lock", &lock_class_mtx_sleep }, 481 { "process group", &lock_class_mtx_sleep }, 482 { "process lock", &lock_class_mtx_sleep }, 483 { "session", &lock_class_mtx_sleep }, 484 { "uidinfo hash", &lock_class_rw }, 485 #ifdef HWPMC_HOOKS 486 { "pmc-sleep", &lock_class_mtx_sleep }, 487 #endif 488 { "time lock", &lock_class_mtx_sleep }, 489 { NULL, NULL }, 490 /* 491 * Sockets 492 */ 493 { "accept", &lock_class_mtx_sleep }, 494 { "so_snd", &lock_class_mtx_sleep }, 495 { "so_rcv", &lock_class_mtx_sleep }, 496 { "sellck", &lock_class_mtx_sleep }, 497 { NULL, NULL }, 498 /* 499 * Routing 500 */ 501 { "so_rcv", &lock_class_mtx_sleep }, 502 { "radix node head", &lock_class_rw }, 503 { "rtentry", &lock_class_mtx_sleep }, 504 { "ifaddr", &lock_class_mtx_sleep }, 505 { NULL, NULL }, 506 /* 507 * IPv4 multicast: 508 * protocol locks before interface locks, after UDP locks. 509 */ 510 { "udpinp", &lock_class_rw }, 511 { "in_multi_mtx", &lock_class_mtx_sleep }, 512 { "igmp_mtx", &lock_class_mtx_sleep }, 513 { "if_addr_lock", &lock_class_rw }, 514 { NULL, NULL }, 515 /* 516 * IPv6 multicast: 517 * protocol locks before interface locks, after UDP locks. 518 */ 519 { "udpinp", &lock_class_rw }, 520 { "in6_multi_mtx", &lock_class_mtx_sleep }, 521 { "mld_mtx", &lock_class_mtx_sleep }, 522 { "if_addr_lock", &lock_class_rw }, 523 { NULL, NULL }, 524 /* 525 * UNIX Domain Sockets 526 */ 527 { "unp_global_rwlock", &lock_class_rw }, 528 { "unp_list_lock", &lock_class_mtx_sleep }, 529 { "unp", &lock_class_mtx_sleep }, 530 { "so_snd", &lock_class_mtx_sleep }, 531 { NULL, NULL }, 532 /* 533 * UDP/IP 534 */ 535 { "udp", &lock_class_rw }, 536 { "udpinp", &lock_class_rw }, 537 { "so_snd", &lock_class_mtx_sleep }, 538 { NULL, NULL }, 539 /* 540 * TCP/IP 541 */ 542 { "tcp", &lock_class_rw }, 543 { "tcpinp", &lock_class_rw }, 544 { "so_snd", &lock_class_mtx_sleep }, 545 { NULL, NULL }, 546 /* 547 * BPF 548 */ 549 { "bpf global lock", &lock_class_mtx_sleep }, 550 { "bpf interface lock", &lock_class_rw }, 551 { "bpf cdev lock", &lock_class_mtx_sleep }, 552 { NULL, NULL }, 553 /* 554 * NFS server 555 */ 556 { "nfsd_mtx", &lock_class_mtx_sleep }, 557 { "so_snd", &lock_class_mtx_sleep }, 558 { NULL, NULL }, 559 560 /* 561 * IEEE 802.11 562 */ 563 { "802.11 com lock", &lock_class_mtx_sleep}, 564 { NULL, NULL }, 565 /* 566 * Network drivers 567 */ 568 { "network driver", &lock_class_mtx_sleep}, 569 { NULL, NULL }, 570 571 /* 572 * Netgraph 573 */ 574 { "ng_node", &lock_class_mtx_sleep }, 575 { "ng_worklist", &lock_class_mtx_sleep }, 576 { NULL, NULL }, 577 /* 578 * CDEV 579 */ 580 { "vm map (system)", &lock_class_mtx_sleep }, 581 { "vm page queue", &lock_class_mtx_sleep }, 582 { "vnode interlock", &lock_class_mtx_sleep }, 583 { "cdev", &lock_class_mtx_sleep }, 584 { NULL, NULL }, 585 /* 586 * VM 587 */ 588 { "vm map (user)", &lock_class_sx }, 589 { "vm object", &lock_class_rw }, 590 { "vm page", &lock_class_mtx_sleep }, 591 { "vm page queue", &lock_class_mtx_sleep }, 592 { "pmap pv global", &lock_class_rw }, 593 { "pmap", &lock_class_mtx_sleep }, 594 { "pmap pv list", &lock_class_rw }, 595 { "vm page free queue", &lock_class_mtx_sleep }, 596 { NULL, NULL }, 597 /* 598 * kqueue/VFS interaction 599 */ 600 { "kqueue", &lock_class_mtx_sleep }, 601 { "struct mount mtx", &lock_class_mtx_sleep }, 602 { "vnode interlock", &lock_class_mtx_sleep }, 603 { NULL, NULL }, 604 /* 605 * ZFS locking 606 */ 607 { "dn->dn_mtx", &lock_class_sx }, 608 { "dr->dt.di.dr_mtx", &lock_class_sx }, 609 { "db->db_mtx", &lock_class_sx }, 610 { NULL, NULL }, 611 /* 612 * spin locks 613 */ 614 #ifdef SMP 615 { "ap boot", &lock_class_mtx_spin }, 616 #endif 617 { "rm.mutex_mtx", &lock_class_mtx_spin }, 618 { "sio", &lock_class_mtx_spin }, 619 { "scrlock", &lock_class_mtx_spin }, 620 #ifdef __i386__ 621 { "cy", &lock_class_mtx_spin }, 622 #endif 623 #ifdef __sparc64__ 624 { "pcib_mtx", &lock_class_mtx_spin }, 625 { "rtc_mtx", &lock_class_mtx_spin }, 626 #endif 627 { "scc_hwmtx", &lock_class_mtx_spin }, 628 { "uart_hwmtx", &lock_class_mtx_spin }, 629 { "fast_taskqueue", &lock_class_mtx_spin }, 630 { "intr table", &lock_class_mtx_spin }, 631 #ifdef HWPMC_HOOKS 632 { "pmc-per-proc", &lock_class_mtx_spin }, 633 #endif 634 { "process slock", &lock_class_mtx_spin }, 635 { "sleepq chain", &lock_class_mtx_spin }, 636 { "umtx lock", &lock_class_mtx_spin }, 637 { "rm_spinlock", &lock_class_mtx_spin }, 638 { "turnstile chain", &lock_class_mtx_spin }, 639 { "turnstile lock", &lock_class_mtx_spin }, 640 { "sched lock", &lock_class_mtx_spin }, 641 { "td_contested", &lock_class_mtx_spin }, 642 { "callout", &lock_class_mtx_spin }, 643 { "entropy harvest mutex", &lock_class_mtx_spin }, 644 { "syscons video lock", &lock_class_mtx_spin }, 645 #ifdef SMP 646 { "smp rendezvous", &lock_class_mtx_spin }, 647 #endif 648 #ifdef __powerpc__ 649 { "tlb0", &lock_class_mtx_spin }, 650 #endif 651 /* 652 * leaf locks 653 */ 654 { "intrcnt", &lock_class_mtx_spin }, 655 { "icu", &lock_class_mtx_spin }, 656 #ifdef __i386__ 657 { "allpmaps", &lock_class_mtx_spin }, 658 { "descriptor tables", &lock_class_mtx_spin }, 659 #endif 660 { "clk", &lock_class_mtx_spin }, 661 { "cpuset", &lock_class_mtx_spin }, 662 { "mprof lock", &lock_class_mtx_spin }, 663 { "zombie lock", &lock_class_mtx_spin }, 664 { "ALD Queue", &lock_class_mtx_spin }, 665 #if defined(__i386__) || defined(__amd64__) 666 { "pcicfg", &lock_class_mtx_spin }, 667 { "NDIS thread lock", &lock_class_mtx_spin }, 668 #endif 669 { "tw_osl_io_lock", &lock_class_mtx_spin }, 670 { "tw_osl_q_lock", &lock_class_mtx_spin }, 671 { "tw_cl_io_lock", &lock_class_mtx_spin }, 672 { "tw_cl_intr_lock", &lock_class_mtx_spin }, 673 { "tw_cl_gen_lock", &lock_class_mtx_spin }, 674 #ifdef HWPMC_HOOKS 675 { "pmc-leaf", &lock_class_mtx_spin }, 676 #endif 677 { "blocked lock", &lock_class_mtx_spin }, 678 { NULL, NULL }, 679 { NULL, NULL } 680 }; 681 682 #ifdef BLESSING 683 /* 684 * Pairs of locks which have been blessed 685 * Don't complain about order problems with blessed locks 686 */ 687 static struct witness_blessed blessed_list[] = { 688 }; 689 static int blessed_count = 690 sizeof(blessed_list) / sizeof(struct witness_blessed); 691 #endif 692 693 /* 694 * This global is set to 0 once it becomes safe to use the witness code. 695 */ 696 static int witness_cold = 1; 697 698 /* 699 * This global is set to 1 once the static lock orders have been enrolled 700 * so that a warning can be issued for any spin locks enrolled later. 701 */ 702 static int witness_spin_warn = 0; 703 704 /* Trim useless garbage from filenames. */ 705 static const char * 706 fixup_filename(const char *file) 707 { 708 709 if (file == NULL) 710 return (NULL); 711 while (strncmp(file, "../", 3) == 0) 712 file += 3; 713 return (file); 714 } 715 716 /* 717 * The WITNESS-enabled diagnostic code. Note that the witness code does 718 * assume that the early boot is single-threaded at least until after this 719 * routine is completed. 720 */ 721 static void 722 witness_initialize(void *dummy __unused) 723 { 724 struct lock_object *lock; 725 struct witness_order_list_entry *order; 726 struct witness *w, *w1; 727 int i; 728 729 w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS, 730 M_NOWAIT | M_ZERO); 731 732 /* 733 * We have to release Giant before initializing its witness 734 * structure so that WITNESS doesn't get confused. 735 */ 736 mtx_unlock(&Giant); 737 mtx_assert(&Giant, MA_NOTOWNED); 738 739 CTR1(KTR_WITNESS, "%s: initializing witness", __func__); 740 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET | 741 MTX_NOWITNESS | MTX_NOPROFILE); 742 for (i = WITNESS_COUNT - 1; i >= 0; i--) { 743 w = &w_data[i]; 744 memset(w, 0, sizeof(*w)); 745 w_data[i].w_index = i; /* Witness index never changes. */ 746 witness_free(w); 747 } 748 KASSERT(STAILQ_FIRST(&w_free)->w_index == 0, 749 ("%s: Invalid list of free witness objects", __func__)); 750 751 /* Witness with index 0 is not used to aid in debugging. */ 752 STAILQ_REMOVE_HEAD(&w_free, w_list); 753 w_free_cnt--; 754 755 memset(w_rmatrix, 0, 756 (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1))); 757 758 for (i = 0; i < LOCK_CHILDCOUNT; i++) 759 witness_lock_list_free(&w_locklistdata[i]); 760 witness_init_hash_tables(); 761 762 /* First add in all the specified order lists. */ 763 for (order = order_lists; order->w_name != NULL; order++) { 764 w = enroll(order->w_name, order->w_class); 765 if (w == NULL) 766 continue; 767 w->w_file = "order list"; 768 for (order++; order->w_name != NULL; order++) { 769 w1 = enroll(order->w_name, order->w_class); 770 if (w1 == NULL) 771 continue; 772 w1->w_file = "order list"; 773 itismychild(w, w1); 774 w = w1; 775 } 776 } 777 witness_spin_warn = 1; 778 779 /* Iterate through all locks and add them to witness. */ 780 for (i = 0; pending_locks[i].wh_lock != NULL; i++) { 781 lock = pending_locks[i].wh_lock; 782 KASSERT(lock->lo_flags & LO_WITNESS, 783 ("%s: lock %s is on pending list but not LO_WITNESS", 784 __func__, lock->lo_name)); 785 lock->lo_witness = enroll(pending_locks[i].wh_type, 786 LOCK_CLASS(lock)); 787 } 788 789 /* Mark the witness code as being ready for use. */ 790 witness_cold = 0; 791 792 mtx_lock(&Giant); 793 } 794 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, 795 NULL); 796 797 void 798 witness_init(struct lock_object *lock, const char *type) 799 { 800 struct lock_class *class; 801 802 /* Various sanity checks. */ 803 class = LOCK_CLASS(lock); 804 if ((lock->lo_flags & LO_RECURSABLE) != 0 && 805 (class->lc_flags & LC_RECURSABLE) == 0) 806 kassert_panic("%s: lock (%s) %s can not be recursable", 807 __func__, class->lc_name, lock->lo_name); 808 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 809 (class->lc_flags & LC_SLEEPABLE) == 0) 810 kassert_panic("%s: lock (%s) %s can not be sleepable", 811 __func__, class->lc_name, lock->lo_name); 812 if ((lock->lo_flags & LO_UPGRADABLE) != 0 && 813 (class->lc_flags & LC_UPGRADABLE) == 0) 814 kassert_panic("%s: lock (%s) %s can not be upgradable", 815 __func__, class->lc_name, lock->lo_name); 816 817 /* 818 * If we shouldn't watch this lock, then just clear lo_witness. 819 * Otherwise, if witness_cold is set, then it is too early to 820 * enroll this lock, so defer it to witness_initialize() by adding 821 * it to the pending_locks list. If it is not too early, then enroll 822 * the lock now. 823 */ 824 if (witness_watch < 1 || panicstr != NULL || 825 (lock->lo_flags & LO_WITNESS) == 0) 826 lock->lo_witness = NULL; 827 else if (witness_cold) { 828 pending_locks[pending_cnt].wh_lock = lock; 829 pending_locks[pending_cnt++].wh_type = type; 830 if (pending_cnt > WITNESS_PENDLIST) 831 panic("%s: pending locks list is too small, " 832 "increase WITNESS_PENDLIST\n", 833 __func__); 834 } else 835 lock->lo_witness = enroll(type, class); 836 } 837 838 void 839 witness_destroy(struct lock_object *lock) 840 { 841 struct lock_class *class; 842 struct witness *w; 843 844 class = LOCK_CLASS(lock); 845 846 if (witness_cold) 847 panic("lock (%s) %s destroyed while witness_cold", 848 class->lc_name, lock->lo_name); 849 850 /* XXX: need to verify that no one holds the lock */ 851 if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL) 852 return; 853 w = lock->lo_witness; 854 855 mtx_lock_spin(&w_mtx); 856 MPASS(w->w_refcount > 0); 857 w->w_refcount--; 858 859 if (w->w_refcount == 0) 860 depart(w); 861 mtx_unlock_spin(&w_mtx); 862 } 863 864 #ifdef DDB 865 static void 866 witness_ddb_compute_levels(void) 867 { 868 struct witness *w; 869 870 /* 871 * First clear all levels. 872 */ 873 STAILQ_FOREACH(w, &w_all, w_list) 874 w->w_ddb_level = -1; 875 876 /* 877 * Look for locks with no parents and level all their descendants. 878 */ 879 STAILQ_FOREACH(w, &w_all, w_list) { 880 881 /* If the witness has ancestors (is not a root), skip it. */ 882 if (w->w_num_ancestors > 0) 883 continue; 884 witness_ddb_level_descendants(w, 0); 885 } 886 } 887 888 static void 889 witness_ddb_level_descendants(struct witness *w, int l) 890 { 891 int i; 892 893 if (w->w_ddb_level >= l) 894 return; 895 896 w->w_ddb_level = l; 897 l++; 898 899 for (i = 1; i <= w_max_used_index; i++) { 900 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 901 witness_ddb_level_descendants(&w_data[i], l); 902 } 903 } 904 905 static void 906 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...), 907 struct witness *w, int indent) 908 { 909 int i; 910 911 for (i = 0; i < indent; i++) 912 prnt(" "); 913 prnt("%s (type: %s, depth: %d, active refs: %d)", 914 w->w_name, w->w_class->lc_name, 915 w->w_ddb_level, w->w_refcount); 916 if (w->w_displayed) { 917 prnt(" -- (already displayed)\n"); 918 return; 919 } 920 w->w_displayed = 1; 921 if (w->w_file != NULL && w->w_line != 0) 922 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file), 923 w->w_line); 924 else 925 prnt(" -- never acquired\n"); 926 indent++; 927 WITNESS_INDEX_ASSERT(w->w_index); 928 for (i = 1; i <= w_max_used_index; i++) { 929 if (db_pager_quit) 930 return; 931 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 932 witness_ddb_display_descendants(prnt, &w_data[i], 933 indent); 934 } 935 } 936 937 static void 938 witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 939 struct witness_list *list) 940 { 941 struct witness *w; 942 943 STAILQ_FOREACH(w, list, w_typelist) { 944 if (w->w_file == NULL || w->w_ddb_level > 0) 945 continue; 946 947 /* This lock has no anscestors - display its descendants. */ 948 witness_ddb_display_descendants(prnt, w, 0); 949 if (db_pager_quit) 950 return; 951 } 952 } 953 954 static void 955 witness_ddb_display(int(*prnt)(const char *fmt, ...)) 956 { 957 struct witness *w; 958 959 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 960 witness_ddb_compute_levels(); 961 962 /* Clear all the displayed flags. */ 963 STAILQ_FOREACH(w, &w_all, w_list) 964 w->w_displayed = 0; 965 966 /* 967 * First, handle sleep locks which have been acquired at least 968 * once. 969 */ 970 prnt("Sleep locks:\n"); 971 witness_ddb_display_list(prnt, &w_sleep); 972 if (db_pager_quit) 973 return; 974 975 /* 976 * Now do spin locks which have been acquired at least once. 977 */ 978 prnt("\nSpin locks:\n"); 979 witness_ddb_display_list(prnt, &w_spin); 980 if (db_pager_quit) 981 return; 982 983 /* 984 * Finally, any locks which have not been acquired yet. 985 */ 986 prnt("\nLocks which were never acquired:\n"); 987 STAILQ_FOREACH(w, &w_all, w_list) { 988 if (w->w_file != NULL || w->w_refcount == 0) 989 continue; 990 prnt("%s (type: %s, depth: %d)\n", w->w_name, 991 w->w_class->lc_name, w->w_ddb_level); 992 if (db_pager_quit) 993 return; 994 } 995 } 996 #endif /* DDB */ 997 998 int 999 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2) 1000 { 1001 1002 if (witness_watch == -1 || panicstr != NULL) 1003 return (0); 1004 1005 /* Require locks that witness knows about. */ 1006 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL || 1007 lock2->lo_witness == NULL) 1008 return (EINVAL); 1009 1010 mtx_assert(&w_mtx, MA_NOTOWNED); 1011 mtx_lock_spin(&w_mtx); 1012 1013 /* 1014 * If we already have either an explicit or implied lock order that 1015 * is the other way around, then return an error. 1016 */ 1017 if (witness_watch && 1018 isitmydescendant(lock2->lo_witness, lock1->lo_witness)) { 1019 mtx_unlock_spin(&w_mtx); 1020 return (EDOOFUS); 1021 } 1022 1023 /* Try to add the new order. */ 1024 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1025 lock2->lo_witness->w_name, lock1->lo_witness->w_name); 1026 itismychild(lock1->lo_witness, lock2->lo_witness); 1027 mtx_unlock_spin(&w_mtx); 1028 return (0); 1029 } 1030 1031 void 1032 witness_checkorder(struct lock_object *lock, int flags, const char *file, 1033 int line, struct lock_object *interlock) 1034 { 1035 struct lock_list_entry *lock_list, *lle; 1036 struct lock_instance *lock1, *lock2, *plock; 1037 struct lock_class *class, *iclass; 1038 struct witness *w, *w1; 1039 struct thread *td; 1040 int i, j; 1041 1042 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL || 1043 panicstr != NULL) 1044 return; 1045 1046 w = lock->lo_witness; 1047 class = LOCK_CLASS(lock); 1048 td = curthread; 1049 1050 if (class->lc_flags & LC_SLEEPLOCK) { 1051 1052 /* 1053 * Since spin locks include a critical section, this check 1054 * implicitly enforces a lock order of all sleep locks before 1055 * all spin locks. 1056 */ 1057 if (td->td_critnest != 0 && !kdb_active) 1058 kassert_panic("acquiring blockable sleep lock with " 1059 "spinlock or critical section held (%s) %s @ %s:%d", 1060 class->lc_name, lock->lo_name, 1061 fixup_filename(file), line); 1062 1063 /* 1064 * If this is the first lock acquired then just return as 1065 * no order checking is needed. 1066 */ 1067 lock_list = td->td_sleeplocks; 1068 if (lock_list == NULL || lock_list->ll_count == 0) 1069 return; 1070 } else { 1071 1072 /* 1073 * If this is the first lock, just return as no order 1074 * checking is needed. Avoid problems with thread 1075 * migration pinning the thread while checking if 1076 * spinlocks are held. If at least one spinlock is held 1077 * the thread is in a safe path and it is allowed to 1078 * unpin it. 1079 */ 1080 sched_pin(); 1081 lock_list = PCPU_GET(spinlocks); 1082 if (lock_list == NULL || lock_list->ll_count == 0) { 1083 sched_unpin(); 1084 return; 1085 } 1086 sched_unpin(); 1087 } 1088 1089 /* 1090 * Check to see if we are recursing on a lock we already own. If 1091 * so, make sure that we don't mismatch exclusive and shared lock 1092 * acquires. 1093 */ 1094 lock1 = find_instance(lock_list, lock); 1095 if (lock1 != NULL) { 1096 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 && 1097 (flags & LOP_EXCLUSIVE) == 0) { 1098 printf("shared lock of (%s) %s @ %s:%d\n", 1099 class->lc_name, lock->lo_name, 1100 fixup_filename(file), line); 1101 printf("while exclusively locked from %s:%d\n", 1102 fixup_filename(lock1->li_file), lock1->li_line); 1103 kassert_panic("excl->share"); 1104 } 1105 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 && 1106 (flags & LOP_EXCLUSIVE) != 0) { 1107 printf("exclusive lock of (%s) %s @ %s:%d\n", 1108 class->lc_name, lock->lo_name, 1109 fixup_filename(file), line); 1110 printf("while share locked from %s:%d\n", 1111 fixup_filename(lock1->li_file), lock1->li_line); 1112 kassert_panic("share->excl"); 1113 } 1114 return; 1115 } 1116 1117 /* Warn if the interlock is not locked exactly once. */ 1118 if (interlock != NULL) { 1119 iclass = LOCK_CLASS(interlock); 1120 lock1 = find_instance(lock_list, interlock); 1121 if (lock1 == NULL) 1122 kassert_panic("interlock (%s) %s not locked @ %s:%d", 1123 iclass->lc_name, interlock->lo_name, 1124 fixup_filename(file), line); 1125 else if ((lock1->li_flags & LI_RECURSEMASK) != 0) 1126 kassert_panic("interlock (%s) %s recursed @ %s:%d", 1127 iclass->lc_name, interlock->lo_name, 1128 fixup_filename(file), line); 1129 } 1130 1131 /* 1132 * Find the previously acquired lock, but ignore interlocks. 1133 */ 1134 plock = &lock_list->ll_children[lock_list->ll_count - 1]; 1135 if (interlock != NULL && plock->li_lock == interlock) { 1136 if (lock_list->ll_count > 1) 1137 plock = 1138 &lock_list->ll_children[lock_list->ll_count - 2]; 1139 else { 1140 lle = lock_list->ll_next; 1141 1142 /* 1143 * The interlock is the only lock we hold, so 1144 * simply return. 1145 */ 1146 if (lle == NULL) 1147 return; 1148 plock = &lle->ll_children[lle->ll_count - 1]; 1149 } 1150 } 1151 1152 /* 1153 * Try to perform most checks without a lock. If this succeeds we 1154 * can skip acquiring the lock and return success. 1155 */ 1156 w1 = plock->li_lock->lo_witness; 1157 if (witness_lock_order_check(w1, w)) 1158 return; 1159 1160 /* 1161 * Check for duplicate locks of the same type. Note that we only 1162 * have to check for this on the last lock we just acquired. Any 1163 * other cases will be caught as lock order violations. 1164 */ 1165 mtx_lock_spin(&w_mtx); 1166 witness_lock_order_add(w1, w); 1167 if (w1 == w) { 1168 i = w->w_index; 1169 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) && 1170 !(w_rmatrix[i][i] & WITNESS_REVERSAL)) { 1171 w_rmatrix[i][i] |= WITNESS_REVERSAL; 1172 w->w_reversed = 1; 1173 mtx_unlock_spin(&w_mtx); 1174 printf( 1175 "acquiring duplicate lock of same type: \"%s\"\n", 1176 w->w_name); 1177 printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name, 1178 fixup_filename(plock->li_file), plock->li_line); 1179 printf(" 2nd %s @ %s:%d\n", lock->lo_name, 1180 fixup_filename(file), line); 1181 witness_debugger(1); 1182 } else 1183 mtx_unlock_spin(&w_mtx); 1184 return; 1185 } 1186 mtx_assert(&w_mtx, MA_OWNED); 1187 1188 /* 1189 * If we know that the lock we are acquiring comes after 1190 * the lock we most recently acquired in the lock order tree, 1191 * then there is no need for any further checks. 1192 */ 1193 if (isitmychild(w1, w)) 1194 goto out; 1195 1196 for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) { 1197 for (i = lle->ll_count - 1; i >= 0; i--, j++) { 1198 1199 MPASS(j < WITNESS_COUNT); 1200 lock1 = &lle->ll_children[i]; 1201 1202 /* 1203 * Ignore the interlock. 1204 */ 1205 if (interlock == lock1->li_lock) 1206 continue; 1207 1208 /* 1209 * If this lock doesn't undergo witness checking, 1210 * then skip it. 1211 */ 1212 w1 = lock1->li_lock->lo_witness; 1213 if (w1 == NULL) { 1214 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0, 1215 ("lock missing witness structure")); 1216 continue; 1217 } 1218 1219 /* 1220 * If we are locking Giant and this is a sleepable 1221 * lock, then skip it. 1222 */ 1223 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 && 1224 lock == &Giant.lock_object) 1225 continue; 1226 1227 /* 1228 * If we are locking a sleepable lock and this lock 1229 * is Giant, then skip it. 1230 */ 1231 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 1232 lock1->li_lock == &Giant.lock_object) 1233 continue; 1234 1235 /* 1236 * If we are locking a sleepable lock and this lock 1237 * isn't sleepable, we want to treat it as a lock 1238 * order violation to enfore a general lock order of 1239 * sleepable locks before non-sleepable locks. 1240 */ 1241 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1242 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1243 goto reversal; 1244 1245 /* 1246 * If we are locking Giant and this is a non-sleepable 1247 * lock, then treat it as a reversal. 1248 */ 1249 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 && 1250 lock == &Giant.lock_object) 1251 goto reversal; 1252 1253 /* 1254 * Check the lock order hierarchy for a reveresal. 1255 */ 1256 if (!isitmydescendant(w, w1)) 1257 continue; 1258 reversal: 1259 1260 /* 1261 * We have a lock order violation, check to see if it 1262 * is allowed or has already been yelled about. 1263 */ 1264 #ifdef BLESSING 1265 1266 /* 1267 * If the lock order is blessed, just bail. We don't 1268 * look for other lock order violations though, which 1269 * may be a bug. 1270 */ 1271 if (blessed(w, w1)) 1272 goto out; 1273 #endif 1274 1275 /* Bail if this violation is known */ 1276 if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL) 1277 goto out; 1278 1279 /* Record this as a violation */ 1280 w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL; 1281 w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL; 1282 w->w_reversed = w1->w_reversed = 1; 1283 witness_increment_graph_generation(); 1284 mtx_unlock_spin(&w_mtx); 1285 1286 #ifdef WITNESS_NO_VNODE 1287 /* 1288 * There are known LORs between VNODE locks. They are 1289 * not an indication of a bug. VNODE locks are flagged 1290 * as such (LO_IS_VNODE) and we don't yell if the LOR 1291 * is between 2 VNODE locks. 1292 */ 1293 if ((lock->lo_flags & LO_IS_VNODE) != 0 && 1294 (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0) 1295 return; 1296 #endif 1297 1298 /* 1299 * Ok, yell about it. 1300 */ 1301 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1302 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1303 printf( 1304 "lock order reversal: (sleepable after non-sleepable)\n"); 1305 else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 1306 && lock == &Giant.lock_object) 1307 printf( 1308 "lock order reversal: (Giant after non-sleepable)\n"); 1309 else 1310 printf("lock order reversal:\n"); 1311 1312 /* 1313 * Try to locate an earlier lock with 1314 * witness w in our list. 1315 */ 1316 do { 1317 lock2 = &lle->ll_children[i]; 1318 MPASS(lock2->li_lock != NULL); 1319 if (lock2->li_lock->lo_witness == w) 1320 break; 1321 if (i == 0 && lle->ll_next != NULL) { 1322 lle = lle->ll_next; 1323 i = lle->ll_count - 1; 1324 MPASS(i >= 0 && i < LOCK_NCHILDREN); 1325 } else 1326 i--; 1327 } while (i >= 0); 1328 if (i < 0) { 1329 printf(" 1st %p %s (%s) @ %s:%d\n", 1330 lock1->li_lock, lock1->li_lock->lo_name, 1331 w1->w_name, fixup_filename(lock1->li_file), 1332 lock1->li_line); 1333 printf(" 2nd %p %s (%s) @ %s:%d\n", lock, 1334 lock->lo_name, w->w_name, 1335 fixup_filename(file), line); 1336 } else { 1337 printf(" 1st %p %s (%s) @ %s:%d\n", 1338 lock2->li_lock, lock2->li_lock->lo_name, 1339 lock2->li_lock->lo_witness->w_name, 1340 fixup_filename(lock2->li_file), 1341 lock2->li_line); 1342 printf(" 2nd %p %s (%s) @ %s:%d\n", 1343 lock1->li_lock, lock1->li_lock->lo_name, 1344 w1->w_name, fixup_filename(lock1->li_file), 1345 lock1->li_line); 1346 printf(" 3rd %p %s (%s) @ %s:%d\n", lock, 1347 lock->lo_name, w->w_name, 1348 fixup_filename(file), line); 1349 } 1350 witness_debugger(1); 1351 return; 1352 } 1353 } 1354 1355 /* 1356 * If requested, build a new lock order. However, don't build a new 1357 * relationship between a sleepable lock and Giant if it is in the 1358 * wrong direction. The correct lock order is that sleepable locks 1359 * always come before Giant. 1360 */ 1361 if (flags & LOP_NEWORDER && 1362 !(plock->li_lock == &Giant.lock_object && 1363 (lock->lo_flags & LO_SLEEPABLE) != 0)) { 1364 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1365 w->w_name, plock->li_lock->lo_witness->w_name); 1366 itismychild(plock->li_lock->lo_witness, w); 1367 } 1368 out: 1369 mtx_unlock_spin(&w_mtx); 1370 } 1371 1372 void 1373 witness_lock(struct lock_object *lock, int flags, const char *file, int line) 1374 { 1375 struct lock_list_entry **lock_list, *lle; 1376 struct lock_instance *instance; 1377 struct witness *w; 1378 struct thread *td; 1379 1380 if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL || 1381 panicstr != NULL) 1382 return; 1383 w = lock->lo_witness; 1384 td = curthread; 1385 1386 /* Determine lock list for this lock. */ 1387 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK) 1388 lock_list = &td->td_sleeplocks; 1389 else 1390 lock_list = PCPU_PTR(spinlocks); 1391 1392 /* Check to see if we are recursing on a lock we already own. */ 1393 instance = find_instance(*lock_list, lock); 1394 if (instance != NULL) { 1395 instance->li_flags++; 1396 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__, 1397 td->td_proc->p_pid, lock->lo_name, 1398 instance->li_flags & LI_RECURSEMASK); 1399 instance->li_file = file; 1400 instance->li_line = line; 1401 return; 1402 } 1403 1404 /* Update per-witness last file and line acquire. */ 1405 w->w_file = file; 1406 w->w_line = line; 1407 1408 /* Find the next open lock instance in the list and fill it. */ 1409 lle = *lock_list; 1410 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) { 1411 lle = witness_lock_list_get(); 1412 if (lle == NULL) 1413 return; 1414 lle->ll_next = *lock_list; 1415 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__, 1416 td->td_proc->p_pid, lle); 1417 *lock_list = lle; 1418 } 1419 instance = &lle->ll_children[lle->ll_count++]; 1420 instance->li_lock = lock; 1421 instance->li_line = line; 1422 instance->li_file = file; 1423 if ((flags & LOP_EXCLUSIVE) != 0) 1424 instance->li_flags = LI_EXCLUSIVE; 1425 else 1426 instance->li_flags = 0; 1427 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__, 1428 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1); 1429 } 1430 1431 void 1432 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line) 1433 { 1434 struct lock_instance *instance; 1435 struct lock_class *class; 1436 1437 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1438 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1439 return; 1440 class = LOCK_CLASS(lock); 1441 if (witness_watch) { 1442 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1443 kassert_panic( 1444 "upgrade of non-upgradable lock (%s) %s @ %s:%d", 1445 class->lc_name, lock->lo_name, 1446 fixup_filename(file), line); 1447 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1448 kassert_panic( 1449 "upgrade of non-sleep lock (%s) %s @ %s:%d", 1450 class->lc_name, lock->lo_name, 1451 fixup_filename(file), line); 1452 } 1453 instance = find_instance(curthread->td_sleeplocks, lock); 1454 if (instance == NULL) { 1455 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d", 1456 class->lc_name, lock->lo_name, 1457 fixup_filename(file), line); 1458 return; 1459 } 1460 if (witness_watch) { 1461 if ((instance->li_flags & LI_EXCLUSIVE) != 0) 1462 kassert_panic( 1463 "upgrade of exclusive lock (%s) %s @ %s:%d", 1464 class->lc_name, lock->lo_name, 1465 fixup_filename(file), line); 1466 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1467 kassert_panic( 1468 "upgrade of recursed lock (%s) %s r=%d @ %s:%d", 1469 class->lc_name, lock->lo_name, 1470 instance->li_flags & LI_RECURSEMASK, 1471 fixup_filename(file), line); 1472 } 1473 instance->li_flags |= LI_EXCLUSIVE; 1474 } 1475 1476 void 1477 witness_downgrade(struct lock_object *lock, int flags, const char *file, 1478 int line) 1479 { 1480 struct lock_instance *instance; 1481 struct lock_class *class; 1482 1483 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1484 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1485 return; 1486 class = LOCK_CLASS(lock); 1487 if (witness_watch) { 1488 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1489 kassert_panic( 1490 "downgrade of non-upgradable lock (%s) %s @ %s:%d", 1491 class->lc_name, lock->lo_name, 1492 fixup_filename(file), line); 1493 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1494 kassert_panic( 1495 "downgrade of non-sleep lock (%s) %s @ %s:%d", 1496 class->lc_name, lock->lo_name, 1497 fixup_filename(file), line); 1498 } 1499 instance = find_instance(curthread->td_sleeplocks, lock); 1500 if (instance == NULL) { 1501 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d", 1502 class->lc_name, lock->lo_name, 1503 fixup_filename(file), line); 1504 return; 1505 } 1506 if (witness_watch) { 1507 if ((instance->li_flags & LI_EXCLUSIVE) == 0) 1508 kassert_panic( 1509 "downgrade of shared lock (%s) %s @ %s:%d", 1510 class->lc_name, lock->lo_name, 1511 fixup_filename(file), line); 1512 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1513 kassert_panic( 1514 "downgrade of recursed lock (%s) %s r=%d @ %s:%d", 1515 class->lc_name, lock->lo_name, 1516 instance->li_flags & LI_RECURSEMASK, 1517 fixup_filename(file), line); 1518 } 1519 instance->li_flags &= ~LI_EXCLUSIVE; 1520 } 1521 1522 void 1523 witness_unlock(struct lock_object *lock, int flags, const char *file, int line) 1524 { 1525 struct lock_list_entry **lock_list, *lle; 1526 struct lock_instance *instance; 1527 struct lock_class *class; 1528 struct thread *td; 1529 register_t s; 1530 int i, j; 1531 1532 if (witness_cold || lock->lo_witness == NULL || panicstr != NULL) 1533 return; 1534 td = curthread; 1535 class = LOCK_CLASS(lock); 1536 1537 /* Find lock instance associated with this lock. */ 1538 if (class->lc_flags & LC_SLEEPLOCK) 1539 lock_list = &td->td_sleeplocks; 1540 else 1541 lock_list = PCPU_PTR(spinlocks); 1542 lle = *lock_list; 1543 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next) 1544 for (i = 0; i < (*lock_list)->ll_count; i++) { 1545 instance = &(*lock_list)->ll_children[i]; 1546 if (instance->li_lock == lock) 1547 goto found; 1548 } 1549 1550 /* 1551 * When disabling WITNESS through witness_watch we could end up in 1552 * having registered locks in the td_sleeplocks queue. 1553 * We have to make sure we flush these queues, so just search for 1554 * eventual register locks and remove them. 1555 */ 1556 if (witness_watch > 0) { 1557 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name, 1558 lock->lo_name, fixup_filename(file), line); 1559 return; 1560 } else { 1561 return; 1562 } 1563 found: 1564 1565 /* First, check for shared/exclusive mismatches. */ 1566 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 && 1567 (flags & LOP_EXCLUSIVE) == 0) { 1568 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name, 1569 lock->lo_name, fixup_filename(file), line); 1570 printf("while exclusively locked from %s:%d\n", 1571 fixup_filename(instance->li_file), instance->li_line); 1572 kassert_panic("excl->ushare"); 1573 } 1574 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 && 1575 (flags & LOP_EXCLUSIVE) != 0) { 1576 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name, 1577 lock->lo_name, fixup_filename(file), line); 1578 printf("while share locked from %s:%d\n", 1579 fixup_filename(instance->li_file), 1580 instance->li_line); 1581 kassert_panic("share->uexcl"); 1582 } 1583 /* If we are recursed, unrecurse. */ 1584 if ((instance->li_flags & LI_RECURSEMASK) > 0) { 1585 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__, 1586 td->td_proc->p_pid, instance->li_lock->lo_name, 1587 instance->li_flags); 1588 instance->li_flags--; 1589 return; 1590 } 1591 /* The lock is now being dropped, check for NORELEASE flag */ 1592 if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) { 1593 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name, 1594 lock->lo_name, fixup_filename(file), line); 1595 kassert_panic("lock marked norelease"); 1596 } 1597 1598 /* Otherwise, remove this item from the list. */ 1599 s = intr_disable(); 1600 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__, 1601 td->td_proc->p_pid, instance->li_lock->lo_name, 1602 (*lock_list)->ll_count - 1); 1603 for (j = i; j < (*lock_list)->ll_count - 1; j++) 1604 (*lock_list)->ll_children[j] = 1605 (*lock_list)->ll_children[j + 1]; 1606 (*lock_list)->ll_count--; 1607 intr_restore(s); 1608 1609 /* 1610 * In order to reduce contention on w_mtx, we want to keep always an 1611 * head object into lists so that frequent allocation from the 1612 * free witness pool (and subsequent locking) is avoided. 1613 * In order to maintain the current code simple, when the head 1614 * object is totally unloaded it means also that we do not have 1615 * further objects in the list, so the list ownership needs to be 1616 * hand over to another object if the current head needs to be freed. 1617 */ 1618 if ((*lock_list)->ll_count == 0) { 1619 if (*lock_list == lle) { 1620 if (lle->ll_next == NULL) 1621 return; 1622 } else 1623 lle = *lock_list; 1624 *lock_list = lle->ll_next; 1625 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__, 1626 td->td_proc->p_pid, lle); 1627 witness_lock_list_free(lle); 1628 } 1629 } 1630 1631 void 1632 witness_thread_exit(struct thread *td) 1633 { 1634 struct lock_list_entry *lle; 1635 int i, n; 1636 1637 lle = td->td_sleeplocks; 1638 if (lle == NULL || panicstr != NULL) 1639 return; 1640 if (lle->ll_count != 0) { 1641 for (n = 0; lle != NULL; lle = lle->ll_next) 1642 for (i = lle->ll_count - 1; i >= 0; i--) { 1643 if (n == 0) 1644 printf("Thread %p exiting with the following locks held:\n", 1645 td); 1646 n++; 1647 witness_list_lock(&lle->ll_children[i], printf); 1648 1649 } 1650 kassert_panic( 1651 "Thread %p cannot exit while holding sleeplocks\n", td); 1652 } 1653 witness_lock_list_free(lle); 1654 } 1655 1656 /* 1657 * Warn if any locks other than 'lock' are held. Flags can be passed in to 1658 * exempt Giant and sleepable locks from the checks as well. If any 1659 * non-exempt locks are held, then a supplied message is printed to the 1660 * console along with a list of the offending locks. If indicated in the 1661 * flags then a failure results in a panic as well. 1662 */ 1663 int 1664 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...) 1665 { 1666 struct lock_list_entry *lock_list, *lle; 1667 struct lock_instance *lock1; 1668 struct thread *td; 1669 va_list ap; 1670 int i, n; 1671 1672 if (witness_cold || witness_watch < 1 || panicstr != NULL) 1673 return (0); 1674 n = 0; 1675 td = curthread; 1676 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next) 1677 for (i = lle->ll_count - 1; i >= 0; i--) { 1678 lock1 = &lle->ll_children[i]; 1679 if (lock1->li_lock == lock) 1680 continue; 1681 if (flags & WARN_GIANTOK && 1682 lock1->li_lock == &Giant.lock_object) 1683 continue; 1684 if (flags & WARN_SLEEPOK && 1685 (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0) 1686 continue; 1687 if (n == 0) { 1688 va_start(ap, fmt); 1689 vprintf(fmt, ap); 1690 va_end(ap); 1691 printf(" with the following"); 1692 if (flags & WARN_SLEEPOK) 1693 printf(" non-sleepable"); 1694 printf(" locks held:\n"); 1695 } 1696 n++; 1697 witness_list_lock(lock1, printf); 1698 } 1699 1700 /* 1701 * Pin the thread in order to avoid problems with thread migration. 1702 * Once that all verifies are passed about spinlocks ownership, 1703 * the thread is in a safe path and it can be unpinned. 1704 */ 1705 sched_pin(); 1706 lock_list = PCPU_GET(spinlocks); 1707 if (lock_list != NULL && lock_list->ll_count != 0) { 1708 sched_unpin(); 1709 1710 /* 1711 * We should only have one spinlock and as long as 1712 * the flags cannot match for this locks class, 1713 * check if the first spinlock is the one curthread 1714 * should hold. 1715 */ 1716 lock1 = &lock_list->ll_children[lock_list->ll_count - 1]; 1717 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL && 1718 lock1->li_lock == lock && n == 0) 1719 return (0); 1720 1721 va_start(ap, fmt); 1722 vprintf(fmt, ap); 1723 va_end(ap); 1724 printf(" with the following"); 1725 if (flags & WARN_SLEEPOK) 1726 printf(" non-sleepable"); 1727 printf(" locks held:\n"); 1728 n += witness_list_locks(&lock_list, printf); 1729 } else 1730 sched_unpin(); 1731 if (flags & WARN_PANIC && n) 1732 kassert_panic("%s", __func__); 1733 else 1734 witness_debugger(n); 1735 return (n); 1736 } 1737 1738 const char * 1739 witness_file(struct lock_object *lock) 1740 { 1741 struct witness *w; 1742 1743 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1744 return ("?"); 1745 w = lock->lo_witness; 1746 return (w->w_file); 1747 } 1748 1749 int 1750 witness_line(struct lock_object *lock) 1751 { 1752 struct witness *w; 1753 1754 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1755 return (0); 1756 w = lock->lo_witness; 1757 return (w->w_line); 1758 } 1759 1760 static struct witness * 1761 enroll(const char *description, struct lock_class *lock_class) 1762 { 1763 struct witness *w; 1764 struct witness_list *typelist; 1765 1766 MPASS(description != NULL); 1767 1768 if (witness_watch == -1 || panicstr != NULL) 1769 return (NULL); 1770 if ((lock_class->lc_flags & LC_SPINLOCK)) { 1771 if (witness_skipspin) 1772 return (NULL); 1773 else 1774 typelist = &w_spin; 1775 } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) { 1776 typelist = &w_sleep; 1777 } else { 1778 kassert_panic("lock class %s is not sleep or spin", 1779 lock_class->lc_name); 1780 return (NULL); 1781 } 1782 1783 mtx_lock_spin(&w_mtx); 1784 w = witness_hash_get(description); 1785 if (w) 1786 goto found; 1787 if ((w = witness_get()) == NULL) 1788 return (NULL); 1789 MPASS(strlen(description) < MAX_W_NAME); 1790 strcpy(w->w_name, description); 1791 w->w_class = lock_class; 1792 w->w_refcount = 1; 1793 STAILQ_INSERT_HEAD(&w_all, w, w_list); 1794 if (lock_class->lc_flags & LC_SPINLOCK) { 1795 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist); 1796 w_spin_cnt++; 1797 } else if (lock_class->lc_flags & LC_SLEEPLOCK) { 1798 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist); 1799 w_sleep_cnt++; 1800 } 1801 1802 /* Insert new witness into the hash */ 1803 witness_hash_put(w); 1804 witness_increment_graph_generation(); 1805 mtx_unlock_spin(&w_mtx); 1806 return (w); 1807 found: 1808 w->w_refcount++; 1809 mtx_unlock_spin(&w_mtx); 1810 if (lock_class != w->w_class) 1811 kassert_panic( 1812 "lock (%s) %s does not match earlier (%s) lock", 1813 description, lock_class->lc_name, 1814 w->w_class->lc_name); 1815 return (w); 1816 } 1817 1818 static void 1819 depart(struct witness *w) 1820 { 1821 struct witness_list *list; 1822 1823 MPASS(w->w_refcount == 0); 1824 if (w->w_class->lc_flags & LC_SLEEPLOCK) { 1825 list = &w_sleep; 1826 w_sleep_cnt--; 1827 } else { 1828 list = &w_spin; 1829 w_spin_cnt--; 1830 } 1831 /* 1832 * Set file to NULL as it may point into a loadable module. 1833 */ 1834 w->w_file = NULL; 1835 w->w_line = 0; 1836 witness_increment_graph_generation(); 1837 } 1838 1839 1840 static void 1841 adopt(struct witness *parent, struct witness *child) 1842 { 1843 int pi, ci, i, j; 1844 1845 if (witness_cold == 0) 1846 mtx_assert(&w_mtx, MA_OWNED); 1847 1848 /* If the relationship is already known, there's no work to be done. */ 1849 if (isitmychild(parent, child)) 1850 return; 1851 1852 /* When the structure of the graph changes, bump up the generation. */ 1853 witness_increment_graph_generation(); 1854 1855 /* 1856 * The hard part ... create the direct relationship, then propagate all 1857 * indirect relationships. 1858 */ 1859 pi = parent->w_index; 1860 ci = child->w_index; 1861 WITNESS_INDEX_ASSERT(pi); 1862 WITNESS_INDEX_ASSERT(ci); 1863 MPASS(pi != ci); 1864 w_rmatrix[pi][ci] |= WITNESS_PARENT; 1865 w_rmatrix[ci][pi] |= WITNESS_CHILD; 1866 1867 /* 1868 * If parent was not already an ancestor of child, 1869 * then we increment the descendant and ancestor counters. 1870 */ 1871 if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) { 1872 parent->w_num_descendants++; 1873 child->w_num_ancestors++; 1874 } 1875 1876 /* 1877 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 1878 * an ancestor of 'pi' during this loop. 1879 */ 1880 for (i = 1; i <= w_max_used_index; i++) { 1881 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 1882 (i != pi)) 1883 continue; 1884 1885 /* Find each descendant of 'i' and mark it as a descendant. */ 1886 for (j = 1; j <= w_max_used_index; j++) { 1887 1888 /* 1889 * Skip children that are already marked as 1890 * descendants of 'i'. 1891 */ 1892 if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) 1893 continue; 1894 1895 /* 1896 * We are only interested in descendants of 'ci'. Note 1897 * that 'ci' itself is counted as a descendant of 'ci'. 1898 */ 1899 if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 1900 (j != ci)) 1901 continue; 1902 w_rmatrix[i][j] |= WITNESS_ANCESTOR; 1903 w_rmatrix[j][i] |= WITNESS_DESCENDANT; 1904 w_data[i].w_num_descendants++; 1905 w_data[j].w_num_ancestors++; 1906 1907 /* 1908 * Make sure we aren't marking a node as both an 1909 * ancestor and descendant. We should have caught 1910 * this as a lock order reversal earlier. 1911 */ 1912 if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) && 1913 (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) { 1914 printf("witness rmatrix paradox! [%d][%d]=%d " 1915 "both ancestor and descendant\n", 1916 i, j, w_rmatrix[i][j]); 1917 kdb_backtrace(); 1918 printf("Witness disabled.\n"); 1919 witness_watch = -1; 1920 } 1921 if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) && 1922 (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) { 1923 printf("witness rmatrix paradox! [%d][%d]=%d " 1924 "both ancestor and descendant\n", 1925 j, i, w_rmatrix[j][i]); 1926 kdb_backtrace(); 1927 printf("Witness disabled.\n"); 1928 witness_watch = -1; 1929 } 1930 } 1931 } 1932 } 1933 1934 static void 1935 itismychild(struct witness *parent, struct witness *child) 1936 { 1937 int unlocked; 1938 1939 MPASS(child != NULL && parent != NULL); 1940 if (witness_cold == 0) 1941 mtx_assert(&w_mtx, MA_OWNED); 1942 1943 if (!witness_lock_type_equal(parent, child)) { 1944 if (witness_cold == 0) { 1945 unlocked = 1; 1946 mtx_unlock_spin(&w_mtx); 1947 } else { 1948 unlocked = 0; 1949 } 1950 kassert_panic( 1951 "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not " 1952 "the same lock type", __func__, parent->w_name, 1953 parent->w_class->lc_name, child->w_name, 1954 child->w_class->lc_name); 1955 if (unlocked) 1956 mtx_lock_spin(&w_mtx); 1957 } 1958 adopt(parent, child); 1959 } 1960 1961 /* 1962 * Generic code for the isitmy*() functions. The rmask parameter is the 1963 * expected relationship of w1 to w2. 1964 */ 1965 static int 1966 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname) 1967 { 1968 unsigned char r1, r2; 1969 int i1, i2; 1970 1971 i1 = w1->w_index; 1972 i2 = w2->w_index; 1973 WITNESS_INDEX_ASSERT(i1); 1974 WITNESS_INDEX_ASSERT(i2); 1975 r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK; 1976 r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK; 1977 1978 /* The flags on one better be the inverse of the flags on the other */ 1979 if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) || 1980 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) { 1981 printf("%s: rmatrix mismatch between %s (index %d) and %s " 1982 "(index %d): w_rmatrix[%d][%d] == %hhx but " 1983 "w_rmatrix[%d][%d] == %hhx\n", 1984 fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1, 1985 i2, i1, r2); 1986 kdb_backtrace(); 1987 printf("Witness disabled.\n"); 1988 witness_watch = -1; 1989 } 1990 return (r1 & rmask); 1991 } 1992 1993 /* 1994 * Checks if @child is a direct child of @parent. 1995 */ 1996 static int 1997 isitmychild(struct witness *parent, struct witness *child) 1998 { 1999 2000 return (_isitmyx(parent, child, WITNESS_PARENT, __func__)); 2001 } 2002 2003 /* 2004 * Checks if @descendant is a direct or inderect descendant of @ancestor. 2005 */ 2006 static int 2007 isitmydescendant(struct witness *ancestor, struct witness *descendant) 2008 { 2009 2010 return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK, 2011 __func__)); 2012 } 2013 2014 #ifdef BLESSING 2015 static int 2016 blessed(struct witness *w1, struct witness *w2) 2017 { 2018 int i; 2019 struct witness_blessed *b; 2020 2021 for (i = 0; i < blessed_count; i++) { 2022 b = &blessed_list[i]; 2023 if (strcmp(w1->w_name, b->b_lock1) == 0) { 2024 if (strcmp(w2->w_name, b->b_lock2) == 0) 2025 return (1); 2026 continue; 2027 } 2028 if (strcmp(w1->w_name, b->b_lock2) == 0) 2029 if (strcmp(w2->w_name, b->b_lock1) == 0) 2030 return (1); 2031 } 2032 return (0); 2033 } 2034 #endif 2035 2036 static struct witness * 2037 witness_get(void) 2038 { 2039 struct witness *w; 2040 int index; 2041 2042 if (witness_cold == 0) 2043 mtx_assert(&w_mtx, MA_OWNED); 2044 2045 if (witness_watch == -1) { 2046 mtx_unlock_spin(&w_mtx); 2047 return (NULL); 2048 } 2049 if (STAILQ_EMPTY(&w_free)) { 2050 witness_watch = -1; 2051 mtx_unlock_spin(&w_mtx); 2052 printf("WITNESS: unable to allocate a new witness object\n"); 2053 return (NULL); 2054 } 2055 w = STAILQ_FIRST(&w_free); 2056 STAILQ_REMOVE_HEAD(&w_free, w_list); 2057 w_free_cnt--; 2058 index = w->w_index; 2059 MPASS(index > 0 && index == w_max_used_index+1 && 2060 index < WITNESS_COUNT); 2061 bzero(w, sizeof(*w)); 2062 w->w_index = index; 2063 if (index > w_max_used_index) 2064 w_max_used_index = index; 2065 return (w); 2066 } 2067 2068 static void 2069 witness_free(struct witness *w) 2070 { 2071 2072 STAILQ_INSERT_HEAD(&w_free, w, w_list); 2073 w_free_cnt++; 2074 } 2075 2076 static struct lock_list_entry * 2077 witness_lock_list_get(void) 2078 { 2079 struct lock_list_entry *lle; 2080 2081 if (witness_watch == -1) 2082 return (NULL); 2083 mtx_lock_spin(&w_mtx); 2084 lle = w_lock_list_free; 2085 if (lle == NULL) { 2086 witness_watch = -1; 2087 mtx_unlock_spin(&w_mtx); 2088 printf("%s: witness exhausted\n", __func__); 2089 return (NULL); 2090 } 2091 w_lock_list_free = lle->ll_next; 2092 mtx_unlock_spin(&w_mtx); 2093 bzero(lle, sizeof(*lle)); 2094 return (lle); 2095 } 2096 2097 static void 2098 witness_lock_list_free(struct lock_list_entry *lle) 2099 { 2100 2101 mtx_lock_spin(&w_mtx); 2102 lle->ll_next = w_lock_list_free; 2103 w_lock_list_free = lle; 2104 mtx_unlock_spin(&w_mtx); 2105 } 2106 2107 static struct lock_instance * 2108 find_instance(struct lock_list_entry *list, const struct lock_object *lock) 2109 { 2110 struct lock_list_entry *lle; 2111 struct lock_instance *instance; 2112 int i; 2113 2114 for (lle = list; lle != NULL; lle = lle->ll_next) 2115 for (i = lle->ll_count - 1; i >= 0; i--) { 2116 instance = &lle->ll_children[i]; 2117 if (instance->li_lock == lock) 2118 return (instance); 2119 } 2120 return (NULL); 2121 } 2122 2123 static void 2124 witness_list_lock(struct lock_instance *instance, 2125 int (*prnt)(const char *fmt, ...)) 2126 { 2127 struct lock_object *lock; 2128 2129 lock = instance->li_lock; 2130 prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ? 2131 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name); 2132 if (lock->lo_witness->w_name != lock->lo_name) 2133 prnt(" (%s)", lock->lo_witness->w_name); 2134 prnt(" r = %d (%p) locked @ %s:%d\n", 2135 instance->li_flags & LI_RECURSEMASK, lock, 2136 fixup_filename(instance->li_file), instance->li_line); 2137 } 2138 2139 #ifdef DDB 2140 static int 2141 witness_thread_has_locks(struct thread *td) 2142 { 2143 2144 if (td->td_sleeplocks == NULL) 2145 return (0); 2146 return (td->td_sleeplocks->ll_count != 0); 2147 } 2148 2149 static int 2150 witness_proc_has_locks(struct proc *p) 2151 { 2152 struct thread *td; 2153 2154 FOREACH_THREAD_IN_PROC(p, td) { 2155 if (witness_thread_has_locks(td)) 2156 return (1); 2157 } 2158 return (0); 2159 } 2160 #endif 2161 2162 int 2163 witness_list_locks(struct lock_list_entry **lock_list, 2164 int (*prnt)(const char *fmt, ...)) 2165 { 2166 struct lock_list_entry *lle; 2167 int i, nheld; 2168 2169 nheld = 0; 2170 for (lle = *lock_list; lle != NULL; lle = lle->ll_next) 2171 for (i = lle->ll_count - 1; i >= 0; i--) { 2172 witness_list_lock(&lle->ll_children[i], prnt); 2173 nheld++; 2174 } 2175 return (nheld); 2176 } 2177 2178 /* 2179 * This is a bit risky at best. We call this function when we have timed 2180 * out acquiring a spin lock, and we assume that the other CPU is stuck 2181 * with this lock held. So, we go groveling around in the other CPU's 2182 * per-cpu data to try to find the lock instance for this spin lock to 2183 * see when it was last acquired. 2184 */ 2185 void 2186 witness_display_spinlock(struct lock_object *lock, struct thread *owner, 2187 int (*prnt)(const char *fmt, ...)) 2188 { 2189 struct lock_instance *instance; 2190 struct pcpu *pc; 2191 2192 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU) 2193 return; 2194 pc = pcpu_find(owner->td_oncpu); 2195 instance = find_instance(pc->pc_spinlocks, lock); 2196 if (instance != NULL) 2197 witness_list_lock(instance, prnt); 2198 } 2199 2200 void 2201 witness_save(struct lock_object *lock, const char **filep, int *linep) 2202 { 2203 struct lock_list_entry *lock_list; 2204 struct lock_instance *instance; 2205 struct lock_class *class; 2206 2207 /* 2208 * This function is used independently in locking code to deal with 2209 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2210 * is gone. 2211 */ 2212 if (SCHEDULER_STOPPED()) 2213 return; 2214 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2215 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2216 return; 2217 class = LOCK_CLASS(lock); 2218 if (class->lc_flags & LC_SLEEPLOCK) 2219 lock_list = curthread->td_sleeplocks; 2220 else { 2221 if (witness_skipspin) 2222 return; 2223 lock_list = PCPU_GET(spinlocks); 2224 } 2225 instance = find_instance(lock_list, lock); 2226 if (instance == NULL) { 2227 kassert_panic("%s: lock (%s) %s not locked", __func__, 2228 class->lc_name, lock->lo_name); 2229 return; 2230 } 2231 *filep = instance->li_file; 2232 *linep = instance->li_line; 2233 } 2234 2235 void 2236 witness_restore(struct lock_object *lock, const char *file, int line) 2237 { 2238 struct lock_list_entry *lock_list; 2239 struct lock_instance *instance; 2240 struct lock_class *class; 2241 2242 /* 2243 * This function is used independently in locking code to deal with 2244 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2245 * is gone. 2246 */ 2247 if (SCHEDULER_STOPPED()) 2248 return; 2249 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2250 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2251 return; 2252 class = LOCK_CLASS(lock); 2253 if (class->lc_flags & LC_SLEEPLOCK) 2254 lock_list = curthread->td_sleeplocks; 2255 else { 2256 if (witness_skipspin) 2257 return; 2258 lock_list = PCPU_GET(spinlocks); 2259 } 2260 instance = find_instance(lock_list, lock); 2261 if (instance == NULL) 2262 kassert_panic("%s: lock (%s) %s not locked", __func__, 2263 class->lc_name, lock->lo_name); 2264 lock->lo_witness->w_file = file; 2265 lock->lo_witness->w_line = line; 2266 if (instance == NULL) 2267 return; 2268 instance->li_file = file; 2269 instance->li_line = line; 2270 } 2271 2272 void 2273 witness_assert(const struct lock_object *lock, int flags, const char *file, 2274 int line) 2275 { 2276 #ifdef INVARIANT_SUPPORT 2277 struct lock_instance *instance; 2278 struct lock_class *class; 2279 2280 if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL) 2281 return; 2282 class = LOCK_CLASS(lock); 2283 if ((class->lc_flags & LC_SLEEPLOCK) != 0) 2284 instance = find_instance(curthread->td_sleeplocks, lock); 2285 else if ((class->lc_flags & LC_SPINLOCK) != 0) 2286 instance = find_instance(PCPU_GET(spinlocks), lock); 2287 else { 2288 kassert_panic("Lock (%s) %s is not sleep or spin!", 2289 class->lc_name, lock->lo_name); 2290 return; 2291 } 2292 switch (flags) { 2293 case LA_UNLOCKED: 2294 if (instance != NULL) 2295 kassert_panic("Lock (%s) %s locked @ %s:%d.", 2296 class->lc_name, lock->lo_name, 2297 fixup_filename(file), line); 2298 break; 2299 case LA_LOCKED: 2300 case LA_LOCKED | LA_RECURSED: 2301 case LA_LOCKED | LA_NOTRECURSED: 2302 case LA_SLOCKED: 2303 case LA_SLOCKED | LA_RECURSED: 2304 case LA_SLOCKED | LA_NOTRECURSED: 2305 case LA_XLOCKED: 2306 case LA_XLOCKED | LA_RECURSED: 2307 case LA_XLOCKED | LA_NOTRECURSED: 2308 if (instance == NULL) { 2309 kassert_panic("Lock (%s) %s not locked @ %s:%d.", 2310 class->lc_name, lock->lo_name, 2311 fixup_filename(file), line); 2312 break; 2313 } 2314 if ((flags & LA_XLOCKED) != 0 && 2315 (instance->li_flags & LI_EXCLUSIVE) == 0) 2316 kassert_panic( 2317 "Lock (%s) %s not exclusively locked @ %s:%d.", 2318 class->lc_name, lock->lo_name, 2319 fixup_filename(file), line); 2320 if ((flags & LA_SLOCKED) != 0 && 2321 (instance->li_flags & LI_EXCLUSIVE) != 0) 2322 kassert_panic( 2323 "Lock (%s) %s exclusively locked @ %s:%d.", 2324 class->lc_name, lock->lo_name, 2325 fixup_filename(file), line); 2326 if ((flags & LA_RECURSED) != 0 && 2327 (instance->li_flags & LI_RECURSEMASK) == 0) 2328 kassert_panic("Lock (%s) %s not recursed @ %s:%d.", 2329 class->lc_name, lock->lo_name, 2330 fixup_filename(file), line); 2331 if ((flags & LA_NOTRECURSED) != 0 && 2332 (instance->li_flags & LI_RECURSEMASK) != 0) 2333 kassert_panic("Lock (%s) %s recursed @ %s:%d.", 2334 class->lc_name, lock->lo_name, 2335 fixup_filename(file), line); 2336 break; 2337 default: 2338 kassert_panic("Invalid lock assertion at %s:%d.", 2339 fixup_filename(file), line); 2340 2341 } 2342 #endif /* INVARIANT_SUPPORT */ 2343 } 2344 2345 static void 2346 witness_setflag(struct lock_object *lock, int flag, int set) 2347 { 2348 struct lock_list_entry *lock_list; 2349 struct lock_instance *instance; 2350 struct lock_class *class; 2351 2352 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2353 return; 2354 class = LOCK_CLASS(lock); 2355 if (class->lc_flags & LC_SLEEPLOCK) 2356 lock_list = curthread->td_sleeplocks; 2357 else { 2358 if (witness_skipspin) 2359 return; 2360 lock_list = PCPU_GET(spinlocks); 2361 } 2362 instance = find_instance(lock_list, lock); 2363 if (instance == NULL) { 2364 kassert_panic("%s: lock (%s) %s not locked", __func__, 2365 class->lc_name, lock->lo_name); 2366 return; 2367 } 2368 2369 if (set) 2370 instance->li_flags |= flag; 2371 else 2372 instance->li_flags &= ~flag; 2373 } 2374 2375 void 2376 witness_norelease(struct lock_object *lock) 2377 { 2378 2379 witness_setflag(lock, LI_NORELEASE, 1); 2380 } 2381 2382 void 2383 witness_releaseok(struct lock_object *lock) 2384 { 2385 2386 witness_setflag(lock, LI_NORELEASE, 0); 2387 } 2388 2389 #ifdef DDB 2390 static void 2391 witness_ddb_list(struct thread *td) 2392 { 2393 2394 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2395 KASSERT(kdb_active, ("%s: not in the debugger", __func__)); 2396 2397 if (witness_watch < 1) 2398 return; 2399 2400 witness_list_locks(&td->td_sleeplocks, db_printf); 2401 2402 /* 2403 * We only handle spinlocks if td == curthread. This is somewhat broken 2404 * if td is currently executing on some other CPU and holds spin locks 2405 * as we won't display those locks. If we had a MI way of getting 2406 * the per-cpu data for a given cpu then we could use 2407 * td->td_oncpu to get the list of spinlocks for this thread 2408 * and "fix" this. 2409 * 2410 * That still wouldn't really fix this unless we locked the scheduler 2411 * lock or stopped the other CPU to make sure it wasn't changing the 2412 * list out from under us. It is probably best to just not try to 2413 * handle threads on other CPU's for now. 2414 */ 2415 if (td == curthread && PCPU_GET(spinlocks) != NULL) 2416 witness_list_locks(PCPU_PTR(spinlocks), db_printf); 2417 } 2418 2419 DB_SHOW_COMMAND(locks, db_witness_list) 2420 { 2421 struct thread *td; 2422 2423 if (have_addr) 2424 td = db_lookup_thread(addr, TRUE); 2425 else 2426 td = kdb_thread; 2427 witness_ddb_list(td); 2428 } 2429 2430 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all) 2431 { 2432 struct thread *td; 2433 struct proc *p; 2434 2435 /* 2436 * It would be nice to list only threads and processes that actually 2437 * held sleep locks, but that information is currently not exported 2438 * by WITNESS. 2439 */ 2440 FOREACH_PROC_IN_SYSTEM(p) { 2441 if (!witness_proc_has_locks(p)) 2442 continue; 2443 FOREACH_THREAD_IN_PROC(p, td) { 2444 if (!witness_thread_has_locks(td)) 2445 continue; 2446 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid, 2447 p->p_comm, td, td->td_tid); 2448 witness_ddb_list(td); 2449 if (db_pager_quit) 2450 return; 2451 } 2452 } 2453 } 2454 DB_SHOW_ALIAS(alllocks, db_witness_list_all) 2455 2456 DB_SHOW_COMMAND(witness, db_witness_display) 2457 { 2458 2459 witness_ddb_display(db_printf); 2460 } 2461 #endif 2462 2463 static int 2464 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS) 2465 { 2466 struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2; 2467 struct witness *tmp_w1, *tmp_w2, *w1, *w2; 2468 struct sbuf *sb; 2469 u_int w_rmatrix1, w_rmatrix2; 2470 int error, generation, i, j; 2471 2472 tmp_data1 = NULL; 2473 tmp_data2 = NULL; 2474 tmp_w1 = NULL; 2475 tmp_w2 = NULL; 2476 if (witness_watch < 1) { 2477 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2478 return (error); 2479 } 2480 if (witness_cold) { 2481 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2482 return (error); 2483 } 2484 error = 0; 2485 sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND); 2486 if (sb == NULL) 2487 return (ENOMEM); 2488 2489 /* Allocate and init temporary storage space. */ 2490 tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2491 tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2492 tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2493 M_WAITOK | M_ZERO); 2494 tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2495 M_WAITOK | M_ZERO); 2496 stack_zero(&tmp_data1->wlod_stack); 2497 stack_zero(&tmp_data2->wlod_stack); 2498 2499 restart: 2500 mtx_lock_spin(&w_mtx); 2501 generation = w_generation; 2502 mtx_unlock_spin(&w_mtx); 2503 sbuf_printf(sb, "Number of known direct relationships is %d\n", 2504 w_lohash.wloh_count); 2505 for (i = 1; i < w_max_used_index; i++) { 2506 mtx_lock_spin(&w_mtx); 2507 if (generation != w_generation) { 2508 mtx_unlock_spin(&w_mtx); 2509 2510 /* The graph has changed, try again. */ 2511 req->oldidx = 0; 2512 sbuf_clear(sb); 2513 goto restart; 2514 } 2515 2516 w1 = &w_data[i]; 2517 if (w1->w_reversed == 0) { 2518 mtx_unlock_spin(&w_mtx); 2519 continue; 2520 } 2521 2522 /* Copy w1 locally so we can release the spin lock. */ 2523 *tmp_w1 = *w1; 2524 mtx_unlock_spin(&w_mtx); 2525 2526 if (tmp_w1->w_reversed == 0) 2527 continue; 2528 for (j = 1; j < w_max_used_index; j++) { 2529 if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j) 2530 continue; 2531 2532 mtx_lock_spin(&w_mtx); 2533 if (generation != w_generation) { 2534 mtx_unlock_spin(&w_mtx); 2535 2536 /* The graph has changed, try again. */ 2537 req->oldidx = 0; 2538 sbuf_clear(sb); 2539 goto restart; 2540 } 2541 2542 w2 = &w_data[j]; 2543 data1 = witness_lock_order_get(w1, w2); 2544 data2 = witness_lock_order_get(w2, w1); 2545 2546 /* 2547 * Copy information locally so we can release the 2548 * spin lock. 2549 */ 2550 *tmp_w2 = *w2; 2551 w_rmatrix1 = (unsigned int)w_rmatrix[i][j]; 2552 w_rmatrix2 = (unsigned int)w_rmatrix[j][i]; 2553 2554 if (data1) { 2555 stack_zero(&tmp_data1->wlod_stack); 2556 stack_copy(&data1->wlod_stack, 2557 &tmp_data1->wlod_stack); 2558 } 2559 if (data2 && data2 != data1) { 2560 stack_zero(&tmp_data2->wlod_stack); 2561 stack_copy(&data2->wlod_stack, 2562 &tmp_data2->wlod_stack); 2563 } 2564 mtx_unlock_spin(&w_mtx); 2565 2566 sbuf_printf(sb, 2567 "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n", 2568 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2569 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2570 #if 0 2571 sbuf_printf(sb, 2572 "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n", 2573 tmp_w1->name, tmp_w2->w_name, w_rmatrix1, 2574 tmp_w2->name, tmp_w1->w_name, w_rmatrix2); 2575 #endif 2576 if (data1) { 2577 sbuf_printf(sb, 2578 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2579 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2580 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2581 stack_sbuf_print(sb, &tmp_data1->wlod_stack); 2582 sbuf_printf(sb, "\n"); 2583 } 2584 if (data2 && data2 != data1) { 2585 sbuf_printf(sb, 2586 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2587 tmp_w2->w_name, tmp_w2->w_class->lc_name, 2588 tmp_w1->w_name, tmp_w1->w_class->lc_name); 2589 stack_sbuf_print(sb, &tmp_data2->wlod_stack); 2590 sbuf_printf(sb, "\n"); 2591 } 2592 } 2593 } 2594 mtx_lock_spin(&w_mtx); 2595 if (generation != w_generation) { 2596 mtx_unlock_spin(&w_mtx); 2597 2598 /* 2599 * The graph changed while we were printing stack data, 2600 * try again. 2601 */ 2602 req->oldidx = 0; 2603 sbuf_clear(sb); 2604 goto restart; 2605 } 2606 mtx_unlock_spin(&w_mtx); 2607 2608 /* Free temporary storage space. */ 2609 free(tmp_data1, M_TEMP); 2610 free(tmp_data2, M_TEMP); 2611 free(tmp_w1, M_TEMP); 2612 free(tmp_w2, M_TEMP); 2613 2614 sbuf_finish(sb); 2615 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 2616 sbuf_delete(sb); 2617 2618 return (error); 2619 } 2620 2621 static int 2622 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS) 2623 { 2624 struct witness *w; 2625 struct sbuf *sb; 2626 int error; 2627 2628 if (witness_watch < 1) { 2629 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2630 return (error); 2631 } 2632 if (witness_cold) { 2633 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2634 return (error); 2635 } 2636 error = 0; 2637 2638 error = sysctl_wire_old_buffer(req, 0); 2639 if (error != 0) 2640 return (error); 2641 sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req); 2642 if (sb == NULL) 2643 return (ENOMEM); 2644 sbuf_printf(sb, "\n"); 2645 2646 mtx_lock_spin(&w_mtx); 2647 STAILQ_FOREACH(w, &w_all, w_list) 2648 w->w_displayed = 0; 2649 STAILQ_FOREACH(w, &w_all, w_list) 2650 witness_add_fullgraph(sb, w); 2651 mtx_unlock_spin(&w_mtx); 2652 2653 /* 2654 * Close the sbuf and return to userland. 2655 */ 2656 error = sbuf_finish(sb); 2657 sbuf_delete(sb); 2658 2659 return (error); 2660 } 2661 2662 static int 2663 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS) 2664 { 2665 int error, value; 2666 2667 value = witness_watch; 2668 error = sysctl_handle_int(oidp, &value, 0, req); 2669 if (error != 0 || req->newptr == NULL) 2670 return (error); 2671 if (value > 1 || value < -1 || 2672 (witness_watch == -1 && value != witness_watch)) 2673 return (EINVAL); 2674 witness_watch = value; 2675 return (0); 2676 } 2677 2678 static void 2679 witness_add_fullgraph(struct sbuf *sb, struct witness *w) 2680 { 2681 int i; 2682 2683 if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0)) 2684 return; 2685 w->w_displayed = 1; 2686 2687 WITNESS_INDEX_ASSERT(w->w_index); 2688 for (i = 1; i <= w_max_used_index; i++) { 2689 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) { 2690 sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name, 2691 w_data[i].w_name); 2692 witness_add_fullgraph(sb, &w_data[i]); 2693 } 2694 } 2695 } 2696 2697 /* 2698 * A simple hash function. Takes a key pointer and a key size. If size == 0, 2699 * interprets the key as a string and reads until the null 2700 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit 2701 * hash value computed from the key. 2702 */ 2703 static uint32_t 2704 witness_hash_djb2(const uint8_t *key, uint32_t size) 2705 { 2706 unsigned int hash = 5381; 2707 int i; 2708 2709 /* hash = hash * 33 + key[i] */ 2710 if (size) 2711 for (i = 0; i < size; i++) 2712 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2713 else 2714 for (i = 0; key[i] != 0; i++) 2715 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2716 2717 return (hash); 2718 } 2719 2720 2721 /* 2722 * Initializes the two witness hash tables. Called exactly once from 2723 * witness_initialize(). 2724 */ 2725 static void 2726 witness_init_hash_tables(void) 2727 { 2728 int i; 2729 2730 MPASS(witness_cold); 2731 2732 /* Initialize the hash tables. */ 2733 for (i = 0; i < WITNESS_HASH_SIZE; i++) 2734 w_hash.wh_array[i] = NULL; 2735 2736 w_hash.wh_size = WITNESS_HASH_SIZE; 2737 w_hash.wh_count = 0; 2738 2739 /* Initialize the lock order data hash. */ 2740 w_lofree = NULL; 2741 for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) { 2742 memset(&w_lodata[i], 0, sizeof(w_lodata[i])); 2743 w_lodata[i].wlod_next = w_lofree; 2744 w_lofree = &w_lodata[i]; 2745 } 2746 w_lohash.wloh_size = WITNESS_LO_HASH_SIZE; 2747 w_lohash.wloh_count = 0; 2748 for (i = 0; i < WITNESS_LO_HASH_SIZE; i++) 2749 w_lohash.wloh_array[i] = NULL; 2750 } 2751 2752 static struct witness * 2753 witness_hash_get(const char *key) 2754 { 2755 struct witness *w; 2756 uint32_t hash; 2757 2758 MPASS(key != NULL); 2759 if (witness_cold == 0) 2760 mtx_assert(&w_mtx, MA_OWNED); 2761 hash = witness_hash_djb2(key, 0) % w_hash.wh_size; 2762 w = w_hash.wh_array[hash]; 2763 while (w != NULL) { 2764 if (strcmp(w->w_name, key) == 0) 2765 goto out; 2766 w = w->w_hash_next; 2767 } 2768 2769 out: 2770 return (w); 2771 } 2772 2773 static void 2774 witness_hash_put(struct witness *w) 2775 { 2776 uint32_t hash; 2777 2778 MPASS(w != NULL); 2779 MPASS(w->w_name != NULL); 2780 if (witness_cold == 0) 2781 mtx_assert(&w_mtx, MA_OWNED); 2782 KASSERT(witness_hash_get(w->w_name) == NULL, 2783 ("%s: trying to add a hash entry that already exists!", __func__)); 2784 KASSERT(w->w_hash_next == NULL, 2785 ("%s: w->w_hash_next != NULL", __func__)); 2786 2787 hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size; 2788 w->w_hash_next = w_hash.wh_array[hash]; 2789 w_hash.wh_array[hash] = w; 2790 w_hash.wh_count++; 2791 } 2792 2793 2794 static struct witness_lock_order_data * 2795 witness_lock_order_get(struct witness *parent, struct witness *child) 2796 { 2797 struct witness_lock_order_data *data = NULL; 2798 struct witness_lock_order_key key; 2799 unsigned int hash; 2800 2801 MPASS(parent != NULL && child != NULL); 2802 key.from = parent->w_index; 2803 key.to = child->w_index; 2804 WITNESS_INDEX_ASSERT(key.from); 2805 WITNESS_INDEX_ASSERT(key.to); 2806 if ((w_rmatrix[parent->w_index][child->w_index] 2807 & WITNESS_LOCK_ORDER_KNOWN) == 0) 2808 goto out; 2809 2810 hash = witness_hash_djb2((const char*)&key, 2811 sizeof(key)) % w_lohash.wloh_size; 2812 data = w_lohash.wloh_array[hash]; 2813 while (data != NULL) { 2814 if (witness_lock_order_key_equal(&data->wlod_key, &key)) 2815 break; 2816 data = data->wlod_next; 2817 } 2818 2819 out: 2820 return (data); 2821 } 2822 2823 /* 2824 * Verify that parent and child have a known relationship, are not the same, 2825 * and child is actually a child of parent. This is done without w_mtx 2826 * to avoid contention in the common case. 2827 */ 2828 static int 2829 witness_lock_order_check(struct witness *parent, struct witness *child) 2830 { 2831 2832 if (parent != child && 2833 w_rmatrix[parent->w_index][child->w_index] 2834 & WITNESS_LOCK_ORDER_KNOWN && 2835 isitmychild(parent, child)) 2836 return (1); 2837 2838 return (0); 2839 } 2840 2841 static int 2842 witness_lock_order_add(struct witness *parent, struct witness *child) 2843 { 2844 struct witness_lock_order_data *data = NULL; 2845 struct witness_lock_order_key key; 2846 unsigned int hash; 2847 2848 MPASS(parent != NULL && child != NULL); 2849 key.from = parent->w_index; 2850 key.to = child->w_index; 2851 WITNESS_INDEX_ASSERT(key.from); 2852 WITNESS_INDEX_ASSERT(key.to); 2853 if (w_rmatrix[parent->w_index][child->w_index] 2854 & WITNESS_LOCK_ORDER_KNOWN) 2855 return (1); 2856 2857 hash = witness_hash_djb2((const char*)&key, 2858 sizeof(key)) % w_lohash.wloh_size; 2859 w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN; 2860 data = w_lofree; 2861 if (data == NULL) 2862 return (0); 2863 w_lofree = data->wlod_next; 2864 data->wlod_next = w_lohash.wloh_array[hash]; 2865 data->wlod_key = key; 2866 w_lohash.wloh_array[hash] = data; 2867 w_lohash.wloh_count++; 2868 stack_zero(&data->wlod_stack); 2869 stack_save(&data->wlod_stack); 2870 return (1); 2871 } 2872 2873 /* Call this whenver the structure of the witness graph changes. */ 2874 static void 2875 witness_increment_graph_generation(void) 2876 { 2877 2878 if (witness_cold == 0) 2879 mtx_assert(&w_mtx, MA_OWNED); 2880 w_generation++; 2881 } 2882 2883 #ifdef KDB 2884 static void 2885 _witness_debugger(int cond, const char *msg) 2886 { 2887 2888 if (witness_trace && cond) 2889 kdb_backtrace(); 2890 if (witness_kdb && cond) 2891 kdb_enter(KDB_WHY_WITNESS, msg); 2892 } 2893 #endif 2894