xref: /freebsd/sys/kern/subr_witness.c (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36 
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42 
43 /*
44  *	Main Entry: witness
45  *	Pronunciation: 'wit-n&s
46  *	Function: noun
47  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *	    testimony, witness, from 2wit
49  *	Date: before 12th century
50  *	1 : attestation of a fact or event : TESTIMONY
51  *	2 : one that gives evidence; specifically : one who testifies in
52  *	    a cause or before a judicial tribunal
53  *	3 : one asked to be present at a transaction so as to be able to
54  *	    testify to its having taken place
55  *	4 : one who has personal knowledge of something
56  *	5 a : something serving as evidence or proof : SIGN
57  *	  b : public affirmation by word or example of usually
58  *	      religious faith or conviction <the heroic witness to divine
59  *	      life -- Pilot>
60  *	6 capitalized : a member of the Jehovah's Witnesses
61  */
62 
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88 
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91 
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96 
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113 
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117 
118 #include <machine/stdarg.h>
119 
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123 
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define	KTR_WITNESS	KTR_SUBSYS
127 #else
128 #define	KTR_WITNESS	0
129 #endif
130 
131 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
132 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
133 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
134 #define	LI_SLEEPABLE	0x00040000	/* Lock may be held while sleeping. */
135 
136 #ifndef WITNESS_COUNT
137 #define	WITNESS_COUNT 		1536
138 #endif
139 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
140 #define	WITNESS_PENDLIST	(512 + (MAXCPU * 4))
141 
142 /* Allocate 256 KB of stack data space */
143 #define	WITNESS_LO_DATA_COUNT	2048
144 
145 /* Prime, gives load factor of ~2 at full load */
146 #define	WITNESS_LO_HASH_SIZE	1021
147 
148 /*
149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
151  * probably be safe for the most part, but it's still a SWAG.
152  */
153 #define	LOCK_NCHILDREN	5
154 #define	LOCK_CHILDCOUNT	2048
155 
156 #define	MAX_W_NAME	64
157 
158 #define	FULLGRAPH_SBUF_SIZE	512
159 
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define	WITNESS_RELATED_MASK						\
172 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174 					  * observed. */
175 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178 
179 /* Descendant to ancestor flags */
180 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
181 
182 /* Ancestor to descendant flags */
183 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
184 
185 #define	WITNESS_INDEX_ASSERT(i)						\
186 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
187 
188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189 
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197 	struct lock_object	*li_lock;
198 	const char		*li_file;
199 	int			li_line;
200 	u_int			li_flags;
201 };
202 
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214 	struct lock_list_entry	*ll_next;
215 	struct lock_instance	ll_children[LOCK_NCHILDREN];
216 	u_int			ll_count;
217 };
218 
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224 	char  			w_name[MAX_W_NAME];
225 	uint32_t 		w_index;  /* Index in the relationship matrix */
226 	struct lock_class	*w_class;
227 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
228 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
229 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
230 	const char		*w_file; /* File where last acquired */
231 	uint32_t 		w_line; /* Line where last acquired */
232 	uint32_t 		w_refcount;
233 	uint16_t 		w_num_ancestors; /* direct/indirect
234 						  * ancestor count */
235 	uint16_t 		w_num_descendants; /* direct/indirect
236 						    * descendant count */
237 	int16_t 		w_ddb_level;
238 	unsigned		w_displayed:1;
239 	unsigned		w_reversed:1;
240 };
241 
242 STAILQ_HEAD(witness_list, witness);
243 
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249 	struct witness	*wh_array[WITNESS_HASH_SIZE];
250 	uint32_t	wh_size;
251 	uint32_t	wh_count;
252 };
253 
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258 	uint16_t	from;
259 	uint16_t	to;
260 };
261 
262 struct witness_lock_order_data {
263 	struct stack			wlod_stack;
264 	struct witness_lock_order_key	wlod_key;
265 	struct witness_lock_order_data	*wlod_next;
266 };
267 
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data).
272  */
273 struct witness_lock_order_hash {
274 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
275 	u_int	wloh_size;
276 	u_int	wloh_count;
277 };
278 
279 struct witness_blessed {
280 	const char	*b_lock1;
281 	const char	*b_lock2;
282 };
283 
284 struct witness_pendhelp {
285 	const char		*wh_type;
286 	struct lock_object	*wh_lock;
287 };
288 
289 struct witness_order_list_entry {
290 	const char		*w_name;
291 	struct lock_class	*w_class;
292 };
293 
294 /*
295  * Returns 0 if one of the locks is a spin lock and the other is not.
296  * Returns 1 otherwise.
297  */
298 static __inline int
299 witness_lock_type_equal(struct witness *w1, struct witness *w2)
300 {
301 
302 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
303 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
304 }
305 
306 static __inline int
307 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
308     const struct witness_lock_order_key *b)
309 {
310 
311 	return (a->from == b->from && a->to == b->to);
312 }
313 
314 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
315 		    const char *fname);
316 static void	adopt(struct witness *parent, struct witness *child);
317 static int	blessed(struct witness *, struct witness *);
318 static void	depart(struct witness *w);
319 static struct witness	*enroll(const char *description,
320 			    struct lock_class *lock_class);
321 static struct lock_instance	*find_instance(struct lock_list_entry *list,
322 				    const struct lock_object *lock);
323 static int	isitmychild(struct witness *parent, struct witness *child);
324 static int	isitmydescendant(struct witness *parent, struct witness *child);
325 static void	itismychild(struct witness *parent, struct witness *child);
326 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
327 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
328 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
329 static int	sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
330 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
331 #ifdef DDB
332 static void	witness_ddb_compute_levels(void);
333 static void	witness_ddb_display(int(*)(const char *fmt, ...));
334 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
335 		    struct witness *, int indent);
336 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
337 		    struct witness_list *list);
338 static void	witness_ddb_level_descendants(struct witness *parent, int l);
339 static void	witness_ddb_list(struct thread *td);
340 #endif
341 static void	witness_enter_debugger(const char *msg);
342 static void	witness_debugger(int cond, const char *msg);
343 static void	witness_free(struct witness *m);
344 static struct witness	*witness_get(void);
345 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
346 static struct witness	*witness_hash_get(const char *key);
347 static void	witness_hash_put(struct witness *w);
348 static void	witness_init_hash_tables(void);
349 static void	witness_increment_graph_generation(void);
350 static void	witness_lock_list_free(struct lock_list_entry *lle);
351 static struct lock_list_entry	*witness_lock_list_get(void);
352 static int	witness_lock_order_add(struct witness *parent,
353 		    struct witness *child);
354 static int	witness_lock_order_check(struct witness *parent,
355 		    struct witness *child);
356 static struct witness_lock_order_data	*witness_lock_order_get(
357 					    struct witness *parent,
358 					    struct witness *child);
359 static void	witness_list_lock(struct lock_instance *instance,
360 		    int (*prnt)(const char *fmt, ...));
361 static int	witness_output(const char *fmt, ...) __printflike(1, 2);
362 static int	witness_output_drain(void *arg __unused, const char *data,
363 		    int len);
364 static int	witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
365 static void	witness_setflag(struct lock_object *lock, int flag, int set);
366 
367 FEATURE(witness, "kernel has witness(9) support");
368 
369 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
370     "Witness Locking");
371 
372 /*
373  * If set to 0, lock order checking is disabled.  If set to -1,
374  * witness is completely disabled.  Otherwise witness performs full
375  * lock order checking for all locks.  At runtime, lock order checking
376  * may be toggled.  However, witness cannot be reenabled once it is
377  * completely disabled.
378  */
379 static int witness_watch = 1;
380 SYSCTL_PROC(_debug_witness, OID_AUTO, watch,
381     CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
382     sysctl_debug_witness_watch, "I",
383     "witness is watching lock operations");
384 
385 #ifdef KDB
386 /*
387  * When KDB is enabled and witness_kdb is 1, it will cause the system
388  * to drop into kdebug() when:
389  *	- a lock hierarchy violation occurs
390  *	- locks are held when going to sleep.
391  */
392 #ifdef WITNESS_KDB
393 int	witness_kdb = 1;
394 #else
395 int	witness_kdb = 0;
396 #endif
397 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
398 #endif /* KDB */
399 
400 #if defined(DDB) || defined(KDB)
401 /*
402  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
403  * to print a stack trace:
404  *	- a lock hierarchy violation occurs
405  *	- locks are held when going to sleep.
406  */
407 int	witness_trace = 1;
408 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
409 #endif /* DDB || KDB */
410 
411 #ifdef WITNESS_SKIPSPIN
412 int	witness_skipspin = 1;
413 #else
414 int	witness_skipspin = 0;
415 #endif
416 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
417 
418 int badstack_sbuf_size;
419 
420 int witness_count = WITNESS_COUNT;
421 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
422     &witness_count, 0, "");
423 
424 /*
425  * Output channel for witness messages.  By default we print to the console.
426  */
427 enum witness_channel {
428 	WITNESS_CONSOLE,
429 	WITNESS_LOG,
430 	WITNESS_NONE,
431 };
432 
433 static enum witness_channel witness_channel = WITNESS_CONSOLE;
434 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel,
435     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0,
436     sysctl_debug_witness_channel, "A",
437     "Output channel for warnings");
438 
439 /*
440  * Call this to print out the relations between locks.
441  */
442 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph,
443     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
444     sysctl_debug_witness_fullgraph, "A",
445     "Show locks relation graphs");
446 
447 /*
448  * Call this to print out the witness faulty stacks.
449  */
450 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks,
451     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
452     sysctl_debug_witness_badstacks, "A",
453     "Show bad witness stacks");
454 
455 static struct mtx w_mtx;
456 
457 /* w_list */
458 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
459 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
460 
461 /* w_typelist */
462 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
463 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
464 
465 /* lock list */
466 static struct lock_list_entry *w_lock_list_free = NULL;
467 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
468 static u_int pending_cnt;
469 
470 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
471 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
472 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
473 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
474     "");
475 
476 static struct witness *w_data;
477 static uint8_t **w_rmatrix;
478 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
479 static struct witness_hash w_hash;	/* The witness hash table. */
480 
481 /* The lock order data hash */
482 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
483 static struct witness_lock_order_data *w_lofree = NULL;
484 static struct witness_lock_order_hash w_lohash;
485 static int w_max_used_index = 0;
486 static unsigned int w_generation = 0;
487 static const char w_notrunning[] = "Witness not running\n";
488 static const char w_stillcold[] = "Witness is still cold\n";
489 #ifdef __i386__
490 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
491 #endif
492 
493 static struct witness_order_list_entry order_lists[] = {
494 	/*
495 	 * sx locks
496 	 */
497 	{ "proctree", &lock_class_sx },
498 	{ "allproc", &lock_class_sx },
499 	{ "allprison", &lock_class_sx },
500 	{ NULL, NULL },
501 	/*
502 	 * Various mutexes
503 	 */
504 	{ "Giant", &lock_class_mtx_sleep },
505 	{ "pipe mutex", &lock_class_mtx_sleep },
506 	{ "sigio lock", &lock_class_mtx_sleep },
507 	{ "process group", &lock_class_mtx_sleep },
508 #ifdef	HWPMC_HOOKS
509 	{ "pmc-sleep", &lock_class_mtx_sleep },
510 #endif
511 	{ "process lock", &lock_class_mtx_sleep },
512 	{ "session", &lock_class_mtx_sleep },
513 	{ "uidinfo hash", &lock_class_rw },
514 	{ "time lock", &lock_class_mtx_sleep },
515 	{ NULL, NULL },
516 	/*
517 	 * umtx
518 	 */
519 	{ "umtx lock", &lock_class_mtx_sleep },
520 	{ NULL, NULL },
521 	/*
522 	 * Sockets
523 	 */
524 	{ "accept", &lock_class_mtx_sleep },
525 	{ "so_snd", &lock_class_mtx_sleep },
526 	{ "so_rcv", &lock_class_mtx_sleep },
527 	{ "sellck", &lock_class_mtx_sleep },
528 	{ NULL, NULL },
529 	/*
530 	 * Routing
531 	 */
532 	{ "so_rcv", &lock_class_mtx_sleep },
533 	{ "radix node head", &lock_class_rm },
534 	{ "ifaddr", &lock_class_mtx_sleep },
535 	{ NULL, NULL },
536 	/*
537 	 * IPv4 multicast:
538 	 * protocol locks before interface locks, after UDP locks.
539 	 */
540 	{ "in_multi_sx", &lock_class_sx },
541 	{ "udpinp", &lock_class_rw },
542 	{ "in_multi_list_mtx", &lock_class_mtx_sleep },
543 	{ "igmp_mtx", &lock_class_mtx_sleep },
544 	{ "ifnet_rw", &lock_class_rw },
545 	{ "if_addr_lock", &lock_class_mtx_sleep },
546 	{ NULL, NULL },
547 	/*
548 	 * IPv6 multicast:
549 	 * protocol locks before interface locks, after UDP locks.
550 	 */
551 	{ "in6_multi_sx", &lock_class_sx },
552 	{ "udpinp", &lock_class_rw },
553 	{ "in6_multi_list_mtx", &lock_class_mtx_sleep },
554 	{ "mld_mtx", &lock_class_mtx_sleep },
555 	{ "ifnet_rw", &lock_class_rw },
556 	{ "if_addr_lock", &lock_class_mtx_sleep },
557 	{ NULL, NULL },
558 	/*
559 	 * UNIX Domain Sockets
560 	 */
561 	{ "unp_link_rwlock", &lock_class_rw },
562 	{ "unp_list_lock", &lock_class_mtx_sleep },
563 	{ "unp", &lock_class_mtx_sleep },
564 	{ "so_snd", &lock_class_mtx_sleep },
565 	{ NULL, NULL },
566 	/*
567 	 * UDP/IP
568 	 */
569 	{ "udp", &lock_class_mtx_sleep },
570 	{ "udpinp", &lock_class_rw },
571 	{ "so_snd", &lock_class_mtx_sleep },
572 	{ NULL, NULL },
573 	/*
574 	 * TCP/IP
575 	 */
576 	{ "tcp", &lock_class_mtx_sleep },
577 	{ "tcpinp", &lock_class_rw },
578 	{ "so_snd", &lock_class_mtx_sleep },
579 	{ NULL, NULL },
580 	/*
581 	 * BPF
582 	 */
583 	{ "bpf global lock", &lock_class_sx },
584 	{ "bpf cdev lock", &lock_class_mtx_sleep },
585 	{ NULL, NULL },
586 	/*
587 	 * NFS server
588 	 */
589 	{ "nfsd_mtx", &lock_class_mtx_sleep },
590 	{ "so_snd", &lock_class_mtx_sleep },
591 	{ NULL, NULL },
592 
593 	/*
594 	 * IEEE 802.11
595 	 */
596 	{ "802.11 com lock", &lock_class_mtx_sleep},
597 	{ NULL, NULL },
598 	/*
599 	 * Network drivers
600 	 */
601 	{ "network driver", &lock_class_mtx_sleep},
602 	{ NULL, NULL },
603 
604 	/*
605 	 * Netgraph
606 	 */
607 	{ "ng_node", &lock_class_mtx_sleep },
608 	{ "ng_worklist", &lock_class_mtx_sleep },
609 	{ NULL, NULL },
610 	/*
611 	 * CDEV
612 	 */
613 	{ "vm map (system)", &lock_class_mtx_sleep },
614 	{ "vnode interlock", &lock_class_mtx_sleep },
615 	{ "cdev", &lock_class_mtx_sleep },
616 	{ "devthrd", &lock_class_mtx_sleep },
617 	{ NULL, NULL },
618 	/*
619 	 * VM
620 	 */
621 	{ "vm map (user)", &lock_class_sx },
622 	{ "vm object", &lock_class_rw },
623 	{ "vm page", &lock_class_mtx_sleep },
624 	{ "pmap pv global", &lock_class_rw },
625 	{ "pmap", &lock_class_mtx_sleep },
626 	{ "pmap pv list", &lock_class_rw },
627 	{ "vm page free queue", &lock_class_mtx_sleep },
628 	{ "vm pagequeue", &lock_class_mtx_sleep },
629 	{ NULL, NULL },
630 	/*
631 	 * kqueue/VFS interaction
632 	 */
633 	{ "kqueue", &lock_class_mtx_sleep },
634 	{ "struct mount mtx", &lock_class_mtx_sleep },
635 	{ "vnode interlock", &lock_class_mtx_sleep },
636 	{ NULL, NULL },
637 	/*
638 	 * VFS namecache
639 	 */
640 	{ "ncvn", &lock_class_mtx_sleep },
641 	{ "ncbuc", &lock_class_mtx_sleep },
642 	{ "vnode interlock", &lock_class_mtx_sleep },
643 	{ "ncneg", &lock_class_mtx_sleep },
644 	{ NULL, NULL },
645 	/*
646 	 * ZFS locking
647 	 */
648 	{ "dn->dn_mtx", &lock_class_sx },
649 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
650 	{ "db->db_mtx", &lock_class_sx },
651 	{ NULL, NULL },
652 	/*
653 	 * TCP log locks
654 	 */
655 	{ "TCP ID tree", &lock_class_rw },
656 	{ "tcp log id bucket", &lock_class_mtx_sleep },
657 	{ "tcpinp", &lock_class_rw },
658 	{ "TCP log expireq", &lock_class_mtx_sleep },
659 	{ NULL, NULL },
660 	/*
661 	 * spin locks
662 	 */
663 #ifdef SMP
664 	{ "ap boot", &lock_class_mtx_spin },
665 #endif
666 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
667 #ifdef __i386__
668 	{ "cy", &lock_class_mtx_spin },
669 #endif
670 	{ "scc_hwmtx", &lock_class_mtx_spin },
671 	{ "uart_hwmtx", &lock_class_mtx_spin },
672 	{ "fast_taskqueue", &lock_class_mtx_spin },
673 	{ "intr table", &lock_class_mtx_spin },
674 	{ "process slock", &lock_class_mtx_spin },
675 	{ "syscons video lock", &lock_class_mtx_spin },
676 	{ "sleepq chain", &lock_class_mtx_spin },
677 	{ "rm_spinlock", &lock_class_mtx_spin },
678 	{ "turnstile chain", &lock_class_mtx_spin },
679 	{ "turnstile lock", &lock_class_mtx_spin },
680 	{ "sched lock", &lock_class_mtx_spin },
681 	{ "td_contested", &lock_class_mtx_spin },
682 	{ "callout", &lock_class_mtx_spin },
683 	{ "entropy harvest mutex", &lock_class_mtx_spin },
684 #ifdef SMP
685 	{ "smp rendezvous", &lock_class_mtx_spin },
686 #endif
687 #ifdef __powerpc__
688 	{ "tlb0", &lock_class_mtx_spin },
689 #endif
690 	{ NULL, NULL },
691 	{ "sched lock", &lock_class_mtx_spin },
692 #ifdef	HWPMC_HOOKS
693 	{ "pmc-per-proc", &lock_class_mtx_spin },
694 #endif
695 	{ NULL, NULL },
696 	/*
697 	 * leaf locks
698 	 */
699 	{ "intrcnt", &lock_class_mtx_spin },
700 	{ "icu", &lock_class_mtx_spin },
701 #ifdef __i386__
702 	{ "allpmaps", &lock_class_mtx_spin },
703 	{ "descriptor tables", &lock_class_mtx_spin },
704 #endif
705 	{ "clk", &lock_class_mtx_spin },
706 	{ "cpuset", &lock_class_mtx_spin },
707 	{ "mprof lock", &lock_class_mtx_spin },
708 	{ "zombie lock", &lock_class_mtx_spin },
709 	{ "ALD Queue", &lock_class_mtx_spin },
710 #if defined(__i386__) || defined(__amd64__)
711 	{ "pcicfg", &lock_class_mtx_spin },
712 	{ "NDIS thread lock", &lock_class_mtx_spin },
713 #endif
714 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
715 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
716 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
717 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
718 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
719 #ifdef	HWPMC_HOOKS
720 	{ "pmc-leaf", &lock_class_mtx_spin },
721 #endif
722 	{ "blocked lock", &lock_class_mtx_spin },
723 	{ NULL, NULL },
724 	{ NULL, NULL }
725 };
726 
727 /*
728  * Pairs of locks which have been blessed.  Witness does not complain about
729  * order problems with blessed lock pairs.  Please do not add an entry to the
730  * table without an explanatory comment.
731  */
732 static struct witness_blessed blessed_list[] = {
733 	/*
734 	 * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
735 	 * both lock orders, so a deadlock cannot happen as a result of this
736 	 * LOR.
737 	 */
738 	{ "dirhash",	"bufwait" },
739 
740 	/*
741 	 * A UFS vnode may be locked in vget() while a buffer belonging to the
742 	 * parent directory vnode is locked.
743 	 */
744 	{ "ufs",	"bufwait" },
745 };
746 
747 /*
748  * This global is set to 0 once it becomes safe to use the witness code.
749  */
750 static int witness_cold = 1;
751 
752 /*
753  * This global is set to 1 once the static lock orders have been enrolled
754  * so that a warning can be issued for any spin locks enrolled later.
755  */
756 static int witness_spin_warn = 0;
757 
758 /* Trim useless garbage from filenames. */
759 static const char *
760 fixup_filename(const char *file)
761 {
762 
763 	if (file == NULL)
764 		return (NULL);
765 	while (strncmp(file, "../", 3) == 0)
766 		file += 3;
767 	return (file);
768 }
769 
770 /*
771  * Calculate the size of early witness structures.
772  */
773 int
774 witness_startup_count(void)
775 {
776 	int sz;
777 
778 	sz = sizeof(struct witness) * witness_count;
779 	sz += sizeof(*w_rmatrix) * (witness_count + 1);
780 	sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
781 	    (witness_count + 1);
782 
783 	return (sz);
784 }
785 
786 /*
787  * The WITNESS-enabled diagnostic code.  Note that the witness code does
788  * assume that the early boot is single-threaded at least until after this
789  * routine is completed.
790  */
791 void
792 witness_startup(void *mem)
793 {
794 	struct lock_object *lock;
795 	struct witness_order_list_entry *order;
796 	struct witness *w, *w1;
797 	uintptr_t p;
798 	int i;
799 
800 	p = (uintptr_t)mem;
801 	w_data = (void *)p;
802 	p += sizeof(struct witness) * witness_count;
803 
804 	w_rmatrix = (void *)p;
805 	p += sizeof(*w_rmatrix) * (witness_count + 1);
806 
807 	for (i = 0; i < witness_count + 1; i++) {
808 		w_rmatrix[i] = (void *)p;
809 		p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
810 	}
811 	badstack_sbuf_size = witness_count * 256;
812 
813 	/*
814 	 * We have to release Giant before initializing its witness
815 	 * structure so that WITNESS doesn't get confused.
816 	 */
817 	mtx_unlock(&Giant);
818 	mtx_assert(&Giant, MA_NOTOWNED);
819 
820 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
821 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
822 	    MTX_NOWITNESS | MTX_NOPROFILE);
823 	for (i = witness_count - 1; i >= 0; i--) {
824 		w = &w_data[i];
825 		memset(w, 0, sizeof(*w));
826 		w_data[i].w_index = i;	/* Witness index never changes. */
827 		witness_free(w);
828 	}
829 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
830 	    ("%s: Invalid list of free witness objects", __func__));
831 
832 	/* Witness with index 0 is not used to aid in debugging. */
833 	STAILQ_REMOVE_HEAD(&w_free, w_list);
834 	w_free_cnt--;
835 
836 	for (i = 0; i < witness_count; i++) {
837 		memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
838 		    (witness_count + 1));
839 	}
840 
841 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
842 		witness_lock_list_free(&w_locklistdata[i]);
843 	witness_init_hash_tables();
844 
845 	/* First add in all the specified order lists. */
846 	for (order = order_lists; order->w_name != NULL; order++) {
847 		w = enroll(order->w_name, order->w_class);
848 		if (w == NULL)
849 			continue;
850 		w->w_file = "order list";
851 		for (order++; order->w_name != NULL; order++) {
852 			w1 = enroll(order->w_name, order->w_class);
853 			if (w1 == NULL)
854 				continue;
855 			w1->w_file = "order list";
856 			itismychild(w, w1);
857 			w = w1;
858 		}
859 	}
860 	witness_spin_warn = 1;
861 
862 	/* Iterate through all locks and add them to witness. */
863 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
864 		lock = pending_locks[i].wh_lock;
865 		KASSERT(lock->lo_flags & LO_WITNESS,
866 		    ("%s: lock %s is on pending list but not LO_WITNESS",
867 		    __func__, lock->lo_name));
868 		lock->lo_witness = enroll(pending_locks[i].wh_type,
869 		    LOCK_CLASS(lock));
870 	}
871 
872 	/* Mark the witness code as being ready for use. */
873 	witness_cold = 0;
874 
875 	mtx_lock(&Giant);
876 }
877 
878 void
879 witness_init(struct lock_object *lock, const char *type)
880 {
881 	struct lock_class *class;
882 
883 	/* Various sanity checks. */
884 	class = LOCK_CLASS(lock);
885 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
886 	    (class->lc_flags & LC_RECURSABLE) == 0)
887 		kassert_panic("%s: lock (%s) %s can not be recursable",
888 		    __func__, class->lc_name, lock->lo_name);
889 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
890 	    (class->lc_flags & LC_SLEEPABLE) == 0)
891 		kassert_panic("%s: lock (%s) %s can not be sleepable",
892 		    __func__, class->lc_name, lock->lo_name);
893 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
894 	    (class->lc_flags & LC_UPGRADABLE) == 0)
895 		kassert_panic("%s: lock (%s) %s can not be upgradable",
896 		    __func__, class->lc_name, lock->lo_name);
897 
898 	/*
899 	 * If we shouldn't watch this lock, then just clear lo_witness.
900 	 * Otherwise, if witness_cold is set, then it is too early to
901 	 * enroll this lock, so defer it to witness_initialize() by adding
902 	 * it to the pending_locks list.  If it is not too early, then enroll
903 	 * the lock now.
904 	 */
905 	if (witness_watch < 1 || KERNEL_PANICKED() ||
906 	    (lock->lo_flags & LO_WITNESS) == 0)
907 		lock->lo_witness = NULL;
908 	else if (witness_cold) {
909 		pending_locks[pending_cnt].wh_lock = lock;
910 		pending_locks[pending_cnt++].wh_type = type;
911 		if (pending_cnt > WITNESS_PENDLIST)
912 			panic("%s: pending locks list is too small, "
913 			    "increase WITNESS_PENDLIST\n",
914 			    __func__);
915 	} else
916 		lock->lo_witness = enroll(type, class);
917 }
918 
919 void
920 witness_destroy(struct lock_object *lock)
921 {
922 	struct lock_class *class;
923 	struct witness *w;
924 
925 	class = LOCK_CLASS(lock);
926 
927 	if (witness_cold)
928 		panic("lock (%s) %s destroyed while witness_cold",
929 		    class->lc_name, lock->lo_name);
930 
931 	/* XXX: need to verify that no one holds the lock */
932 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
933 		return;
934 	w = lock->lo_witness;
935 
936 	mtx_lock_spin(&w_mtx);
937 	MPASS(w->w_refcount > 0);
938 	w->w_refcount--;
939 
940 	if (w->w_refcount == 0)
941 		depart(w);
942 	mtx_unlock_spin(&w_mtx);
943 }
944 
945 #ifdef DDB
946 static void
947 witness_ddb_compute_levels(void)
948 {
949 	struct witness *w;
950 
951 	/*
952 	 * First clear all levels.
953 	 */
954 	STAILQ_FOREACH(w, &w_all, w_list)
955 		w->w_ddb_level = -1;
956 
957 	/*
958 	 * Look for locks with no parents and level all their descendants.
959 	 */
960 	STAILQ_FOREACH(w, &w_all, w_list) {
961 		/* If the witness has ancestors (is not a root), skip it. */
962 		if (w->w_num_ancestors > 0)
963 			continue;
964 		witness_ddb_level_descendants(w, 0);
965 	}
966 }
967 
968 static void
969 witness_ddb_level_descendants(struct witness *w, int l)
970 {
971 	int i;
972 
973 	if (w->w_ddb_level >= l)
974 		return;
975 
976 	w->w_ddb_level = l;
977 	l++;
978 
979 	for (i = 1; i <= w_max_used_index; i++) {
980 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
981 			witness_ddb_level_descendants(&w_data[i], l);
982 	}
983 }
984 
985 static void
986 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
987     struct witness *w, int indent)
988 {
989 	int i;
990 
991  	for (i = 0; i < indent; i++)
992  		prnt(" ");
993 	prnt("%s (type: %s, depth: %d, active refs: %d)",
994 	     w->w_name, w->w_class->lc_name,
995 	     w->w_ddb_level, w->w_refcount);
996  	if (w->w_displayed) {
997  		prnt(" -- (already displayed)\n");
998  		return;
999  	}
1000  	w->w_displayed = 1;
1001 	if (w->w_file != NULL && w->w_line != 0)
1002 		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
1003 		    w->w_line);
1004 	else
1005 		prnt(" -- never acquired\n");
1006 	indent++;
1007 	WITNESS_INDEX_ASSERT(w->w_index);
1008 	for (i = 1; i <= w_max_used_index; i++) {
1009 		if (db_pager_quit)
1010 			return;
1011 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1012 			witness_ddb_display_descendants(prnt, &w_data[i],
1013 			    indent);
1014 	}
1015 }
1016 
1017 static void
1018 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1019     struct witness_list *list)
1020 {
1021 	struct witness *w;
1022 
1023 	STAILQ_FOREACH(w, list, w_typelist) {
1024 		if (w->w_file == NULL || w->w_ddb_level > 0)
1025 			continue;
1026 
1027 		/* This lock has no anscestors - display its descendants. */
1028 		witness_ddb_display_descendants(prnt, w, 0);
1029 		if (db_pager_quit)
1030 			return;
1031 	}
1032 }
1033 
1034 static void
1035 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1036 {
1037 	struct witness *w;
1038 
1039 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1040 	witness_ddb_compute_levels();
1041 
1042 	/* Clear all the displayed flags. */
1043 	STAILQ_FOREACH(w, &w_all, w_list)
1044 		w->w_displayed = 0;
1045 
1046 	/*
1047 	 * First, handle sleep locks which have been acquired at least
1048 	 * once.
1049 	 */
1050 	prnt("Sleep locks:\n");
1051 	witness_ddb_display_list(prnt, &w_sleep);
1052 	if (db_pager_quit)
1053 		return;
1054 
1055 	/*
1056 	 * Now do spin locks which have been acquired at least once.
1057 	 */
1058 	prnt("\nSpin locks:\n");
1059 	witness_ddb_display_list(prnt, &w_spin);
1060 	if (db_pager_quit)
1061 		return;
1062 
1063 	/*
1064 	 * Finally, any locks which have not been acquired yet.
1065 	 */
1066 	prnt("\nLocks which were never acquired:\n");
1067 	STAILQ_FOREACH(w, &w_all, w_list) {
1068 		if (w->w_file != NULL || w->w_refcount == 0)
1069 			continue;
1070 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1071 		    w->w_class->lc_name, w->w_ddb_level);
1072 		if (db_pager_quit)
1073 			return;
1074 	}
1075 }
1076 #endif /* DDB */
1077 
1078 int
1079 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1080 {
1081 
1082 	if (witness_watch == -1 || KERNEL_PANICKED())
1083 		return (0);
1084 
1085 	/* Require locks that witness knows about. */
1086 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1087 	    lock2->lo_witness == NULL)
1088 		return (EINVAL);
1089 
1090 	mtx_assert(&w_mtx, MA_NOTOWNED);
1091 	mtx_lock_spin(&w_mtx);
1092 
1093 	/*
1094 	 * If we already have either an explicit or implied lock order that
1095 	 * is the other way around, then return an error.
1096 	 */
1097 	if (witness_watch &&
1098 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1099 		mtx_unlock_spin(&w_mtx);
1100 		return (EDOOFUS);
1101 	}
1102 
1103 	/* Try to add the new order. */
1104 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1105 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1106 	itismychild(lock1->lo_witness, lock2->lo_witness);
1107 	mtx_unlock_spin(&w_mtx);
1108 	return (0);
1109 }
1110 
1111 void
1112 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1113     int line, struct lock_object *interlock)
1114 {
1115 	struct lock_list_entry *lock_list, *lle;
1116 	struct lock_instance *lock1, *lock2, *plock;
1117 	struct lock_class *class, *iclass;
1118 	struct witness *w, *w1;
1119 	struct thread *td;
1120 	int i, j;
1121 
1122 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1123 	    KERNEL_PANICKED())
1124 		return;
1125 
1126 	w = lock->lo_witness;
1127 	class = LOCK_CLASS(lock);
1128 	td = curthread;
1129 
1130 	if (class->lc_flags & LC_SLEEPLOCK) {
1131 		/*
1132 		 * Since spin locks include a critical section, this check
1133 		 * implicitly enforces a lock order of all sleep locks before
1134 		 * all spin locks.
1135 		 */
1136 		if (td->td_critnest != 0 && !kdb_active)
1137 			kassert_panic("acquiring blockable sleep lock with "
1138 			    "spinlock or critical section held (%s) %s @ %s:%d",
1139 			    class->lc_name, lock->lo_name,
1140 			    fixup_filename(file), line);
1141 
1142 		/*
1143 		 * If this is the first lock acquired then just return as
1144 		 * no order checking is needed.
1145 		 */
1146 		lock_list = td->td_sleeplocks;
1147 		if (lock_list == NULL || lock_list->ll_count == 0)
1148 			return;
1149 	} else {
1150 		/*
1151 		 * If this is the first lock, just return as no order
1152 		 * checking is needed.  Avoid problems with thread
1153 		 * migration pinning the thread while checking if
1154 		 * spinlocks are held.  If at least one spinlock is held
1155 		 * the thread is in a safe path and it is allowed to
1156 		 * unpin it.
1157 		 */
1158 		sched_pin();
1159 		lock_list = PCPU_GET(spinlocks);
1160 		if (lock_list == NULL || lock_list->ll_count == 0) {
1161 			sched_unpin();
1162 			return;
1163 		}
1164 		sched_unpin();
1165 	}
1166 
1167 	/*
1168 	 * Check to see if we are recursing on a lock we already own.  If
1169 	 * so, make sure that we don't mismatch exclusive and shared lock
1170 	 * acquires.
1171 	 */
1172 	lock1 = find_instance(lock_list, lock);
1173 	if (lock1 != NULL) {
1174 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1175 		    (flags & LOP_EXCLUSIVE) == 0) {
1176 			witness_output("shared lock of (%s) %s @ %s:%d\n",
1177 			    class->lc_name, lock->lo_name,
1178 			    fixup_filename(file), line);
1179 			witness_output("while exclusively locked from %s:%d\n",
1180 			    fixup_filename(lock1->li_file), lock1->li_line);
1181 			kassert_panic("excl->share");
1182 		}
1183 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1184 		    (flags & LOP_EXCLUSIVE) != 0) {
1185 			witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1186 			    class->lc_name, lock->lo_name,
1187 			    fixup_filename(file), line);
1188 			witness_output("while share locked from %s:%d\n",
1189 			    fixup_filename(lock1->li_file), lock1->li_line);
1190 			kassert_panic("share->excl");
1191 		}
1192 		return;
1193 	}
1194 
1195 	/* Warn if the interlock is not locked exactly once. */
1196 	if (interlock != NULL) {
1197 		iclass = LOCK_CLASS(interlock);
1198 		lock1 = find_instance(lock_list, interlock);
1199 		if (lock1 == NULL)
1200 			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1201 			    iclass->lc_name, interlock->lo_name,
1202 			    fixup_filename(file), line);
1203 		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1204 			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1205 			    iclass->lc_name, interlock->lo_name,
1206 			    fixup_filename(file), line);
1207 	}
1208 
1209 	/*
1210 	 * Find the previously acquired lock, but ignore interlocks.
1211 	 */
1212 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1213 	if (interlock != NULL && plock->li_lock == interlock) {
1214 		if (lock_list->ll_count > 1)
1215 			plock =
1216 			    &lock_list->ll_children[lock_list->ll_count - 2];
1217 		else {
1218 			lle = lock_list->ll_next;
1219 
1220 			/*
1221 			 * The interlock is the only lock we hold, so
1222 			 * simply return.
1223 			 */
1224 			if (lle == NULL)
1225 				return;
1226 			plock = &lle->ll_children[lle->ll_count - 1];
1227 		}
1228 	}
1229 
1230 	/*
1231 	 * Try to perform most checks without a lock.  If this succeeds we
1232 	 * can skip acquiring the lock and return success.  Otherwise we redo
1233 	 * the check with the lock held to handle races with concurrent updates.
1234 	 */
1235 	w1 = plock->li_lock->lo_witness;
1236 	if (witness_lock_order_check(w1, w))
1237 		return;
1238 
1239 	mtx_lock_spin(&w_mtx);
1240 	if (witness_lock_order_check(w1, w)) {
1241 		mtx_unlock_spin(&w_mtx);
1242 		return;
1243 	}
1244 	witness_lock_order_add(w1, w);
1245 
1246 	/*
1247 	 * Check for duplicate locks of the same type.  Note that we only
1248 	 * have to check for this on the last lock we just acquired.  Any
1249 	 * other cases will be caught as lock order violations.
1250 	 */
1251 	if (w1 == w) {
1252 		i = w->w_index;
1253 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1254 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1255 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1256 			w->w_reversed = 1;
1257 			mtx_unlock_spin(&w_mtx);
1258 			witness_output(
1259 			    "acquiring duplicate lock of same type: \"%s\"\n",
1260 			    w->w_name);
1261 			witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1262 			    fixup_filename(plock->li_file), plock->li_line);
1263 			witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1264 			    fixup_filename(file), line);
1265 			witness_debugger(1, __func__);
1266 		} else
1267 			mtx_unlock_spin(&w_mtx);
1268 		return;
1269 	}
1270 	mtx_assert(&w_mtx, MA_OWNED);
1271 
1272 	/*
1273 	 * If we know that the lock we are acquiring comes after
1274 	 * the lock we most recently acquired in the lock order tree,
1275 	 * then there is no need for any further checks.
1276 	 */
1277 	if (isitmychild(w1, w))
1278 		goto out;
1279 
1280 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1281 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1282 			struct stack pstack;
1283 			bool pstackv, trace;
1284 
1285 			MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1286 			lock1 = &lle->ll_children[i];
1287 
1288 			/*
1289 			 * Ignore the interlock.
1290 			 */
1291 			if (interlock == lock1->li_lock)
1292 				continue;
1293 
1294 			/*
1295 			 * If this lock doesn't undergo witness checking,
1296 			 * then skip it.
1297 			 */
1298 			w1 = lock1->li_lock->lo_witness;
1299 			if (w1 == NULL) {
1300 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1301 				    ("lock missing witness structure"));
1302 				continue;
1303 			}
1304 
1305 			/*
1306 			 * If we are locking Giant and this is a sleepable
1307 			 * lock, then skip it.
1308 			 */
1309 			if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
1310 			    lock == &Giant.lock_object)
1311 				continue;
1312 
1313 			/*
1314 			 * If we are locking a sleepable lock and this lock
1315 			 * is Giant, then skip it.
1316 			 */
1317 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1318 			    (flags & LOP_NOSLEEP) == 0 &&
1319 			    lock1->li_lock == &Giant.lock_object)
1320 				continue;
1321 
1322 			/*
1323 			 * If we are locking a sleepable lock and this lock
1324 			 * isn't sleepable, we want to treat it as a lock
1325 			 * order violation to enfore a general lock order of
1326 			 * sleepable locks before non-sleepable locks.
1327 			 */
1328 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1329 			    (flags & LOP_NOSLEEP) == 0 &&
1330 			    (lock1->li_flags & LI_SLEEPABLE) == 0)
1331 				goto reversal;
1332 
1333 			/*
1334 			 * If we are locking Giant and this is a non-sleepable
1335 			 * lock, then treat it as a reversal.
1336 			 */
1337 			if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
1338 			    lock == &Giant.lock_object)
1339 				goto reversal;
1340 
1341 			/*
1342 			 * Check the lock order hierarchy for a reveresal.
1343 			 */
1344 			if (!isitmydescendant(w, w1))
1345 				continue;
1346 		reversal:
1347 
1348 			/*
1349 			 * We have a lock order violation, check to see if it
1350 			 * is allowed or has already been yelled about.
1351 			 */
1352 
1353 			/* Bail if this violation is known */
1354 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1355 				goto out;
1356 
1357 			/* Record this as a violation */
1358 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1359 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1360 			w->w_reversed = w1->w_reversed = 1;
1361 			witness_increment_graph_generation();
1362 
1363 			/*
1364 			 * If the lock order is blessed, bail before logging
1365 			 * anything.  We don't look for other lock order
1366 			 * violations though, which may be a bug.
1367 			 */
1368 			if (blessed(w, w1))
1369 				goto out;
1370 
1371 			trace = atomic_load_int(&witness_trace);
1372 			if (trace) {
1373 				struct witness_lock_order_data *data;
1374 
1375 				pstackv = false;
1376 				data = witness_lock_order_get(w, w1);
1377 				if (data != NULL) {
1378 					stack_copy(&data->wlod_stack,
1379 					    &pstack);
1380 					pstackv = true;
1381 				}
1382 			}
1383 			mtx_unlock_spin(&w_mtx);
1384 
1385 #ifdef WITNESS_NO_VNODE
1386 			/*
1387 			 * There are known LORs between VNODE locks. They are
1388 			 * not an indication of a bug. VNODE locks are flagged
1389 			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1390 			 * is between 2 VNODE locks.
1391 			 */
1392 			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1393 			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1394 				return;
1395 #endif
1396 
1397 			/*
1398 			 * Ok, yell about it.
1399 			 */
1400 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1401 			    (flags & LOP_NOSLEEP) == 0 &&
1402 			    (lock1->li_flags & LI_SLEEPABLE) == 0)
1403 				witness_output(
1404 		"lock order reversal: (sleepable after non-sleepable)\n");
1405 			else if ((lock1->li_flags & LI_SLEEPABLE) == 0
1406 			    && lock == &Giant.lock_object)
1407 				witness_output(
1408 		"lock order reversal: (Giant after non-sleepable)\n");
1409 			else
1410 				witness_output("lock order reversal:\n");
1411 
1412 			/*
1413 			 * Try to locate an earlier lock with
1414 			 * witness w in our list.
1415 			 */
1416 			do {
1417 				lock2 = &lle->ll_children[i];
1418 				MPASS(lock2->li_lock != NULL);
1419 				if (lock2->li_lock->lo_witness == w)
1420 					break;
1421 				if (i == 0 && lle->ll_next != NULL) {
1422 					lle = lle->ll_next;
1423 					i = lle->ll_count - 1;
1424 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1425 				} else
1426 					i--;
1427 			} while (i >= 0);
1428 			if (i < 0) {
1429 				witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1430 				    lock1->li_lock, lock1->li_lock->lo_name,
1431 				    w1->w_name, w1->w_class->lc_name,
1432 				    fixup_filename(lock1->li_file),
1433 				    lock1->li_line);
1434 				witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1435 				    lock, lock->lo_name, w->w_name,
1436 				    w->w_class->lc_name, fixup_filename(file),
1437 				    line);
1438 			} else {
1439 				struct witness *w2 = lock2->li_lock->lo_witness;
1440 
1441 				witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
1442 				    lock2->li_lock, lock2->li_lock->lo_name,
1443 				    w2->w_name, w2->w_class->lc_name,
1444 				    fixup_filename(lock2->li_file),
1445 				    lock2->li_line);
1446 				witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
1447 				    lock1->li_lock, lock1->li_lock->lo_name,
1448 				    w1->w_name, w1->w_class->lc_name,
1449 				    fixup_filename(lock1->li_file),
1450 				    lock1->li_line);
1451 				witness_output(" 3rd %p %s (%s, %s) @ %s:%d\n", lock,
1452 				    lock->lo_name, w->w_name,
1453 				    w->w_class->lc_name, fixup_filename(file),
1454 				    line);
1455 			}
1456 			if (trace) {
1457 				char buf[64];
1458 				struct sbuf sb;
1459 
1460 				sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1461 				sbuf_set_drain(&sb, witness_output_drain,
1462 				    NULL);
1463 
1464 				if (pstackv) {
1465 					sbuf_printf(&sb,
1466 				    "lock order %s -> %s established at:\n",
1467 					    w->w_name, w1->w_name);
1468 					stack_sbuf_print_flags(&sb, &pstack,
1469 					    M_NOWAIT, STACK_SBUF_FMT_LONG);
1470 				}
1471 
1472 				sbuf_printf(&sb,
1473 				    "lock order %s -> %s attempted at:\n",
1474 				    w1->w_name, w->w_name);
1475 				stack_save(&pstack);
1476 				stack_sbuf_print_flags(&sb, &pstack, M_NOWAIT,
1477 				    STACK_SBUF_FMT_LONG);
1478 
1479 				sbuf_finish(&sb);
1480 				sbuf_delete(&sb);
1481 			}
1482 			witness_enter_debugger(__func__);
1483 			return;
1484 		}
1485 	}
1486 
1487 	/*
1488 	 * If requested, build a new lock order.  However, don't build a new
1489 	 * relationship between a sleepable lock and Giant if it is in the
1490 	 * wrong direction.  The correct lock order is that sleepable locks
1491 	 * always come before Giant.
1492 	 */
1493 	if (flags & LOP_NEWORDER &&
1494 	    !(plock->li_lock == &Giant.lock_object &&
1495 	    (lock->lo_flags & LO_SLEEPABLE) != 0 &&
1496 	    (flags & LOP_NOSLEEP) == 0)) {
1497 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1498 		    w->w_name, plock->li_lock->lo_witness->w_name);
1499 		itismychild(plock->li_lock->lo_witness, w);
1500 	}
1501 out:
1502 	mtx_unlock_spin(&w_mtx);
1503 }
1504 
1505 void
1506 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1507 {
1508 	struct lock_list_entry **lock_list, *lle;
1509 	struct lock_instance *instance;
1510 	struct witness *w;
1511 	struct thread *td;
1512 
1513 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1514 	    KERNEL_PANICKED())
1515 		return;
1516 	w = lock->lo_witness;
1517 	td = curthread;
1518 
1519 	/* Determine lock list for this lock. */
1520 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1521 		lock_list = &td->td_sleeplocks;
1522 	else
1523 		lock_list = PCPU_PTR(spinlocks);
1524 
1525 	/* Check to see if we are recursing on a lock we already own. */
1526 	instance = find_instance(*lock_list, lock);
1527 	if (instance != NULL) {
1528 		instance->li_flags++;
1529 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1530 		    td->td_proc->p_pid, lock->lo_name,
1531 		    instance->li_flags & LI_RECURSEMASK);
1532 		instance->li_file = file;
1533 		instance->li_line = line;
1534 		return;
1535 	}
1536 
1537 	/* Update per-witness last file and line acquire. */
1538 	w->w_file = file;
1539 	w->w_line = line;
1540 
1541 	/* Find the next open lock instance in the list and fill it. */
1542 	lle = *lock_list;
1543 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1544 		lle = witness_lock_list_get();
1545 		if (lle == NULL)
1546 			return;
1547 		lle->ll_next = *lock_list;
1548 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1549 		    td->td_proc->p_pid, lle);
1550 		*lock_list = lle;
1551 	}
1552 	instance = &lle->ll_children[lle->ll_count++];
1553 	instance->li_lock = lock;
1554 	instance->li_line = line;
1555 	instance->li_file = file;
1556 	instance->li_flags = 0;
1557 	if ((flags & LOP_EXCLUSIVE) != 0)
1558 		instance->li_flags |= LI_EXCLUSIVE;
1559 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
1560 		instance->li_flags |= LI_SLEEPABLE;
1561 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1562 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1563 }
1564 
1565 void
1566 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1567 {
1568 	struct lock_instance *instance;
1569 	struct lock_class *class;
1570 
1571 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1572 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1573 		return;
1574 	class = LOCK_CLASS(lock);
1575 	if (witness_watch) {
1576 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1577 			kassert_panic(
1578 			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1579 			    class->lc_name, lock->lo_name,
1580 			    fixup_filename(file), line);
1581 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1582 			kassert_panic(
1583 			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1584 			    class->lc_name, lock->lo_name,
1585 			    fixup_filename(file), line);
1586 	}
1587 	instance = find_instance(curthread->td_sleeplocks, lock);
1588 	if (instance == NULL) {
1589 		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1590 		    class->lc_name, lock->lo_name,
1591 		    fixup_filename(file), line);
1592 		return;
1593 	}
1594 	if (witness_watch) {
1595 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1596 			kassert_panic(
1597 			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1598 			    class->lc_name, lock->lo_name,
1599 			    fixup_filename(file), line);
1600 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1601 			kassert_panic(
1602 			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1603 			    class->lc_name, lock->lo_name,
1604 			    instance->li_flags & LI_RECURSEMASK,
1605 			    fixup_filename(file), line);
1606 	}
1607 	instance->li_flags |= LI_EXCLUSIVE;
1608 }
1609 
1610 void
1611 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1612     int line)
1613 {
1614 	struct lock_instance *instance;
1615 	struct lock_class *class;
1616 
1617 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1618 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1619 		return;
1620 	class = LOCK_CLASS(lock);
1621 	if (witness_watch) {
1622 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1623 			kassert_panic(
1624 			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1625 			    class->lc_name, lock->lo_name,
1626 			    fixup_filename(file), line);
1627 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1628 			kassert_panic(
1629 			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1630 			    class->lc_name, lock->lo_name,
1631 			    fixup_filename(file), line);
1632 	}
1633 	instance = find_instance(curthread->td_sleeplocks, lock);
1634 	if (instance == NULL) {
1635 		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1636 		    class->lc_name, lock->lo_name,
1637 		    fixup_filename(file), line);
1638 		return;
1639 	}
1640 	if (witness_watch) {
1641 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1642 			kassert_panic(
1643 			    "downgrade of shared lock (%s) %s @ %s:%d",
1644 			    class->lc_name, lock->lo_name,
1645 			    fixup_filename(file), line);
1646 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1647 			kassert_panic(
1648 			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1649 			    class->lc_name, lock->lo_name,
1650 			    instance->li_flags & LI_RECURSEMASK,
1651 			    fixup_filename(file), line);
1652 	}
1653 	instance->li_flags &= ~LI_EXCLUSIVE;
1654 }
1655 
1656 void
1657 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1658 {
1659 	struct lock_list_entry **lock_list, *lle;
1660 	struct lock_instance *instance;
1661 	struct lock_class *class;
1662 	struct thread *td;
1663 	register_t s;
1664 	int i, j;
1665 
1666 	if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
1667 		return;
1668 	td = curthread;
1669 	class = LOCK_CLASS(lock);
1670 
1671 	/* Find lock instance associated with this lock. */
1672 	if (class->lc_flags & LC_SLEEPLOCK)
1673 		lock_list = &td->td_sleeplocks;
1674 	else
1675 		lock_list = PCPU_PTR(spinlocks);
1676 	lle = *lock_list;
1677 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1678 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1679 			instance = &(*lock_list)->ll_children[i];
1680 			if (instance->li_lock == lock)
1681 				goto found;
1682 		}
1683 
1684 	/*
1685 	 * When disabling WITNESS through witness_watch we could end up in
1686 	 * having registered locks in the td_sleeplocks queue.
1687 	 * We have to make sure we flush these queues, so just search for
1688 	 * eventual register locks and remove them.
1689 	 */
1690 	if (witness_watch > 0) {
1691 		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1692 		    lock->lo_name, fixup_filename(file), line);
1693 		return;
1694 	} else {
1695 		return;
1696 	}
1697 found:
1698 
1699 	/* First, check for shared/exclusive mismatches. */
1700 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1701 	    (flags & LOP_EXCLUSIVE) == 0) {
1702 		witness_output("shared unlock of (%s) %s @ %s:%d\n",
1703 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1704 		witness_output("while exclusively locked from %s:%d\n",
1705 		    fixup_filename(instance->li_file), instance->li_line);
1706 		kassert_panic("excl->ushare");
1707 	}
1708 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1709 	    (flags & LOP_EXCLUSIVE) != 0) {
1710 		witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1711 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1712 		witness_output("while share locked from %s:%d\n",
1713 		    fixup_filename(instance->li_file),
1714 		    instance->li_line);
1715 		kassert_panic("share->uexcl");
1716 	}
1717 	/* If we are recursed, unrecurse. */
1718 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1719 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1720 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1721 		    instance->li_flags);
1722 		instance->li_flags--;
1723 		return;
1724 	}
1725 	/* The lock is now being dropped, check for NORELEASE flag */
1726 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1727 		witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1728 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1729 		kassert_panic("lock marked norelease");
1730 	}
1731 
1732 	/* Otherwise, remove this item from the list. */
1733 	s = intr_disable();
1734 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1735 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1736 	    (*lock_list)->ll_count - 1);
1737 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1738 		(*lock_list)->ll_children[j] =
1739 		    (*lock_list)->ll_children[j + 1];
1740 	(*lock_list)->ll_count--;
1741 	intr_restore(s);
1742 
1743 	/*
1744 	 * In order to reduce contention on w_mtx, we want to keep always an
1745 	 * head object into lists so that frequent allocation from the
1746 	 * free witness pool (and subsequent locking) is avoided.
1747 	 * In order to maintain the current code simple, when the head
1748 	 * object is totally unloaded it means also that we do not have
1749 	 * further objects in the list, so the list ownership needs to be
1750 	 * hand over to another object if the current head needs to be freed.
1751 	 */
1752 	if ((*lock_list)->ll_count == 0) {
1753 		if (*lock_list == lle) {
1754 			if (lle->ll_next == NULL)
1755 				return;
1756 		} else
1757 			lle = *lock_list;
1758 		*lock_list = lle->ll_next;
1759 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1760 		    td->td_proc->p_pid, lle);
1761 		witness_lock_list_free(lle);
1762 	}
1763 }
1764 
1765 void
1766 witness_thread_exit(struct thread *td)
1767 {
1768 	struct lock_list_entry *lle;
1769 	int i, n;
1770 
1771 	lle = td->td_sleeplocks;
1772 	if (lle == NULL || KERNEL_PANICKED())
1773 		return;
1774 	if (lle->ll_count != 0) {
1775 		for (n = 0; lle != NULL; lle = lle->ll_next)
1776 			for (i = lle->ll_count - 1; i >= 0; i--) {
1777 				if (n == 0)
1778 					witness_output(
1779 		    "Thread %p exiting with the following locks held:\n", td);
1780 				n++;
1781 				witness_list_lock(&lle->ll_children[i],
1782 				    witness_output);
1783 
1784 			}
1785 		kassert_panic(
1786 		    "Thread %p cannot exit while holding sleeplocks\n", td);
1787 	}
1788 	witness_lock_list_free(lle);
1789 }
1790 
1791 /*
1792  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1793  * exempt Giant and sleepable locks from the checks as well.  If any
1794  * non-exempt locks are held, then a supplied message is printed to the
1795  * output channel along with a list of the offending locks.  If indicated in the
1796  * flags then a failure results in a panic as well.
1797  */
1798 int
1799 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1800 {
1801 	struct lock_list_entry *lock_list, *lle;
1802 	struct lock_instance *lock1;
1803 	struct thread *td;
1804 	va_list ap;
1805 	int i, n;
1806 
1807 	if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
1808 		return (0);
1809 	n = 0;
1810 	td = curthread;
1811 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1812 		for (i = lle->ll_count - 1; i >= 0; i--) {
1813 			lock1 = &lle->ll_children[i];
1814 			if (lock1->li_lock == lock)
1815 				continue;
1816 			if (flags & WARN_GIANTOK &&
1817 			    lock1->li_lock == &Giant.lock_object)
1818 				continue;
1819 			if (flags & WARN_SLEEPOK &&
1820 			    (lock1->li_flags & LI_SLEEPABLE) != 0)
1821 				continue;
1822 			if (n == 0) {
1823 				va_start(ap, fmt);
1824 				vprintf(fmt, ap);
1825 				va_end(ap);
1826 				printf(" with the following %slocks held:\n",
1827 				    (flags & WARN_SLEEPOK) != 0 ?
1828 				    "non-sleepable " : "");
1829 			}
1830 			n++;
1831 			witness_list_lock(lock1, printf);
1832 		}
1833 
1834 	/*
1835 	 * Pin the thread in order to avoid problems with thread migration.
1836 	 * Once that all verifies are passed about spinlocks ownership,
1837 	 * the thread is in a safe path and it can be unpinned.
1838 	 */
1839 	sched_pin();
1840 	lock_list = PCPU_GET(spinlocks);
1841 	if (lock_list != NULL && lock_list->ll_count != 0) {
1842 		sched_unpin();
1843 
1844 		/*
1845 		 * We should only have one spinlock and as long as
1846 		 * the flags cannot match for this locks class,
1847 		 * check if the first spinlock is the one curthread
1848 		 * should hold.
1849 		 */
1850 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1851 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1852 		    lock1->li_lock == lock && n == 0)
1853 			return (0);
1854 
1855 		va_start(ap, fmt);
1856 		vprintf(fmt, ap);
1857 		va_end(ap);
1858 		printf(" with the following %slocks held:\n",
1859 		    (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1860 		n += witness_list_locks(&lock_list, printf);
1861 	} else
1862 		sched_unpin();
1863 	if (flags & WARN_PANIC && n)
1864 		kassert_panic("%s", __func__);
1865 	else
1866 		witness_debugger(n, __func__);
1867 	return (n);
1868 }
1869 
1870 const char *
1871 witness_file(struct lock_object *lock)
1872 {
1873 	struct witness *w;
1874 
1875 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1876 		return ("?");
1877 	w = lock->lo_witness;
1878 	return (w->w_file);
1879 }
1880 
1881 int
1882 witness_line(struct lock_object *lock)
1883 {
1884 	struct witness *w;
1885 
1886 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1887 		return (0);
1888 	w = lock->lo_witness;
1889 	return (w->w_line);
1890 }
1891 
1892 static struct witness *
1893 enroll(const char *description, struct lock_class *lock_class)
1894 {
1895 	struct witness *w;
1896 
1897 	MPASS(description != NULL);
1898 
1899 	if (witness_watch == -1 || KERNEL_PANICKED())
1900 		return (NULL);
1901 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1902 		if (witness_skipspin)
1903 			return (NULL);
1904 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1905 		kassert_panic("lock class %s is not sleep or spin",
1906 		    lock_class->lc_name);
1907 		return (NULL);
1908 	}
1909 
1910 	mtx_lock_spin(&w_mtx);
1911 	w = witness_hash_get(description);
1912 	if (w)
1913 		goto found;
1914 	if ((w = witness_get()) == NULL)
1915 		return (NULL);
1916 	MPASS(strlen(description) < MAX_W_NAME);
1917 	strcpy(w->w_name, description);
1918 	w->w_class = lock_class;
1919 	w->w_refcount = 1;
1920 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1921 	if (lock_class->lc_flags & LC_SPINLOCK) {
1922 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1923 		w_spin_cnt++;
1924 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1925 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1926 		w_sleep_cnt++;
1927 	}
1928 
1929 	/* Insert new witness into the hash */
1930 	witness_hash_put(w);
1931 	witness_increment_graph_generation();
1932 	mtx_unlock_spin(&w_mtx);
1933 	return (w);
1934 found:
1935 	w->w_refcount++;
1936 	if (w->w_refcount == 1)
1937 		w->w_class = lock_class;
1938 	mtx_unlock_spin(&w_mtx);
1939 	if (lock_class != w->w_class)
1940 		kassert_panic(
1941 		    "lock (%s) %s does not match earlier (%s) lock",
1942 		    description, lock_class->lc_name,
1943 		    w->w_class->lc_name);
1944 	return (w);
1945 }
1946 
1947 static void
1948 depart(struct witness *w)
1949 {
1950 
1951 	MPASS(w->w_refcount == 0);
1952 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1953 		w_sleep_cnt--;
1954 	} else {
1955 		w_spin_cnt--;
1956 	}
1957 	/*
1958 	 * Set file to NULL as it may point into a loadable module.
1959 	 */
1960 	w->w_file = NULL;
1961 	w->w_line = 0;
1962 	witness_increment_graph_generation();
1963 }
1964 
1965 static void
1966 adopt(struct witness *parent, struct witness *child)
1967 {
1968 	int pi, ci, i, j;
1969 
1970 	if (witness_cold == 0)
1971 		mtx_assert(&w_mtx, MA_OWNED);
1972 
1973 	/* If the relationship is already known, there's no work to be done. */
1974 	if (isitmychild(parent, child))
1975 		return;
1976 
1977 	/* When the structure of the graph changes, bump up the generation. */
1978 	witness_increment_graph_generation();
1979 
1980 	/*
1981 	 * The hard part ... create the direct relationship, then propagate all
1982 	 * indirect relationships.
1983 	 */
1984 	pi = parent->w_index;
1985 	ci = child->w_index;
1986 	WITNESS_INDEX_ASSERT(pi);
1987 	WITNESS_INDEX_ASSERT(ci);
1988 	MPASS(pi != ci);
1989 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1990 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1991 
1992 	/*
1993 	 * If parent was not already an ancestor of child,
1994 	 * then we increment the descendant and ancestor counters.
1995 	 */
1996 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1997 		parent->w_num_descendants++;
1998 		child->w_num_ancestors++;
1999 	}
2000 
2001 	/*
2002 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
2003 	 * an ancestor of 'pi' during this loop.
2004 	 */
2005 	for (i = 1; i <= w_max_used_index; i++) {
2006 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
2007 		    (i != pi))
2008 			continue;
2009 
2010 		/* Find each descendant of 'i' and mark it as a descendant. */
2011 		for (j = 1; j <= w_max_used_index; j++) {
2012 			/*
2013 			 * Skip children that are already marked as
2014 			 * descendants of 'i'.
2015 			 */
2016 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
2017 				continue;
2018 
2019 			/*
2020 			 * We are only interested in descendants of 'ci'. Note
2021 			 * that 'ci' itself is counted as a descendant of 'ci'.
2022 			 */
2023 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
2024 			    (j != ci))
2025 				continue;
2026 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
2027 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
2028 			w_data[i].w_num_descendants++;
2029 			w_data[j].w_num_ancestors++;
2030 
2031 			/*
2032 			 * Make sure we aren't marking a node as both an
2033 			 * ancestor and descendant. We should have caught
2034 			 * this as a lock order reversal earlier.
2035 			 */
2036 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
2037 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
2038 				printf("witness rmatrix paradox! [%d][%d]=%d "
2039 				    "both ancestor and descendant\n",
2040 				    i, j, w_rmatrix[i][j]);
2041 				kdb_backtrace();
2042 				printf("Witness disabled.\n");
2043 				witness_watch = -1;
2044 			}
2045 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
2046 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
2047 				printf("witness rmatrix paradox! [%d][%d]=%d "
2048 				    "both ancestor and descendant\n",
2049 				    j, i, w_rmatrix[j][i]);
2050 				kdb_backtrace();
2051 				printf("Witness disabled.\n");
2052 				witness_watch = -1;
2053 			}
2054 		}
2055 	}
2056 }
2057 
2058 static void
2059 itismychild(struct witness *parent, struct witness *child)
2060 {
2061 	int unlocked;
2062 
2063 	MPASS(child != NULL && parent != NULL);
2064 	if (witness_cold == 0)
2065 		mtx_assert(&w_mtx, MA_OWNED);
2066 
2067 	if (!witness_lock_type_equal(parent, child)) {
2068 		if (witness_cold == 0) {
2069 			unlocked = 1;
2070 			mtx_unlock_spin(&w_mtx);
2071 		} else {
2072 			unlocked = 0;
2073 		}
2074 		kassert_panic(
2075 		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2076 		    "the same lock type", __func__, parent->w_name,
2077 		    parent->w_class->lc_name, child->w_name,
2078 		    child->w_class->lc_name);
2079 		if (unlocked)
2080 			mtx_lock_spin(&w_mtx);
2081 	}
2082 	adopt(parent, child);
2083 }
2084 
2085 /*
2086  * Generic code for the isitmy*() functions. The rmask parameter is the
2087  * expected relationship of w1 to w2.
2088  */
2089 static int
2090 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2091 {
2092 	unsigned char r1, r2;
2093 	int i1, i2;
2094 
2095 	i1 = w1->w_index;
2096 	i2 = w2->w_index;
2097 	WITNESS_INDEX_ASSERT(i1);
2098 	WITNESS_INDEX_ASSERT(i2);
2099 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2100 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2101 
2102 	/* The flags on one better be the inverse of the flags on the other */
2103 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2104 	    (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2105 		/* Don't squawk if we're potentially racing with an update. */
2106 		if (!mtx_owned(&w_mtx))
2107 			return (0);
2108 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
2109 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
2110 		    "w_rmatrix[%d][%d] == %hhx\n",
2111 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2112 		    i2, i1, r2);
2113 		kdb_backtrace();
2114 		printf("Witness disabled.\n");
2115 		witness_watch = -1;
2116 	}
2117 	return (r1 & rmask);
2118 }
2119 
2120 /*
2121  * Checks if @child is a direct child of @parent.
2122  */
2123 static int
2124 isitmychild(struct witness *parent, struct witness *child)
2125 {
2126 
2127 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2128 }
2129 
2130 /*
2131  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2132  */
2133 static int
2134 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2135 {
2136 
2137 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2138 	    __func__));
2139 }
2140 
2141 static int
2142 blessed(struct witness *w1, struct witness *w2)
2143 {
2144 	int i;
2145 	struct witness_blessed *b;
2146 
2147 	for (i = 0; i < nitems(blessed_list); i++) {
2148 		b = &blessed_list[i];
2149 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2150 			if (strcmp(w2->w_name, b->b_lock2) == 0)
2151 				return (1);
2152 			continue;
2153 		}
2154 		if (strcmp(w1->w_name, b->b_lock2) == 0)
2155 			if (strcmp(w2->w_name, b->b_lock1) == 0)
2156 				return (1);
2157 	}
2158 	return (0);
2159 }
2160 
2161 static struct witness *
2162 witness_get(void)
2163 {
2164 	struct witness *w;
2165 	int index;
2166 
2167 	if (witness_cold == 0)
2168 		mtx_assert(&w_mtx, MA_OWNED);
2169 
2170 	if (witness_watch == -1) {
2171 		mtx_unlock_spin(&w_mtx);
2172 		return (NULL);
2173 	}
2174 	if (STAILQ_EMPTY(&w_free)) {
2175 		witness_watch = -1;
2176 		mtx_unlock_spin(&w_mtx);
2177 		printf("WITNESS: unable to allocate a new witness object\n");
2178 		return (NULL);
2179 	}
2180 	w = STAILQ_FIRST(&w_free);
2181 	STAILQ_REMOVE_HEAD(&w_free, w_list);
2182 	w_free_cnt--;
2183 	index = w->w_index;
2184 	MPASS(index > 0 && index == w_max_used_index+1 &&
2185 	    index < witness_count);
2186 	bzero(w, sizeof(*w));
2187 	w->w_index = index;
2188 	if (index > w_max_used_index)
2189 		w_max_used_index = index;
2190 	return (w);
2191 }
2192 
2193 static void
2194 witness_free(struct witness *w)
2195 {
2196 
2197 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2198 	w_free_cnt++;
2199 }
2200 
2201 static struct lock_list_entry *
2202 witness_lock_list_get(void)
2203 {
2204 	struct lock_list_entry *lle;
2205 
2206 	if (witness_watch == -1)
2207 		return (NULL);
2208 	mtx_lock_spin(&w_mtx);
2209 	lle = w_lock_list_free;
2210 	if (lle == NULL) {
2211 		witness_watch = -1;
2212 		mtx_unlock_spin(&w_mtx);
2213 		printf("%s: witness exhausted\n", __func__);
2214 		return (NULL);
2215 	}
2216 	w_lock_list_free = lle->ll_next;
2217 	mtx_unlock_spin(&w_mtx);
2218 	bzero(lle, sizeof(*lle));
2219 	return (lle);
2220 }
2221 
2222 static void
2223 witness_lock_list_free(struct lock_list_entry *lle)
2224 {
2225 
2226 	mtx_lock_spin(&w_mtx);
2227 	lle->ll_next = w_lock_list_free;
2228 	w_lock_list_free = lle;
2229 	mtx_unlock_spin(&w_mtx);
2230 }
2231 
2232 static struct lock_instance *
2233 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2234 {
2235 	struct lock_list_entry *lle;
2236 	struct lock_instance *instance;
2237 	int i;
2238 
2239 	for (lle = list; lle != NULL; lle = lle->ll_next)
2240 		for (i = lle->ll_count - 1; i >= 0; i--) {
2241 			instance = &lle->ll_children[i];
2242 			if (instance->li_lock == lock)
2243 				return (instance);
2244 		}
2245 	return (NULL);
2246 }
2247 
2248 static void
2249 witness_list_lock(struct lock_instance *instance,
2250     int (*prnt)(const char *fmt, ...))
2251 {
2252 	struct lock_object *lock;
2253 
2254 	lock = instance->li_lock;
2255 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2256 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2257 	if (lock->lo_witness->w_name != lock->lo_name)
2258 		prnt(" (%s)", lock->lo_witness->w_name);
2259 	prnt(" r = %d (%p) locked @ %s:%d\n",
2260 	    instance->li_flags & LI_RECURSEMASK, lock,
2261 	    fixup_filename(instance->li_file), instance->li_line);
2262 }
2263 
2264 static int
2265 witness_output(const char *fmt, ...)
2266 {
2267 	va_list ap;
2268 	int ret;
2269 
2270 	va_start(ap, fmt);
2271 	ret = witness_voutput(fmt, ap);
2272 	va_end(ap);
2273 	return (ret);
2274 }
2275 
2276 static int
2277 witness_voutput(const char *fmt, va_list ap)
2278 {
2279 	int ret;
2280 
2281 	ret = 0;
2282 	switch (witness_channel) {
2283 	case WITNESS_CONSOLE:
2284 		ret = vprintf(fmt, ap);
2285 		break;
2286 	case WITNESS_LOG:
2287 		vlog(LOG_NOTICE, fmt, ap);
2288 		break;
2289 	case WITNESS_NONE:
2290 		break;
2291 	}
2292 	return (ret);
2293 }
2294 
2295 #ifdef DDB
2296 static int
2297 witness_thread_has_locks(struct thread *td)
2298 {
2299 
2300 	if (td->td_sleeplocks == NULL)
2301 		return (0);
2302 	return (td->td_sleeplocks->ll_count != 0);
2303 }
2304 
2305 static int
2306 witness_proc_has_locks(struct proc *p)
2307 {
2308 	struct thread *td;
2309 
2310 	FOREACH_THREAD_IN_PROC(p, td) {
2311 		if (witness_thread_has_locks(td))
2312 			return (1);
2313 	}
2314 	return (0);
2315 }
2316 #endif
2317 
2318 int
2319 witness_list_locks(struct lock_list_entry **lock_list,
2320     int (*prnt)(const char *fmt, ...))
2321 {
2322 	struct lock_list_entry *lle;
2323 	int i, nheld;
2324 
2325 	nheld = 0;
2326 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2327 		for (i = lle->ll_count - 1; i >= 0; i--) {
2328 			witness_list_lock(&lle->ll_children[i], prnt);
2329 			nheld++;
2330 		}
2331 	return (nheld);
2332 }
2333 
2334 /*
2335  * This is a bit risky at best.  We call this function when we have timed
2336  * out acquiring a spin lock, and we assume that the other CPU is stuck
2337  * with this lock held.  So, we go groveling around in the other CPU's
2338  * per-cpu data to try to find the lock instance for this spin lock to
2339  * see when it was last acquired.
2340  */
2341 void
2342 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2343     int (*prnt)(const char *fmt, ...))
2344 {
2345 	struct lock_instance *instance;
2346 	struct pcpu *pc;
2347 
2348 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2349 		return;
2350 	pc = pcpu_find(owner->td_oncpu);
2351 	instance = find_instance(pc->pc_spinlocks, lock);
2352 	if (instance != NULL)
2353 		witness_list_lock(instance, prnt);
2354 }
2355 
2356 void
2357 witness_save(struct lock_object *lock, const char **filep, int *linep)
2358 {
2359 	struct lock_list_entry *lock_list;
2360 	struct lock_instance *instance;
2361 	struct lock_class *class;
2362 
2363 	/*
2364 	 * This function is used independently in locking code to deal with
2365 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2366 	 * is gone.
2367 	 */
2368 	if (SCHEDULER_STOPPED())
2369 		return;
2370 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2371 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2372 		return;
2373 	class = LOCK_CLASS(lock);
2374 	if (class->lc_flags & LC_SLEEPLOCK)
2375 		lock_list = curthread->td_sleeplocks;
2376 	else {
2377 		if (witness_skipspin)
2378 			return;
2379 		lock_list = PCPU_GET(spinlocks);
2380 	}
2381 	instance = find_instance(lock_list, lock);
2382 	if (instance == NULL) {
2383 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2384 		    class->lc_name, lock->lo_name);
2385 		return;
2386 	}
2387 	*filep = instance->li_file;
2388 	*linep = instance->li_line;
2389 }
2390 
2391 void
2392 witness_restore(struct lock_object *lock, const char *file, int line)
2393 {
2394 	struct lock_list_entry *lock_list;
2395 	struct lock_instance *instance;
2396 	struct lock_class *class;
2397 
2398 	/*
2399 	 * This function is used independently in locking code to deal with
2400 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2401 	 * is gone.
2402 	 */
2403 	if (SCHEDULER_STOPPED())
2404 		return;
2405 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2406 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2407 		return;
2408 	class = LOCK_CLASS(lock);
2409 	if (class->lc_flags & LC_SLEEPLOCK)
2410 		lock_list = curthread->td_sleeplocks;
2411 	else {
2412 		if (witness_skipspin)
2413 			return;
2414 		lock_list = PCPU_GET(spinlocks);
2415 	}
2416 	instance = find_instance(lock_list, lock);
2417 	if (instance == NULL)
2418 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2419 		    class->lc_name, lock->lo_name);
2420 	lock->lo_witness->w_file = file;
2421 	lock->lo_witness->w_line = line;
2422 	if (instance == NULL)
2423 		return;
2424 	instance->li_file = file;
2425 	instance->li_line = line;
2426 }
2427 
2428 void
2429 witness_assert(const struct lock_object *lock, int flags, const char *file,
2430     int line)
2431 {
2432 #ifdef INVARIANT_SUPPORT
2433 	struct lock_instance *instance;
2434 	struct lock_class *class;
2435 
2436 	if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
2437 		return;
2438 	class = LOCK_CLASS(lock);
2439 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2440 		instance = find_instance(curthread->td_sleeplocks, lock);
2441 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2442 		instance = find_instance(PCPU_GET(spinlocks), lock);
2443 	else {
2444 		kassert_panic("Lock (%s) %s is not sleep or spin!",
2445 		    class->lc_name, lock->lo_name);
2446 		return;
2447 	}
2448 	switch (flags) {
2449 	case LA_UNLOCKED:
2450 		if (instance != NULL)
2451 			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2452 			    class->lc_name, lock->lo_name,
2453 			    fixup_filename(file), line);
2454 		break;
2455 	case LA_LOCKED:
2456 	case LA_LOCKED | LA_RECURSED:
2457 	case LA_LOCKED | LA_NOTRECURSED:
2458 	case LA_SLOCKED:
2459 	case LA_SLOCKED | LA_RECURSED:
2460 	case LA_SLOCKED | LA_NOTRECURSED:
2461 	case LA_XLOCKED:
2462 	case LA_XLOCKED | LA_RECURSED:
2463 	case LA_XLOCKED | LA_NOTRECURSED:
2464 		if (instance == NULL) {
2465 			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2466 			    class->lc_name, lock->lo_name,
2467 			    fixup_filename(file), line);
2468 			break;
2469 		}
2470 		if ((flags & LA_XLOCKED) != 0 &&
2471 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2472 			kassert_panic(
2473 			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2474 			    class->lc_name, lock->lo_name,
2475 			    fixup_filename(file), line);
2476 		if ((flags & LA_SLOCKED) != 0 &&
2477 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2478 			kassert_panic(
2479 			    "Lock (%s) %s exclusively locked @ %s:%d.",
2480 			    class->lc_name, lock->lo_name,
2481 			    fixup_filename(file), line);
2482 		if ((flags & LA_RECURSED) != 0 &&
2483 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2484 			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2485 			    class->lc_name, lock->lo_name,
2486 			    fixup_filename(file), line);
2487 		if ((flags & LA_NOTRECURSED) != 0 &&
2488 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2489 			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2490 			    class->lc_name, lock->lo_name,
2491 			    fixup_filename(file), line);
2492 		break;
2493 	default:
2494 		kassert_panic("Invalid lock assertion at %s:%d.",
2495 		    fixup_filename(file), line);
2496 	}
2497 #endif	/* INVARIANT_SUPPORT */
2498 }
2499 
2500 static void
2501 witness_setflag(struct lock_object *lock, int flag, int set)
2502 {
2503 	struct lock_list_entry *lock_list;
2504 	struct lock_instance *instance;
2505 	struct lock_class *class;
2506 
2507 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2508 		return;
2509 	class = LOCK_CLASS(lock);
2510 	if (class->lc_flags & LC_SLEEPLOCK)
2511 		lock_list = curthread->td_sleeplocks;
2512 	else {
2513 		if (witness_skipspin)
2514 			return;
2515 		lock_list = PCPU_GET(spinlocks);
2516 	}
2517 	instance = find_instance(lock_list, lock);
2518 	if (instance == NULL) {
2519 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2520 		    class->lc_name, lock->lo_name);
2521 		return;
2522 	}
2523 
2524 	if (set)
2525 		instance->li_flags |= flag;
2526 	else
2527 		instance->li_flags &= ~flag;
2528 }
2529 
2530 void
2531 witness_norelease(struct lock_object *lock)
2532 {
2533 
2534 	witness_setflag(lock, LI_NORELEASE, 1);
2535 }
2536 
2537 void
2538 witness_releaseok(struct lock_object *lock)
2539 {
2540 
2541 	witness_setflag(lock, LI_NORELEASE, 0);
2542 }
2543 
2544 #ifdef DDB
2545 static void
2546 witness_ddb_list(struct thread *td)
2547 {
2548 
2549 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2550 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2551 
2552 	if (witness_watch < 1)
2553 		return;
2554 
2555 	witness_list_locks(&td->td_sleeplocks, db_printf);
2556 
2557 	/*
2558 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2559 	 * if td is currently executing on some other CPU and holds spin locks
2560 	 * as we won't display those locks.  If we had a MI way of getting
2561 	 * the per-cpu data for a given cpu then we could use
2562 	 * td->td_oncpu to get the list of spinlocks for this thread
2563 	 * and "fix" this.
2564 	 *
2565 	 * That still wouldn't really fix this unless we locked the scheduler
2566 	 * lock or stopped the other CPU to make sure it wasn't changing the
2567 	 * list out from under us.  It is probably best to just not try to
2568 	 * handle threads on other CPU's for now.
2569 	 */
2570 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2571 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2572 }
2573 
2574 DB_SHOW_COMMAND(locks, db_witness_list)
2575 {
2576 	struct thread *td;
2577 
2578 	if (have_addr)
2579 		td = db_lookup_thread(addr, true);
2580 	else
2581 		td = kdb_thread;
2582 	witness_ddb_list(td);
2583 }
2584 
2585 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2586 {
2587 	struct thread *td;
2588 	struct proc *p;
2589 
2590 	/*
2591 	 * It would be nice to list only threads and processes that actually
2592 	 * held sleep locks, but that information is currently not exported
2593 	 * by WITNESS.
2594 	 */
2595 	FOREACH_PROC_IN_SYSTEM(p) {
2596 		if (!witness_proc_has_locks(p))
2597 			continue;
2598 		FOREACH_THREAD_IN_PROC(p, td) {
2599 			if (!witness_thread_has_locks(td))
2600 				continue;
2601 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2602 			    p->p_comm, td, td->td_tid);
2603 			witness_ddb_list(td);
2604 			if (db_pager_quit)
2605 				return;
2606 		}
2607 	}
2608 }
2609 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2610 
2611 DB_SHOW_COMMAND(witness, db_witness_display)
2612 {
2613 
2614 	witness_ddb_display(db_printf);
2615 }
2616 #endif
2617 
2618 static void
2619 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2620 {
2621 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2622 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2623 	int generation, i, j;
2624 
2625 	tmp_data1 = NULL;
2626 	tmp_data2 = NULL;
2627 	tmp_w1 = NULL;
2628 	tmp_w2 = NULL;
2629 
2630 	/* Allocate and init temporary storage space. */
2631 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2632 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2633 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2634 	    M_WAITOK | M_ZERO);
2635 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2636 	    M_WAITOK | M_ZERO);
2637 	stack_zero(&tmp_data1->wlod_stack);
2638 	stack_zero(&tmp_data2->wlod_stack);
2639 
2640 restart:
2641 	mtx_lock_spin(&w_mtx);
2642 	generation = w_generation;
2643 	mtx_unlock_spin(&w_mtx);
2644 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2645 	    w_lohash.wloh_count);
2646 	for (i = 1; i < w_max_used_index; i++) {
2647 		mtx_lock_spin(&w_mtx);
2648 		if (generation != w_generation) {
2649 			mtx_unlock_spin(&w_mtx);
2650 
2651 			/* The graph has changed, try again. */
2652 			*oldidx = 0;
2653 			sbuf_clear(sb);
2654 			goto restart;
2655 		}
2656 
2657 		w1 = &w_data[i];
2658 		if (w1->w_reversed == 0) {
2659 			mtx_unlock_spin(&w_mtx);
2660 			continue;
2661 		}
2662 
2663 		/* Copy w1 locally so we can release the spin lock. */
2664 		*tmp_w1 = *w1;
2665 		mtx_unlock_spin(&w_mtx);
2666 
2667 		if (tmp_w1->w_reversed == 0)
2668 			continue;
2669 		for (j = 1; j < w_max_used_index; j++) {
2670 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2671 				continue;
2672 
2673 			mtx_lock_spin(&w_mtx);
2674 			if (generation != w_generation) {
2675 				mtx_unlock_spin(&w_mtx);
2676 
2677 				/* The graph has changed, try again. */
2678 				*oldidx = 0;
2679 				sbuf_clear(sb);
2680 				goto restart;
2681 			}
2682 
2683 			w2 = &w_data[j];
2684 			data1 = witness_lock_order_get(w1, w2);
2685 			data2 = witness_lock_order_get(w2, w1);
2686 
2687 			/*
2688 			 * Copy information locally so we can release the
2689 			 * spin lock.
2690 			 */
2691 			*tmp_w2 = *w2;
2692 
2693 			if (data1) {
2694 				stack_zero(&tmp_data1->wlod_stack);
2695 				stack_copy(&data1->wlod_stack,
2696 				    &tmp_data1->wlod_stack);
2697 			}
2698 			if (data2 && data2 != data1) {
2699 				stack_zero(&tmp_data2->wlod_stack);
2700 				stack_copy(&data2->wlod_stack,
2701 				    &tmp_data2->wlod_stack);
2702 			}
2703 			mtx_unlock_spin(&w_mtx);
2704 
2705 			if (blessed(tmp_w1, tmp_w2))
2706 				continue;
2707 
2708 			sbuf_printf(sb,
2709 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2710 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2711 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2712 			if (data1) {
2713 				sbuf_printf(sb,
2714 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2715 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2716 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2717 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2718 				sbuf_printf(sb, "\n");
2719 			}
2720 			if (data2 && data2 != data1) {
2721 				sbuf_printf(sb,
2722 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2723 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2724 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2725 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2726 				sbuf_printf(sb, "\n");
2727 			}
2728 		}
2729 	}
2730 	mtx_lock_spin(&w_mtx);
2731 	if (generation != w_generation) {
2732 		mtx_unlock_spin(&w_mtx);
2733 
2734 		/*
2735 		 * The graph changed while we were printing stack data,
2736 		 * try again.
2737 		 */
2738 		*oldidx = 0;
2739 		sbuf_clear(sb);
2740 		goto restart;
2741 	}
2742 	mtx_unlock_spin(&w_mtx);
2743 
2744 	/* Free temporary storage space. */
2745 	free(tmp_data1, M_TEMP);
2746 	free(tmp_data2, M_TEMP);
2747 	free(tmp_w1, M_TEMP);
2748 	free(tmp_w2, M_TEMP);
2749 }
2750 
2751 static int
2752 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2753 {
2754 	struct sbuf *sb;
2755 	int error;
2756 
2757 	if (witness_watch < 1) {
2758 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2759 		return (error);
2760 	}
2761 	if (witness_cold) {
2762 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2763 		return (error);
2764 	}
2765 	error = 0;
2766 	sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2767 	if (sb == NULL)
2768 		return (ENOMEM);
2769 
2770 	sbuf_print_witness_badstacks(sb, &req->oldidx);
2771 
2772 	sbuf_finish(sb);
2773 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2774 	sbuf_delete(sb);
2775 
2776 	return (error);
2777 }
2778 
2779 #ifdef DDB
2780 static int
2781 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2782 {
2783 
2784 	return (db_printf("%.*s", len, data));
2785 }
2786 
2787 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2788 {
2789 	struct sbuf sb;
2790 	char buffer[128];
2791 	size_t dummy;
2792 
2793 	sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2794 	sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2795 	sbuf_print_witness_badstacks(&sb, &dummy);
2796 	sbuf_finish(&sb);
2797 }
2798 #endif
2799 
2800 static int
2801 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2802 {
2803 	static const struct {
2804 		enum witness_channel channel;
2805 		const char *name;
2806 	} channels[] = {
2807 		{ WITNESS_CONSOLE, "console" },
2808 		{ WITNESS_LOG, "log" },
2809 		{ WITNESS_NONE, "none" },
2810 	};
2811 	char buf[16];
2812 	u_int i;
2813 	int error;
2814 
2815 	buf[0] = '\0';
2816 	for (i = 0; i < nitems(channels); i++)
2817 		if (witness_channel == channels[i].channel) {
2818 			snprintf(buf, sizeof(buf), "%s", channels[i].name);
2819 			break;
2820 		}
2821 
2822 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2823 	if (error != 0 || req->newptr == NULL)
2824 		return (error);
2825 
2826 	error = EINVAL;
2827 	for (i = 0; i < nitems(channels); i++)
2828 		if (strcmp(channels[i].name, buf) == 0) {
2829 			witness_channel = channels[i].channel;
2830 			error = 0;
2831 			break;
2832 		}
2833 	return (error);
2834 }
2835 
2836 static int
2837 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2838 {
2839 	struct witness *w;
2840 	struct sbuf *sb;
2841 	int error;
2842 
2843 #ifdef __i386__
2844 	error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2845 	return (error);
2846 #endif
2847 
2848 	if (witness_watch < 1) {
2849 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2850 		return (error);
2851 	}
2852 	if (witness_cold) {
2853 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2854 		return (error);
2855 	}
2856 	error = 0;
2857 
2858 	error = sysctl_wire_old_buffer(req, 0);
2859 	if (error != 0)
2860 		return (error);
2861 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2862 	if (sb == NULL)
2863 		return (ENOMEM);
2864 	sbuf_printf(sb, "\n");
2865 
2866 	mtx_lock_spin(&w_mtx);
2867 	STAILQ_FOREACH(w, &w_all, w_list)
2868 		w->w_displayed = 0;
2869 	STAILQ_FOREACH(w, &w_all, w_list)
2870 		witness_add_fullgraph(sb, w);
2871 	mtx_unlock_spin(&w_mtx);
2872 
2873 	/*
2874 	 * Close the sbuf and return to userland.
2875 	 */
2876 	error = sbuf_finish(sb);
2877 	sbuf_delete(sb);
2878 
2879 	return (error);
2880 }
2881 
2882 static int
2883 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2884 {
2885 	int error, value;
2886 
2887 	value = witness_watch;
2888 	error = sysctl_handle_int(oidp, &value, 0, req);
2889 	if (error != 0 || req->newptr == NULL)
2890 		return (error);
2891 	if (value > 1 || value < -1 ||
2892 	    (witness_watch == -1 && value != witness_watch))
2893 		return (EINVAL);
2894 	witness_watch = value;
2895 	return (0);
2896 }
2897 
2898 static void
2899 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2900 {
2901 	int i;
2902 
2903 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2904 		return;
2905 	w->w_displayed = 1;
2906 
2907 	WITNESS_INDEX_ASSERT(w->w_index);
2908 	for (i = 1; i <= w_max_used_index; i++) {
2909 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2910 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2911 			    w_data[i].w_name);
2912 			witness_add_fullgraph(sb, &w_data[i]);
2913 		}
2914 	}
2915 }
2916 
2917 /*
2918  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2919  * interprets the key as a string and reads until the null
2920  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2921  * hash value computed from the key.
2922  */
2923 static uint32_t
2924 witness_hash_djb2(const uint8_t *key, uint32_t size)
2925 {
2926 	unsigned int hash = 5381;
2927 	int i;
2928 
2929 	/* hash = hash * 33 + key[i] */
2930 	if (size)
2931 		for (i = 0; i < size; i++)
2932 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2933 	else
2934 		for (i = 0; key[i] != 0; i++)
2935 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2936 
2937 	return (hash);
2938 }
2939 
2940 /*
2941  * Initializes the two witness hash tables. Called exactly once from
2942  * witness_initialize().
2943  */
2944 static void
2945 witness_init_hash_tables(void)
2946 {
2947 	int i;
2948 
2949 	MPASS(witness_cold);
2950 
2951 	/* Initialize the hash tables. */
2952 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2953 		w_hash.wh_array[i] = NULL;
2954 
2955 	w_hash.wh_size = WITNESS_HASH_SIZE;
2956 	w_hash.wh_count = 0;
2957 
2958 	/* Initialize the lock order data hash. */
2959 	w_lofree = NULL;
2960 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2961 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2962 		w_lodata[i].wlod_next = w_lofree;
2963 		w_lofree = &w_lodata[i];
2964 	}
2965 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2966 	w_lohash.wloh_count = 0;
2967 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2968 		w_lohash.wloh_array[i] = NULL;
2969 }
2970 
2971 static struct witness *
2972 witness_hash_get(const char *key)
2973 {
2974 	struct witness *w;
2975 	uint32_t hash;
2976 
2977 	MPASS(key != NULL);
2978 	if (witness_cold == 0)
2979 		mtx_assert(&w_mtx, MA_OWNED);
2980 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2981 	w = w_hash.wh_array[hash];
2982 	while (w != NULL) {
2983 		if (strcmp(w->w_name, key) == 0)
2984 			goto out;
2985 		w = w->w_hash_next;
2986 	}
2987 
2988 out:
2989 	return (w);
2990 }
2991 
2992 static void
2993 witness_hash_put(struct witness *w)
2994 {
2995 	uint32_t hash;
2996 
2997 	MPASS(w != NULL);
2998 	MPASS(w->w_name != NULL);
2999 	if (witness_cold == 0)
3000 		mtx_assert(&w_mtx, MA_OWNED);
3001 	KASSERT(witness_hash_get(w->w_name) == NULL,
3002 	    ("%s: trying to add a hash entry that already exists!", __func__));
3003 	KASSERT(w->w_hash_next == NULL,
3004 	    ("%s: w->w_hash_next != NULL", __func__));
3005 
3006 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
3007 	w->w_hash_next = w_hash.wh_array[hash];
3008 	w_hash.wh_array[hash] = w;
3009 	w_hash.wh_count++;
3010 }
3011 
3012 static struct witness_lock_order_data *
3013 witness_lock_order_get(struct witness *parent, struct witness *child)
3014 {
3015 	struct witness_lock_order_data *data = NULL;
3016 	struct witness_lock_order_key key;
3017 	unsigned int hash;
3018 
3019 	MPASS(parent != NULL && child != NULL);
3020 	key.from = parent->w_index;
3021 	key.to = child->w_index;
3022 	WITNESS_INDEX_ASSERT(key.from);
3023 	WITNESS_INDEX_ASSERT(key.to);
3024 	if ((w_rmatrix[parent->w_index][child->w_index]
3025 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
3026 		goto out;
3027 
3028 	hash = witness_hash_djb2((const char*)&key,
3029 	    sizeof(key)) % w_lohash.wloh_size;
3030 	data = w_lohash.wloh_array[hash];
3031 	while (data != NULL) {
3032 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
3033 			break;
3034 		data = data->wlod_next;
3035 	}
3036 
3037 out:
3038 	return (data);
3039 }
3040 
3041 /*
3042  * Verify that parent and child have a known relationship, are not the same,
3043  * and child is actually a child of parent.  This is done without w_mtx
3044  * to avoid contention in the common case.
3045  */
3046 static int
3047 witness_lock_order_check(struct witness *parent, struct witness *child)
3048 {
3049 
3050 	if (parent != child &&
3051 	    w_rmatrix[parent->w_index][child->w_index]
3052 	    & WITNESS_LOCK_ORDER_KNOWN &&
3053 	    isitmychild(parent, child))
3054 		return (1);
3055 
3056 	return (0);
3057 }
3058 
3059 static int
3060 witness_lock_order_add(struct witness *parent, struct witness *child)
3061 {
3062 	struct witness_lock_order_data *data = NULL;
3063 	struct witness_lock_order_key key;
3064 	unsigned int hash;
3065 
3066 	MPASS(parent != NULL && child != NULL);
3067 	key.from = parent->w_index;
3068 	key.to = child->w_index;
3069 	WITNESS_INDEX_ASSERT(key.from);
3070 	WITNESS_INDEX_ASSERT(key.to);
3071 	if (w_rmatrix[parent->w_index][child->w_index]
3072 	    & WITNESS_LOCK_ORDER_KNOWN)
3073 		return (1);
3074 
3075 	hash = witness_hash_djb2((const char*)&key,
3076 	    sizeof(key)) % w_lohash.wloh_size;
3077 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3078 	data = w_lofree;
3079 	if (data == NULL)
3080 		return (0);
3081 	w_lofree = data->wlod_next;
3082 	data->wlod_next = w_lohash.wloh_array[hash];
3083 	data->wlod_key = key;
3084 	w_lohash.wloh_array[hash] = data;
3085 	w_lohash.wloh_count++;
3086 	stack_zero(&data->wlod_stack);
3087 	stack_save(&data->wlod_stack);
3088 	return (1);
3089 }
3090 
3091 /* Call this whenever the structure of the witness graph changes. */
3092 static void
3093 witness_increment_graph_generation(void)
3094 {
3095 
3096 	if (witness_cold == 0)
3097 		mtx_assert(&w_mtx, MA_OWNED);
3098 	w_generation++;
3099 }
3100 
3101 static int
3102 witness_output_drain(void *arg __unused, const char *data, int len)
3103 {
3104 
3105 	witness_output("%.*s", len, data);
3106 	return (len);
3107 }
3108 
3109 static void
3110 witness_debugger(int cond, const char *msg)
3111 {
3112 	char buf[32];
3113 	struct sbuf sb;
3114 	struct stack st;
3115 
3116 	if (!cond)
3117 		return;
3118 
3119 	if (witness_trace) {
3120 		sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3121 		sbuf_set_drain(&sb, witness_output_drain, NULL);
3122 
3123 		stack_zero(&st);
3124 		stack_save(&st);
3125 		witness_output("stack backtrace:\n");
3126 		stack_sbuf_print_ddb(&sb, &st);
3127 
3128 		sbuf_finish(&sb);
3129 	}
3130 
3131 	witness_enter_debugger(msg);
3132 }
3133 
3134 static void
3135 witness_enter_debugger(const char *msg)
3136 {
3137 #ifdef KDB
3138 	if (witness_kdb)
3139 		kdb_enter(KDB_WHY_WITNESS, msg);
3140 #endif
3141 }
3142