xref: /freebsd/sys/kern/subr_witness.c (revision d9f0ce31900a48d1a2bfc1c8c86f79d1e831451a)
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34 
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40 
41 /*
42  *	Main Entry: witness
43  *	Pronunciation: 'wit-n&s
44  *	Function: noun
45  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *	    testimony, witness, from 2wit
47  *	Date: before 12th century
48  *	1 : attestation of a fact or event : TESTIMONY
49  *	2 : one that gives evidence; specifically : one who testifies in
50  *	    a cause or before a judicial tribunal
51  *	3 : one asked to be present at a transaction so as to be able to
52  *	    testify to its having taken place
53  *	4 : one who has personal knowledge of something
54  *	5 a : something serving as evidence or proof : SIGN
55  *	  b : public affirmation by word or example of usually
56  *	      religious faith or conviction <the heroic witness to divine
57  *	      life -- Pilot>
58  *	6 capitalized : a member of the Jehovah's Witnesses
59  */
60 
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86 
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89 
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94 
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/syslog.h>
110 #include <sys/systm.h>
111 
112 #ifdef DDB
113 #include <ddb/ddb.h>
114 #endif
115 
116 #include <machine/stdarg.h>
117 
118 #if !defined(DDB) && !defined(STACK)
119 #error "DDB or STACK options are required for WITNESS"
120 #endif
121 
122 /* Note that these traces do not work with KTR_ALQ. */
123 #if 0
124 #define	KTR_WITNESS	KTR_SUBSYS
125 #else
126 #define	KTR_WITNESS	0
127 #endif
128 
129 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
130 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
131 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
132 
133 /* Define this to check for blessed mutexes */
134 #undef BLESSING
135 
136 #ifndef WITNESS_COUNT
137 #define	WITNESS_COUNT 		1536
138 #endif
139 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
140 #define	WITNESS_PENDLIST	(1024 + MAXCPU)
141 
142 /* Allocate 256 KB of stack data space */
143 #define	WITNESS_LO_DATA_COUNT	2048
144 
145 /* Prime, gives load factor of ~2 at full load */
146 #define	WITNESS_LO_HASH_SIZE	1021
147 
148 /*
149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
151  * probably be safe for the most part, but it's still a SWAG.
152  */
153 #define	LOCK_NCHILDREN	5
154 #define	LOCK_CHILDCOUNT	2048
155 
156 #define	MAX_W_NAME	64
157 
158 #define	FULLGRAPH_SBUF_SIZE	512
159 
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define	WITNESS_RELATED_MASK						\
172 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174 					  * observed. */
175 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178 
179 /* Descendant to ancestor flags */
180 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
181 
182 /* Ancestor to descendant flags */
183 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
184 
185 #define	WITNESS_INDEX_ASSERT(i)						\
186 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
187 
188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189 
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197 	struct lock_object	*li_lock;
198 	const char		*li_file;
199 	int			li_line;
200 	u_int			li_flags;
201 };
202 
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214 	struct lock_list_entry	*ll_next;
215 	struct lock_instance	ll_children[LOCK_NCHILDREN];
216 	u_int			ll_count;
217 };
218 
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224 	char  			w_name[MAX_W_NAME];
225 	uint32_t 		w_index;  /* Index in the relationship matrix */
226 	struct lock_class	*w_class;
227 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
228 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
229 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
230 	const char		*w_file; /* File where last acquired */
231 	uint32_t 		w_line; /* Line where last acquired */
232 	uint32_t 		w_refcount;
233 	uint16_t 		w_num_ancestors; /* direct/indirect
234 						  * ancestor count */
235 	uint16_t 		w_num_descendants; /* direct/indirect
236 						    * descendant count */
237 	int16_t 		w_ddb_level;
238 	unsigned		w_displayed:1;
239 	unsigned		w_reversed:1;
240 };
241 
242 STAILQ_HEAD(witness_list, witness);
243 
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249 	struct witness	*wh_array[WITNESS_HASH_SIZE];
250 	uint32_t	wh_size;
251 	uint32_t	wh_count;
252 };
253 
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258 	uint16_t	from;
259 	uint16_t	to;
260 };
261 
262 struct witness_lock_order_data {
263 	struct stack			wlod_stack;
264 	struct witness_lock_order_key	wlod_key;
265 	struct witness_lock_order_data	*wlod_next;
266 };
267 
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data).
272  */
273 struct witness_lock_order_hash {
274 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
275 	u_int	wloh_size;
276 	u_int	wloh_count;
277 };
278 
279 #ifdef BLESSING
280 struct witness_blessed {
281 	const char	*b_lock1;
282 	const char	*b_lock2;
283 };
284 #endif
285 
286 struct witness_pendhelp {
287 	const char		*wh_type;
288 	struct lock_object	*wh_lock;
289 };
290 
291 struct witness_order_list_entry {
292 	const char		*w_name;
293 	struct lock_class	*w_class;
294 };
295 
296 /*
297  * Returns 0 if one of the locks is a spin lock and the other is not.
298  * Returns 1 otherwise.
299  */
300 static __inline int
301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
302 {
303 
304 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306 }
307 
308 static __inline int
309 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
310     const struct witness_lock_order_key *b)
311 {
312 
313 	return (a->from == b->from && a->to == b->to);
314 }
315 
316 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
317 		    const char *fname);
318 static void	adopt(struct witness *parent, struct witness *child);
319 #ifdef BLESSING
320 static int	blessed(struct witness *, struct witness *);
321 #endif
322 static void	depart(struct witness *w);
323 static struct witness	*enroll(const char *description,
324 			    struct lock_class *lock_class);
325 static struct lock_instance	*find_instance(struct lock_list_entry *list,
326 				    const struct lock_object *lock);
327 static int	isitmychild(struct witness *parent, struct witness *child);
328 static int	isitmydescendant(struct witness *parent, struct witness *child);
329 static void	itismychild(struct witness *parent, struct witness *child);
330 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
331 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
332 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
333 static int	sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
334 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
335 #ifdef DDB
336 static void	witness_ddb_compute_levels(void);
337 static void	witness_ddb_display(int(*)(const char *fmt, ...));
338 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
339 		    struct witness *, int indent);
340 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
341 		    struct witness_list *list);
342 static void	witness_ddb_level_descendants(struct witness *parent, int l);
343 static void	witness_ddb_list(struct thread *td);
344 #endif
345 static void	witness_debugger(int cond, const char *msg);
346 static void	witness_free(struct witness *m);
347 static struct witness	*witness_get(void);
348 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
349 static struct witness	*witness_hash_get(const char *key);
350 static void	witness_hash_put(struct witness *w);
351 static void	witness_init_hash_tables(void);
352 static void	witness_increment_graph_generation(void);
353 static void	witness_lock_list_free(struct lock_list_entry *lle);
354 static struct lock_list_entry	*witness_lock_list_get(void);
355 static int	witness_lock_order_add(struct witness *parent,
356 		    struct witness *child);
357 static int	witness_lock_order_check(struct witness *parent,
358 		    struct witness *child);
359 static struct witness_lock_order_data	*witness_lock_order_get(
360 					    struct witness *parent,
361 					    struct witness *child);
362 static void	witness_list_lock(struct lock_instance *instance,
363 		    int (*prnt)(const char *fmt, ...));
364 static int	witness_output(const char *fmt, ...) __printflike(1, 2);
365 static int	witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
366 static void	witness_setflag(struct lock_object *lock, int flag, int set);
367 
368 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
369     "Witness Locking");
370 
371 /*
372  * If set to 0, lock order checking is disabled.  If set to -1,
373  * witness is completely disabled.  Otherwise witness performs full
374  * lock order checking for all locks.  At runtime, lock order checking
375  * may be toggled.  However, witness cannot be reenabled once it is
376  * completely disabled.
377  */
378 static int witness_watch = 1;
379 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
380     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
381 
382 #ifdef KDB
383 /*
384  * When KDB is enabled and witness_kdb is 1, it will cause the system
385  * to drop into kdebug() when:
386  *	- a lock hierarchy violation occurs
387  *	- locks are held when going to sleep.
388  */
389 #ifdef WITNESS_KDB
390 int	witness_kdb = 1;
391 #else
392 int	witness_kdb = 0;
393 #endif
394 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
395 #endif /* KDB */
396 
397 #if defined(DDB) || defined(KDB)
398 /*
399  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
400  * to print a stack trace:
401  *	- a lock hierarchy violation occurs
402  *	- locks are held when going to sleep.
403  */
404 int	witness_trace = 1;
405 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
406 #endif /* DDB || KDB */
407 
408 #ifdef WITNESS_SKIPSPIN
409 int	witness_skipspin = 1;
410 #else
411 int	witness_skipspin = 0;
412 #endif
413 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
414 
415 int badstack_sbuf_size;
416 
417 int witness_count = WITNESS_COUNT;
418 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
419     &witness_count, 0, "");
420 
421 /*
422  * Output channel for witness messages.  By default we print to the console.
423  */
424 enum witness_channel {
425 	WITNESS_CONSOLE,
426 	WITNESS_LOG,
427 	WITNESS_NONE,
428 };
429 
430 static enum witness_channel witness_channel = WITNESS_CONSOLE;
431 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
432     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
433     "Output channel for warnings");
434 
435 /*
436  * Call this to print out the relations between locks.
437  */
438 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
439     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
440 
441 /*
442  * Call this to print out the witness faulty stacks.
443  */
444 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
445     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
446 
447 static struct mtx w_mtx;
448 
449 /* w_list */
450 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
451 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
452 
453 /* w_typelist */
454 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
455 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
456 
457 /* lock list */
458 static struct lock_list_entry *w_lock_list_free = NULL;
459 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
460 static u_int pending_cnt;
461 
462 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
463 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
464 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
465 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
466     "");
467 
468 static struct witness *w_data;
469 static uint8_t **w_rmatrix;
470 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
471 static struct witness_hash w_hash;	/* The witness hash table. */
472 
473 /* The lock order data hash */
474 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
475 static struct witness_lock_order_data *w_lofree = NULL;
476 static struct witness_lock_order_hash w_lohash;
477 static int w_max_used_index = 0;
478 static unsigned int w_generation = 0;
479 static const char w_notrunning[] = "Witness not running\n";
480 static const char w_stillcold[] = "Witness is still cold\n";
481 
482 
483 static struct witness_order_list_entry order_lists[] = {
484 	/*
485 	 * sx locks
486 	 */
487 	{ "proctree", &lock_class_sx },
488 	{ "allproc", &lock_class_sx },
489 	{ "allprison", &lock_class_sx },
490 	{ NULL, NULL },
491 	/*
492 	 * Various mutexes
493 	 */
494 	{ "Giant", &lock_class_mtx_sleep },
495 	{ "pipe mutex", &lock_class_mtx_sleep },
496 	{ "sigio lock", &lock_class_mtx_sleep },
497 	{ "process group", &lock_class_mtx_sleep },
498 	{ "process lock", &lock_class_mtx_sleep },
499 	{ "session", &lock_class_mtx_sleep },
500 	{ "uidinfo hash", &lock_class_rw },
501 #ifdef	HWPMC_HOOKS
502 	{ "pmc-sleep", &lock_class_mtx_sleep },
503 #endif
504 	{ "time lock", &lock_class_mtx_sleep },
505 	{ NULL, NULL },
506 	/*
507 	 * umtx
508 	 */
509 	{ "umtx lock", &lock_class_mtx_sleep },
510 	{ NULL, NULL },
511 	/*
512 	 * Sockets
513 	 */
514 	{ "accept", &lock_class_mtx_sleep },
515 	{ "so_snd", &lock_class_mtx_sleep },
516 	{ "so_rcv", &lock_class_mtx_sleep },
517 	{ "sellck", &lock_class_mtx_sleep },
518 	{ NULL, NULL },
519 	/*
520 	 * Routing
521 	 */
522 	{ "so_rcv", &lock_class_mtx_sleep },
523 	{ "radix node head", &lock_class_rw },
524 	{ "rtentry", &lock_class_mtx_sleep },
525 	{ "ifaddr", &lock_class_mtx_sleep },
526 	{ NULL, NULL },
527 	/*
528 	 * IPv4 multicast:
529 	 * protocol locks before interface locks, after UDP locks.
530 	 */
531 	{ "udpinp", &lock_class_rw },
532 	{ "in_multi_mtx", &lock_class_mtx_sleep },
533 	{ "igmp_mtx", &lock_class_mtx_sleep },
534 	{ "if_addr_lock", &lock_class_rw },
535 	{ NULL, NULL },
536 	/*
537 	 * IPv6 multicast:
538 	 * protocol locks before interface locks, after UDP locks.
539 	 */
540 	{ "udpinp", &lock_class_rw },
541 	{ "in6_multi_mtx", &lock_class_mtx_sleep },
542 	{ "mld_mtx", &lock_class_mtx_sleep },
543 	{ "if_addr_lock", &lock_class_rw },
544 	{ NULL, NULL },
545 	/*
546 	 * UNIX Domain Sockets
547 	 */
548 	{ "unp_link_rwlock", &lock_class_rw },
549 	{ "unp_list_lock", &lock_class_mtx_sleep },
550 	{ "unp", &lock_class_mtx_sleep },
551 	{ "so_snd", &lock_class_mtx_sleep },
552 	{ NULL, NULL },
553 	/*
554 	 * UDP/IP
555 	 */
556 	{ "udp", &lock_class_rw },
557 	{ "udpinp", &lock_class_rw },
558 	{ "so_snd", &lock_class_mtx_sleep },
559 	{ NULL, NULL },
560 	/*
561 	 * TCP/IP
562 	 */
563 	{ "tcp", &lock_class_rw },
564 	{ "tcpinp", &lock_class_rw },
565 	{ "so_snd", &lock_class_mtx_sleep },
566 	{ NULL, NULL },
567 	/*
568 	 * BPF
569 	 */
570 	{ "bpf global lock", &lock_class_mtx_sleep },
571 	{ "bpf interface lock", &lock_class_rw },
572 	{ "bpf cdev lock", &lock_class_mtx_sleep },
573 	{ NULL, NULL },
574 	/*
575 	 * NFS server
576 	 */
577 	{ "nfsd_mtx", &lock_class_mtx_sleep },
578 	{ "so_snd", &lock_class_mtx_sleep },
579 	{ NULL, NULL },
580 
581 	/*
582 	 * IEEE 802.11
583 	 */
584 	{ "802.11 com lock", &lock_class_mtx_sleep},
585 	{ NULL, NULL },
586 	/*
587 	 * Network drivers
588 	 */
589 	{ "network driver", &lock_class_mtx_sleep},
590 	{ NULL, NULL },
591 
592 	/*
593 	 * Netgraph
594 	 */
595 	{ "ng_node", &lock_class_mtx_sleep },
596 	{ "ng_worklist", &lock_class_mtx_sleep },
597 	{ NULL, NULL },
598 	/*
599 	 * CDEV
600 	 */
601 	{ "vm map (system)", &lock_class_mtx_sleep },
602 	{ "vm page queue", &lock_class_mtx_sleep },
603 	{ "vnode interlock", &lock_class_mtx_sleep },
604 	{ "cdev", &lock_class_mtx_sleep },
605 	{ NULL, NULL },
606 	/*
607 	 * VM
608 	 */
609 	{ "vm map (user)", &lock_class_sx },
610 	{ "vm object", &lock_class_rw },
611 	{ "vm page", &lock_class_mtx_sleep },
612 	{ "vm page queue", &lock_class_mtx_sleep },
613 	{ "pmap pv global", &lock_class_rw },
614 	{ "pmap", &lock_class_mtx_sleep },
615 	{ "pmap pv list", &lock_class_rw },
616 	{ "vm page free queue", &lock_class_mtx_sleep },
617 	{ NULL, NULL },
618 	/*
619 	 * kqueue/VFS interaction
620 	 */
621 	{ "kqueue", &lock_class_mtx_sleep },
622 	{ "struct mount mtx", &lock_class_mtx_sleep },
623 	{ "vnode interlock", &lock_class_mtx_sleep },
624 	{ NULL, NULL },
625 	/*
626 	 * ZFS locking
627 	 */
628 	{ "dn->dn_mtx", &lock_class_sx },
629 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
630 	{ "db->db_mtx", &lock_class_sx },
631 	{ NULL, NULL },
632 	/*
633 	 * spin locks
634 	 */
635 #ifdef SMP
636 	{ "ap boot", &lock_class_mtx_spin },
637 #endif
638 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
639 	{ "sio", &lock_class_mtx_spin },
640 	{ "scrlock", &lock_class_mtx_spin },
641 #ifdef __i386__
642 	{ "cy", &lock_class_mtx_spin },
643 #endif
644 #ifdef __sparc64__
645 	{ "pcib_mtx", &lock_class_mtx_spin },
646 	{ "rtc_mtx", &lock_class_mtx_spin },
647 #endif
648 	{ "scc_hwmtx", &lock_class_mtx_spin },
649 	{ "uart_hwmtx", &lock_class_mtx_spin },
650 	{ "fast_taskqueue", &lock_class_mtx_spin },
651 	{ "intr table", &lock_class_mtx_spin },
652 #ifdef	HWPMC_HOOKS
653 	{ "pmc-per-proc", &lock_class_mtx_spin },
654 #endif
655 	{ "process slock", &lock_class_mtx_spin },
656 	{ "sleepq chain", &lock_class_mtx_spin },
657 	{ "rm_spinlock", &lock_class_mtx_spin },
658 	{ "turnstile chain", &lock_class_mtx_spin },
659 	{ "turnstile lock", &lock_class_mtx_spin },
660 	{ "sched lock", &lock_class_mtx_spin },
661 	{ "td_contested", &lock_class_mtx_spin },
662 	{ "callout", &lock_class_mtx_spin },
663 	{ "entropy harvest mutex", &lock_class_mtx_spin },
664 	{ "syscons video lock", &lock_class_mtx_spin },
665 #ifdef SMP
666 	{ "smp rendezvous", &lock_class_mtx_spin },
667 #endif
668 #ifdef __powerpc__
669 	{ "tlb0", &lock_class_mtx_spin },
670 #endif
671 	/*
672 	 * leaf locks
673 	 */
674 	{ "intrcnt", &lock_class_mtx_spin },
675 	{ "icu", &lock_class_mtx_spin },
676 #if defined(SMP) && defined(__sparc64__)
677 	{ "ipi", &lock_class_mtx_spin },
678 #endif
679 #ifdef __i386__
680 	{ "allpmaps", &lock_class_mtx_spin },
681 	{ "descriptor tables", &lock_class_mtx_spin },
682 #endif
683 	{ "clk", &lock_class_mtx_spin },
684 	{ "cpuset", &lock_class_mtx_spin },
685 	{ "mprof lock", &lock_class_mtx_spin },
686 	{ "zombie lock", &lock_class_mtx_spin },
687 	{ "ALD Queue", &lock_class_mtx_spin },
688 #if defined(__i386__) || defined(__amd64__)
689 	{ "pcicfg", &lock_class_mtx_spin },
690 	{ "NDIS thread lock", &lock_class_mtx_spin },
691 #endif
692 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
693 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
694 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
695 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
696 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
697 #ifdef	HWPMC_HOOKS
698 	{ "pmc-leaf", &lock_class_mtx_spin },
699 #endif
700 	{ "blocked lock", &lock_class_mtx_spin },
701 	{ NULL, NULL },
702 	{ NULL, NULL }
703 };
704 
705 #ifdef BLESSING
706 /*
707  * Pairs of locks which have been blessed
708  * Don't complain about order problems with blessed locks
709  */
710 static struct witness_blessed blessed_list[] = {
711 };
712 static int blessed_count =
713 	sizeof(blessed_list) / sizeof(struct witness_blessed);
714 #endif
715 
716 /*
717  * This global is set to 0 once it becomes safe to use the witness code.
718  */
719 static int witness_cold = 1;
720 
721 /*
722  * This global is set to 1 once the static lock orders have been enrolled
723  * so that a warning can be issued for any spin locks enrolled later.
724  */
725 static int witness_spin_warn = 0;
726 
727 /* Trim useless garbage from filenames. */
728 static const char *
729 fixup_filename(const char *file)
730 {
731 
732 	if (file == NULL)
733 		return (NULL);
734 	while (strncmp(file, "../", 3) == 0)
735 		file += 3;
736 	return (file);
737 }
738 
739 /*
740  * The WITNESS-enabled diagnostic code.  Note that the witness code does
741  * assume that the early boot is single-threaded at least until after this
742  * routine is completed.
743  */
744 static void
745 witness_initialize(void *dummy __unused)
746 {
747 	struct lock_object *lock;
748 	struct witness_order_list_entry *order;
749 	struct witness *w, *w1;
750 	int i;
751 
752 	w_data = malloc(sizeof (struct witness) * witness_count, M_WITNESS,
753 	    M_WAITOK | M_ZERO);
754 
755 	w_rmatrix = malloc(sizeof(*w_rmatrix) * (witness_count + 1),
756 	    M_WITNESS, M_WAITOK | M_ZERO);
757 
758 	for (i = 0; i < witness_count + 1; i++) {
759 		w_rmatrix[i] = malloc(sizeof(*w_rmatrix[i]) *
760 		    (witness_count + 1), M_WITNESS, M_WAITOK | M_ZERO);
761 	}
762 	badstack_sbuf_size = witness_count * 256;
763 
764 	/*
765 	 * We have to release Giant before initializing its witness
766 	 * structure so that WITNESS doesn't get confused.
767 	 */
768 	mtx_unlock(&Giant);
769 	mtx_assert(&Giant, MA_NOTOWNED);
770 
771 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
772 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
773 	    MTX_NOWITNESS | MTX_NOPROFILE);
774 	for (i = witness_count - 1; i >= 0; i--) {
775 		w = &w_data[i];
776 		memset(w, 0, sizeof(*w));
777 		w_data[i].w_index = i;	/* Witness index never changes. */
778 		witness_free(w);
779 	}
780 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
781 	    ("%s: Invalid list of free witness objects", __func__));
782 
783 	/* Witness with index 0 is not used to aid in debugging. */
784 	STAILQ_REMOVE_HEAD(&w_free, w_list);
785 	w_free_cnt--;
786 
787 	for (i = 0; i < witness_count; i++) {
788 		memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
789 		    (witness_count + 1));
790 	}
791 
792 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
793 		witness_lock_list_free(&w_locklistdata[i]);
794 	witness_init_hash_tables();
795 
796 	/* First add in all the specified order lists. */
797 	for (order = order_lists; order->w_name != NULL; order++) {
798 		w = enroll(order->w_name, order->w_class);
799 		if (w == NULL)
800 			continue;
801 		w->w_file = "order list";
802 		for (order++; order->w_name != NULL; order++) {
803 			w1 = enroll(order->w_name, order->w_class);
804 			if (w1 == NULL)
805 				continue;
806 			w1->w_file = "order list";
807 			itismychild(w, w1);
808 			w = w1;
809 		}
810 	}
811 	witness_spin_warn = 1;
812 
813 	/* Iterate through all locks and add them to witness. */
814 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
815 		lock = pending_locks[i].wh_lock;
816 		KASSERT(lock->lo_flags & LO_WITNESS,
817 		    ("%s: lock %s is on pending list but not LO_WITNESS",
818 		    __func__, lock->lo_name));
819 		lock->lo_witness = enroll(pending_locks[i].wh_type,
820 		    LOCK_CLASS(lock));
821 	}
822 
823 	/* Mark the witness code as being ready for use. */
824 	witness_cold = 0;
825 
826 	mtx_lock(&Giant);
827 }
828 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
829     NULL);
830 
831 void
832 witness_init(struct lock_object *lock, const char *type)
833 {
834 	struct lock_class *class;
835 
836 	/* Various sanity checks. */
837 	class = LOCK_CLASS(lock);
838 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
839 	    (class->lc_flags & LC_RECURSABLE) == 0)
840 		kassert_panic("%s: lock (%s) %s can not be recursable",
841 		    __func__, class->lc_name, lock->lo_name);
842 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
843 	    (class->lc_flags & LC_SLEEPABLE) == 0)
844 		kassert_panic("%s: lock (%s) %s can not be sleepable",
845 		    __func__, class->lc_name, lock->lo_name);
846 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
847 	    (class->lc_flags & LC_UPGRADABLE) == 0)
848 		kassert_panic("%s: lock (%s) %s can not be upgradable",
849 		    __func__, class->lc_name, lock->lo_name);
850 
851 	/*
852 	 * If we shouldn't watch this lock, then just clear lo_witness.
853 	 * Otherwise, if witness_cold is set, then it is too early to
854 	 * enroll this lock, so defer it to witness_initialize() by adding
855 	 * it to the pending_locks list.  If it is not too early, then enroll
856 	 * the lock now.
857 	 */
858 	if (witness_watch < 1 || panicstr != NULL ||
859 	    (lock->lo_flags & LO_WITNESS) == 0)
860 		lock->lo_witness = NULL;
861 	else if (witness_cold) {
862 		pending_locks[pending_cnt].wh_lock = lock;
863 		pending_locks[pending_cnt++].wh_type = type;
864 		if (pending_cnt > WITNESS_PENDLIST)
865 			panic("%s: pending locks list is too small, "
866 			    "increase WITNESS_PENDLIST\n",
867 			    __func__);
868 	} else
869 		lock->lo_witness = enroll(type, class);
870 }
871 
872 void
873 witness_destroy(struct lock_object *lock)
874 {
875 	struct lock_class *class;
876 	struct witness *w;
877 
878 	class = LOCK_CLASS(lock);
879 
880 	if (witness_cold)
881 		panic("lock (%s) %s destroyed while witness_cold",
882 		    class->lc_name, lock->lo_name);
883 
884 	/* XXX: need to verify that no one holds the lock */
885 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
886 		return;
887 	w = lock->lo_witness;
888 
889 	mtx_lock_spin(&w_mtx);
890 	MPASS(w->w_refcount > 0);
891 	w->w_refcount--;
892 
893 	if (w->w_refcount == 0)
894 		depart(w);
895 	mtx_unlock_spin(&w_mtx);
896 }
897 
898 #ifdef DDB
899 static void
900 witness_ddb_compute_levels(void)
901 {
902 	struct witness *w;
903 
904 	/*
905 	 * First clear all levels.
906 	 */
907 	STAILQ_FOREACH(w, &w_all, w_list)
908 		w->w_ddb_level = -1;
909 
910 	/*
911 	 * Look for locks with no parents and level all their descendants.
912 	 */
913 	STAILQ_FOREACH(w, &w_all, w_list) {
914 
915 		/* If the witness has ancestors (is not a root), skip it. */
916 		if (w->w_num_ancestors > 0)
917 			continue;
918 		witness_ddb_level_descendants(w, 0);
919 	}
920 }
921 
922 static void
923 witness_ddb_level_descendants(struct witness *w, int l)
924 {
925 	int i;
926 
927 	if (w->w_ddb_level >= l)
928 		return;
929 
930 	w->w_ddb_level = l;
931 	l++;
932 
933 	for (i = 1; i <= w_max_used_index; i++) {
934 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
935 			witness_ddb_level_descendants(&w_data[i], l);
936 	}
937 }
938 
939 static void
940 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
941     struct witness *w, int indent)
942 {
943 	int i;
944 
945  	for (i = 0; i < indent; i++)
946  		prnt(" ");
947 	prnt("%s (type: %s, depth: %d, active refs: %d)",
948 	     w->w_name, w->w_class->lc_name,
949 	     w->w_ddb_level, w->w_refcount);
950  	if (w->w_displayed) {
951  		prnt(" -- (already displayed)\n");
952  		return;
953  	}
954  	w->w_displayed = 1;
955 	if (w->w_file != NULL && w->w_line != 0)
956 		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
957 		    w->w_line);
958 	else
959 		prnt(" -- never acquired\n");
960 	indent++;
961 	WITNESS_INDEX_ASSERT(w->w_index);
962 	for (i = 1; i <= w_max_used_index; i++) {
963 		if (db_pager_quit)
964 			return;
965 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
966 			witness_ddb_display_descendants(prnt, &w_data[i],
967 			    indent);
968 	}
969 }
970 
971 static void
972 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
973     struct witness_list *list)
974 {
975 	struct witness *w;
976 
977 	STAILQ_FOREACH(w, list, w_typelist) {
978 		if (w->w_file == NULL || w->w_ddb_level > 0)
979 			continue;
980 
981 		/* This lock has no anscestors - display its descendants. */
982 		witness_ddb_display_descendants(prnt, w, 0);
983 		if (db_pager_quit)
984 			return;
985 	}
986 }
987 
988 static void
989 witness_ddb_display(int(*prnt)(const char *fmt, ...))
990 {
991 	struct witness *w;
992 
993 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
994 	witness_ddb_compute_levels();
995 
996 	/* Clear all the displayed flags. */
997 	STAILQ_FOREACH(w, &w_all, w_list)
998 		w->w_displayed = 0;
999 
1000 	/*
1001 	 * First, handle sleep locks which have been acquired at least
1002 	 * once.
1003 	 */
1004 	prnt("Sleep locks:\n");
1005 	witness_ddb_display_list(prnt, &w_sleep);
1006 	if (db_pager_quit)
1007 		return;
1008 
1009 	/*
1010 	 * Now do spin locks which have been acquired at least once.
1011 	 */
1012 	prnt("\nSpin locks:\n");
1013 	witness_ddb_display_list(prnt, &w_spin);
1014 	if (db_pager_quit)
1015 		return;
1016 
1017 	/*
1018 	 * Finally, any locks which have not been acquired yet.
1019 	 */
1020 	prnt("\nLocks which were never acquired:\n");
1021 	STAILQ_FOREACH(w, &w_all, w_list) {
1022 		if (w->w_file != NULL || w->w_refcount == 0)
1023 			continue;
1024 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1025 		    w->w_class->lc_name, w->w_ddb_level);
1026 		if (db_pager_quit)
1027 			return;
1028 	}
1029 }
1030 #endif /* DDB */
1031 
1032 int
1033 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1034 {
1035 
1036 	if (witness_watch == -1 || panicstr != NULL)
1037 		return (0);
1038 
1039 	/* Require locks that witness knows about. */
1040 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1041 	    lock2->lo_witness == NULL)
1042 		return (EINVAL);
1043 
1044 	mtx_assert(&w_mtx, MA_NOTOWNED);
1045 	mtx_lock_spin(&w_mtx);
1046 
1047 	/*
1048 	 * If we already have either an explicit or implied lock order that
1049 	 * is the other way around, then return an error.
1050 	 */
1051 	if (witness_watch &&
1052 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1053 		mtx_unlock_spin(&w_mtx);
1054 		return (EDOOFUS);
1055 	}
1056 
1057 	/* Try to add the new order. */
1058 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1059 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1060 	itismychild(lock1->lo_witness, lock2->lo_witness);
1061 	mtx_unlock_spin(&w_mtx);
1062 	return (0);
1063 }
1064 
1065 void
1066 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1067     int line, struct lock_object *interlock)
1068 {
1069 	struct lock_list_entry *lock_list, *lle;
1070 	struct lock_instance *lock1, *lock2, *plock;
1071 	struct lock_class *class, *iclass;
1072 	struct witness *w, *w1;
1073 	struct thread *td;
1074 	int i, j;
1075 
1076 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1077 	    panicstr != NULL)
1078 		return;
1079 
1080 	w = lock->lo_witness;
1081 	class = LOCK_CLASS(lock);
1082 	td = curthread;
1083 
1084 	if (class->lc_flags & LC_SLEEPLOCK) {
1085 
1086 		/*
1087 		 * Since spin locks include a critical section, this check
1088 		 * implicitly enforces a lock order of all sleep locks before
1089 		 * all spin locks.
1090 		 */
1091 		if (td->td_critnest != 0 && !kdb_active)
1092 			kassert_panic("acquiring blockable sleep lock with "
1093 			    "spinlock or critical section held (%s) %s @ %s:%d",
1094 			    class->lc_name, lock->lo_name,
1095 			    fixup_filename(file), line);
1096 
1097 		/*
1098 		 * If this is the first lock acquired then just return as
1099 		 * no order checking is needed.
1100 		 */
1101 		lock_list = td->td_sleeplocks;
1102 		if (lock_list == NULL || lock_list->ll_count == 0)
1103 			return;
1104 	} else {
1105 
1106 		/*
1107 		 * If this is the first lock, just return as no order
1108 		 * checking is needed.  Avoid problems with thread
1109 		 * migration pinning the thread while checking if
1110 		 * spinlocks are held.  If at least one spinlock is held
1111 		 * the thread is in a safe path and it is allowed to
1112 		 * unpin it.
1113 		 */
1114 		sched_pin();
1115 		lock_list = PCPU_GET(spinlocks);
1116 		if (lock_list == NULL || lock_list->ll_count == 0) {
1117 			sched_unpin();
1118 			return;
1119 		}
1120 		sched_unpin();
1121 	}
1122 
1123 	/*
1124 	 * Check to see if we are recursing on a lock we already own.  If
1125 	 * so, make sure that we don't mismatch exclusive and shared lock
1126 	 * acquires.
1127 	 */
1128 	lock1 = find_instance(lock_list, lock);
1129 	if (lock1 != NULL) {
1130 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1131 		    (flags & LOP_EXCLUSIVE) == 0) {
1132 			witness_output("shared lock of (%s) %s @ %s:%d\n",
1133 			    class->lc_name, lock->lo_name,
1134 			    fixup_filename(file), line);
1135 			witness_output("while exclusively locked from %s:%d\n",
1136 			    fixup_filename(lock1->li_file), lock1->li_line);
1137 			kassert_panic("excl->share");
1138 		}
1139 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1140 		    (flags & LOP_EXCLUSIVE) != 0) {
1141 			witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1142 			    class->lc_name, lock->lo_name,
1143 			    fixup_filename(file), line);
1144 			witness_output("while share locked from %s:%d\n",
1145 			    fixup_filename(lock1->li_file), lock1->li_line);
1146 			kassert_panic("share->excl");
1147 		}
1148 		return;
1149 	}
1150 
1151 	/* Warn if the interlock is not locked exactly once. */
1152 	if (interlock != NULL) {
1153 		iclass = LOCK_CLASS(interlock);
1154 		lock1 = find_instance(lock_list, interlock);
1155 		if (lock1 == NULL)
1156 			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1157 			    iclass->lc_name, interlock->lo_name,
1158 			    fixup_filename(file), line);
1159 		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1160 			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1161 			    iclass->lc_name, interlock->lo_name,
1162 			    fixup_filename(file), line);
1163 	}
1164 
1165 	/*
1166 	 * Find the previously acquired lock, but ignore interlocks.
1167 	 */
1168 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1169 	if (interlock != NULL && plock->li_lock == interlock) {
1170 		if (lock_list->ll_count > 1)
1171 			plock =
1172 			    &lock_list->ll_children[lock_list->ll_count - 2];
1173 		else {
1174 			lle = lock_list->ll_next;
1175 
1176 			/*
1177 			 * The interlock is the only lock we hold, so
1178 			 * simply return.
1179 			 */
1180 			if (lle == NULL)
1181 				return;
1182 			plock = &lle->ll_children[lle->ll_count - 1];
1183 		}
1184 	}
1185 
1186 	/*
1187 	 * Try to perform most checks without a lock.  If this succeeds we
1188 	 * can skip acquiring the lock and return success.  Otherwise we redo
1189 	 * the check with the lock held to handle races with concurrent updates.
1190 	 */
1191 	w1 = plock->li_lock->lo_witness;
1192 	if (witness_lock_order_check(w1, w))
1193 		return;
1194 
1195 	mtx_lock_spin(&w_mtx);
1196 	if (witness_lock_order_check(w1, w)) {
1197 		mtx_unlock_spin(&w_mtx);
1198 		return;
1199 	}
1200 	witness_lock_order_add(w1, w);
1201 
1202 	/*
1203 	 * Check for duplicate locks of the same type.  Note that we only
1204 	 * have to check for this on the last lock we just acquired.  Any
1205 	 * other cases will be caught as lock order violations.
1206 	 */
1207 	if (w1 == w) {
1208 		i = w->w_index;
1209 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1210 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1211 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1212 			w->w_reversed = 1;
1213 			mtx_unlock_spin(&w_mtx);
1214 			witness_output(
1215 			    "acquiring duplicate lock of same type: \"%s\"\n",
1216 			    w->w_name);
1217 			witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1218 			    fixup_filename(plock->li_file), plock->li_line);
1219 			witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1220 			    fixup_filename(file), line);
1221 			witness_debugger(1, __func__);
1222 		} else
1223 			mtx_unlock_spin(&w_mtx);
1224 		return;
1225 	}
1226 	mtx_assert(&w_mtx, MA_OWNED);
1227 
1228 	/*
1229 	 * If we know that the lock we are acquiring comes after
1230 	 * the lock we most recently acquired in the lock order tree,
1231 	 * then there is no need for any further checks.
1232 	 */
1233 	if (isitmychild(w1, w))
1234 		goto out;
1235 
1236 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1237 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1238 
1239 			MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1240 			lock1 = &lle->ll_children[i];
1241 
1242 			/*
1243 			 * Ignore the interlock.
1244 			 */
1245 			if (interlock == lock1->li_lock)
1246 				continue;
1247 
1248 			/*
1249 			 * If this lock doesn't undergo witness checking,
1250 			 * then skip it.
1251 			 */
1252 			w1 = lock1->li_lock->lo_witness;
1253 			if (w1 == NULL) {
1254 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1255 				    ("lock missing witness structure"));
1256 				continue;
1257 			}
1258 
1259 			/*
1260 			 * If we are locking Giant and this is a sleepable
1261 			 * lock, then skip it.
1262 			 */
1263 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1264 			    lock == &Giant.lock_object)
1265 				continue;
1266 
1267 			/*
1268 			 * If we are locking a sleepable lock and this lock
1269 			 * is Giant, then skip it.
1270 			 */
1271 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1272 			    lock1->li_lock == &Giant.lock_object)
1273 				continue;
1274 
1275 			/*
1276 			 * If we are locking a sleepable lock and this lock
1277 			 * isn't sleepable, we want to treat it as a lock
1278 			 * order violation to enfore a general lock order of
1279 			 * sleepable locks before non-sleepable locks.
1280 			 */
1281 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1282 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1283 				goto reversal;
1284 
1285 			/*
1286 			 * If we are locking Giant and this is a non-sleepable
1287 			 * lock, then treat it as a reversal.
1288 			 */
1289 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1290 			    lock == &Giant.lock_object)
1291 				goto reversal;
1292 
1293 			/*
1294 			 * Check the lock order hierarchy for a reveresal.
1295 			 */
1296 			if (!isitmydescendant(w, w1))
1297 				continue;
1298 		reversal:
1299 
1300 			/*
1301 			 * We have a lock order violation, check to see if it
1302 			 * is allowed or has already been yelled about.
1303 			 */
1304 #ifdef BLESSING
1305 
1306 			/*
1307 			 * If the lock order is blessed, just bail.  We don't
1308 			 * look for other lock order violations though, which
1309 			 * may be a bug.
1310 			 */
1311 			if (blessed(w, w1))
1312 				goto out;
1313 #endif
1314 
1315 			/* Bail if this violation is known */
1316 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1317 				goto out;
1318 
1319 			/* Record this as a violation */
1320 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1321 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1322 			w->w_reversed = w1->w_reversed = 1;
1323 			witness_increment_graph_generation();
1324 			mtx_unlock_spin(&w_mtx);
1325 
1326 #ifdef WITNESS_NO_VNODE
1327 			/*
1328 			 * There are known LORs between VNODE locks. They are
1329 			 * not an indication of a bug. VNODE locks are flagged
1330 			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1331 			 * is between 2 VNODE locks.
1332 			 */
1333 			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1334 			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1335 				return;
1336 #endif
1337 
1338 			/*
1339 			 * Ok, yell about it.
1340 			 */
1341 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1342 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1343 				witness_output(
1344 		"lock order reversal: (sleepable after non-sleepable)\n");
1345 			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1346 			    && lock == &Giant.lock_object)
1347 				witness_output(
1348 		"lock order reversal: (Giant after non-sleepable)\n");
1349 			else
1350 				witness_output("lock order reversal:\n");
1351 
1352 			/*
1353 			 * Try to locate an earlier lock with
1354 			 * witness w in our list.
1355 			 */
1356 			do {
1357 				lock2 = &lle->ll_children[i];
1358 				MPASS(lock2->li_lock != NULL);
1359 				if (lock2->li_lock->lo_witness == w)
1360 					break;
1361 				if (i == 0 && lle->ll_next != NULL) {
1362 					lle = lle->ll_next;
1363 					i = lle->ll_count - 1;
1364 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1365 				} else
1366 					i--;
1367 			} while (i >= 0);
1368 			if (i < 0) {
1369 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1370 				    lock1->li_lock, lock1->li_lock->lo_name,
1371 				    w1->w_name, fixup_filename(lock1->li_file),
1372 				    lock1->li_line);
1373 				witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1374 				    lock->lo_name, w->w_name,
1375 				    fixup_filename(file), line);
1376 			} else {
1377 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1378 				    lock2->li_lock, lock2->li_lock->lo_name,
1379 				    lock2->li_lock->lo_witness->w_name,
1380 				    fixup_filename(lock2->li_file),
1381 				    lock2->li_line);
1382 				witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1383 				    lock1->li_lock, lock1->li_lock->lo_name,
1384 				    w1->w_name, fixup_filename(lock1->li_file),
1385 				    lock1->li_line);
1386 				witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1387 				    lock->lo_name, w->w_name,
1388 				    fixup_filename(file), line);
1389 			}
1390 			witness_debugger(1, __func__);
1391 			return;
1392 		}
1393 	}
1394 
1395 	/*
1396 	 * If requested, build a new lock order.  However, don't build a new
1397 	 * relationship between a sleepable lock and Giant if it is in the
1398 	 * wrong direction.  The correct lock order is that sleepable locks
1399 	 * always come before Giant.
1400 	 */
1401 	if (flags & LOP_NEWORDER &&
1402 	    !(plock->li_lock == &Giant.lock_object &&
1403 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1404 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1405 		    w->w_name, plock->li_lock->lo_witness->w_name);
1406 		itismychild(plock->li_lock->lo_witness, w);
1407 	}
1408 out:
1409 	mtx_unlock_spin(&w_mtx);
1410 }
1411 
1412 void
1413 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1414 {
1415 	struct lock_list_entry **lock_list, *lle;
1416 	struct lock_instance *instance;
1417 	struct witness *w;
1418 	struct thread *td;
1419 
1420 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1421 	    panicstr != NULL)
1422 		return;
1423 	w = lock->lo_witness;
1424 	td = curthread;
1425 
1426 	/* Determine lock list for this lock. */
1427 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1428 		lock_list = &td->td_sleeplocks;
1429 	else
1430 		lock_list = PCPU_PTR(spinlocks);
1431 
1432 	/* Check to see if we are recursing on a lock we already own. */
1433 	instance = find_instance(*lock_list, lock);
1434 	if (instance != NULL) {
1435 		instance->li_flags++;
1436 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1437 		    td->td_proc->p_pid, lock->lo_name,
1438 		    instance->li_flags & LI_RECURSEMASK);
1439 		instance->li_file = file;
1440 		instance->li_line = line;
1441 		return;
1442 	}
1443 
1444 	/* Update per-witness last file and line acquire. */
1445 	w->w_file = file;
1446 	w->w_line = line;
1447 
1448 	/* Find the next open lock instance in the list and fill it. */
1449 	lle = *lock_list;
1450 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1451 		lle = witness_lock_list_get();
1452 		if (lle == NULL)
1453 			return;
1454 		lle->ll_next = *lock_list;
1455 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1456 		    td->td_proc->p_pid, lle);
1457 		*lock_list = lle;
1458 	}
1459 	instance = &lle->ll_children[lle->ll_count++];
1460 	instance->li_lock = lock;
1461 	instance->li_line = line;
1462 	instance->li_file = file;
1463 	if ((flags & LOP_EXCLUSIVE) != 0)
1464 		instance->li_flags = LI_EXCLUSIVE;
1465 	else
1466 		instance->li_flags = 0;
1467 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1468 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1469 }
1470 
1471 void
1472 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1473 {
1474 	struct lock_instance *instance;
1475 	struct lock_class *class;
1476 
1477 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1478 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1479 		return;
1480 	class = LOCK_CLASS(lock);
1481 	if (witness_watch) {
1482 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1483 			kassert_panic(
1484 			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1485 			    class->lc_name, lock->lo_name,
1486 			    fixup_filename(file), line);
1487 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1488 			kassert_panic(
1489 			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1490 			    class->lc_name, lock->lo_name,
1491 			    fixup_filename(file), line);
1492 	}
1493 	instance = find_instance(curthread->td_sleeplocks, lock);
1494 	if (instance == NULL) {
1495 		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1496 		    class->lc_name, lock->lo_name,
1497 		    fixup_filename(file), line);
1498 		return;
1499 	}
1500 	if (witness_watch) {
1501 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1502 			kassert_panic(
1503 			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1504 			    class->lc_name, lock->lo_name,
1505 			    fixup_filename(file), line);
1506 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1507 			kassert_panic(
1508 			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1509 			    class->lc_name, lock->lo_name,
1510 			    instance->li_flags & LI_RECURSEMASK,
1511 			    fixup_filename(file), line);
1512 	}
1513 	instance->li_flags |= LI_EXCLUSIVE;
1514 }
1515 
1516 void
1517 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1518     int line)
1519 {
1520 	struct lock_instance *instance;
1521 	struct lock_class *class;
1522 
1523 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1524 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1525 		return;
1526 	class = LOCK_CLASS(lock);
1527 	if (witness_watch) {
1528 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1529 			kassert_panic(
1530 			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1531 			    class->lc_name, lock->lo_name,
1532 			    fixup_filename(file), line);
1533 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1534 			kassert_panic(
1535 			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1536 			    class->lc_name, lock->lo_name,
1537 			    fixup_filename(file), line);
1538 	}
1539 	instance = find_instance(curthread->td_sleeplocks, lock);
1540 	if (instance == NULL) {
1541 		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1542 		    class->lc_name, lock->lo_name,
1543 		    fixup_filename(file), line);
1544 		return;
1545 	}
1546 	if (witness_watch) {
1547 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1548 			kassert_panic(
1549 			    "downgrade of shared lock (%s) %s @ %s:%d",
1550 			    class->lc_name, lock->lo_name,
1551 			    fixup_filename(file), line);
1552 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1553 			kassert_panic(
1554 			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1555 			    class->lc_name, lock->lo_name,
1556 			    instance->li_flags & LI_RECURSEMASK,
1557 			    fixup_filename(file), line);
1558 	}
1559 	instance->li_flags &= ~LI_EXCLUSIVE;
1560 }
1561 
1562 void
1563 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1564 {
1565 	struct lock_list_entry **lock_list, *lle;
1566 	struct lock_instance *instance;
1567 	struct lock_class *class;
1568 	struct thread *td;
1569 	register_t s;
1570 	int i, j;
1571 
1572 	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1573 		return;
1574 	td = curthread;
1575 	class = LOCK_CLASS(lock);
1576 
1577 	/* Find lock instance associated with this lock. */
1578 	if (class->lc_flags & LC_SLEEPLOCK)
1579 		lock_list = &td->td_sleeplocks;
1580 	else
1581 		lock_list = PCPU_PTR(spinlocks);
1582 	lle = *lock_list;
1583 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1584 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1585 			instance = &(*lock_list)->ll_children[i];
1586 			if (instance->li_lock == lock)
1587 				goto found;
1588 		}
1589 
1590 	/*
1591 	 * When disabling WITNESS through witness_watch we could end up in
1592 	 * having registered locks in the td_sleeplocks queue.
1593 	 * We have to make sure we flush these queues, so just search for
1594 	 * eventual register locks and remove them.
1595 	 */
1596 	if (witness_watch > 0) {
1597 		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1598 		    lock->lo_name, fixup_filename(file), line);
1599 		return;
1600 	} else {
1601 		return;
1602 	}
1603 found:
1604 
1605 	/* First, check for shared/exclusive mismatches. */
1606 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1607 	    (flags & LOP_EXCLUSIVE) == 0) {
1608 		witness_output("shared unlock of (%s) %s @ %s:%d\n",
1609 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1610 		witness_output("while exclusively locked from %s:%d\n",
1611 		    fixup_filename(instance->li_file), instance->li_line);
1612 		kassert_panic("excl->ushare");
1613 	}
1614 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1615 	    (flags & LOP_EXCLUSIVE) != 0) {
1616 		witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1617 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1618 		witness_output("while share locked from %s:%d\n",
1619 		    fixup_filename(instance->li_file),
1620 		    instance->li_line);
1621 		kassert_panic("share->uexcl");
1622 	}
1623 	/* If we are recursed, unrecurse. */
1624 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1625 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1626 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1627 		    instance->li_flags);
1628 		instance->li_flags--;
1629 		return;
1630 	}
1631 	/* The lock is now being dropped, check for NORELEASE flag */
1632 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1633 		witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1634 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1635 		kassert_panic("lock marked norelease");
1636 	}
1637 
1638 	/* Otherwise, remove this item from the list. */
1639 	s = intr_disable();
1640 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1641 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1642 	    (*lock_list)->ll_count - 1);
1643 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1644 		(*lock_list)->ll_children[j] =
1645 		    (*lock_list)->ll_children[j + 1];
1646 	(*lock_list)->ll_count--;
1647 	intr_restore(s);
1648 
1649 	/*
1650 	 * In order to reduce contention on w_mtx, we want to keep always an
1651 	 * head object into lists so that frequent allocation from the
1652 	 * free witness pool (and subsequent locking) is avoided.
1653 	 * In order to maintain the current code simple, when the head
1654 	 * object is totally unloaded it means also that we do not have
1655 	 * further objects in the list, so the list ownership needs to be
1656 	 * hand over to another object if the current head needs to be freed.
1657 	 */
1658 	if ((*lock_list)->ll_count == 0) {
1659 		if (*lock_list == lle) {
1660 			if (lle->ll_next == NULL)
1661 				return;
1662 		} else
1663 			lle = *lock_list;
1664 		*lock_list = lle->ll_next;
1665 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1666 		    td->td_proc->p_pid, lle);
1667 		witness_lock_list_free(lle);
1668 	}
1669 }
1670 
1671 void
1672 witness_thread_exit(struct thread *td)
1673 {
1674 	struct lock_list_entry *lle;
1675 	int i, n;
1676 
1677 	lle = td->td_sleeplocks;
1678 	if (lle == NULL || panicstr != NULL)
1679 		return;
1680 	if (lle->ll_count != 0) {
1681 		for (n = 0; lle != NULL; lle = lle->ll_next)
1682 			for (i = lle->ll_count - 1; i >= 0; i--) {
1683 				if (n == 0)
1684 					witness_output(
1685 		    "Thread %p exiting with the following locks held:\n", td);
1686 				n++;
1687 				witness_list_lock(&lle->ll_children[i],
1688 				    witness_output);
1689 
1690 			}
1691 		kassert_panic(
1692 		    "Thread %p cannot exit while holding sleeplocks\n", td);
1693 	}
1694 	witness_lock_list_free(lle);
1695 }
1696 
1697 /*
1698  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1699  * exempt Giant and sleepable locks from the checks as well.  If any
1700  * non-exempt locks are held, then a supplied message is printed to the
1701  * output channel along with a list of the offending locks.  If indicated in the
1702  * flags then a failure results in a panic as well.
1703  */
1704 int
1705 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1706 {
1707 	struct lock_list_entry *lock_list, *lle;
1708 	struct lock_instance *lock1;
1709 	struct thread *td;
1710 	va_list ap;
1711 	int i, n;
1712 
1713 	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1714 		return (0);
1715 	n = 0;
1716 	td = curthread;
1717 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1718 		for (i = lle->ll_count - 1; i >= 0; i--) {
1719 			lock1 = &lle->ll_children[i];
1720 			if (lock1->li_lock == lock)
1721 				continue;
1722 			if (flags & WARN_GIANTOK &&
1723 			    lock1->li_lock == &Giant.lock_object)
1724 				continue;
1725 			if (flags & WARN_SLEEPOK &&
1726 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1727 				continue;
1728 			if (n == 0) {
1729 				va_start(ap, fmt);
1730 				witness_voutput(fmt, ap);
1731 				va_end(ap);
1732 				witness_output(
1733 				    " with the following %slocks held:\n",
1734 				    (flags & WARN_SLEEPOK) != 0 ?
1735 				    "non-sleepable " : "");
1736 			}
1737 			n++;
1738 			witness_list_lock(lock1, witness_output);
1739 		}
1740 
1741 	/*
1742 	 * Pin the thread in order to avoid problems with thread migration.
1743 	 * Once that all verifies are passed about spinlocks ownership,
1744 	 * the thread is in a safe path and it can be unpinned.
1745 	 */
1746 	sched_pin();
1747 	lock_list = PCPU_GET(spinlocks);
1748 	if (lock_list != NULL && lock_list->ll_count != 0) {
1749 		sched_unpin();
1750 
1751 		/*
1752 		 * We should only have one spinlock and as long as
1753 		 * the flags cannot match for this locks class,
1754 		 * check if the first spinlock is the one curthread
1755 		 * should hold.
1756 		 */
1757 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1758 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1759 		    lock1->li_lock == lock && n == 0)
1760 			return (0);
1761 
1762 		va_start(ap, fmt);
1763 		witness_voutput(fmt, ap);
1764 		va_end(ap);
1765 		witness_output(" with the following %slocks held:\n",
1766 		    (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1767 		n += witness_list_locks(&lock_list, witness_output);
1768 	} else
1769 		sched_unpin();
1770 	if (flags & WARN_PANIC && n)
1771 		kassert_panic("%s", __func__);
1772 	else
1773 		witness_debugger(n, __func__);
1774 	return (n);
1775 }
1776 
1777 const char *
1778 witness_file(struct lock_object *lock)
1779 {
1780 	struct witness *w;
1781 
1782 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1783 		return ("?");
1784 	w = lock->lo_witness;
1785 	return (w->w_file);
1786 }
1787 
1788 int
1789 witness_line(struct lock_object *lock)
1790 {
1791 	struct witness *w;
1792 
1793 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1794 		return (0);
1795 	w = lock->lo_witness;
1796 	return (w->w_line);
1797 }
1798 
1799 static struct witness *
1800 enroll(const char *description, struct lock_class *lock_class)
1801 {
1802 	struct witness *w;
1803 	struct witness_list *typelist;
1804 
1805 	MPASS(description != NULL);
1806 
1807 	if (witness_watch == -1 || panicstr != NULL)
1808 		return (NULL);
1809 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1810 		if (witness_skipspin)
1811 			return (NULL);
1812 		else
1813 			typelist = &w_spin;
1814 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1815 		typelist = &w_sleep;
1816 	} else {
1817 		kassert_panic("lock class %s is not sleep or spin",
1818 		    lock_class->lc_name);
1819 		return (NULL);
1820 	}
1821 
1822 	mtx_lock_spin(&w_mtx);
1823 	w = witness_hash_get(description);
1824 	if (w)
1825 		goto found;
1826 	if ((w = witness_get()) == NULL)
1827 		return (NULL);
1828 	MPASS(strlen(description) < MAX_W_NAME);
1829 	strcpy(w->w_name, description);
1830 	w->w_class = lock_class;
1831 	w->w_refcount = 1;
1832 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1833 	if (lock_class->lc_flags & LC_SPINLOCK) {
1834 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1835 		w_spin_cnt++;
1836 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1837 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1838 		w_sleep_cnt++;
1839 	}
1840 
1841 	/* Insert new witness into the hash */
1842 	witness_hash_put(w);
1843 	witness_increment_graph_generation();
1844 	mtx_unlock_spin(&w_mtx);
1845 	return (w);
1846 found:
1847 	w->w_refcount++;
1848 	mtx_unlock_spin(&w_mtx);
1849 	if (lock_class != w->w_class)
1850 		kassert_panic(
1851 			"lock (%s) %s does not match earlier (%s) lock",
1852 			description, lock_class->lc_name,
1853 			w->w_class->lc_name);
1854 	return (w);
1855 }
1856 
1857 static void
1858 depart(struct witness *w)
1859 {
1860 	struct witness_list *list;
1861 
1862 	MPASS(w->w_refcount == 0);
1863 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1864 		list = &w_sleep;
1865 		w_sleep_cnt--;
1866 	} else {
1867 		list = &w_spin;
1868 		w_spin_cnt--;
1869 	}
1870 	/*
1871 	 * Set file to NULL as it may point into a loadable module.
1872 	 */
1873 	w->w_file = NULL;
1874 	w->w_line = 0;
1875 	witness_increment_graph_generation();
1876 }
1877 
1878 
1879 static void
1880 adopt(struct witness *parent, struct witness *child)
1881 {
1882 	int pi, ci, i, j;
1883 
1884 	if (witness_cold == 0)
1885 		mtx_assert(&w_mtx, MA_OWNED);
1886 
1887 	/* If the relationship is already known, there's no work to be done. */
1888 	if (isitmychild(parent, child))
1889 		return;
1890 
1891 	/* When the structure of the graph changes, bump up the generation. */
1892 	witness_increment_graph_generation();
1893 
1894 	/*
1895 	 * The hard part ... create the direct relationship, then propagate all
1896 	 * indirect relationships.
1897 	 */
1898 	pi = parent->w_index;
1899 	ci = child->w_index;
1900 	WITNESS_INDEX_ASSERT(pi);
1901 	WITNESS_INDEX_ASSERT(ci);
1902 	MPASS(pi != ci);
1903 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1904 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1905 
1906 	/*
1907 	 * If parent was not already an ancestor of child,
1908 	 * then we increment the descendant and ancestor counters.
1909 	 */
1910 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1911 		parent->w_num_descendants++;
1912 		child->w_num_ancestors++;
1913 	}
1914 
1915 	/*
1916 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1917 	 * an ancestor of 'pi' during this loop.
1918 	 */
1919 	for (i = 1; i <= w_max_used_index; i++) {
1920 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1921 		    (i != pi))
1922 			continue;
1923 
1924 		/* Find each descendant of 'i' and mark it as a descendant. */
1925 		for (j = 1; j <= w_max_used_index; j++) {
1926 
1927 			/*
1928 			 * Skip children that are already marked as
1929 			 * descendants of 'i'.
1930 			 */
1931 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1932 				continue;
1933 
1934 			/*
1935 			 * We are only interested in descendants of 'ci'. Note
1936 			 * that 'ci' itself is counted as a descendant of 'ci'.
1937 			 */
1938 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1939 			    (j != ci))
1940 				continue;
1941 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1942 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1943 			w_data[i].w_num_descendants++;
1944 			w_data[j].w_num_ancestors++;
1945 
1946 			/*
1947 			 * Make sure we aren't marking a node as both an
1948 			 * ancestor and descendant. We should have caught
1949 			 * this as a lock order reversal earlier.
1950 			 */
1951 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1952 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1953 				printf("witness rmatrix paradox! [%d][%d]=%d "
1954 				    "both ancestor and descendant\n",
1955 				    i, j, w_rmatrix[i][j]);
1956 				kdb_backtrace();
1957 				printf("Witness disabled.\n");
1958 				witness_watch = -1;
1959 			}
1960 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1961 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1962 				printf("witness rmatrix paradox! [%d][%d]=%d "
1963 				    "both ancestor and descendant\n",
1964 				    j, i, w_rmatrix[j][i]);
1965 				kdb_backtrace();
1966 				printf("Witness disabled.\n");
1967 				witness_watch = -1;
1968 			}
1969 		}
1970 	}
1971 }
1972 
1973 static void
1974 itismychild(struct witness *parent, struct witness *child)
1975 {
1976 	int unlocked;
1977 
1978 	MPASS(child != NULL && parent != NULL);
1979 	if (witness_cold == 0)
1980 		mtx_assert(&w_mtx, MA_OWNED);
1981 
1982 	if (!witness_lock_type_equal(parent, child)) {
1983 		if (witness_cold == 0) {
1984 			unlocked = 1;
1985 			mtx_unlock_spin(&w_mtx);
1986 		} else {
1987 			unlocked = 0;
1988 		}
1989 		kassert_panic(
1990 		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1991 		    "the same lock type", __func__, parent->w_name,
1992 		    parent->w_class->lc_name, child->w_name,
1993 		    child->w_class->lc_name);
1994 		if (unlocked)
1995 			mtx_lock_spin(&w_mtx);
1996 	}
1997 	adopt(parent, child);
1998 }
1999 
2000 /*
2001  * Generic code for the isitmy*() functions. The rmask parameter is the
2002  * expected relationship of w1 to w2.
2003  */
2004 static int
2005 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2006 {
2007 	unsigned char r1, r2;
2008 	int i1, i2;
2009 
2010 	i1 = w1->w_index;
2011 	i2 = w2->w_index;
2012 	WITNESS_INDEX_ASSERT(i1);
2013 	WITNESS_INDEX_ASSERT(i2);
2014 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2015 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2016 
2017 	/* The flags on one better be the inverse of the flags on the other */
2018 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2019 	    (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2020 		/* Don't squawk if we're potentially racing with an update. */
2021 		if (!mtx_owned(&w_mtx))
2022 			return (0);
2023 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
2024 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
2025 		    "w_rmatrix[%d][%d] == %hhx\n",
2026 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2027 		    i2, i1, r2);
2028 		kdb_backtrace();
2029 		printf("Witness disabled.\n");
2030 		witness_watch = -1;
2031 	}
2032 	return (r1 & rmask);
2033 }
2034 
2035 /*
2036  * Checks if @child is a direct child of @parent.
2037  */
2038 static int
2039 isitmychild(struct witness *parent, struct witness *child)
2040 {
2041 
2042 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2043 }
2044 
2045 /*
2046  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2047  */
2048 static int
2049 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2050 {
2051 
2052 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2053 	    __func__));
2054 }
2055 
2056 #ifdef BLESSING
2057 static int
2058 blessed(struct witness *w1, struct witness *w2)
2059 {
2060 	int i;
2061 	struct witness_blessed *b;
2062 
2063 	for (i = 0; i < blessed_count; i++) {
2064 		b = &blessed_list[i];
2065 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2066 			if (strcmp(w2->w_name, b->b_lock2) == 0)
2067 				return (1);
2068 			continue;
2069 		}
2070 		if (strcmp(w1->w_name, b->b_lock2) == 0)
2071 			if (strcmp(w2->w_name, b->b_lock1) == 0)
2072 				return (1);
2073 	}
2074 	return (0);
2075 }
2076 #endif
2077 
2078 static struct witness *
2079 witness_get(void)
2080 {
2081 	struct witness *w;
2082 	int index;
2083 
2084 	if (witness_cold == 0)
2085 		mtx_assert(&w_mtx, MA_OWNED);
2086 
2087 	if (witness_watch == -1) {
2088 		mtx_unlock_spin(&w_mtx);
2089 		return (NULL);
2090 	}
2091 	if (STAILQ_EMPTY(&w_free)) {
2092 		witness_watch = -1;
2093 		mtx_unlock_spin(&w_mtx);
2094 		printf("WITNESS: unable to allocate a new witness object\n");
2095 		return (NULL);
2096 	}
2097 	w = STAILQ_FIRST(&w_free);
2098 	STAILQ_REMOVE_HEAD(&w_free, w_list);
2099 	w_free_cnt--;
2100 	index = w->w_index;
2101 	MPASS(index > 0 && index == w_max_used_index+1 &&
2102 	    index < witness_count);
2103 	bzero(w, sizeof(*w));
2104 	w->w_index = index;
2105 	if (index > w_max_used_index)
2106 		w_max_used_index = index;
2107 	return (w);
2108 }
2109 
2110 static void
2111 witness_free(struct witness *w)
2112 {
2113 
2114 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2115 	w_free_cnt++;
2116 }
2117 
2118 static struct lock_list_entry *
2119 witness_lock_list_get(void)
2120 {
2121 	struct lock_list_entry *lle;
2122 
2123 	if (witness_watch == -1)
2124 		return (NULL);
2125 	mtx_lock_spin(&w_mtx);
2126 	lle = w_lock_list_free;
2127 	if (lle == NULL) {
2128 		witness_watch = -1;
2129 		mtx_unlock_spin(&w_mtx);
2130 		printf("%s: witness exhausted\n", __func__);
2131 		return (NULL);
2132 	}
2133 	w_lock_list_free = lle->ll_next;
2134 	mtx_unlock_spin(&w_mtx);
2135 	bzero(lle, sizeof(*lle));
2136 	return (lle);
2137 }
2138 
2139 static void
2140 witness_lock_list_free(struct lock_list_entry *lle)
2141 {
2142 
2143 	mtx_lock_spin(&w_mtx);
2144 	lle->ll_next = w_lock_list_free;
2145 	w_lock_list_free = lle;
2146 	mtx_unlock_spin(&w_mtx);
2147 }
2148 
2149 static struct lock_instance *
2150 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2151 {
2152 	struct lock_list_entry *lle;
2153 	struct lock_instance *instance;
2154 	int i;
2155 
2156 	for (lle = list; lle != NULL; lle = lle->ll_next)
2157 		for (i = lle->ll_count - 1; i >= 0; i--) {
2158 			instance = &lle->ll_children[i];
2159 			if (instance->li_lock == lock)
2160 				return (instance);
2161 		}
2162 	return (NULL);
2163 }
2164 
2165 static void
2166 witness_list_lock(struct lock_instance *instance,
2167     int (*prnt)(const char *fmt, ...))
2168 {
2169 	struct lock_object *lock;
2170 
2171 	lock = instance->li_lock;
2172 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2173 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2174 	if (lock->lo_witness->w_name != lock->lo_name)
2175 		prnt(" (%s)", lock->lo_witness->w_name);
2176 	prnt(" r = %d (%p) locked @ %s:%d\n",
2177 	    instance->li_flags & LI_RECURSEMASK, lock,
2178 	    fixup_filename(instance->li_file), instance->li_line);
2179 }
2180 
2181 static int
2182 witness_output(const char *fmt, ...)
2183 {
2184 	va_list ap;
2185 	int ret;
2186 
2187 	va_start(ap, fmt);
2188 	ret = witness_voutput(fmt, ap);
2189 	va_end(ap);
2190 	return (ret);
2191 }
2192 
2193 static int
2194 witness_voutput(const char *fmt, va_list ap)
2195 {
2196 	int ret;
2197 
2198 	ret = 0;
2199 	switch (witness_channel) {
2200 	case WITNESS_CONSOLE:
2201 		ret = vprintf(fmt, ap);
2202 		break;
2203 	case WITNESS_LOG:
2204 		vlog(LOG_NOTICE, fmt, ap);
2205 		break;
2206 	case WITNESS_NONE:
2207 		break;
2208 	}
2209 	return (ret);
2210 }
2211 
2212 #ifdef DDB
2213 static int
2214 witness_thread_has_locks(struct thread *td)
2215 {
2216 
2217 	if (td->td_sleeplocks == NULL)
2218 		return (0);
2219 	return (td->td_sleeplocks->ll_count != 0);
2220 }
2221 
2222 static int
2223 witness_proc_has_locks(struct proc *p)
2224 {
2225 	struct thread *td;
2226 
2227 	FOREACH_THREAD_IN_PROC(p, td) {
2228 		if (witness_thread_has_locks(td))
2229 			return (1);
2230 	}
2231 	return (0);
2232 }
2233 #endif
2234 
2235 int
2236 witness_list_locks(struct lock_list_entry **lock_list,
2237     int (*prnt)(const char *fmt, ...))
2238 {
2239 	struct lock_list_entry *lle;
2240 	int i, nheld;
2241 
2242 	nheld = 0;
2243 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2244 		for (i = lle->ll_count - 1; i >= 0; i--) {
2245 			witness_list_lock(&lle->ll_children[i], prnt);
2246 			nheld++;
2247 		}
2248 	return (nheld);
2249 }
2250 
2251 /*
2252  * This is a bit risky at best.  We call this function when we have timed
2253  * out acquiring a spin lock, and we assume that the other CPU is stuck
2254  * with this lock held.  So, we go groveling around in the other CPU's
2255  * per-cpu data to try to find the lock instance for this spin lock to
2256  * see when it was last acquired.
2257  */
2258 void
2259 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2260     int (*prnt)(const char *fmt, ...))
2261 {
2262 	struct lock_instance *instance;
2263 	struct pcpu *pc;
2264 
2265 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2266 		return;
2267 	pc = pcpu_find(owner->td_oncpu);
2268 	instance = find_instance(pc->pc_spinlocks, lock);
2269 	if (instance != NULL)
2270 		witness_list_lock(instance, prnt);
2271 }
2272 
2273 void
2274 witness_save(struct lock_object *lock, const char **filep, int *linep)
2275 {
2276 	struct lock_list_entry *lock_list;
2277 	struct lock_instance *instance;
2278 	struct lock_class *class;
2279 
2280 	/*
2281 	 * This function is used independently in locking code to deal with
2282 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2283 	 * is gone.
2284 	 */
2285 	if (SCHEDULER_STOPPED())
2286 		return;
2287 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2288 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2289 		return;
2290 	class = LOCK_CLASS(lock);
2291 	if (class->lc_flags & LC_SLEEPLOCK)
2292 		lock_list = curthread->td_sleeplocks;
2293 	else {
2294 		if (witness_skipspin)
2295 			return;
2296 		lock_list = PCPU_GET(spinlocks);
2297 	}
2298 	instance = find_instance(lock_list, lock);
2299 	if (instance == NULL) {
2300 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2301 		    class->lc_name, lock->lo_name);
2302 		return;
2303 	}
2304 	*filep = instance->li_file;
2305 	*linep = instance->li_line;
2306 }
2307 
2308 void
2309 witness_restore(struct lock_object *lock, const char *file, int line)
2310 {
2311 	struct lock_list_entry *lock_list;
2312 	struct lock_instance *instance;
2313 	struct lock_class *class;
2314 
2315 	/*
2316 	 * This function is used independently in locking code to deal with
2317 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2318 	 * is gone.
2319 	 */
2320 	if (SCHEDULER_STOPPED())
2321 		return;
2322 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2323 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2324 		return;
2325 	class = LOCK_CLASS(lock);
2326 	if (class->lc_flags & LC_SLEEPLOCK)
2327 		lock_list = curthread->td_sleeplocks;
2328 	else {
2329 		if (witness_skipspin)
2330 			return;
2331 		lock_list = PCPU_GET(spinlocks);
2332 	}
2333 	instance = find_instance(lock_list, lock);
2334 	if (instance == NULL)
2335 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2336 		    class->lc_name, lock->lo_name);
2337 	lock->lo_witness->w_file = file;
2338 	lock->lo_witness->w_line = line;
2339 	if (instance == NULL)
2340 		return;
2341 	instance->li_file = file;
2342 	instance->li_line = line;
2343 }
2344 
2345 void
2346 witness_assert(const struct lock_object *lock, int flags, const char *file,
2347     int line)
2348 {
2349 #ifdef INVARIANT_SUPPORT
2350 	struct lock_instance *instance;
2351 	struct lock_class *class;
2352 
2353 	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2354 		return;
2355 	class = LOCK_CLASS(lock);
2356 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2357 		instance = find_instance(curthread->td_sleeplocks, lock);
2358 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2359 		instance = find_instance(PCPU_GET(spinlocks), lock);
2360 	else {
2361 		kassert_panic("Lock (%s) %s is not sleep or spin!",
2362 		    class->lc_name, lock->lo_name);
2363 		return;
2364 	}
2365 	switch (flags) {
2366 	case LA_UNLOCKED:
2367 		if (instance != NULL)
2368 			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2369 			    class->lc_name, lock->lo_name,
2370 			    fixup_filename(file), line);
2371 		break;
2372 	case LA_LOCKED:
2373 	case LA_LOCKED | LA_RECURSED:
2374 	case LA_LOCKED | LA_NOTRECURSED:
2375 	case LA_SLOCKED:
2376 	case LA_SLOCKED | LA_RECURSED:
2377 	case LA_SLOCKED | LA_NOTRECURSED:
2378 	case LA_XLOCKED:
2379 	case LA_XLOCKED | LA_RECURSED:
2380 	case LA_XLOCKED | LA_NOTRECURSED:
2381 		if (instance == NULL) {
2382 			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2383 			    class->lc_name, lock->lo_name,
2384 			    fixup_filename(file), line);
2385 			break;
2386 		}
2387 		if ((flags & LA_XLOCKED) != 0 &&
2388 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2389 			kassert_panic(
2390 			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2391 			    class->lc_name, lock->lo_name,
2392 			    fixup_filename(file), line);
2393 		if ((flags & LA_SLOCKED) != 0 &&
2394 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2395 			kassert_panic(
2396 			    "Lock (%s) %s exclusively locked @ %s:%d.",
2397 			    class->lc_name, lock->lo_name,
2398 			    fixup_filename(file), line);
2399 		if ((flags & LA_RECURSED) != 0 &&
2400 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2401 			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2402 			    class->lc_name, lock->lo_name,
2403 			    fixup_filename(file), line);
2404 		if ((flags & LA_NOTRECURSED) != 0 &&
2405 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2406 			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2407 			    class->lc_name, lock->lo_name,
2408 			    fixup_filename(file), line);
2409 		break;
2410 	default:
2411 		kassert_panic("Invalid lock assertion at %s:%d.",
2412 		    fixup_filename(file), line);
2413 
2414 	}
2415 #endif	/* INVARIANT_SUPPORT */
2416 }
2417 
2418 static void
2419 witness_setflag(struct lock_object *lock, int flag, int set)
2420 {
2421 	struct lock_list_entry *lock_list;
2422 	struct lock_instance *instance;
2423 	struct lock_class *class;
2424 
2425 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2426 		return;
2427 	class = LOCK_CLASS(lock);
2428 	if (class->lc_flags & LC_SLEEPLOCK)
2429 		lock_list = curthread->td_sleeplocks;
2430 	else {
2431 		if (witness_skipspin)
2432 			return;
2433 		lock_list = PCPU_GET(spinlocks);
2434 	}
2435 	instance = find_instance(lock_list, lock);
2436 	if (instance == NULL) {
2437 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2438 		    class->lc_name, lock->lo_name);
2439 		return;
2440 	}
2441 
2442 	if (set)
2443 		instance->li_flags |= flag;
2444 	else
2445 		instance->li_flags &= ~flag;
2446 }
2447 
2448 void
2449 witness_norelease(struct lock_object *lock)
2450 {
2451 
2452 	witness_setflag(lock, LI_NORELEASE, 1);
2453 }
2454 
2455 void
2456 witness_releaseok(struct lock_object *lock)
2457 {
2458 
2459 	witness_setflag(lock, LI_NORELEASE, 0);
2460 }
2461 
2462 #ifdef DDB
2463 static void
2464 witness_ddb_list(struct thread *td)
2465 {
2466 
2467 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2468 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2469 
2470 	if (witness_watch < 1)
2471 		return;
2472 
2473 	witness_list_locks(&td->td_sleeplocks, db_printf);
2474 
2475 	/*
2476 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2477 	 * if td is currently executing on some other CPU and holds spin locks
2478 	 * as we won't display those locks.  If we had a MI way of getting
2479 	 * the per-cpu data for a given cpu then we could use
2480 	 * td->td_oncpu to get the list of spinlocks for this thread
2481 	 * and "fix" this.
2482 	 *
2483 	 * That still wouldn't really fix this unless we locked the scheduler
2484 	 * lock or stopped the other CPU to make sure it wasn't changing the
2485 	 * list out from under us.  It is probably best to just not try to
2486 	 * handle threads on other CPU's for now.
2487 	 */
2488 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2489 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2490 }
2491 
2492 DB_SHOW_COMMAND(locks, db_witness_list)
2493 {
2494 	struct thread *td;
2495 
2496 	if (have_addr)
2497 		td = db_lookup_thread(addr, true);
2498 	else
2499 		td = kdb_thread;
2500 	witness_ddb_list(td);
2501 }
2502 
2503 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2504 {
2505 	struct thread *td;
2506 	struct proc *p;
2507 
2508 	/*
2509 	 * It would be nice to list only threads and processes that actually
2510 	 * held sleep locks, but that information is currently not exported
2511 	 * by WITNESS.
2512 	 */
2513 	FOREACH_PROC_IN_SYSTEM(p) {
2514 		if (!witness_proc_has_locks(p))
2515 			continue;
2516 		FOREACH_THREAD_IN_PROC(p, td) {
2517 			if (!witness_thread_has_locks(td))
2518 				continue;
2519 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2520 			    p->p_comm, td, td->td_tid);
2521 			witness_ddb_list(td);
2522 			if (db_pager_quit)
2523 				return;
2524 		}
2525 	}
2526 }
2527 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2528 
2529 DB_SHOW_COMMAND(witness, db_witness_display)
2530 {
2531 
2532 	witness_ddb_display(db_printf);
2533 }
2534 #endif
2535 
2536 static int
2537 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2538 {
2539 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2540 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2541 	struct sbuf *sb;
2542 	u_int w_rmatrix1, w_rmatrix2;
2543 	int error, generation, i, j;
2544 
2545 	tmp_data1 = NULL;
2546 	tmp_data2 = NULL;
2547 	tmp_w1 = NULL;
2548 	tmp_w2 = NULL;
2549 	if (witness_watch < 1) {
2550 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2551 		return (error);
2552 	}
2553 	if (witness_cold) {
2554 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2555 		return (error);
2556 	}
2557 	error = 0;
2558 	sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2559 	if (sb == NULL)
2560 		return (ENOMEM);
2561 
2562 	/* Allocate and init temporary storage space. */
2563 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2564 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2565 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2566 	    M_WAITOK | M_ZERO);
2567 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2568 	    M_WAITOK | M_ZERO);
2569 	stack_zero(&tmp_data1->wlod_stack);
2570 	stack_zero(&tmp_data2->wlod_stack);
2571 
2572 restart:
2573 	mtx_lock_spin(&w_mtx);
2574 	generation = w_generation;
2575 	mtx_unlock_spin(&w_mtx);
2576 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2577 	    w_lohash.wloh_count);
2578 	for (i = 1; i < w_max_used_index; i++) {
2579 		mtx_lock_spin(&w_mtx);
2580 		if (generation != w_generation) {
2581 			mtx_unlock_spin(&w_mtx);
2582 
2583 			/* The graph has changed, try again. */
2584 			req->oldidx = 0;
2585 			sbuf_clear(sb);
2586 			goto restart;
2587 		}
2588 
2589 		w1 = &w_data[i];
2590 		if (w1->w_reversed == 0) {
2591 			mtx_unlock_spin(&w_mtx);
2592 			continue;
2593 		}
2594 
2595 		/* Copy w1 locally so we can release the spin lock. */
2596 		*tmp_w1 = *w1;
2597 		mtx_unlock_spin(&w_mtx);
2598 
2599 		if (tmp_w1->w_reversed == 0)
2600 			continue;
2601 		for (j = 1; j < w_max_used_index; j++) {
2602 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2603 				continue;
2604 
2605 			mtx_lock_spin(&w_mtx);
2606 			if (generation != w_generation) {
2607 				mtx_unlock_spin(&w_mtx);
2608 
2609 				/* The graph has changed, try again. */
2610 				req->oldidx = 0;
2611 				sbuf_clear(sb);
2612 				goto restart;
2613 			}
2614 
2615 			w2 = &w_data[j];
2616 			data1 = witness_lock_order_get(w1, w2);
2617 			data2 = witness_lock_order_get(w2, w1);
2618 
2619 			/*
2620 			 * Copy information locally so we can release the
2621 			 * spin lock.
2622 			 */
2623 			*tmp_w2 = *w2;
2624 			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2625 			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2626 
2627 			if (data1) {
2628 				stack_zero(&tmp_data1->wlod_stack);
2629 				stack_copy(&data1->wlod_stack,
2630 				    &tmp_data1->wlod_stack);
2631 			}
2632 			if (data2 && data2 != data1) {
2633 				stack_zero(&tmp_data2->wlod_stack);
2634 				stack_copy(&data2->wlod_stack,
2635 				    &tmp_data2->wlod_stack);
2636 			}
2637 			mtx_unlock_spin(&w_mtx);
2638 
2639 			sbuf_printf(sb,
2640 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2641 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2642 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2643 			if (data1) {
2644 				sbuf_printf(sb,
2645 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2646 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2647 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2648 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2649 				sbuf_printf(sb, "\n");
2650 			}
2651 			if (data2 && data2 != data1) {
2652 				sbuf_printf(sb,
2653 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2654 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2655 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2656 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2657 				sbuf_printf(sb, "\n");
2658 			}
2659 		}
2660 	}
2661 	mtx_lock_spin(&w_mtx);
2662 	if (generation != w_generation) {
2663 		mtx_unlock_spin(&w_mtx);
2664 
2665 		/*
2666 		 * The graph changed while we were printing stack data,
2667 		 * try again.
2668 		 */
2669 		req->oldidx = 0;
2670 		sbuf_clear(sb);
2671 		goto restart;
2672 	}
2673 	mtx_unlock_spin(&w_mtx);
2674 
2675 	/* Free temporary storage space. */
2676 	free(tmp_data1, M_TEMP);
2677 	free(tmp_data2, M_TEMP);
2678 	free(tmp_w1, M_TEMP);
2679 	free(tmp_w2, M_TEMP);
2680 
2681 	sbuf_finish(sb);
2682 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2683 	sbuf_delete(sb);
2684 
2685 	return (error);
2686 }
2687 
2688 static int
2689 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2690 {
2691 	static const struct {
2692 		enum witness_channel channel;
2693 		const char *name;
2694 	} channels[] = {
2695 		{ WITNESS_CONSOLE, "console" },
2696 		{ WITNESS_LOG, "log" },
2697 		{ WITNESS_NONE, "none" },
2698 	};
2699 	char buf[16];
2700 	u_int i;
2701 	int error;
2702 
2703 	buf[0] = '\0';
2704 	for (i = 0; i < nitems(channels); i++)
2705 		if (witness_channel == channels[i].channel) {
2706 			snprintf(buf, sizeof(buf), "%s", channels[i].name);
2707 			break;
2708 		}
2709 
2710 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2711 	if (error != 0 || req->newptr == NULL)
2712 		return (error);
2713 
2714 	error = EINVAL;
2715 	for (i = 0; i < nitems(channels); i++)
2716 		if (strcmp(channels[i].name, buf) == 0) {
2717 			witness_channel = channels[i].channel;
2718 			error = 0;
2719 			break;
2720 		}
2721 	return (error);
2722 }
2723 
2724 static int
2725 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2726 {
2727 	struct witness *w;
2728 	struct sbuf *sb;
2729 	int error;
2730 
2731 	if (witness_watch < 1) {
2732 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2733 		return (error);
2734 	}
2735 	if (witness_cold) {
2736 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2737 		return (error);
2738 	}
2739 	error = 0;
2740 
2741 	error = sysctl_wire_old_buffer(req, 0);
2742 	if (error != 0)
2743 		return (error);
2744 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2745 	if (sb == NULL)
2746 		return (ENOMEM);
2747 	sbuf_printf(sb, "\n");
2748 
2749 	mtx_lock_spin(&w_mtx);
2750 	STAILQ_FOREACH(w, &w_all, w_list)
2751 		w->w_displayed = 0;
2752 	STAILQ_FOREACH(w, &w_all, w_list)
2753 		witness_add_fullgraph(sb, w);
2754 	mtx_unlock_spin(&w_mtx);
2755 
2756 	/*
2757 	 * Close the sbuf and return to userland.
2758 	 */
2759 	error = sbuf_finish(sb);
2760 	sbuf_delete(sb);
2761 
2762 	return (error);
2763 }
2764 
2765 static int
2766 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2767 {
2768 	int error, value;
2769 
2770 	value = witness_watch;
2771 	error = sysctl_handle_int(oidp, &value, 0, req);
2772 	if (error != 0 || req->newptr == NULL)
2773 		return (error);
2774 	if (value > 1 || value < -1 ||
2775 	    (witness_watch == -1 && value != witness_watch))
2776 		return (EINVAL);
2777 	witness_watch = value;
2778 	return (0);
2779 }
2780 
2781 static void
2782 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2783 {
2784 	int i;
2785 
2786 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2787 		return;
2788 	w->w_displayed = 1;
2789 
2790 	WITNESS_INDEX_ASSERT(w->w_index);
2791 	for (i = 1; i <= w_max_used_index; i++) {
2792 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2793 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2794 			    w_data[i].w_name);
2795 			witness_add_fullgraph(sb, &w_data[i]);
2796 		}
2797 	}
2798 }
2799 
2800 /*
2801  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2802  * interprets the key as a string and reads until the null
2803  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2804  * hash value computed from the key.
2805  */
2806 static uint32_t
2807 witness_hash_djb2(const uint8_t *key, uint32_t size)
2808 {
2809 	unsigned int hash = 5381;
2810 	int i;
2811 
2812 	/* hash = hash * 33 + key[i] */
2813 	if (size)
2814 		for (i = 0; i < size; i++)
2815 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2816 	else
2817 		for (i = 0; key[i] != 0; i++)
2818 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2819 
2820 	return (hash);
2821 }
2822 
2823 
2824 /*
2825  * Initializes the two witness hash tables. Called exactly once from
2826  * witness_initialize().
2827  */
2828 static void
2829 witness_init_hash_tables(void)
2830 {
2831 	int i;
2832 
2833 	MPASS(witness_cold);
2834 
2835 	/* Initialize the hash tables. */
2836 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2837 		w_hash.wh_array[i] = NULL;
2838 
2839 	w_hash.wh_size = WITNESS_HASH_SIZE;
2840 	w_hash.wh_count = 0;
2841 
2842 	/* Initialize the lock order data hash. */
2843 	w_lofree = NULL;
2844 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2845 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2846 		w_lodata[i].wlod_next = w_lofree;
2847 		w_lofree = &w_lodata[i];
2848 	}
2849 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2850 	w_lohash.wloh_count = 0;
2851 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2852 		w_lohash.wloh_array[i] = NULL;
2853 }
2854 
2855 static struct witness *
2856 witness_hash_get(const char *key)
2857 {
2858 	struct witness *w;
2859 	uint32_t hash;
2860 
2861 	MPASS(key != NULL);
2862 	if (witness_cold == 0)
2863 		mtx_assert(&w_mtx, MA_OWNED);
2864 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2865 	w = w_hash.wh_array[hash];
2866 	while (w != NULL) {
2867 		if (strcmp(w->w_name, key) == 0)
2868 			goto out;
2869 		w = w->w_hash_next;
2870 	}
2871 
2872 out:
2873 	return (w);
2874 }
2875 
2876 static void
2877 witness_hash_put(struct witness *w)
2878 {
2879 	uint32_t hash;
2880 
2881 	MPASS(w != NULL);
2882 	MPASS(w->w_name != NULL);
2883 	if (witness_cold == 0)
2884 		mtx_assert(&w_mtx, MA_OWNED);
2885 	KASSERT(witness_hash_get(w->w_name) == NULL,
2886 	    ("%s: trying to add a hash entry that already exists!", __func__));
2887 	KASSERT(w->w_hash_next == NULL,
2888 	    ("%s: w->w_hash_next != NULL", __func__));
2889 
2890 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2891 	w->w_hash_next = w_hash.wh_array[hash];
2892 	w_hash.wh_array[hash] = w;
2893 	w_hash.wh_count++;
2894 }
2895 
2896 
2897 static struct witness_lock_order_data *
2898 witness_lock_order_get(struct witness *parent, struct witness *child)
2899 {
2900 	struct witness_lock_order_data *data = NULL;
2901 	struct witness_lock_order_key key;
2902 	unsigned int hash;
2903 
2904 	MPASS(parent != NULL && child != NULL);
2905 	key.from = parent->w_index;
2906 	key.to = child->w_index;
2907 	WITNESS_INDEX_ASSERT(key.from);
2908 	WITNESS_INDEX_ASSERT(key.to);
2909 	if ((w_rmatrix[parent->w_index][child->w_index]
2910 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2911 		goto out;
2912 
2913 	hash = witness_hash_djb2((const char*)&key,
2914 	    sizeof(key)) % w_lohash.wloh_size;
2915 	data = w_lohash.wloh_array[hash];
2916 	while (data != NULL) {
2917 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2918 			break;
2919 		data = data->wlod_next;
2920 	}
2921 
2922 out:
2923 	return (data);
2924 }
2925 
2926 /*
2927  * Verify that parent and child have a known relationship, are not the same,
2928  * and child is actually a child of parent.  This is done without w_mtx
2929  * to avoid contention in the common case.
2930  */
2931 static int
2932 witness_lock_order_check(struct witness *parent, struct witness *child)
2933 {
2934 
2935 	if (parent != child &&
2936 	    w_rmatrix[parent->w_index][child->w_index]
2937 	    & WITNESS_LOCK_ORDER_KNOWN &&
2938 	    isitmychild(parent, child))
2939 		return (1);
2940 
2941 	return (0);
2942 }
2943 
2944 static int
2945 witness_lock_order_add(struct witness *parent, struct witness *child)
2946 {
2947 	struct witness_lock_order_data *data = NULL;
2948 	struct witness_lock_order_key key;
2949 	unsigned int hash;
2950 
2951 	MPASS(parent != NULL && child != NULL);
2952 	key.from = parent->w_index;
2953 	key.to = child->w_index;
2954 	WITNESS_INDEX_ASSERT(key.from);
2955 	WITNESS_INDEX_ASSERT(key.to);
2956 	if (w_rmatrix[parent->w_index][child->w_index]
2957 	    & WITNESS_LOCK_ORDER_KNOWN)
2958 		return (1);
2959 
2960 	hash = witness_hash_djb2((const char*)&key,
2961 	    sizeof(key)) % w_lohash.wloh_size;
2962 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2963 	data = w_lofree;
2964 	if (data == NULL)
2965 		return (0);
2966 	w_lofree = data->wlod_next;
2967 	data->wlod_next = w_lohash.wloh_array[hash];
2968 	data->wlod_key = key;
2969 	w_lohash.wloh_array[hash] = data;
2970 	w_lohash.wloh_count++;
2971 	stack_zero(&data->wlod_stack);
2972 	stack_save(&data->wlod_stack);
2973 	return (1);
2974 }
2975 
2976 /* Call this whenver the structure of the witness graph changes. */
2977 static void
2978 witness_increment_graph_generation(void)
2979 {
2980 
2981 	if (witness_cold == 0)
2982 		mtx_assert(&w_mtx, MA_OWNED);
2983 	w_generation++;
2984 }
2985 
2986 static int
2987 witness_output_drain(void *arg __unused, const char *data, int len)
2988 {
2989 
2990 	witness_output("%.*s", len, data);
2991 	return (len);
2992 }
2993 
2994 static void
2995 witness_debugger(int cond, const char *msg)
2996 {
2997 	char buf[32];
2998 	struct sbuf sb;
2999 	struct stack st;
3000 
3001 	if (!cond)
3002 		return;
3003 
3004 	if (witness_trace) {
3005 		sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3006 		sbuf_set_drain(&sb, witness_output_drain, NULL);
3007 
3008 		stack_zero(&st);
3009 		stack_save(&st);
3010 		witness_output("stack backtrace:\n");
3011 		stack_sbuf_print_ddb(&sb, &st);
3012 
3013 		sbuf_finish(&sb);
3014 	}
3015 
3016 #ifdef KDB
3017 	if (witness_kdb)
3018 		kdb_enter(KDB_WHY_WITNESS, msg);
3019 #endif
3020 }
3021