xref: /freebsd/sys/kern/subr_witness.c (revision ee7b0571c2c18bdec848ed2044223cc88db29bd8)
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34 
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40 
41 /*
42  *	Main Entry: witness
43  *	Pronunciation: 'wit-n&s
44  *	Function: noun
45  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *	    testimony, witness, from 2wit
47  *	Date: before 12th century
48  *	1 : attestation of a fact or event : TESTIMONY
49  *	2 : one that gives evidence; specifically : one who testifies in
50  *	    a cause or before a judicial tribunal
51  *	3 : one asked to be present at a transaction so as to be able to
52  *	    testify to its having taken place
53  *	4 : one who has personal knowledge of something
54  *	5 a : something serving as evidence or proof : SIGN
55  *	  b : public affirmation by word or example of usually
56  *	      religious faith or conviction <the heroic witness to divine
57  *	      life -- Pilot>
58  *	6 capitalized : a member of the Jehovah's Witnesses
59  */
60 
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86 
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89 
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94 
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110 
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114 
115 #include <machine/stdarg.h>
116 
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120 
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define	KTR_WITNESS	KTR_SUBSYS
124 #else
125 #define	KTR_WITNESS	0
126 #endif
127 
128 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
129 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
130 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
131 
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134 
135 #define	WITNESS_COUNT 		1536
136 #define	WITNESS_CHILDCOUNT 	(WITNESS_COUNT * 4)
137 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
138 #define	WITNESS_PENDLIST	(1024 + MAXCPU)
139 
140 /* Allocate 256 KB of stack data space */
141 #define	WITNESS_LO_DATA_COUNT	2048
142 
143 /* Prime, gives load factor of ~2 at full load */
144 #define	WITNESS_LO_HASH_SIZE	1021
145 
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define	LOCK_NCHILDREN	5
152 #define	LOCK_CHILDCOUNT	2048
153 
154 #define	MAX_W_NAME	64
155 
156 #define	BADSTACK_SBUF_SIZE	(256 * WITNESS_COUNT)
157 #define	FULLGRAPH_SBUF_SIZE	512
158 
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define	WITNESS_RELATED_MASK						\
171 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173 					  * observed. */
174 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177 
178 /* Descendant to ancestor flags */
179 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
180 
181 /* Ancestor to descendant flags */
182 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
183 
184 #define	WITNESS_INDEX_ASSERT(i)						\
185 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186 
187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188 
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196 	struct lock_object	*li_lock;
197 	const char		*li_file;
198 	int			li_line;
199 	u_int			li_flags;
200 };
201 
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213 	struct lock_list_entry	*ll_next;
214 	struct lock_instance	ll_children[LOCK_NCHILDREN];
215 	u_int			ll_count;
216 };
217 
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223 	char  			w_name[MAX_W_NAME];
224 	uint32_t 		w_index;  /* Index in the relationship matrix */
225 	struct lock_class	*w_class;
226 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
227 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
228 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
229 	const char		*w_file; /* File where last acquired */
230 	uint32_t 		w_line; /* Line where last acquired */
231 	uint32_t 		w_refcount;
232 	uint16_t 		w_num_ancestors; /* direct/indirect
233 						  * ancestor count */
234 	uint16_t 		w_num_descendants; /* direct/indirect
235 						    * descendant count */
236 	int16_t 		w_ddb_level;
237 	unsigned		w_displayed:1;
238 	unsigned		w_reversed:1;
239 };
240 
241 STAILQ_HEAD(witness_list, witness);
242 
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248 	struct witness	*wh_array[WITNESS_HASH_SIZE];
249 	uint32_t	wh_size;
250 	uint32_t	wh_count;
251 };
252 
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257 	uint16_t	from;
258 	uint16_t	to;
259 };
260 
261 struct witness_lock_order_data {
262 	struct stack			wlod_stack;
263 	struct witness_lock_order_key	wlod_key;
264 	struct witness_lock_order_data	*wlod_next;
265 };
266 
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data).
271  */
272 struct witness_lock_order_hash {
273 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
274 	u_int	wloh_size;
275 	u_int	wloh_count;
276 };
277 
278 #ifdef BLESSING
279 struct witness_blessed {
280 	const char	*b_lock1;
281 	const char	*b_lock2;
282 };
283 #endif
284 
285 struct witness_pendhelp {
286 	const char		*wh_type;
287 	struct lock_object	*wh_lock;
288 };
289 
290 struct witness_order_list_entry {
291 	const char		*w_name;
292 	struct lock_class	*w_class;
293 };
294 
295 /*
296  * Returns 0 if one of the locks is a spin lock and the other is not.
297  * Returns 1 otherwise.
298  */
299 static __inline int
300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
301 {
302 
303 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305 }
306 
307 static __inline int
308 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
309     const struct witness_lock_order_key *b)
310 {
311 
312 	return (a->from == b->from && a->to == b->to);
313 }
314 
315 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
316 		    const char *fname);
317 #ifdef KDB
318 static void	_witness_debugger(int cond, const char *msg);
319 #endif
320 static void	adopt(struct witness *parent, struct witness *child);
321 #ifdef BLESSING
322 static int	blessed(struct witness *, struct witness *);
323 #endif
324 static void	depart(struct witness *w);
325 static struct witness	*enroll(const char *description,
326 			    struct lock_class *lock_class);
327 static struct lock_instance	*find_instance(struct lock_list_entry *list,
328 				    const struct lock_object *lock);
329 static int	isitmychild(struct witness *parent, struct witness *child);
330 static int	isitmydescendant(struct witness *parent, struct witness *child);
331 static void	itismychild(struct witness *parent, struct witness *child);
332 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
333 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
334 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
335 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
336 #ifdef DDB
337 static void	witness_ddb_compute_levels(void);
338 static void	witness_ddb_display(int(*)(const char *fmt, ...));
339 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
340 		    struct witness *, int indent);
341 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
342 		    struct witness_list *list);
343 static void	witness_ddb_level_descendants(struct witness *parent, int l);
344 static void	witness_ddb_list(struct thread *td);
345 #endif
346 static void	witness_free(struct witness *m);
347 static struct witness	*witness_get(void);
348 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
349 static struct witness	*witness_hash_get(const char *key);
350 static void	witness_hash_put(struct witness *w);
351 static void	witness_init_hash_tables(void);
352 static void	witness_increment_graph_generation(void);
353 static void	witness_lock_list_free(struct lock_list_entry *lle);
354 static struct lock_list_entry	*witness_lock_list_get(void);
355 static int	witness_lock_order_add(struct witness *parent,
356 		    struct witness *child);
357 static int	witness_lock_order_check(struct witness *parent,
358 		    struct witness *child);
359 static struct witness_lock_order_data	*witness_lock_order_get(
360 					    struct witness *parent,
361 					    struct witness *child);
362 static void	witness_list_lock(struct lock_instance *instance,
363 		    int (*prnt)(const char *fmt, ...));
364 static void	witness_setflag(struct lock_object *lock, int flag, int set);
365 
366 #ifdef KDB
367 #define	witness_debugger(c)	_witness_debugger(c, __func__)
368 #else
369 #define	witness_debugger(c)
370 #endif
371 
372 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
373     "Witness Locking");
374 
375 /*
376  * If set to 0, lock order checking is disabled.  If set to -1,
377  * witness is completely disabled.  Otherwise witness performs full
378  * lock order checking for all locks.  At runtime, lock order checking
379  * may be toggled.  However, witness cannot be reenabled once it is
380  * completely disabled.
381  */
382 static int witness_watch = 1;
383 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
384     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
385 
386 #ifdef KDB
387 /*
388  * When KDB is enabled and witness_kdb is 1, it will cause the system
389  * to drop into kdebug() when:
390  *	- a lock hierarchy violation occurs
391  *	- locks are held when going to sleep.
392  */
393 #ifdef WITNESS_KDB
394 int	witness_kdb = 1;
395 #else
396 int	witness_kdb = 0;
397 #endif
398 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
399 
400 /*
401  * When KDB is enabled and witness_trace is 1, it will cause the system
402  * to print a stack trace:
403  *	- a lock hierarchy violation occurs
404  *	- locks are held when going to sleep.
405  */
406 int	witness_trace = 1;
407 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
408 #endif /* KDB */
409 
410 #ifdef WITNESS_SKIPSPIN
411 int	witness_skipspin = 1;
412 #else
413 int	witness_skipspin = 0;
414 #endif
415 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
416 
417 /*
418  * Call this to print out the relations between locks.
419  */
420 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
421     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
422 
423 /*
424  * Call this to print out the witness faulty stacks.
425  */
426 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
427     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
428 
429 static struct mtx w_mtx;
430 
431 /* w_list */
432 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
433 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
434 
435 /* w_typelist */
436 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
437 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
438 
439 /* lock list */
440 static struct lock_list_entry *w_lock_list_free = NULL;
441 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
442 static u_int pending_cnt;
443 
444 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
445 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
446 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
447 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
448     "");
449 
450 static struct witness *w_data;
451 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
452 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
453 static struct witness_hash w_hash;	/* The witness hash table. */
454 
455 /* The lock order data hash */
456 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
457 static struct witness_lock_order_data *w_lofree = NULL;
458 static struct witness_lock_order_hash w_lohash;
459 static int w_max_used_index = 0;
460 static unsigned int w_generation = 0;
461 static const char w_notrunning[] = "Witness not running\n";
462 static const char w_stillcold[] = "Witness is still cold\n";
463 
464 
465 static struct witness_order_list_entry order_lists[] = {
466 	/*
467 	 * sx locks
468 	 */
469 	{ "proctree", &lock_class_sx },
470 	{ "allproc", &lock_class_sx },
471 	{ "allprison", &lock_class_sx },
472 	{ NULL, NULL },
473 	/*
474 	 * Various mutexes
475 	 */
476 	{ "Giant", &lock_class_mtx_sleep },
477 	{ "pipe mutex", &lock_class_mtx_sleep },
478 	{ "sigio lock", &lock_class_mtx_sleep },
479 	{ "process group", &lock_class_mtx_sleep },
480 	{ "process lock", &lock_class_mtx_sleep },
481 	{ "session", &lock_class_mtx_sleep },
482 	{ "uidinfo hash", &lock_class_rw },
483 #ifdef	HWPMC_HOOKS
484 	{ "pmc-sleep", &lock_class_mtx_sleep },
485 #endif
486 	{ "time lock", &lock_class_mtx_sleep },
487 	{ NULL, NULL },
488 	/*
489 	 * Sockets
490 	 */
491 	{ "accept", &lock_class_mtx_sleep },
492 	{ "so_snd", &lock_class_mtx_sleep },
493 	{ "so_rcv", &lock_class_mtx_sleep },
494 	{ "sellck", &lock_class_mtx_sleep },
495 	{ NULL, NULL },
496 	/*
497 	 * Routing
498 	 */
499 	{ "so_rcv", &lock_class_mtx_sleep },
500 	{ "radix node head", &lock_class_rw },
501 	{ "rtentry", &lock_class_mtx_sleep },
502 	{ "ifaddr", &lock_class_mtx_sleep },
503 	{ NULL, NULL },
504 	/*
505 	 * IPv4 multicast:
506 	 * protocol locks before interface locks, after UDP locks.
507 	 */
508 	{ "udpinp", &lock_class_rw },
509 	{ "in_multi_mtx", &lock_class_mtx_sleep },
510 	{ "igmp_mtx", &lock_class_mtx_sleep },
511 	{ "if_addr_lock", &lock_class_rw },
512 	{ NULL, NULL },
513 	/*
514 	 * IPv6 multicast:
515 	 * protocol locks before interface locks, after UDP locks.
516 	 */
517 	{ "udpinp", &lock_class_rw },
518 	{ "in6_multi_mtx", &lock_class_mtx_sleep },
519 	{ "mld_mtx", &lock_class_mtx_sleep },
520 	{ "if_addr_lock", &lock_class_rw },
521 	{ NULL, NULL },
522 	/*
523 	 * UNIX Domain Sockets
524 	 */
525 	{ "unp_global_rwlock", &lock_class_rw },
526 	{ "unp_list_lock", &lock_class_mtx_sleep },
527 	{ "unp", &lock_class_mtx_sleep },
528 	{ "so_snd", &lock_class_mtx_sleep },
529 	{ NULL, NULL },
530 	/*
531 	 * UDP/IP
532 	 */
533 	{ "udp", &lock_class_rw },
534 	{ "udpinp", &lock_class_rw },
535 	{ "so_snd", &lock_class_mtx_sleep },
536 	{ NULL, NULL },
537 	/*
538 	 * TCP/IP
539 	 */
540 	{ "tcp", &lock_class_rw },
541 	{ "tcpinp", &lock_class_rw },
542 	{ "so_snd", &lock_class_mtx_sleep },
543 	{ NULL, NULL },
544 	/*
545 	 * BPF
546 	 */
547 	{ "bpf global lock", &lock_class_mtx_sleep },
548 	{ "bpf interface lock", &lock_class_rw },
549 	{ "bpf cdev lock", &lock_class_mtx_sleep },
550 	{ NULL, NULL },
551 	/*
552 	 * NFS server
553 	 */
554 	{ "nfsd_mtx", &lock_class_mtx_sleep },
555 	{ "so_snd", &lock_class_mtx_sleep },
556 	{ NULL, NULL },
557 
558 	/*
559 	 * IEEE 802.11
560 	 */
561 	{ "802.11 com lock", &lock_class_mtx_sleep},
562 	{ NULL, NULL },
563 	/*
564 	 * Network drivers
565 	 */
566 	{ "network driver", &lock_class_mtx_sleep},
567 	{ NULL, NULL },
568 
569 	/*
570 	 * Netgraph
571 	 */
572 	{ "ng_node", &lock_class_mtx_sleep },
573 	{ "ng_worklist", &lock_class_mtx_sleep },
574 	{ NULL, NULL },
575 	/*
576 	 * CDEV
577 	 */
578 	{ "vm map (system)", &lock_class_mtx_sleep },
579 	{ "vm page queue", &lock_class_mtx_sleep },
580 	{ "vnode interlock", &lock_class_mtx_sleep },
581 	{ "cdev", &lock_class_mtx_sleep },
582 	{ NULL, NULL },
583 	/*
584 	 * VM
585 	 */
586 	{ "vm map (user)", &lock_class_sx },
587 	{ "vm object", &lock_class_rw },
588 	{ "vm page", &lock_class_mtx_sleep },
589 	{ "vm page queue", &lock_class_mtx_sleep },
590 	{ "pmap pv global", &lock_class_rw },
591 	{ "pmap", &lock_class_mtx_sleep },
592 	{ "pmap pv list", &lock_class_rw },
593 	{ "vm page free queue", &lock_class_mtx_sleep },
594 	{ NULL, NULL },
595 	/*
596 	 * kqueue/VFS interaction
597 	 */
598 	{ "kqueue", &lock_class_mtx_sleep },
599 	{ "struct mount mtx", &lock_class_mtx_sleep },
600 	{ "vnode interlock", &lock_class_mtx_sleep },
601 	{ NULL, NULL },
602 	/*
603 	 * ZFS locking
604 	 */
605 	{ "dn->dn_mtx", &lock_class_sx },
606 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
607 	{ "db->db_mtx", &lock_class_sx },
608 	{ NULL, NULL },
609 	/*
610 	 * spin locks
611 	 */
612 #ifdef SMP
613 	{ "ap boot", &lock_class_mtx_spin },
614 #endif
615 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
616 	{ "sio", &lock_class_mtx_spin },
617 	{ "scrlock", &lock_class_mtx_spin },
618 #ifdef __i386__
619 	{ "cy", &lock_class_mtx_spin },
620 #endif
621 #ifdef __sparc64__
622 	{ "pcib_mtx", &lock_class_mtx_spin },
623 	{ "rtc_mtx", &lock_class_mtx_spin },
624 #endif
625 	{ "scc_hwmtx", &lock_class_mtx_spin },
626 	{ "uart_hwmtx", &lock_class_mtx_spin },
627 	{ "fast_taskqueue", &lock_class_mtx_spin },
628 	{ "intr table", &lock_class_mtx_spin },
629 #ifdef	HWPMC_HOOKS
630 	{ "pmc-per-proc", &lock_class_mtx_spin },
631 #endif
632 	{ "process slock", &lock_class_mtx_spin },
633 	{ "sleepq chain", &lock_class_mtx_spin },
634 	{ "umtx lock", &lock_class_mtx_spin },
635 	{ "rm_spinlock", &lock_class_mtx_spin },
636 	{ "turnstile chain", &lock_class_mtx_spin },
637 	{ "turnstile lock", &lock_class_mtx_spin },
638 	{ "sched lock", &lock_class_mtx_spin },
639 	{ "td_contested", &lock_class_mtx_spin },
640 	{ "callout", &lock_class_mtx_spin },
641 	{ "entropy harvest mutex", &lock_class_mtx_spin },
642 	{ "syscons video lock", &lock_class_mtx_spin },
643 #ifdef SMP
644 	{ "smp rendezvous", &lock_class_mtx_spin },
645 #endif
646 #ifdef __powerpc__
647 	{ "tlb0", &lock_class_mtx_spin },
648 #endif
649 	/*
650 	 * leaf locks
651 	 */
652 	{ "intrcnt", &lock_class_mtx_spin },
653 	{ "icu", &lock_class_mtx_spin },
654 #ifdef __i386__
655 	{ "allpmaps", &lock_class_mtx_spin },
656 	{ "descriptor tables", &lock_class_mtx_spin },
657 #endif
658 	{ "clk", &lock_class_mtx_spin },
659 	{ "cpuset", &lock_class_mtx_spin },
660 	{ "mprof lock", &lock_class_mtx_spin },
661 	{ "zombie lock", &lock_class_mtx_spin },
662 	{ "ALD Queue", &lock_class_mtx_spin },
663 #if defined(__i386__) || defined(__amd64__)
664 	{ "pcicfg", &lock_class_mtx_spin },
665 	{ "NDIS thread lock", &lock_class_mtx_spin },
666 #endif
667 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
668 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
669 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
670 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
671 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
672 #ifdef	HWPMC_HOOKS
673 	{ "pmc-leaf", &lock_class_mtx_spin },
674 #endif
675 	{ "blocked lock", &lock_class_mtx_spin },
676 	{ NULL, NULL },
677 	{ NULL, NULL }
678 };
679 
680 #ifdef BLESSING
681 /*
682  * Pairs of locks which have been blessed
683  * Don't complain about order problems with blessed locks
684  */
685 static struct witness_blessed blessed_list[] = {
686 };
687 static int blessed_count =
688 	sizeof(blessed_list) / sizeof(struct witness_blessed);
689 #endif
690 
691 /*
692  * This global is set to 0 once it becomes safe to use the witness code.
693  */
694 static int witness_cold = 1;
695 
696 /*
697  * This global is set to 1 once the static lock orders have been enrolled
698  * so that a warning can be issued for any spin locks enrolled later.
699  */
700 static int witness_spin_warn = 0;
701 
702 /* Trim useless garbage from filenames. */
703 static const char *
704 fixup_filename(const char *file)
705 {
706 
707 	if (file == NULL)
708 		return (NULL);
709 	while (strncmp(file, "../", 3) == 0)
710 		file += 3;
711 	return (file);
712 }
713 
714 /*
715  * The WITNESS-enabled diagnostic code.  Note that the witness code does
716  * assume that the early boot is single-threaded at least until after this
717  * routine is completed.
718  */
719 static void
720 witness_initialize(void *dummy __unused)
721 {
722 	struct lock_object *lock;
723 	struct witness_order_list_entry *order;
724 	struct witness *w, *w1;
725 	int i;
726 
727 	w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
728 	    M_NOWAIT | M_ZERO);
729 
730 	/*
731 	 * We have to release Giant before initializing its witness
732 	 * structure so that WITNESS doesn't get confused.
733 	 */
734 	mtx_unlock(&Giant);
735 	mtx_assert(&Giant, MA_NOTOWNED);
736 
737 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
738 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
739 	    MTX_NOWITNESS | MTX_NOPROFILE);
740 	for (i = WITNESS_COUNT - 1; i >= 0; i--) {
741 		w = &w_data[i];
742 		memset(w, 0, sizeof(*w));
743 		w_data[i].w_index = i;	/* Witness index never changes. */
744 		witness_free(w);
745 	}
746 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
747 	    ("%s: Invalid list of free witness objects", __func__));
748 
749 	/* Witness with index 0 is not used to aid in debugging. */
750 	STAILQ_REMOVE_HEAD(&w_free, w_list);
751 	w_free_cnt--;
752 
753 	memset(w_rmatrix, 0,
754 	    (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
755 
756 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
757 		witness_lock_list_free(&w_locklistdata[i]);
758 	witness_init_hash_tables();
759 
760 	/* First add in all the specified order lists. */
761 	for (order = order_lists; order->w_name != NULL; order++) {
762 		w = enroll(order->w_name, order->w_class);
763 		if (w == NULL)
764 			continue;
765 		w->w_file = "order list";
766 		for (order++; order->w_name != NULL; order++) {
767 			w1 = enroll(order->w_name, order->w_class);
768 			if (w1 == NULL)
769 				continue;
770 			w1->w_file = "order list";
771 			itismychild(w, w1);
772 			w = w1;
773 		}
774 	}
775 	witness_spin_warn = 1;
776 
777 	/* Iterate through all locks and add them to witness. */
778 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
779 		lock = pending_locks[i].wh_lock;
780 		KASSERT(lock->lo_flags & LO_WITNESS,
781 		    ("%s: lock %s is on pending list but not LO_WITNESS",
782 		    __func__, lock->lo_name));
783 		lock->lo_witness = enroll(pending_locks[i].wh_type,
784 		    LOCK_CLASS(lock));
785 	}
786 
787 	/* Mark the witness code as being ready for use. */
788 	witness_cold = 0;
789 
790 	mtx_lock(&Giant);
791 }
792 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
793     NULL);
794 
795 void
796 witness_init(struct lock_object *lock, const char *type)
797 {
798 	struct lock_class *class;
799 
800 	/* Various sanity checks. */
801 	class = LOCK_CLASS(lock);
802 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
803 	    (class->lc_flags & LC_RECURSABLE) == 0)
804 		kassert_panic("%s: lock (%s) %s can not be recursable",
805 		    __func__, class->lc_name, lock->lo_name);
806 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
807 	    (class->lc_flags & LC_SLEEPABLE) == 0)
808 		kassert_panic("%s: lock (%s) %s can not be sleepable",
809 		    __func__, class->lc_name, lock->lo_name);
810 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
811 	    (class->lc_flags & LC_UPGRADABLE) == 0)
812 		kassert_panic("%s: lock (%s) %s can not be upgradable",
813 		    __func__, class->lc_name, lock->lo_name);
814 
815 	/*
816 	 * If we shouldn't watch this lock, then just clear lo_witness.
817 	 * Otherwise, if witness_cold is set, then it is too early to
818 	 * enroll this lock, so defer it to witness_initialize() by adding
819 	 * it to the pending_locks list.  If it is not too early, then enroll
820 	 * the lock now.
821 	 */
822 	if (witness_watch < 1 || panicstr != NULL ||
823 	    (lock->lo_flags & LO_WITNESS) == 0)
824 		lock->lo_witness = NULL;
825 	else if (witness_cold) {
826 		pending_locks[pending_cnt].wh_lock = lock;
827 		pending_locks[pending_cnt++].wh_type = type;
828 		if (pending_cnt > WITNESS_PENDLIST)
829 			panic("%s: pending locks list is too small, "
830 			    "increase WITNESS_PENDLIST\n",
831 			    __func__);
832 	} else
833 		lock->lo_witness = enroll(type, class);
834 }
835 
836 void
837 witness_destroy(struct lock_object *lock)
838 {
839 	struct lock_class *class;
840 	struct witness *w;
841 
842 	class = LOCK_CLASS(lock);
843 
844 	if (witness_cold)
845 		panic("lock (%s) %s destroyed while witness_cold",
846 		    class->lc_name, lock->lo_name);
847 
848 	/* XXX: need to verify that no one holds the lock */
849 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
850 		return;
851 	w = lock->lo_witness;
852 
853 	mtx_lock_spin(&w_mtx);
854 	MPASS(w->w_refcount > 0);
855 	w->w_refcount--;
856 
857 	if (w->w_refcount == 0)
858 		depart(w);
859 	mtx_unlock_spin(&w_mtx);
860 }
861 
862 #ifdef DDB
863 static void
864 witness_ddb_compute_levels(void)
865 {
866 	struct witness *w;
867 
868 	/*
869 	 * First clear all levels.
870 	 */
871 	STAILQ_FOREACH(w, &w_all, w_list)
872 		w->w_ddb_level = -1;
873 
874 	/*
875 	 * Look for locks with no parents and level all their descendants.
876 	 */
877 	STAILQ_FOREACH(w, &w_all, w_list) {
878 
879 		/* If the witness has ancestors (is not a root), skip it. */
880 		if (w->w_num_ancestors > 0)
881 			continue;
882 		witness_ddb_level_descendants(w, 0);
883 	}
884 }
885 
886 static void
887 witness_ddb_level_descendants(struct witness *w, int l)
888 {
889 	int i;
890 
891 	if (w->w_ddb_level >= l)
892 		return;
893 
894 	w->w_ddb_level = l;
895 	l++;
896 
897 	for (i = 1; i <= w_max_used_index; i++) {
898 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
899 			witness_ddb_level_descendants(&w_data[i], l);
900 	}
901 }
902 
903 static void
904 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
905     struct witness *w, int indent)
906 {
907 	int i;
908 
909  	for (i = 0; i < indent; i++)
910  		prnt(" ");
911 	prnt("%s (type: %s, depth: %d, active refs: %d)",
912 	     w->w_name, w->w_class->lc_name,
913 	     w->w_ddb_level, w->w_refcount);
914  	if (w->w_displayed) {
915  		prnt(" -- (already displayed)\n");
916  		return;
917  	}
918  	w->w_displayed = 1;
919 	if (w->w_file != NULL && w->w_line != 0)
920 		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
921 		    w->w_line);
922 	else
923 		prnt(" -- never acquired\n");
924 	indent++;
925 	WITNESS_INDEX_ASSERT(w->w_index);
926 	for (i = 1; i <= w_max_used_index; i++) {
927 		if (db_pager_quit)
928 			return;
929 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
930 			witness_ddb_display_descendants(prnt, &w_data[i],
931 			    indent);
932 	}
933 }
934 
935 static void
936 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
937     struct witness_list *list)
938 {
939 	struct witness *w;
940 
941 	STAILQ_FOREACH(w, list, w_typelist) {
942 		if (w->w_file == NULL || w->w_ddb_level > 0)
943 			continue;
944 
945 		/* This lock has no anscestors - display its descendants. */
946 		witness_ddb_display_descendants(prnt, w, 0);
947 		if (db_pager_quit)
948 			return;
949 	}
950 }
951 
952 static void
953 witness_ddb_display(int(*prnt)(const char *fmt, ...))
954 {
955 	struct witness *w;
956 
957 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
958 	witness_ddb_compute_levels();
959 
960 	/* Clear all the displayed flags. */
961 	STAILQ_FOREACH(w, &w_all, w_list)
962 		w->w_displayed = 0;
963 
964 	/*
965 	 * First, handle sleep locks which have been acquired at least
966 	 * once.
967 	 */
968 	prnt("Sleep locks:\n");
969 	witness_ddb_display_list(prnt, &w_sleep);
970 	if (db_pager_quit)
971 		return;
972 
973 	/*
974 	 * Now do spin locks which have been acquired at least once.
975 	 */
976 	prnt("\nSpin locks:\n");
977 	witness_ddb_display_list(prnt, &w_spin);
978 	if (db_pager_quit)
979 		return;
980 
981 	/*
982 	 * Finally, any locks which have not been acquired yet.
983 	 */
984 	prnt("\nLocks which were never acquired:\n");
985 	STAILQ_FOREACH(w, &w_all, w_list) {
986 		if (w->w_file != NULL || w->w_refcount == 0)
987 			continue;
988 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
989 		    w->w_class->lc_name, w->w_ddb_level);
990 		if (db_pager_quit)
991 			return;
992 	}
993 }
994 #endif /* DDB */
995 
996 int
997 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
998 {
999 
1000 	if (witness_watch == -1 || panicstr != NULL)
1001 		return (0);
1002 
1003 	/* Require locks that witness knows about. */
1004 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1005 	    lock2->lo_witness == NULL)
1006 		return (EINVAL);
1007 
1008 	mtx_assert(&w_mtx, MA_NOTOWNED);
1009 	mtx_lock_spin(&w_mtx);
1010 
1011 	/*
1012 	 * If we already have either an explicit or implied lock order that
1013 	 * is the other way around, then return an error.
1014 	 */
1015 	if (witness_watch &&
1016 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1017 		mtx_unlock_spin(&w_mtx);
1018 		return (EDOOFUS);
1019 	}
1020 
1021 	/* Try to add the new order. */
1022 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1023 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1024 	itismychild(lock1->lo_witness, lock2->lo_witness);
1025 	mtx_unlock_spin(&w_mtx);
1026 	return (0);
1027 }
1028 
1029 void
1030 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1031     int line, struct lock_object *interlock)
1032 {
1033 	struct lock_list_entry *lock_list, *lle;
1034 	struct lock_instance *lock1, *lock2, *plock;
1035 	struct lock_class *class, *iclass;
1036 	struct witness *w, *w1;
1037 	struct thread *td;
1038 	int i, j;
1039 
1040 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1041 	    panicstr != NULL)
1042 		return;
1043 
1044 	w = lock->lo_witness;
1045 	class = LOCK_CLASS(lock);
1046 	td = curthread;
1047 
1048 	if (class->lc_flags & LC_SLEEPLOCK) {
1049 
1050 		/*
1051 		 * Since spin locks include a critical section, this check
1052 		 * implicitly enforces a lock order of all sleep locks before
1053 		 * all spin locks.
1054 		 */
1055 		if (td->td_critnest != 0 && !kdb_active)
1056 			kassert_panic("acquiring blockable sleep lock with "
1057 			    "spinlock or critical section held (%s) %s @ %s:%d",
1058 			    class->lc_name, lock->lo_name,
1059 			    fixup_filename(file), line);
1060 
1061 		/*
1062 		 * If this is the first lock acquired then just return as
1063 		 * no order checking is needed.
1064 		 */
1065 		lock_list = td->td_sleeplocks;
1066 		if (lock_list == NULL || lock_list->ll_count == 0)
1067 			return;
1068 	} else {
1069 
1070 		/*
1071 		 * If this is the first lock, just return as no order
1072 		 * checking is needed.  Avoid problems with thread
1073 		 * migration pinning the thread while checking if
1074 		 * spinlocks are held.  If at least one spinlock is held
1075 		 * the thread is in a safe path and it is allowed to
1076 		 * unpin it.
1077 		 */
1078 		sched_pin();
1079 		lock_list = PCPU_GET(spinlocks);
1080 		if (lock_list == NULL || lock_list->ll_count == 0) {
1081 			sched_unpin();
1082 			return;
1083 		}
1084 		sched_unpin();
1085 	}
1086 
1087 	/*
1088 	 * Check to see if we are recursing on a lock we already own.  If
1089 	 * so, make sure that we don't mismatch exclusive and shared lock
1090 	 * acquires.
1091 	 */
1092 	lock1 = find_instance(lock_list, lock);
1093 	if (lock1 != NULL) {
1094 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1095 		    (flags & LOP_EXCLUSIVE) == 0) {
1096 			printf("shared lock of (%s) %s @ %s:%d\n",
1097 			    class->lc_name, lock->lo_name,
1098 			    fixup_filename(file), line);
1099 			printf("while exclusively locked from %s:%d\n",
1100 			    fixup_filename(lock1->li_file), lock1->li_line);
1101 			kassert_panic("excl->share");
1102 		}
1103 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1104 		    (flags & LOP_EXCLUSIVE) != 0) {
1105 			printf("exclusive lock of (%s) %s @ %s:%d\n",
1106 			    class->lc_name, lock->lo_name,
1107 			    fixup_filename(file), line);
1108 			printf("while share locked from %s:%d\n",
1109 			    fixup_filename(lock1->li_file), lock1->li_line);
1110 			kassert_panic("share->excl");
1111 		}
1112 		return;
1113 	}
1114 
1115 	/* Warn if the interlock is not locked exactly once. */
1116 	if (interlock != NULL) {
1117 		iclass = LOCK_CLASS(interlock);
1118 		lock1 = find_instance(lock_list, interlock);
1119 		if (lock1 == NULL)
1120 			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1121 			    iclass->lc_name, interlock->lo_name,
1122 			    fixup_filename(file), line);
1123 		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1124 			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1125 			    iclass->lc_name, interlock->lo_name,
1126 			    fixup_filename(file), line);
1127 	}
1128 
1129 	/*
1130 	 * Find the previously acquired lock, but ignore interlocks.
1131 	 */
1132 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1133 	if (interlock != NULL && plock->li_lock == interlock) {
1134 		if (lock_list->ll_count > 1)
1135 			plock =
1136 			    &lock_list->ll_children[lock_list->ll_count - 2];
1137 		else {
1138 			lle = lock_list->ll_next;
1139 
1140 			/*
1141 			 * The interlock is the only lock we hold, so
1142 			 * simply return.
1143 			 */
1144 			if (lle == NULL)
1145 				return;
1146 			plock = &lle->ll_children[lle->ll_count - 1];
1147 		}
1148 	}
1149 
1150 	/*
1151 	 * Try to perform most checks without a lock.  If this succeeds we
1152 	 * can skip acquiring the lock and return success.
1153 	 */
1154 	w1 = plock->li_lock->lo_witness;
1155 	if (witness_lock_order_check(w1, w))
1156 		return;
1157 
1158 	/*
1159 	 * Check for duplicate locks of the same type.  Note that we only
1160 	 * have to check for this on the last lock we just acquired.  Any
1161 	 * other cases will be caught as lock order violations.
1162 	 */
1163 	mtx_lock_spin(&w_mtx);
1164 	witness_lock_order_add(w1, w);
1165 	if (w1 == w) {
1166 		i = w->w_index;
1167 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1168 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1169 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1170 			w->w_reversed = 1;
1171 			mtx_unlock_spin(&w_mtx);
1172 			printf(
1173 			    "acquiring duplicate lock of same type: \"%s\"\n",
1174 			    w->w_name);
1175 			printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1176 			    fixup_filename(plock->li_file), plock->li_line);
1177 			printf(" 2nd %s @ %s:%d\n", lock->lo_name,
1178 			    fixup_filename(file), line);
1179 			witness_debugger(1);
1180 		} else
1181 			mtx_unlock_spin(&w_mtx);
1182 		return;
1183 	}
1184 	mtx_assert(&w_mtx, MA_OWNED);
1185 
1186 	/*
1187 	 * If we know that the lock we are acquiring comes after
1188 	 * the lock we most recently acquired in the lock order tree,
1189 	 * then there is no need for any further checks.
1190 	 */
1191 	if (isitmychild(w1, w))
1192 		goto out;
1193 
1194 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1195 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1196 
1197 			MPASS(j < WITNESS_COUNT);
1198 			lock1 = &lle->ll_children[i];
1199 
1200 			/*
1201 			 * Ignore the interlock.
1202 			 */
1203 			if (interlock == lock1->li_lock)
1204 				continue;
1205 
1206 			/*
1207 			 * If this lock doesn't undergo witness checking,
1208 			 * then skip it.
1209 			 */
1210 			w1 = lock1->li_lock->lo_witness;
1211 			if (w1 == NULL) {
1212 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1213 				    ("lock missing witness structure"));
1214 				continue;
1215 			}
1216 
1217 			/*
1218 			 * If we are locking Giant and this is a sleepable
1219 			 * lock, then skip it.
1220 			 */
1221 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1222 			    lock == &Giant.lock_object)
1223 				continue;
1224 
1225 			/*
1226 			 * If we are locking a sleepable lock and this lock
1227 			 * is Giant, then skip it.
1228 			 */
1229 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1230 			    lock1->li_lock == &Giant.lock_object)
1231 				continue;
1232 
1233 			/*
1234 			 * If we are locking a sleepable lock and this lock
1235 			 * isn't sleepable, we want to treat it as a lock
1236 			 * order violation to enfore a general lock order of
1237 			 * sleepable locks before non-sleepable locks.
1238 			 */
1239 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1240 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1241 				goto reversal;
1242 
1243 			/*
1244 			 * If we are locking Giant and this is a non-sleepable
1245 			 * lock, then treat it as a reversal.
1246 			 */
1247 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1248 			    lock == &Giant.lock_object)
1249 				goto reversal;
1250 
1251 			/*
1252 			 * Check the lock order hierarchy for a reveresal.
1253 			 */
1254 			if (!isitmydescendant(w, w1))
1255 				continue;
1256 		reversal:
1257 
1258 			/*
1259 			 * We have a lock order violation, check to see if it
1260 			 * is allowed or has already been yelled about.
1261 			 */
1262 #ifdef BLESSING
1263 
1264 			/*
1265 			 * If the lock order is blessed, just bail.  We don't
1266 			 * look for other lock order violations though, which
1267 			 * may be a bug.
1268 			 */
1269 			if (blessed(w, w1))
1270 				goto out;
1271 #endif
1272 
1273 			/* Bail if this violation is known */
1274 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1275 				goto out;
1276 
1277 			/* Record this as a violation */
1278 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1279 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1280 			w->w_reversed = w1->w_reversed = 1;
1281 			witness_increment_graph_generation();
1282 			mtx_unlock_spin(&w_mtx);
1283 
1284 #ifdef WITNESS_NO_VNODE
1285 			/*
1286 			 * There are known LORs between VNODE locks. They are
1287 			 * not an indication of a bug. VNODE locks are flagged
1288 			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1289 			 * is between 2 VNODE locks.
1290 			 */
1291 			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1292 			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1293 				return;
1294 #endif
1295 
1296 			/*
1297 			 * Ok, yell about it.
1298 			 */
1299 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1300 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1301 				printf(
1302 		"lock order reversal: (sleepable after non-sleepable)\n");
1303 			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1304 			    && lock == &Giant.lock_object)
1305 				printf(
1306 		"lock order reversal: (Giant after non-sleepable)\n");
1307 			else
1308 				printf("lock order reversal:\n");
1309 
1310 			/*
1311 			 * Try to locate an earlier lock with
1312 			 * witness w in our list.
1313 			 */
1314 			do {
1315 				lock2 = &lle->ll_children[i];
1316 				MPASS(lock2->li_lock != NULL);
1317 				if (lock2->li_lock->lo_witness == w)
1318 					break;
1319 				if (i == 0 && lle->ll_next != NULL) {
1320 					lle = lle->ll_next;
1321 					i = lle->ll_count - 1;
1322 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1323 				} else
1324 					i--;
1325 			} while (i >= 0);
1326 			if (i < 0) {
1327 				printf(" 1st %p %s (%s) @ %s:%d\n",
1328 				    lock1->li_lock, lock1->li_lock->lo_name,
1329 				    w1->w_name, fixup_filename(lock1->li_file),
1330 				    lock1->li_line);
1331 				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1332 				    lock->lo_name, w->w_name,
1333 				    fixup_filename(file), line);
1334 			} else {
1335 				printf(" 1st %p %s (%s) @ %s:%d\n",
1336 				    lock2->li_lock, lock2->li_lock->lo_name,
1337 				    lock2->li_lock->lo_witness->w_name,
1338 				    fixup_filename(lock2->li_file),
1339 				    lock2->li_line);
1340 				printf(" 2nd %p %s (%s) @ %s:%d\n",
1341 				    lock1->li_lock, lock1->li_lock->lo_name,
1342 				    w1->w_name, fixup_filename(lock1->li_file),
1343 				    lock1->li_line);
1344 				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1345 				    lock->lo_name, w->w_name,
1346 				    fixup_filename(file), line);
1347 			}
1348 			witness_debugger(1);
1349 			return;
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * If requested, build a new lock order.  However, don't build a new
1355 	 * relationship between a sleepable lock and Giant if it is in the
1356 	 * wrong direction.  The correct lock order is that sleepable locks
1357 	 * always come before Giant.
1358 	 */
1359 	if (flags & LOP_NEWORDER &&
1360 	    !(plock->li_lock == &Giant.lock_object &&
1361 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1362 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1363 		    w->w_name, plock->li_lock->lo_witness->w_name);
1364 		itismychild(plock->li_lock->lo_witness, w);
1365 	}
1366 out:
1367 	mtx_unlock_spin(&w_mtx);
1368 }
1369 
1370 void
1371 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1372 {
1373 	struct lock_list_entry **lock_list, *lle;
1374 	struct lock_instance *instance;
1375 	struct witness *w;
1376 	struct thread *td;
1377 
1378 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1379 	    panicstr != NULL)
1380 		return;
1381 	w = lock->lo_witness;
1382 	td = curthread;
1383 
1384 	/* Determine lock list for this lock. */
1385 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1386 		lock_list = &td->td_sleeplocks;
1387 	else
1388 		lock_list = PCPU_PTR(spinlocks);
1389 
1390 	/* Check to see if we are recursing on a lock we already own. */
1391 	instance = find_instance(*lock_list, lock);
1392 	if (instance != NULL) {
1393 		instance->li_flags++;
1394 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1395 		    td->td_proc->p_pid, lock->lo_name,
1396 		    instance->li_flags & LI_RECURSEMASK);
1397 		instance->li_file = file;
1398 		instance->li_line = line;
1399 		return;
1400 	}
1401 
1402 	/* Update per-witness last file and line acquire. */
1403 	w->w_file = file;
1404 	w->w_line = line;
1405 
1406 	/* Find the next open lock instance in the list and fill it. */
1407 	lle = *lock_list;
1408 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1409 		lle = witness_lock_list_get();
1410 		if (lle == NULL)
1411 			return;
1412 		lle->ll_next = *lock_list;
1413 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1414 		    td->td_proc->p_pid, lle);
1415 		*lock_list = lle;
1416 	}
1417 	instance = &lle->ll_children[lle->ll_count++];
1418 	instance->li_lock = lock;
1419 	instance->li_line = line;
1420 	instance->li_file = file;
1421 	if ((flags & LOP_EXCLUSIVE) != 0)
1422 		instance->li_flags = LI_EXCLUSIVE;
1423 	else
1424 		instance->li_flags = 0;
1425 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1426 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1427 }
1428 
1429 void
1430 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1431 {
1432 	struct lock_instance *instance;
1433 	struct lock_class *class;
1434 
1435 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1436 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1437 		return;
1438 	class = LOCK_CLASS(lock);
1439 	if (witness_watch) {
1440 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1441 			kassert_panic(
1442 			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1443 			    class->lc_name, lock->lo_name,
1444 			    fixup_filename(file), line);
1445 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1446 			kassert_panic(
1447 			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1448 			    class->lc_name, lock->lo_name,
1449 			    fixup_filename(file), line);
1450 	}
1451 	instance = find_instance(curthread->td_sleeplocks, lock);
1452 	if (instance == NULL) {
1453 		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1454 		    class->lc_name, lock->lo_name,
1455 		    fixup_filename(file), line);
1456 		return;
1457 	}
1458 	if (witness_watch) {
1459 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1460 			kassert_panic(
1461 			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1462 			    class->lc_name, lock->lo_name,
1463 			    fixup_filename(file), line);
1464 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1465 			kassert_panic(
1466 			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1467 			    class->lc_name, lock->lo_name,
1468 			    instance->li_flags & LI_RECURSEMASK,
1469 			    fixup_filename(file), line);
1470 	}
1471 	instance->li_flags |= LI_EXCLUSIVE;
1472 }
1473 
1474 void
1475 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1476     int line)
1477 {
1478 	struct lock_instance *instance;
1479 	struct lock_class *class;
1480 
1481 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1482 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1483 		return;
1484 	class = LOCK_CLASS(lock);
1485 	if (witness_watch) {
1486 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1487 			kassert_panic(
1488 			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1489 			    class->lc_name, lock->lo_name,
1490 			    fixup_filename(file), line);
1491 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1492 			kassert_panic(
1493 			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1494 			    class->lc_name, lock->lo_name,
1495 			    fixup_filename(file), line);
1496 	}
1497 	instance = find_instance(curthread->td_sleeplocks, lock);
1498 	if (instance == NULL) {
1499 		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1500 		    class->lc_name, lock->lo_name,
1501 		    fixup_filename(file), line);
1502 		return;
1503 	}
1504 	if (witness_watch) {
1505 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1506 			kassert_panic(
1507 			    "downgrade of shared lock (%s) %s @ %s:%d",
1508 			    class->lc_name, lock->lo_name,
1509 			    fixup_filename(file), line);
1510 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1511 			kassert_panic(
1512 			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1513 			    class->lc_name, lock->lo_name,
1514 			    instance->li_flags & LI_RECURSEMASK,
1515 			    fixup_filename(file), line);
1516 	}
1517 	instance->li_flags &= ~LI_EXCLUSIVE;
1518 }
1519 
1520 void
1521 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1522 {
1523 	struct lock_list_entry **lock_list, *lle;
1524 	struct lock_instance *instance;
1525 	struct lock_class *class;
1526 	struct thread *td;
1527 	register_t s;
1528 	int i, j;
1529 
1530 	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1531 		return;
1532 	td = curthread;
1533 	class = LOCK_CLASS(lock);
1534 
1535 	/* Find lock instance associated with this lock. */
1536 	if (class->lc_flags & LC_SLEEPLOCK)
1537 		lock_list = &td->td_sleeplocks;
1538 	else
1539 		lock_list = PCPU_PTR(spinlocks);
1540 	lle = *lock_list;
1541 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1542 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1543 			instance = &(*lock_list)->ll_children[i];
1544 			if (instance->li_lock == lock)
1545 				goto found;
1546 		}
1547 
1548 	/*
1549 	 * When disabling WITNESS through witness_watch we could end up in
1550 	 * having registered locks in the td_sleeplocks queue.
1551 	 * We have to make sure we flush these queues, so just search for
1552 	 * eventual register locks and remove them.
1553 	 */
1554 	if (witness_watch > 0) {
1555 		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1556 		    lock->lo_name, fixup_filename(file), line);
1557 		return;
1558 	} else {
1559 		return;
1560 	}
1561 found:
1562 
1563 	/* First, check for shared/exclusive mismatches. */
1564 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1565 	    (flags & LOP_EXCLUSIVE) == 0) {
1566 		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1567 		    lock->lo_name, fixup_filename(file), line);
1568 		printf("while exclusively locked from %s:%d\n",
1569 		    fixup_filename(instance->li_file), instance->li_line);
1570 		kassert_panic("excl->ushare");
1571 	}
1572 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1573 	    (flags & LOP_EXCLUSIVE) != 0) {
1574 		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1575 		    lock->lo_name, fixup_filename(file), line);
1576 		printf("while share locked from %s:%d\n",
1577 		    fixup_filename(instance->li_file),
1578 		    instance->li_line);
1579 		kassert_panic("share->uexcl");
1580 	}
1581 	/* If we are recursed, unrecurse. */
1582 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1583 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1584 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1585 		    instance->li_flags);
1586 		instance->li_flags--;
1587 		return;
1588 	}
1589 	/* The lock is now being dropped, check for NORELEASE flag */
1590 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1591 		printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1592 		    lock->lo_name, fixup_filename(file), line);
1593 		kassert_panic("lock marked norelease");
1594 	}
1595 
1596 	/* Otherwise, remove this item from the list. */
1597 	s = intr_disable();
1598 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1599 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1600 	    (*lock_list)->ll_count - 1);
1601 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1602 		(*lock_list)->ll_children[j] =
1603 		    (*lock_list)->ll_children[j + 1];
1604 	(*lock_list)->ll_count--;
1605 	intr_restore(s);
1606 
1607 	/*
1608 	 * In order to reduce contention on w_mtx, we want to keep always an
1609 	 * head object into lists so that frequent allocation from the
1610 	 * free witness pool (and subsequent locking) is avoided.
1611 	 * In order to maintain the current code simple, when the head
1612 	 * object is totally unloaded it means also that we do not have
1613 	 * further objects in the list, so the list ownership needs to be
1614 	 * hand over to another object if the current head needs to be freed.
1615 	 */
1616 	if ((*lock_list)->ll_count == 0) {
1617 		if (*lock_list == lle) {
1618 			if (lle->ll_next == NULL)
1619 				return;
1620 		} else
1621 			lle = *lock_list;
1622 		*lock_list = lle->ll_next;
1623 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1624 		    td->td_proc->p_pid, lle);
1625 		witness_lock_list_free(lle);
1626 	}
1627 }
1628 
1629 void
1630 witness_thread_exit(struct thread *td)
1631 {
1632 	struct lock_list_entry *lle;
1633 	int i, n;
1634 
1635 	lle = td->td_sleeplocks;
1636 	if (lle == NULL || panicstr != NULL)
1637 		return;
1638 	if (lle->ll_count != 0) {
1639 		for (n = 0; lle != NULL; lle = lle->ll_next)
1640 			for (i = lle->ll_count - 1; i >= 0; i--) {
1641 				if (n == 0)
1642 		printf("Thread %p exiting with the following locks held:\n",
1643 					    td);
1644 				n++;
1645 				witness_list_lock(&lle->ll_children[i], printf);
1646 
1647 			}
1648 		kassert_panic(
1649 		    "Thread %p cannot exit while holding sleeplocks\n", td);
1650 	}
1651 	witness_lock_list_free(lle);
1652 }
1653 
1654 /*
1655  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1656  * exempt Giant and sleepable locks from the checks as well.  If any
1657  * non-exempt locks are held, then a supplied message is printed to the
1658  * console along with a list of the offending locks.  If indicated in the
1659  * flags then a failure results in a panic as well.
1660  */
1661 int
1662 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1663 {
1664 	struct lock_list_entry *lock_list, *lle;
1665 	struct lock_instance *lock1;
1666 	struct thread *td;
1667 	va_list ap;
1668 	int i, n;
1669 
1670 	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1671 		return (0);
1672 	n = 0;
1673 	td = curthread;
1674 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1675 		for (i = lle->ll_count - 1; i >= 0; i--) {
1676 			lock1 = &lle->ll_children[i];
1677 			if (lock1->li_lock == lock)
1678 				continue;
1679 			if (flags & WARN_GIANTOK &&
1680 			    lock1->li_lock == &Giant.lock_object)
1681 				continue;
1682 			if (flags & WARN_SLEEPOK &&
1683 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1684 				continue;
1685 			if (n == 0) {
1686 				va_start(ap, fmt);
1687 				vprintf(fmt, ap);
1688 				va_end(ap);
1689 				printf(" with the following");
1690 				if (flags & WARN_SLEEPOK)
1691 					printf(" non-sleepable");
1692 				printf(" locks held:\n");
1693 			}
1694 			n++;
1695 			witness_list_lock(lock1, printf);
1696 		}
1697 
1698 	/*
1699 	 * Pin the thread in order to avoid problems with thread migration.
1700 	 * Once that all verifies are passed about spinlocks ownership,
1701 	 * the thread is in a safe path and it can be unpinned.
1702 	 */
1703 	sched_pin();
1704 	lock_list = PCPU_GET(spinlocks);
1705 	if (lock_list != NULL && lock_list->ll_count != 0) {
1706 		sched_unpin();
1707 
1708 		/*
1709 		 * We should only have one spinlock and as long as
1710 		 * the flags cannot match for this locks class,
1711 		 * check if the first spinlock is the one curthread
1712 		 * should hold.
1713 		 */
1714 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1715 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1716 		    lock1->li_lock == lock && n == 0)
1717 			return (0);
1718 
1719 		va_start(ap, fmt);
1720 		vprintf(fmt, ap);
1721 		va_end(ap);
1722 		printf(" with the following");
1723 		if (flags & WARN_SLEEPOK)
1724 			printf(" non-sleepable");
1725 		printf(" locks held:\n");
1726 		n += witness_list_locks(&lock_list, printf);
1727 	} else
1728 		sched_unpin();
1729 	if (flags & WARN_PANIC && n)
1730 		kassert_panic("%s", __func__);
1731 	else
1732 		witness_debugger(n);
1733 	return (n);
1734 }
1735 
1736 const char *
1737 witness_file(struct lock_object *lock)
1738 {
1739 	struct witness *w;
1740 
1741 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1742 		return ("?");
1743 	w = lock->lo_witness;
1744 	return (w->w_file);
1745 }
1746 
1747 int
1748 witness_line(struct lock_object *lock)
1749 {
1750 	struct witness *w;
1751 
1752 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1753 		return (0);
1754 	w = lock->lo_witness;
1755 	return (w->w_line);
1756 }
1757 
1758 static struct witness *
1759 enroll(const char *description, struct lock_class *lock_class)
1760 {
1761 	struct witness *w;
1762 	struct witness_list *typelist;
1763 
1764 	MPASS(description != NULL);
1765 
1766 	if (witness_watch == -1 || panicstr != NULL)
1767 		return (NULL);
1768 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1769 		if (witness_skipspin)
1770 			return (NULL);
1771 		else
1772 			typelist = &w_spin;
1773 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1774 		typelist = &w_sleep;
1775 	} else {
1776 		kassert_panic("lock class %s is not sleep or spin",
1777 		    lock_class->lc_name);
1778 		return (NULL);
1779 	}
1780 
1781 	mtx_lock_spin(&w_mtx);
1782 	w = witness_hash_get(description);
1783 	if (w)
1784 		goto found;
1785 	if ((w = witness_get()) == NULL)
1786 		return (NULL);
1787 	MPASS(strlen(description) < MAX_W_NAME);
1788 	strcpy(w->w_name, description);
1789 	w->w_class = lock_class;
1790 	w->w_refcount = 1;
1791 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1792 	if (lock_class->lc_flags & LC_SPINLOCK) {
1793 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1794 		w_spin_cnt++;
1795 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1796 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1797 		w_sleep_cnt++;
1798 	}
1799 
1800 	/* Insert new witness into the hash */
1801 	witness_hash_put(w);
1802 	witness_increment_graph_generation();
1803 	mtx_unlock_spin(&w_mtx);
1804 	return (w);
1805 found:
1806 	w->w_refcount++;
1807 	mtx_unlock_spin(&w_mtx);
1808 	if (lock_class != w->w_class)
1809 		kassert_panic(
1810 			"lock (%s) %s does not match earlier (%s) lock",
1811 			description, lock_class->lc_name,
1812 			w->w_class->lc_name);
1813 	return (w);
1814 }
1815 
1816 static void
1817 depart(struct witness *w)
1818 {
1819 	struct witness_list *list;
1820 
1821 	MPASS(w->w_refcount == 0);
1822 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1823 		list = &w_sleep;
1824 		w_sleep_cnt--;
1825 	} else {
1826 		list = &w_spin;
1827 		w_spin_cnt--;
1828 	}
1829 	/*
1830 	 * Set file to NULL as it may point into a loadable module.
1831 	 */
1832 	w->w_file = NULL;
1833 	w->w_line = 0;
1834 	witness_increment_graph_generation();
1835 }
1836 
1837 
1838 static void
1839 adopt(struct witness *parent, struct witness *child)
1840 {
1841 	int pi, ci, i, j;
1842 
1843 	if (witness_cold == 0)
1844 		mtx_assert(&w_mtx, MA_OWNED);
1845 
1846 	/* If the relationship is already known, there's no work to be done. */
1847 	if (isitmychild(parent, child))
1848 		return;
1849 
1850 	/* When the structure of the graph changes, bump up the generation. */
1851 	witness_increment_graph_generation();
1852 
1853 	/*
1854 	 * The hard part ... create the direct relationship, then propagate all
1855 	 * indirect relationships.
1856 	 */
1857 	pi = parent->w_index;
1858 	ci = child->w_index;
1859 	WITNESS_INDEX_ASSERT(pi);
1860 	WITNESS_INDEX_ASSERT(ci);
1861 	MPASS(pi != ci);
1862 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1863 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1864 
1865 	/*
1866 	 * If parent was not already an ancestor of child,
1867 	 * then we increment the descendant and ancestor counters.
1868 	 */
1869 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1870 		parent->w_num_descendants++;
1871 		child->w_num_ancestors++;
1872 	}
1873 
1874 	/*
1875 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1876 	 * an ancestor of 'pi' during this loop.
1877 	 */
1878 	for (i = 1; i <= w_max_used_index; i++) {
1879 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1880 		    (i != pi))
1881 			continue;
1882 
1883 		/* Find each descendant of 'i' and mark it as a descendant. */
1884 		for (j = 1; j <= w_max_used_index; j++) {
1885 
1886 			/*
1887 			 * Skip children that are already marked as
1888 			 * descendants of 'i'.
1889 			 */
1890 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1891 				continue;
1892 
1893 			/*
1894 			 * We are only interested in descendants of 'ci'. Note
1895 			 * that 'ci' itself is counted as a descendant of 'ci'.
1896 			 */
1897 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1898 			    (j != ci))
1899 				continue;
1900 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1901 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1902 			w_data[i].w_num_descendants++;
1903 			w_data[j].w_num_ancestors++;
1904 
1905 			/*
1906 			 * Make sure we aren't marking a node as both an
1907 			 * ancestor and descendant. We should have caught
1908 			 * this as a lock order reversal earlier.
1909 			 */
1910 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1911 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1912 				printf("witness rmatrix paradox! [%d][%d]=%d "
1913 				    "both ancestor and descendant\n",
1914 				    i, j, w_rmatrix[i][j]);
1915 				kdb_backtrace();
1916 				printf("Witness disabled.\n");
1917 				witness_watch = -1;
1918 			}
1919 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1920 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1921 				printf("witness rmatrix paradox! [%d][%d]=%d "
1922 				    "both ancestor and descendant\n",
1923 				    j, i, w_rmatrix[j][i]);
1924 				kdb_backtrace();
1925 				printf("Witness disabled.\n");
1926 				witness_watch = -1;
1927 			}
1928 		}
1929 	}
1930 }
1931 
1932 static void
1933 itismychild(struct witness *parent, struct witness *child)
1934 {
1935 	int unlocked;
1936 
1937 	MPASS(child != NULL && parent != NULL);
1938 	if (witness_cold == 0)
1939 		mtx_assert(&w_mtx, MA_OWNED);
1940 
1941 	if (!witness_lock_type_equal(parent, child)) {
1942 		if (witness_cold == 0) {
1943 			unlocked = 1;
1944 			mtx_unlock_spin(&w_mtx);
1945 		} else {
1946 			unlocked = 0;
1947 		}
1948 		kassert_panic(
1949 		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1950 		    "the same lock type", __func__, parent->w_name,
1951 		    parent->w_class->lc_name, child->w_name,
1952 		    child->w_class->lc_name);
1953 		if (unlocked)
1954 			mtx_lock_spin(&w_mtx);
1955 	}
1956 	adopt(parent, child);
1957 }
1958 
1959 /*
1960  * Generic code for the isitmy*() functions. The rmask parameter is the
1961  * expected relationship of w1 to w2.
1962  */
1963 static int
1964 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1965 {
1966 	unsigned char r1, r2;
1967 	int i1, i2;
1968 
1969 	i1 = w1->w_index;
1970 	i2 = w2->w_index;
1971 	WITNESS_INDEX_ASSERT(i1);
1972 	WITNESS_INDEX_ASSERT(i2);
1973 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1974 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1975 
1976 	/* The flags on one better be the inverse of the flags on the other */
1977 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1978 		(WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1979 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
1980 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
1981 		    "w_rmatrix[%d][%d] == %hhx\n",
1982 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1983 		    i2, i1, r2);
1984 		kdb_backtrace();
1985 		printf("Witness disabled.\n");
1986 		witness_watch = -1;
1987 	}
1988 	return (r1 & rmask);
1989 }
1990 
1991 /*
1992  * Checks if @child is a direct child of @parent.
1993  */
1994 static int
1995 isitmychild(struct witness *parent, struct witness *child)
1996 {
1997 
1998 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1999 }
2000 
2001 /*
2002  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2003  */
2004 static int
2005 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2006 {
2007 
2008 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2009 	    __func__));
2010 }
2011 
2012 #ifdef BLESSING
2013 static int
2014 blessed(struct witness *w1, struct witness *w2)
2015 {
2016 	int i;
2017 	struct witness_blessed *b;
2018 
2019 	for (i = 0; i < blessed_count; i++) {
2020 		b = &blessed_list[i];
2021 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2022 			if (strcmp(w2->w_name, b->b_lock2) == 0)
2023 				return (1);
2024 			continue;
2025 		}
2026 		if (strcmp(w1->w_name, b->b_lock2) == 0)
2027 			if (strcmp(w2->w_name, b->b_lock1) == 0)
2028 				return (1);
2029 	}
2030 	return (0);
2031 }
2032 #endif
2033 
2034 static struct witness *
2035 witness_get(void)
2036 {
2037 	struct witness *w;
2038 	int index;
2039 
2040 	if (witness_cold == 0)
2041 		mtx_assert(&w_mtx, MA_OWNED);
2042 
2043 	if (witness_watch == -1) {
2044 		mtx_unlock_spin(&w_mtx);
2045 		return (NULL);
2046 	}
2047 	if (STAILQ_EMPTY(&w_free)) {
2048 		witness_watch = -1;
2049 		mtx_unlock_spin(&w_mtx);
2050 		printf("WITNESS: unable to allocate a new witness object\n");
2051 		return (NULL);
2052 	}
2053 	w = STAILQ_FIRST(&w_free);
2054 	STAILQ_REMOVE_HEAD(&w_free, w_list);
2055 	w_free_cnt--;
2056 	index = w->w_index;
2057 	MPASS(index > 0 && index == w_max_used_index+1 &&
2058 	    index < WITNESS_COUNT);
2059 	bzero(w, sizeof(*w));
2060 	w->w_index = index;
2061 	if (index > w_max_used_index)
2062 		w_max_used_index = index;
2063 	return (w);
2064 }
2065 
2066 static void
2067 witness_free(struct witness *w)
2068 {
2069 
2070 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2071 	w_free_cnt++;
2072 }
2073 
2074 static struct lock_list_entry *
2075 witness_lock_list_get(void)
2076 {
2077 	struct lock_list_entry *lle;
2078 
2079 	if (witness_watch == -1)
2080 		return (NULL);
2081 	mtx_lock_spin(&w_mtx);
2082 	lle = w_lock_list_free;
2083 	if (lle == NULL) {
2084 		witness_watch = -1;
2085 		mtx_unlock_spin(&w_mtx);
2086 		printf("%s: witness exhausted\n", __func__);
2087 		return (NULL);
2088 	}
2089 	w_lock_list_free = lle->ll_next;
2090 	mtx_unlock_spin(&w_mtx);
2091 	bzero(lle, sizeof(*lle));
2092 	return (lle);
2093 }
2094 
2095 static void
2096 witness_lock_list_free(struct lock_list_entry *lle)
2097 {
2098 
2099 	mtx_lock_spin(&w_mtx);
2100 	lle->ll_next = w_lock_list_free;
2101 	w_lock_list_free = lle;
2102 	mtx_unlock_spin(&w_mtx);
2103 }
2104 
2105 static struct lock_instance *
2106 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2107 {
2108 	struct lock_list_entry *lle;
2109 	struct lock_instance *instance;
2110 	int i;
2111 
2112 	for (lle = list; lle != NULL; lle = lle->ll_next)
2113 		for (i = lle->ll_count - 1; i >= 0; i--) {
2114 			instance = &lle->ll_children[i];
2115 			if (instance->li_lock == lock)
2116 				return (instance);
2117 		}
2118 	return (NULL);
2119 }
2120 
2121 static void
2122 witness_list_lock(struct lock_instance *instance,
2123     int (*prnt)(const char *fmt, ...))
2124 {
2125 	struct lock_object *lock;
2126 
2127 	lock = instance->li_lock;
2128 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2129 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2130 	if (lock->lo_witness->w_name != lock->lo_name)
2131 		prnt(" (%s)", lock->lo_witness->w_name);
2132 	prnt(" r = %d (%p) locked @ %s:%d\n",
2133 	    instance->li_flags & LI_RECURSEMASK, lock,
2134 	    fixup_filename(instance->li_file), instance->li_line);
2135 }
2136 
2137 #ifdef DDB
2138 static int
2139 witness_thread_has_locks(struct thread *td)
2140 {
2141 
2142 	if (td->td_sleeplocks == NULL)
2143 		return (0);
2144 	return (td->td_sleeplocks->ll_count != 0);
2145 }
2146 
2147 static int
2148 witness_proc_has_locks(struct proc *p)
2149 {
2150 	struct thread *td;
2151 
2152 	FOREACH_THREAD_IN_PROC(p, td) {
2153 		if (witness_thread_has_locks(td))
2154 			return (1);
2155 	}
2156 	return (0);
2157 }
2158 #endif
2159 
2160 int
2161 witness_list_locks(struct lock_list_entry **lock_list,
2162     int (*prnt)(const char *fmt, ...))
2163 {
2164 	struct lock_list_entry *lle;
2165 	int i, nheld;
2166 
2167 	nheld = 0;
2168 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2169 		for (i = lle->ll_count - 1; i >= 0; i--) {
2170 			witness_list_lock(&lle->ll_children[i], prnt);
2171 			nheld++;
2172 		}
2173 	return (nheld);
2174 }
2175 
2176 /*
2177  * This is a bit risky at best.  We call this function when we have timed
2178  * out acquiring a spin lock, and we assume that the other CPU is stuck
2179  * with this lock held.  So, we go groveling around in the other CPU's
2180  * per-cpu data to try to find the lock instance for this spin lock to
2181  * see when it was last acquired.
2182  */
2183 void
2184 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2185     int (*prnt)(const char *fmt, ...))
2186 {
2187 	struct lock_instance *instance;
2188 	struct pcpu *pc;
2189 
2190 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2191 		return;
2192 	pc = pcpu_find(owner->td_oncpu);
2193 	instance = find_instance(pc->pc_spinlocks, lock);
2194 	if (instance != NULL)
2195 		witness_list_lock(instance, prnt);
2196 }
2197 
2198 void
2199 witness_save(struct lock_object *lock, const char **filep, int *linep)
2200 {
2201 	struct lock_list_entry *lock_list;
2202 	struct lock_instance *instance;
2203 	struct lock_class *class;
2204 
2205 	/*
2206 	 * This function is used independently in locking code to deal with
2207 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2208 	 * is gone.
2209 	 */
2210 	if (SCHEDULER_STOPPED())
2211 		return;
2212 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2213 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2214 		return;
2215 	class = LOCK_CLASS(lock);
2216 	if (class->lc_flags & LC_SLEEPLOCK)
2217 		lock_list = curthread->td_sleeplocks;
2218 	else {
2219 		if (witness_skipspin)
2220 			return;
2221 		lock_list = PCPU_GET(spinlocks);
2222 	}
2223 	instance = find_instance(lock_list, lock);
2224 	if (instance == NULL) {
2225 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2226 		    class->lc_name, lock->lo_name);
2227 		return;
2228 	}
2229 	*filep = instance->li_file;
2230 	*linep = instance->li_line;
2231 }
2232 
2233 void
2234 witness_restore(struct lock_object *lock, const char *file, int line)
2235 {
2236 	struct lock_list_entry *lock_list;
2237 	struct lock_instance *instance;
2238 	struct lock_class *class;
2239 
2240 	/*
2241 	 * This function is used independently in locking code to deal with
2242 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2243 	 * is gone.
2244 	 */
2245 	if (SCHEDULER_STOPPED())
2246 		return;
2247 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2248 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2249 		return;
2250 	class = LOCK_CLASS(lock);
2251 	if (class->lc_flags & LC_SLEEPLOCK)
2252 		lock_list = curthread->td_sleeplocks;
2253 	else {
2254 		if (witness_skipspin)
2255 			return;
2256 		lock_list = PCPU_GET(spinlocks);
2257 	}
2258 	instance = find_instance(lock_list, lock);
2259 	if (instance == NULL)
2260 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2261 		    class->lc_name, lock->lo_name);
2262 	lock->lo_witness->w_file = file;
2263 	lock->lo_witness->w_line = line;
2264 	if (instance == NULL)
2265 		return;
2266 	instance->li_file = file;
2267 	instance->li_line = line;
2268 }
2269 
2270 void
2271 witness_assert(const struct lock_object *lock, int flags, const char *file,
2272     int line)
2273 {
2274 #ifdef INVARIANT_SUPPORT
2275 	struct lock_instance *instance;
2276 	struct lock_class *class;
2277 
2278 	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2279 		return;
2280 	class = LOCK_CLASS(lock);
2281 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2282 		instance = find_instance(curthread->td_sleeplocks, lock);
2283 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2284 		instance = find_instance(PCPU_GET(spinlocks), lock);
2285 	else {
2286 		kassert_panic("Lock (%s) %s is not sleep or spin!",
2287 		    class->lc_name, lock->lo_name);
2288 		return;
2289 	}
2290 	switch (flags) {
2291 	case LA_UNLOCKED:
2292 		if (instance != NULL)
2293 			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2294 			    class->lc_name, lock->lo_name,
2295 			    fixup_filename(file), line);
2296 		break;
2297 	case LA_LOCKED:
2298 	case LA_LOCKED | LA_RECURSED:
2299 	case LA_LOCKED | LA_NOTRECURSED:
2300 	case LA_SLOCKED:
2301 	case LA_SLOCKED | LA_RECURSED:
2302 	case LA_SLOCKED | LA_NOTRECURSED:
2303 	case LA_XLOCKED:
2304 	case LA_XLOCKED | LA_RECURSED:
2305 	case LA_XLOCKED | LA_NOTRECURSED:
2306 		if (instance == NULL) {
2307 			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2308 			    class->lc_name, lock->lo_name,
2309 			    fixup_filename(file), line);
2310 			break;
2311 		}
2312 		if ((flags & LA_XLOCKED) != 0 &&
2313 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2314 			kassert_panic(
2315 			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2316 			    class->lc_name, lock->lo_name,
2317 			    fixup_filename(file), line);
2318 		if ((flags & LA_SLOCKED) != 0 &&
2319 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2320 			kassert_panic(
2321 			    "Lock (%s) %s exclusively locked @ %s:%d.",
2322 			    class->lc_name, lock->lo_name,
2323 			    fixup_filename(file), line);
2324 		if ((flags & LA_RECURSED) != 0 &&
2325 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2326 			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2327 			    class->lc_name, lock->lo_name,
2328 			    fixup_filename(file), line);
2329 		if ((flags & LA_NOTRECURSED) != 0 &&
2330 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2331 			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2332 			    class->lc_name, lock->lo_name,
2333 			    fixup_filename(file), line);
2334 		break;
2335 	default:
2336 		kassert_panic("Invalid lock assertion at %s:%d.",
2337 		    fixup_filename(file), line);
2338 
2339 	}
2340 #endif	/* INVARIANT_SUPPORT */
2341 }
2342 
2343 static void
2344 witness_setflag(struct lock_object *lock, int flag, int set)
2345 {
2346 	struct lock_list_entry *lock_list;
2347 	struct lock_instance *instance;
2348 	struct lock_class *class;
2349 
2350 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2351 		return;
2352 	class = LOCK_CLASS(lock);
2353 	if (class->lc_flags & LC_SLEEPLOCK)
2354 		lock_list = curthread->td_sleeplocks;
2355 	else {
2356 		if (witness_skipspin)
2357 			return;
2358 		lock_list = PCPU_GET(spinlocks);
2359 	}
2360 	instance = find_instance(lock_list, lock);
2361 	if (instance == NULL) {
2362 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2363 		    class->lc_name, lock->lo_name);
2364 		return;
2365 	}
2366 
2367 	if (set)
2368 		instance->li_flags |= flag;
2369 	else
2370 		instance->li_flags &= ~flag;
2371 }
2372 
2373 void
2374 witness_norelease(struct lock_object *lock)
2375 {
2376 
2377 	witness_setflag(lock, LI_NORELEASE, 1);
2378 }
2379 
2380 void
2381 witness_releaseok(struct lock_object *lock)
2382 {
2383 
2384 	witness_setflag(lock, LI_NORELEASE, 0);
2385 }
2386 
2387 #ifdef DDB
2388 static void
2389 witness_ddb_list(struct thread *td)
2390 {
2391 
2392 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2393 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2394 
2395 	if (witness_watch < 1)
2396 		return;
2397 
2398 	witness_list_locks(&td->td_sleeplocks, db_printf);
2399 
2400 	/*
2401 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2402 	 * if td is currently executing on some other CPU and holds spin locks
2403 	 * as we won't display those locks.  If we had a MI way of getting
2404 	 * the per-cpu data for a given cpu then we could use
2405 	 * td->td_oncpu to get the list of spinlocks for this thread
2406 	 * and "fix" this.
2407 	 *
2408 	 * That still wouldn't really fix this unless we locked the scheduler
2409 	 * lock or stopped the other CPU to make sure it wasn't changing the
2410 	 * list out from under us.  It is probably best to just not try to
2411 	 * handle threads on other CPU's for now.
2412 	 */
2413 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2414 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2415 }
2416 
2417 DB_SHOW_COMMAND(locks, db_witness_list)
2418 {
2419 	struct thread *td;
2420 
2421 	if (have_addr)
2422 		td = db_lookup_thread(addr, TRUE);
2423 	else
2424 		td = kdb_thread;
2425 	witness_ddb_list(td);
2426 }
2427 
2428 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2429 {
2430 	struct thread *td;
2431 	struct proc *p;
2432 
2433 	/*
2434 	 * It would be nice to list only threads and processes that actually
2435 	 * held sleep locks, but that information is currently not exported
2436 	 * by WITNESS.
2437 	 */
2438 	FOREACH_PROC_IN_SYSTEM(p) {
2439 		if (!witness_proc_has_locks(p))
2440 			continue;
2441 		FOREACH_THREAD_IN_PROC(p, td) {
2442 			if (!witness_thread_has_locks(td))
2443 				continue;
2444 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2445 			    p->p_comm, td, td->td_tid);
2446 			witness_ddb_list(td);
2447 			if (db_pager_quit)
2448 				return;
2449 		}
2450 	}
2451 }
2452 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2453 
2454 DB_SHOW_COMMAND(witness, db_witness_display)
2455 {
2456 
2457 	witness_ddb_display(db_printf);
2458 }
2459 #endif
2460 
2461 static int
2462 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2463 {
2464 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2465 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2466 	struct sbuf *sb;
2467 	u_int w_rmatrix1, w_rmatrix2;
2468 	int error, generation, i, j;
2469 
2470 	tmp_data1 = NULL;
2471 	tmp_data2 = NULL;
2472 	tmp_w1 = NULL;
2473 	tmp_w2 = NULL;
2474 	if (witness_watch < 1) {
2475 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2476 		return (error);
2477 	}
2478 	if (witness_cold) {
2479 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2480 		return (error);
2481 	}
2482 	error = 0;
2483 	sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2484 	if (sb == NULL)
2485 		return (ENOMEM);
2486 
2487 	/* Allocate and init temporary storage space. */
2488 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2489 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2490 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2491 	    M_WAITOK | M_ZERO);
2492 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2493 	    M_WAITOK | M_ZERO);
2494 	stack_zero(&tmp_data1->wlod_stack);
2495 	stack_zero(&tmp_data2->wlod_stack);
2496 
2497 restart:
2498 	mtx_lock_spin(&w_mtx);
2499 	generation = w_generation;
2500 	mtx_unlock_spin(&w_mtx);
2501 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2502 	    w_lohash.wloh_count);
2503 	for (i = 1; i < w_max_used_index; i++) {
2504 		mtx_lock_spin(&w_mtx);
2505 		if (generation != w_generation) {
2506 			mtx_unlock_spin(&w_mtx);
2507 
2508 			/* The graph has changed, try again. */
2509 			req->oldidx = 0;
2510 			sbuf_clear(sb);
2511 			goto restart;
2512 		}
2513 
2514 		w1 = &w_data[i];
2515 		if (w1->w_reversed == 0) {
2516 			mtx_unlock_spin(&w_mtx);
2517 			continue;
2518 		}
2519 
2520 		/* Copy w1 locally so we can release the spin lock. */
2521 		*tmp_w1 = *w1;
2522 		mtx_unlock_spin(&w_mtx);
2523 
2524 		if (tmp_w1->w_reversed == 0)
2525 			continue;
2526 		for (j = 1; j < w_max_used_index; j++) {
2527 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2528 				continue;
2529 
2530 			mtx_lock_spin(&w_mtx);
2531 			if (generation != w_generation) {
2532 				mtx_unlock_spin(&w_mtx);
2533 
2534 				/* The graph has changed, try again. */
2535 				req->oldidx = 0;
2536 				sbuf_clear(sb);
2537 				goto restart;
2538 			}
2539 
2540 			w2 = &w_data[j];
2541 			data1 = witness_lock_order_get(w1, w2);
2542 			data2 = witness_lock_order_get(w2, w1);
2543 
2544 			/*
2545 			 * Copy information locally so we can release the
2546 			 * spin lock.
2547 			 */
2548 			*tmp_w2 = *w2;
2549 			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2550 			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2551 
2552 			if (data1) {
2553 				stack_zero(&tmp_data1->wlod_stack);
2554 				stack_copy(&data1->wlod_stack,
2555 				    &tmp_data1->wlod_stack);
2556 			}
2557 			if (data2 && data2 != data1) {
2558 				stack_zero(&tmp_data2->wlod_stack);
2559 				stack_copy(&data2->wlod_stack,
2560 				    &tmp_data2->wlod_stack);
2561 			}
2562 			mtx_unlock_spin(&w_mtx);
2563 
2564 			sbuf_printf(sb,
2565 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2566 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2567 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2568 #if 0
2569  			sbuf_printf(sb,
2570 			"w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2571  			    tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2572  			    tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2573 #endif
2574 			if (data1) {
2575 				sbuf_printf(sb,
2576 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2577 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2578 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2579 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2580 				sbuf_printf(sb, "\n");
2581 			}
2582 			if (data2 && data2 != data1) {
2583 				sbuf_printf(sb,
2584 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2585 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2586 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2587 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2588 				sbuf_printf(sb, "\n");
2589 			}
2590 		}
2591 	}
2592 	mtx_lock_spin(&w_mtx);
2593 	if (generation != w_generation) {
2594 		mtx_unlock_spin(&w_mtx);
2595 
2596 		/*
2597 		 * The graph changed while we were printing stack data,
2598 		 * try again.
2599 		 */
2600 		req->oldidx = 0;
2601 		sbuf_clear(sb);
2602 		goto restart;
2603 	}
2604 	mtx_unlock_spin(&w_mtx);
2605 
2606 	/* Free temporary storage space. */
2607 	free(tmp_data1, M_TEMP);
2608 	free(tmp_data2, M_TEMP);
2609 	free(tmp_w1, M_TEMP);
2610 	free(tmp_w2, M_TEMP);
2611 
2612 	sbuf_finish(sb);
2613 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2614 	sbuf_delete(sb);
2615 
2616 	return (error);
2617 }
2618 
2619 static int
2620 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2621 {
2622 	struct witness *w;
2623 	struct sbuf *sb;
2624 	int error;
2625 
2626 	if (witness_watch < 1) {
2627 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2628 		return (error);
2629 	}
2630 	if (witness_cold) {
2631 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2632 		return (error);
2633 	}
2634 	error = 0;
2635 
2636 	error = sysctl_wire_old_buffer(req, 0);
2637 	if (error != 0)
2638 		return (error);
2639 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2640 	if (sb == NULL)
2641 		return (ENOMEM);
2642 	sbuf_printf(sb, "\n");
2643 
2644 	mtx_lock_spin(&w_mtx);
2645 	STAILQ_FOREACH(w, &w_all, w_list)
2646 		w->w_displayed = 0;
2647 	STAILQ_FOREACH(w, &w_all, w_list)
2648 		witness_add_fullgraph(sb, w);
2649 	mtx_unlock_spin(&w_mtx);
2650 
2651 	/*
2652 	 * Close the sbuf and return to userland.
2653 	 */
2654 	error = sbuf_finish(sb);
2655 	sbuf_delete(sb);
2656 
2657 	return (error);
2658 }
2659 
2660 static int
2661 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2662 {
2663 	int error, value;
2664 
2665 	value = witness_watch;
2666 	error = sysctl_handle_int(oidp, &value, 0, req);
2667 	if (error != 0 || req->newptr == NULL)
2668 		return (error);
2669 	if (value > 1 || value < -1 ||
2670 	    (witness_watch == -1 && value != witness_watch))
2671 		return (EINVAL);
2672 	witness_watch = value;
2673 	return (0);
2674 }
2675 
2676 static void
2677 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2678 {
2679 	int i;
2680 
2681 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2682 		return;
2683 	w->w_displayed = 1;
2684 
2685 	WITNESS_INDEX_ASSERT(w->w_index);
2686 	for (i = 1; i <= w_max_used_index; i++) {
2687 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2688 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2689 			    w_data[i].w_name);
2690 			witness_add_fullgraph(sb, &w_data[i]);
2691 		}
2692 	}
2693 }
2694 
2695 /*
2696  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2697  * interprets the key as a string and reads until the null
2698  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2699  * hash value computed from the key.
2700  */
2701 static uint32_t
2702 witness_hash_djb2(const uint8_t *key, uint32_t size)
2703 {
2704 	unsigned int hash = 5381;
2705 	int i;
2706 
2707 	/* hash = hash * 33 + key[i] */
2708 	if (size)
2709 		for (i = 0; i < size; i++)
2710 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2711 	else
2712 		for (i = 0; key[i] != 0; i++)
2713 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2714 
2715 	return (hash);
2716 }
2717 
2718 
2719 /*
2720  * Initializes the two witness hash tables. Called exactly once from
2721  * witness_initialize().
2722  */
2723 static void
2724 witness_init_hash_tables(void)
2725 {
2726 	int i;
2727 
2728 	MPASS(witness_cold);
2729 
2730 	/* Initialize the hash tables. */
2731 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2732 		w_hash.wh_array[i] = NULL;
2733 
2734 	w_hash.wh_size = WITNESS_HASH_SIZE;
2735 	w_hash.wh_count = 0;
2736 
2737 	/* Initialize the lock order data hash. */
2738 	w_lofree = NULL;
2739 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2740 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2741 		w_lodata[i].wlod_next = w_lofree;
2742 		w_lofree = &w_lodata[i];
2743 	}
2744 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2745 	w_lohash.wloh_count = 0;
2746 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2747 		w_lohash.wloh_array[i] = NULL;
2748 }
2749 
2750 static struct witness *
2751 witness_hash_get(const char *key)
2752 {
2753 	struct witness *w;
2754 	uint32_t hash;
2755 
2756 	MPASS(key != NULL);
2757 	if (witness_cold == 0)
2758 		mtx_assert(&w_mtx, MA_OWNED);
2759 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2760 	w = w_hash.wh_array[hash];
2761 	while (w != NULL) {
2762 		if (strcmp(w->w_name, key) == 0)
2763 			goto out;
2764 		w = w->w_hash_next;
2765 	}
2766 
2767 out:
2768 	return (w);
2769 }
2770 
2771 static void
2772 witness_hash_put(struct witness *w)
2773 {
2774 	uint32_t hash;
2775 
2776 	MPASS(w != NULL);
2777 	MPASS(w->w_name != NULL);
2778 	if (witness_cold == 0)
2779 		mtx_assert(&w_mtx, MA_OWNED);
2780 	KASSERT(witness_hash_get(w->w_name) == NULL,
2781 	    ("%s: trying to add a hash entry that already exists!", __func__));
2782 	KASSERT(w->w_hash_next == NULL,
2783 	    ("%s: w->w_hash_next != NULL", __func__));
2784 
2785 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2786 	w->w_hash_next = w_hash.wh_array[hash];
2787 	w_hash.wh_array[hash] = w;
2788 	w_hash.wh_count++;
2789 }
2790 
2791 
2792 static struct witness_lock_order_data *
2793 witness_lock_order_get(struct witness *parent, struct witness *child)
2794 {
2795 	struct witness_lock_order_data *data = NULL;
2796 	struct witness_lock_order_key key;
2797 	unsigned int hash;
2798 
2799 	MPASS(parent != NULL && child != NULL);
2800 	key.from = parent->w_index;
2801 	key.to = child->w_index;
2802 	WITNESS_INDEX_ASSERT(key.from);
2803 	WITNESS_INDEX_ASSERT(key.to);
2804 	if ((w_rmatrix[parent->w_index][child->w_index]
2805 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2806 		goto out;
2807 
2808 	hash = witness_hash_djb2((const char*)&key,
2809 	    sizeof(key)) % w_lohash.wloh_size;
2810 	data = w_lohash.wloh_array[hash];
2811 	while (data != NULL) {
2812 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2813 			break;
2814 		data = data->wlod_next;
2815 	}
2816 
2817 out:
2818 	return (data);
2819 }
2820 
2821 /*
2822  * Verify that parent and child have a known relationship, are not the same,
2823  * and child is actually a child of parent.  This is done without w_mtx
2824  * to avoid contention in the common case.
2825  */
2826 static int
2827 witness_lock_order_check(struct witness *parent, struct witness *child)
2828 {
2829 
2830 	if (parent != child &&
2831 	    w_rmatrix[parent->w_index][child->w_index]
2832 	    & WITNESS_LOCK_ORDER_KNOWN &&
2833 	    isitmychild(parent, child))
2834 		return (1);
2835 
2836 	return (0);
2837 }
2838 
2839 static int
2840 witness_lock_order_add(struct witness *parent, struct witness *child)
2841 {
2842 	struct witness_lock_order_data *data = NULL;
2843 	struct witness_lock_order_key key;
2844 	unsigned int hash;
2845 
2846 	MPASS(parent != NULL && child != NULL);
2847 	key.from = parent->w_index;
2848 	key.to = child->w_index;
2849 	WITNESS_INDEX_ASSERT(key.from);
2850 	WITNESS_INDEX_ASSERT(key.to);
2851 	if (w_rmatrix[parent->w_index][child->w_index]
2852 	    & WITNESS_LOCK_ORDER_KNOWN)
2853 		return (1);
2854 
2855 	hash = witness_hash_djb2((const char*)&key,
2856 	    sizeof(key)) % w_lohash.wloh_size;
2857 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2858 	data = w_lofree;
2859 	if (data == NULL)
2860 		return (0);
2861 	w_lofree = data->wlod_next;
2862 	data->wlod_next = w_lohash.wloh_array[hash];
2863 	data->wlod_key = key;
2864 	w_lohash.wloh_array[hash] = data;
2865 	w_lohash.wloh_count++;
2866 	stack_zero(&data->wlod_stack);
2867 	stack_save(&data->wlod_stack);
2868 	return (1);
2869 }
2870 
2871 /* Call this whenver the structure of the witness graph changes. */
2872 static void
2873 witness_increment_graph_generation(void)
2874 {
2875 
2876 	if (witness_cold == 0)
2877 		mtx_assert(&w_mtx, MA_OWNED);
2878 	w_generation++;
2879 }
2880 
2881 #ifdef KDB
2882 static void
2883 _witness_debugger(int cond, const char *msg)
2884 {
2885 
2886 	if (witness_trace && cond)
2887 		kdb_backtrace();
2888 	if (witness_kdb && cond)
2889 		kdb_enter(KDB_WHY_WITNESS, msg);
2890 }
2891 #endif
2892