1 /*- 2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. Berkeley Software Design Inc's name may not be used to endorse or 13 * promote products derived from this software without specific prior 14 * written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 30 */ 31 32 /* 33 * Implementation of the `witness' lock verifier. Originally implemented for 34 * mutexes in BSD/OS. Extended to handle generic lock objects and lock 35 * classes in FreeBSD. 36 */ 37 38 /* 39 * Main Entry: witness 40 * Pronunciation: 'wit-n&s 41 * Function: noun 42 * Etymology: Middle English witnesse, from Old English witnes knowledge, 43 * testimony, witness, from 2wit 44 * Date: before 12th century 45 * 1 : attestation of a fact or event : TESTIMONY 46 * 2 : one that gives evidence; specifically : one who testifies in 47 * a cause or before a judicial tribunal 48 * 3 : one asked to be present at a transaction so as to be able to 49 * testify to its having taken place 50 * 4 : one who has personal knowledge of something 51 * 5 a : something serving as evidence or proof : SIGN 52 * b : public affirmation by word or example of usually 53 * religious faith or conviction <the heroic witness to divine 54 * life -- Pilot> 55 * 6 capitalized : a member of the Jehovah's Witnesses 56 */ 57 58 /* 59 * Special rules concerning Giant and lock orders: 60 * 61 * 1) Giant must be acquired before any other mutexes. Stated another way, 62 * no other mutex may be held when Giant is acquired. 63 * 64 * 2) Giant must be released when blocking on a sleepable lock. 65 * 66 * This rule is less obvious, but is a result of Giant providing the same 67 * semantics as spl(). Basically, when a thread sleeps, it must release 68 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule 69 * 2). 70 * 71 * 3) Giant may be acquired before or after sleepable locks. 72 * 73 * This rule is also not quite as obvious. Giant may be acquired after 74 * a sleepable lock because it is a non-sleepable lock and non-sleepable 75 * locks may always be acquired while holding a sleepable lock. The second 76 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose 77 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1 78 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and 79 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to 80 * execute. Thus, acquiring Giant both before and after a sleepable lock 81 * will not result in a lock order reversal. 82 */ 83 84 #include <sys/cdefs.h> 85 __FBSDID("$FreeBSD$"); 86 87 #include "opt_ddb.h" 88 #include "opt_hwpmc_hooks.h" 89 #include "opt_witness.h" 90 91 #include <sys/param.h> 92 #include <sys/bus.h> 93 #include <sys/kdb.h> 94 #include <sys/kernel.h> 95 #include <sys/ktr.h> 96 #include <sys/lock.h> 97 #include <sys/malloc.h> 98 #include <sys/mutex.h> 99 #include <sys/priv.h> 100 #include <sys/proc.h> 101 #include <sys/sbuf.h> 102 #include <sys/sysctl.h> 103 #include <sys/systm.h> 104 105 #include <ddb/ddb.h> 106 107 #include <machine/stdarg.h> 108 109 /* Note that these traces do not work with KTR_ALQ. */ 110 #if 0 111 #define KTR_WITNESS KTR_SUBSYS 112 #else 113 #define KTR_WITNESS 0 114 #endif 115 116 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */ 117 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */ 118 119 /* Define this to check for blessed mutexes */ 120 #undef BLESSING 121 122 #define WITNESS_COUNT 1024 123 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4) 124 #define WITNESS_SBUFSIZE 32768 125 #define WITNESS_PENDLIST 512 126 /* 127 * XXX: This is somewhat bogus, as we assume here that at most 1024 threads 128 * will hold LOCK_NCHILDREN * 2 locks. We handle failure ok, and we should 129 * probably be safe for the most part, but it's still a SWAG. 130 */ 131 #define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2 132 133 #define WITNESS_NCHILDREN 6 134 135 #define LOCK_NCHILDREN 3 136 137 struct witness_child_list_entry; 138 139 /* 140 * Lock instances. A lock instance is the data associated with a lock while 141 * it is held by witness. For example, a lock instance will hold the 142 * recursion count of a lock. Lock instances are held in lists. Spin locks 143 * are held in a per-cpu list while sleep locks are held in per-thread list. 144 */ 145 struct lock_instance { 146 struct lock_object *li_lock; 147 const char *li_file; 148 int li_line; 149 u_int li_flags; /* Recursion count and LI_* flags. */ 150 }; 151 152 /* 153 * A simple list type used to build the list of locks held by a thread 154 * or CPU. We can't simply embed the list in struct lock_object since a 155 * lock may be held by more than one thread if it is a shared lock. Locks 156 * are added to the head of the list, so we fill up each list entry from 157 * "the back" logically. To ease some of the arithmetic, we actually fill 158 * in each list entry the normal way (children[0] then children[1], etc.) but 159 * when we traverse the list we read children[count-1] as the first entry 160 * down to children[0] as the final entry. 161 */ 162 struct lock_list_entry { 163 struct lock_list_entry *ll_next; 164 struct lock_instance ll_children[LOCK_NCHILDREN]; 165 u_int ll_count; 166 }; 167 168 struct witness { 169 const char *w_name; 170 struct lock_class *w_class; 171 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */ 172 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */ 173 struct witness_child_list_entry *w_children; /* Great evilness... */ 174 const char *w_file; 175 int w_line; 176 u_int w_level; 177 u_int w_refcount; 178 u_char w_Giant_squawked:1; 179 u_char w_other_squawked:1; 180 u_char w_same_squawked:1; 181 u_char w_displayed:1; 182 }; 183 184 struct witness_child_list_entry { 185 struct witness_child_list_entry *wcl_next; 186 struct witness *wcl_children[WITNESS_NCHILDREN]; 187 u_int wcl_count; 188 }; 189 190 STAILQ_HEAD(witness_list, witness); 191 192 #ifdef BLESSING 193 struct witness_blessed { 194 const char *b_lock1; 195 const char *b_lock2; 196 }; 197 #endif 198 199 struct witness_order_list_entry { 200 const char *w_name; 201 struct lock_class *w_class; 202 }; 203 204 struct witness_pendhelp { 205 const char *wh_type; 206 struct lock_object *wh_lock; 207 }; 208 209 #ifdef BLESSING 210 static int blessed(struct witness *, struct witness *); 211 #endif 212 static void depart(struct witness *w); 213 static struct witness *enroll(const char *description, 214 struct lock_class *lock_class); 215 static int insertchild(struct witness *parent, struct witness *child); 216 static int isitmychild(struct witness *parent, struct witness *child); 217 static int isitmydescendant(struct witness *parent, struct witness *child); 218 static int itismychild(struct witness *parent, struct witness *child); 219 static void removechild(struct witness *parent, struct witness *child); 220 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS); 221 static int sysctl_debug_witness_graphs(SYSCTL_HANDLER_ARGS); 222 static const char *fixup_filename(const char *file); 223 static void witness_addgraph(struct sbuf *sb, struct witness *parent); 224 static struct witness *witness_get(void); 225 static void witness_free(struct witness *m); 226 static struct witness_child_list_entry *witness_child_get(void); 227 static void witness_child_free(struct witness_child_list_entry *wcl); 228 static struct lock_list_entry *witness_lock_list_get(void); 229 static void witness_lock_list_free(struct lock_list_entry *lle); 230 static struct lock_instance *find_instance(struct lock_list_entry *lock_list, 231 struct lock_object *lock); 232 static void witness_list_lock(struct lock_instance *instance); 233 #ifdef DDB 234 static void witness_leveldescendents(struct witness *parent, int level); 235 static void witness_levelall(void); 236 static void witness_displaydescendants(void(*)(const char *fmt, ...), 237 struct witness *, int indent); 238 static void witness_display_list(void(*prnt)(const char *fmt, ...), 239 struct witness_list *list); 240 static void witness_display(void(*)(const char *fmt, ...)); 241 static void witness_list(struct thread *td); 242 #endif 243 244 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking"); 245 246 /* 247 * If set to 0, witness is disabled. If set to a non-zero value, witness 248 * performs full lock order checking for all locks. At runtime, this 249 * value may be set to 0 to turn off witness. witness is not allowed be 250 * turned on once it is turned off, however. 251 */ 252 static int witness_watch = 1; 253 TUNABLE_INT("debug.witness.watch", &witness_watch); 254 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0, 255 sysctl_debug_witness_watch, "I", "witness is watching lock operations"); 256 SYSCTL_PROC(_debug_witness, OID_AUTO, graphs, CTLTYPE_STRING | CTLFLAG_RD, 257 NULL, 0, sysctl_debug_witness_graphs, "A", "Show locks relation graphs"); 258 259 #ifdef KDB 260 /* 261 * When KDB is enabled and witness_kdb is set to 1, it will cause the system 262 * to drop into kdebug() when: 263 * - a lock hierarchy violation occurs 264 * - locks are held when going to sleep. 265 */ 266 #ifdef WITNESS_KDB 267 int witness_kdb = 1; 268 #else 269 int witness_kdb = 0; 270 #endif 271 TUNABLE_INT("debug.witness.kdb", &witness_kdb); 272 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, ""); 273 274 /* 275 * When KDB is enabled and witness_trace is set to 1, it will cause the system 276 * to print a stack trace: 277 * - a lock hierarchy violation occurs 278 * - locks are held when going to sleep. 279 */ 280 int witness_trace = 1; 281 TUNABLE_INT("debug.witness.trace", &witness_trace); 282 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, ""); 283 #endif /* KDB */ 284 285 #ifdef WITNESS_SKIPSPIN 286 int witness_skipspin = 1; 287 #else 288 int witness_skipspin = 0; 289 #endif 290 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin); 291 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, 292 &witness_skipspin, 0, ""); 293 294 static struct mtx w_mtx; 295 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free); 296 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all); 297 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin); 298 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep); 299 static struct witness_child_list_entry *w_child_free = NULL; 300 static struct lock_list_entry *w_lock_list_free = NULL; 301 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST]; 302 static u_int pending_cnt; 303 304 static int w_free_cnt, w_spin_cnt, w_sleep_cnt, w_child_free_cnt, w_child_cnt; 305 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, ""); 306 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, ""); 307 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0, 308 ""); 309 SYSCTL_INT(_debug_witness, OID_AUTO, child_free_cnt, CTLFLAG_RD, 310 &w_child_free_cnt, 0, ""); 311 SYSCTL_INT(_debug_witness, OID_AUTO, child_cnt, CTLFLAG_RD, &w_child_cnt, 0, 312 ""); 313 314 static struct witness w_data[WITNESS_COUNT]; 315 static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT]; 316 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT]; 317 318 static struct witness_order_list_entry order_lists[] = { 319 /* 320 * sx locks 321 */ 322 { "proctree", &lock_class_sx }, 323 { "allproc", &lock_class_sx }, 324 { "allprison", &lock_class_sx }, 325 { NULL, NULL }, 326 /* 327 * Various mutexes 328 */ 329 { "Giant", &lock_class_mtx_sleep }, 330 { "pipe mutex", &lock_class_mtx_sleep }, 331 { "sigio lock", &lock_class_mtx_sleep }, 332 { "process group", &lock_class_mtx_sleep }, 333 { "process lock", &lock_class_mtx_sleep }, 334 { "session", &lock_class_mtx_sleep }, 335 { "uidinfo hash", &lock_class_rw }, 336 #ifdef HWPMC_HOOKS 337 { "pmc-sleep", &lock_class_mtx_sleep }, 338 #endif 339 { NULL, NULL }, 340 /* 341 * Sockets 342 */ 343 { "accept", &lock_class_mtx_sleep }, 344 { "so_snd", &lock_class_mtx_sleep }, 345 { "so_rcv", &lock_class_mtx_sleep }, 346 { "sellck", &lock_class_mtx_sleep }, 347 { NULL, NULL }, 348 /* 349 * Routing 350 */ 351 { "so_rcv", &lock_class_mtx_sleep }, 352 { "radix node head", &lock_class_mtx_sleep }, 353 { "rtentry", &lock_class_mtx_sleep }, 354 { "ifaddr", &lock_class_mtx_sleep }, 355 { NULL, NULL }, 356 /* 357 * Multicast - protocol locks before interface locks, after UDP locks. 358 */ 359 { "udpinp", &lock_class_rw }, 360 { "in_multi_mtx", &lock_class_mtx_sleep }, 361 { "igmp_mtx", &lock_class_mtx_sleep }, 362 { "if_addr_mtx", &lock_class_mtx_sleep }, 363 { NULL, NULL }, 364 /* 365 * UNIX Domain Sockets 366 */ 367 { "unp", &lock_class_mtx_sleep }, 368 { "so_snd", &lock_class_mtx_sleep }, 369 { NULL, NULL }, 370 /* 371 * UDP/IP 372 */ 373 { "udp", &lock_class_rw }, 374 { "udpinp", &lock_class_rw }, 375 { "so_snd", &lock_class_mtx_sleep }, 376 { NULL, NULL }, 377 /* 378 * TCP/IP 379 */ 380 { "tcp", &lock_class_rw }, 381 { "tcpinp", &lock_class_rw }, 382 { "so_snd", &lock_class_mtx_sleep }, 383 { NULL, NULL }, 384 /* 385 * SLIP 386 */ 387 { "slip_mtx", &lock_class_mtx_sleep }, 388 { "slip sc_mtx", &lock_class_mtx_sleep }, 389 { NULL, NULL }, 390 /* 391 * netatalk 392 */ 393 { "ddp_list_mtx", &lock_class_mtx_sleep }, 394 { "ddp_mtx", &lock_class_mtx_sleep }, 395 { NULL, NULL }, 396 /* 397 * BPF 398 */ 399 { "bpf global lock", &lock_class_mtx_sleep }, 400 { "bpf interface lock", &lock_class_mtx_sleep }, 401 { "bpf cdev lock", &lock_class_mtx_sleep }, 402 { NULL, NULL }, 403 /* 404 * NFS server 405 */ 406 { "nfsd_mtx", &lock_class_mtx_sleep }, 407 { "so_snd", &lock_class_mtx_sleep }, 408 { NULL, NULL }, 409 410 /* 411 * IEEE 802.11 412 */ 413 { "802.11 com lock", &lock_class_mtx_sleep}, 414 { NULL, NULL }, 415 /* 416 * Network drivers 417 */ 418 { "network driver", &lock_class_mtx_sleep}, 419 { NULL, NULL }, 420 421 /* 422 * Netgraph 423 */ 424 { "ng_node", &lock_class_mtx_sleep }, 425 { "ng_worklist", &lock_class_mtx_sleep }, 426 { NULL, NULL }, 427 /* 428 * CDEV 429 */ 430 { "system map", &lock_class_mtx_sleep }, 431 { "vm page queue mutex", &lock_class_mtx_sleep }, 432 { "vnode interlock", &lock_class_mtx_sleep }, 433 { "cdev", &lock_class_mtx_sleep }, 434 { NULL, NULL }, 435 /* 436 * kqueue/VFS interaction 437 */ 438 { "kqueue", &lock_class_mtx_sleep }, 439 { "struct mount mtx", &lock_class_mtx_sleep }, 440 { "vnode interlock", &lock_class_mtx_sleep }, 441 { NULL, NULL }, 442 /* 443 * spin locks 444 */ 445 #ifdef SMP 446 { "ap boot", &lock_class_mtx_spin }, 447 #endif 448 { "rm.mutex_mtx", &lock_class_mtx_spin }, 449 { "sio", &lock_class_mtx_spin }, 450 { "scrlock", &lock_class_mtx_spin }, 451 #ifdef __i386__ 452 { "cy", &lock_class_mtx_spin }, 453 #endif 454 #ifdef __sparc64__ 455 { "pcib_mtx", &lock_class_mtx_spin }, 456 { "rtc_mtx", &lock_class_mtx_spin }, 457 #endif 458 { "scc_hwmtx", &lock_class_mtx_spin }, 459 { "uart_hwmtx", &lock_class_mtx_spin }, 460 { "fast_taskqueue", &lock_class_mtx_spin }, 461 { "intr table", &lock_class_mtx_spin }, 462 #ifdef HWPMC_HOOKS 463 { "pmc-per-proc", &lock_class_mtx_spin }, 464 #endif 465 { "process slock", &lock_class_mtx_spin }, 466 { "sleepq chain", &lock_class_mtx_spin }, 467 { "umtx lock", &lock_class_mtx_spin }, 468 { "rm_spinlock", &lock_class_mtx_spin }, 469 { "turnstile chain", &lock_class_mtx_spin }, 470 { "turnstile lock", &lock_class_mtx_spin }, 471 { "sched lock", &lock_class_mtx_spin }, 472 { "td_contested", &lock_class_mtx_spin }, 473 { "callout", &lock_class_mtx_spin }, 474 { "entropy harvest mutex", &lock_class_mtx_spin }, 475 { "syscons video lock", &lock_class_mtx_spin }, 476 { "time lock", &lock_class_mtx_spin }, 477 #ifdef SMP 478 { "smp rendezvous", &lock_class_mtx_spin }, 479 #endif 480 #ifdef __powerpc__ 481 { "tlb0", &lock_class_mtx_spin }, 482 #endif 483 /* 484 * leaf locks 485 */ 486 { "intrcnt", &lock_class_mtx_spin }, 487 { "icu", &lock_class_mtx_spin }, 488 #if defined(SMP) && defined(__sparc64__) 489 { "ipi", &lock_class_mtx_spin }, 490 #endif 491 #ifdef __i386__ 492 { "allpmaps", &lock_class_mtx_spin }, 493 { "descriptor tables", &lock_class_mtx_spin }, 494 #endif 495 { "clk", &lock_class_mtx_spin }, 496 { "cpuset", &lock_class_mtx_spin }, 497 { "mprof lock", &lock_class_mtx_spin }, 498 { "zombie lock", &lock_class_mtx_spin }, 499 { "ALD Queue", &lock_class_mtx_spin }, 500 #ifdef __ia64__ 501 { "MCA spin lock", &lock_class_mtx_spin }, 502 #endif 503 #if defined(__i386__) || defined(__amd64__) 504 { "pcicfg", &lock_class_mtx_spin }, 505 { "NDIS thread lock", &lock_class_mtx_spin }, 506 #endif 507 { "tw_osl_io_lock", &lock_class_mtx_spin }, 508 { "tw_osl_q_lock", &lock_class_mtx_spin }, 509 { "tw_cl_io_lock", &lock_class_mtx_spin }, 510 { "tw_cl_intr_lock", &lock_class_mtx_spin }, 511 { "tw_cl_gen_lock", &lock_class_mtx_spin }, 512 #ifdef HWPMC_HOOKS 513 { "pmc-leaf", &lock_class_mtx_spin }, 514 #endif 515 { "blocked lock", &lock_class_mtx_spin }, 516 { NULL, NULL }, 517 { NULL, NULL } 518 }; 519 520 #ifdef BLESSING 521 /* 522 * Pairs of locks which have been blessed 523 * Don't complain about order problems with blessed locks 524 */ 525 static struct witness_blessed blessed_list[] = { 526 }; 527 static int blessed_count = 528 sizeof(blessed_list) / sizeof(struct witness_blessed); 529 #endif 530 531 /* 532 * This global is set to 0 once it becomes safe to use the witness code. 533 */ 534 static int witness_cold = 1; 535 536 /* 537 * This global is set to 1 once the static lock orders have been enrolled 538 * so that a warning can be issued for any spin locks enrolled later. 539 */ 540 static int witness_spin_warn = 0; 541 542 /* 543 * The WITNESS-enabled diagnostic code. Note that the witness code does 544 * assume that the early boot is single-threaded at least until after this 545 * routine is completed. 546 */ 547 static void 548 witness_initialize(void *dummy __unused) 549 { 550 struct lock_object *lock; 551 struct witness_order_list_entry *order; 552 struct witness *w, *w1; 553 int i; 554 555 /* 556 * We have to release Giant before initializing its witness 557 * structure so that WITNESS doesn't get confused. 558 */ 559 mtx_unlock(&Giant); 560 mtx_assert(&Giant, MA_NOTOWNED); 561 562 CTR1(KTR_WITNESS, "%s: initializing witness", __func__); 563 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET | 564 MTX_NOWITNESS | MTX_NOPROFILE); 565 for (i = 0; i < WITNESS_COUNT; i++) 566 witness_free(&w_data[i]); 567 for (i = 0; i < WITNESS_CHILDCOUNT; i++) 568 witness_child_free(&w_childdata[i]); 569 for (i = 0; i < LOCK_CHILDCOUNT; i++) 570 witness_lock_list_free(&w_locklistdata[i]); 571 572 /* First add in all the specified order lists. */ 573 for (order = order_lists; order->w_name != NULL; order++) { 574 w = enroll(order->w_name, order->w_class); 575 if (w == NULL) 576 continue; 577 w->w_file = "order list"; 578 for (order++; order->w_name != NULL; order++) { 579 w1 = enroll(order->w_name, order->w_class); 580 if (w1 == NULL) 581 continue; 582 w1->w_file = "order list"; 583 if (!itismychild(w, w1)) 584 panic("Not enough memory for static orders!"); 585 w = w1; 586 } 587 } 588 witness_spin_warn = 1; 589 590 /* Iterate through all locks and add them to witness. */ 591 for (i = 0; pending_locks[i].wh_lock != NULL; i++) { 592 lock = pending_locks[i].wh_lock; 593 KASSERT(lock->lo_flags & LO_WITNESS, 594 ("%s: lock %s is on pending list but not LO_WITNESS", 595 __func__, lock->lo_name)); 596 lock->lo_witness = enroll(pending_locks[i].wh_type, 597 LOCK_CLASS(lock)); 598 } 599 600 /* Mark the witness code as being ready for use. */ 601 witness_cold = 0; 602 603 mtx_lock(&Giant); 604 } 605 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, 606 NULL); 607 608 static int 609 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS) 610 { 611 int error, value; 612 613 value = witness_watch; 614 error = sysctl_handle_int(oidp, &value, 0, req); 615 if (error != 0 || req->newptr == NULL) 616 return (error); 617 if (value == witness_watch) 618 return (0); 619 if (value != 0) 620 return (EINVAL); 621 witness_watch = 0; 622 return (0); 623 } 624 625 static int 626 sysctl_debug_witness_graphs(SYSCTL_HANDLER_ARGS) 627 { 628 struct witness *w; 629 struct sbuf *sb; 630 int error; 631 632 KASSERT(witness_cold == 0, ("%s: witness is still cold", __func__)); 633 634 sb = sbuf_new(NULL, NULL, WITNESS_SBUFSIZE, SBUF_FIXEDLEN); 635 if (sb == NULL) 636 return (ENOMEM); 637 638 mtx_lock_spin(&w_mtx); 639 STAILQ_FOREACH(w, &w_all, w_list) 640 w->w_displayed = 0; 641 STAILQ_FOREACH(w, &w_all, w_list) 642 witness_addgraph(sb, w); 643 mtx_unlock_spin(&w_mtx); 644 645 if (sbuf_overflowed(sb)) { 646 sbuf_delete(sb); 647 panic("%s: sbuf overflowed, bump the static buffer size\n", 648 __func__); 649 } 650 651 sbuf_finish(sb); 652 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 653 sbuf_delete(sb); 654 655 return (error); 656 } 657 658 void 659 witness_init(struct lock_object *lock, const char *type) 660 { 661 struct lock_class *class; 662 663 /* Various sanity checks. */ 664 class = LOCK_CLASS(lock); 665 if ((lock->lo_flags & LO_RECURSABLE) != 0 && 666 (class->lc_flags & LC_RECURSABLE) == 0) 667 panic("%s: lock (%s) %s can not be recursable", __func__, 668 class->lc_name, lock->lo_name); 669 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 670 (class->lc_flags & LC_SLEEPABLE) == 0) 671 panic("%s: lock (%s) %s can not be sleepable", __func__, 672 class->lc_name, lock->lo_name); 673 if ((lock->lo_flags & LO_UPGRADABLE) != 0 && 674 (class->lc_flags & LC_UPGRADABLE) == 0) 675 panic("%s: lock (%s) %s can not be upgradable", __func__, 676 class->lc_name, lock->lo_name); 677 678 /* 679 * If we shouldn't watch this lock, then just clear lo_witness. 680 * Otherwise, if witness_cold is set, then it is too early to 681 * enroll this lock, so defer it to witness_initialize() by adding 682 * it to the pending_locks list. If it is not too early, then enroll 683 * the lock now. 684 */ 685 if (witness_watch == 0 || panicstr != NULL || 686 (lock->lo_flags & LO_WITNESS) == 0) 687 lock->lo_witness = NULL; 688 else if (witness_cold) { 689 pending_locks[pending_cnt].wh_lock = lock; 690 pending_locks[pending_cnt++].wh_type = type; 691 if (pending_cnt > WITNESS_PENDLIST) 692 panic("%s: pending locks list is too small, bump it\n", 693 __func__); 694 } else 695 lock->lo_witness = enroll(type, class); 696 } 697 698 void 699 witness_destroy(struct lock_object *lock) 700 { 701 struct lock_class *class; 702 struct witness *w; 703 704 class = LOCK_CLASS(lock); 705 if (witness_cold) 706 panic("lock (%s) %s destroyed while witness_cold", 707 class->lc_name, lock->lo_name); 708 709 /* XXX: need to verify that no one holds the lock */ 710 if ((lock->lo_flags & LO_WITNESS) && lock->lo_witness != NULL) { 711 w = lock->lo_witness; 712 mtx_lock_spin(&w_mtx); 713 MPASS(w->w_refcount > 0); 714 w->w_refcount--; 715 716 if (w->w_refcount == 0) 717 depart(w); 718 mtx_unlock_spin(&w_mtx); 719 } 720 } 721 722 #ifdef DDB 723 static void 724 witness_levelall (void) 725 { 726 struct witness_list *list; 727 struct witness *w, *w1; 728 729 /* 730 * First clear all levels. 731 */ 732 STAILQ_FOREACH(w, &w_all, w_list) { 733 w->w_level = 0; 734 } 735 736 /* 737 * Look for locks with no parent and level all their descendants. 738 */ 739 STAILQ_FOREACH(w, &w_all, w_list) { 740 /* 741 * This is just an optimization, technically we could get 742 * away just walking the all list each time. 743 */ 744 if (w->w_class->lc_flags & LC_SLEEPLOCK) 745 list = &w_sleep; 746 else 747 list = &w_spin; 748 STAILQ_FOREACH(w1, list, w_typelist) { 749 if (isitmychild(w1, w)) 750 goto skip; 751 } 752 witness_leveldescendents(w, 0); 753 skip: 754 ; /* silence GCC 3.x */ 755 } 756 } 757 758 static void 759 witness_leveldescendents(struct witness *parent, int level) 760 { 761 struct witness_child_list_entry *wcl; 762 int i; 763 764 if (parent->w_level < level) 765 parent->w_level = level; 766 level++; 767 for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) 768 for (i = 0; i < wcl->wcl_count; i++) 769 witness_leveldescendents(wcl->wcl_children[i], level); 770 } 771 772 static void 773 witness_displaydescendants(void(*prnt)(const char *fmt, ...), 774 struct witness *parent, int indent) 775 { 776 struct witness_child_list_entry *wcl; 777 int i, level; 778 779 level = parent->w_level; 780 prnt("%-2d", level); 781 for (i = 0; i < indent; i++) 782 prnt(" "); 783 if (parent->w_refcount > 0) 784 prnt("%s", parent->w_name); 785 else 786 prnt("(dead)"); 787 if (parent->w_displayed) { 788 prnt(" -- (already displayed)\n"); 789 return; 790 } 791 parent->w_displayed = 1; 792 if (parent->w_refcount > 0) { 793 if (parent->w_file != NULL) 794 prnt(" -- last acquired @ %s:%d", parent->w_file, 795 parent->w_line); 796 } 797 prnt("\n"); 798 for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) 799 for (i = 0; i < wcl->wcl_count; i++) 800 witness_displaydescendants(prnt, 801 wcl->wcl_children[i], indent + 1); 802 } 803 804 static void 805 witness_display_list(void(*prnt)(const char *fmt, ...), 806 struct witness_list *list) 807 { 808 struct witness *w; 809 810 STAILQ_FOREACH(w, list, w_typelist) { 811 if (w->w_file == NULL || w->w_level > 0) 812 continue; 813 /* 814 * This lock has no anscestors, display its descendants. 815 */ 816 witness_displaydescendants(prnt, w, 0); 817 } 818 } 819 #endif /* DDB */ 820 821 static void 822 witness_addgraph(struct sbuf *sb, struct witness *parent) 823 { 824 struct witness_child_list_entry *wcl; 825 int i; 826 827 if (parent->w_displayed != 0 || parent->w_refcount == 0 || 828 parent->w_file == NULL) 829 return; 830 831 parent->w_displayed = 1; 832 for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) 833 for (i = 0; i < wcl->wcl_count; i++) { 834 sbuf_printf(sb, "\"%s\",\"%s\"\n", parent->w_name, 835 wcl->wcl_children[i]->w_name); 836 witness_addgraph(sb, wcl->wcl_children[i]); 837 } 838 } 839 840 #ifdef DDB 841 static void 842 witness_display(void(*prnt)(const char *fmt, ...)) 843 { 844 struct witness *w; 845 846 KASSERT(!witness_cold, ("%s: witness_cold", __func__)); 847 witness_levelall(); 848 849 /* Clear all the displayed flags. */ 850 STAILQ_FOREACH(w, &w_all, w_list) { 851 w->w_displayed = 0; 852 } 853 854 /* 855 * First, handle sleep locks which have been acquired at least 856 * once. 857 */ 858 prnt("Sleep locks:\n"); 859 witness_display_list(prnt, &w_sleep); 860 861 /* 862 * Now do spin locks which have been acquired at least once. 863 */ 864 prnt("\nSpin locks:\n"); 865 witness_display_list(prnt, &w_spin); 866 867 /* 868 * Finally, any locks which have not been acquired yet. 869 */ 870 prnt("\nLocks which were never acquired:\n"); 871 STAILQ_FOREACH(w, &w_all, w_list) { 872 if (w->w_file != NULL || w->w_refcount == 0) 873 continue; 874 prnt("%s\n", w->w_name); 875 } 876 } 877 #endif /* DDB */ 878 879 /* Trim useless garbage from filenames. */ 880 static const char * 881 fixup_filename(const char *file) 882 { 883 884 if (file == NULL) 885 return (NULL); 886 while (strncmp(file, "../", 3) == 0) 887 file += 3; 888 return (file); 889 } 890 891 int 892 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2) 893 { 894 895 if (witness_watch == 0 || panicstr != NULL) 896 return (0); 897 898 /* Require locks that witness knows about. */ 899 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL || 900 lock2->lo_witness == NULL) 901 return (EINVAL); 902 903 MPASS(!mtx_owned(&w_mtx)); 904 mtx_lock_spin(&w_mtx); 905 906 /* 907 * If we already have either an explicit or implied lock order that 908 * is the other way around, then return an error. 909 */ 910 if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) { 911 mtx_unlock_spin(&w_mtx); 912 return (EDOOFUS); 913 } 914 915 /* Try to add the new order. */ 916 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 917 lock2->lo_witness->w_name, lock1->lo_witness->w_name); 918 if (!itismychild(lock1->lo_witness, lock2->lo_witness)) 919 return (ENOMEM); 920 mtx_unlock_spin(&w_mtx); 921 return (0); 922 } 923 924 void 925 witness_checkorder(struct lock_object *lock, int flags, const char *file, 926 int line) 927 { 928 struct lock_list_entry **lock_list, *lle; 929 struct lock_instance *lock1, *lock2; 930 struct lock_class *class; 931 struct witness *w, *w1; 932 struct thread *td; 933 int i, j; 934 935 if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL || 936 panicstr != NULL) 937 return; 938 939 /* 940 * Try locks do not block if they fail to acquire the lock, thus 941 * there is no danger of deadlocks or of switching while holding a 942 * spin lock if we acquire a lock via a try operation. This 943 * function shouldn't even be called for try locks, so panic if 944 * that happens. 945 */ 946 if (flags & LOP_TRYLOCK) 947 panic("%s should not be called for try lock operations", 948 __func__); 949 950 w = lock->lo_witness; 951 class = LOCK_CLASS(lock); 952 td = curthread; 953 file = fixup_filename(file); 954 955 if (class->lc_flags & LC_SLEEPLOCK) { 956 /* 957 * Since spin locks include a critical section, this check 958 * implicitly enforces a lock order of all sleep locks before 959 * all spin locks. 960 */ 961 if (td->td_critnest != 0 && !kdb_active) 962 panic("blockable sleep lock (%s) %s @ %s:%d", 963 class->lc_name, lock->lo_name, file, line); 964 965 /* 966 * If this is the first lock acquired then just return as 967 * no order checking is needed. 968 */ 969 if (td->td_sleeplocks == NULL) 970 return; 971 lock_list = &td->td_sleeplocks; 972 } else { 973 /* 974 * If this is the first lock, just return as no order 975 * checking is needed. We check this in both if clauses 976 * here as unifying the check would require us to use a 977 * critical section to ensure we don't migrate while doing 978 * the check. Note that if this is not the first lock, we 979 * are already in a critical section and are safe for the 980 * rest of the check. 981 */ 982 if (PCPU_GET(spinlocks) == NULL) 983 return; 984 lock_list = PCPU_PTR(spinlocks); 985 } 986 987 /* 988 * Check to see if we are recursing on a lock we already own. If 989 * so, make sure that we don't mismatch exclusive and shared lock 990 * acquires. 991 */ 992 lock1 = find_instance(*lock_list, lock); 993 if (lock1 != NULL) { 994 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 && 995 (flags & LOP_EXCLUSIVE) == 0) { 996 printf("shared lock of (%s) %s @ %s:%d\n", 997 class->lc_name, lock->lo_name, file, line); 998 printf("while exclusively locked from %s:%d\n", 999 lock1->li_file, lock1->li_line); 1000 panic("share->excl"); 1001 } 1002 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 && 1003 (flags & LOP_EXCLUSIVE) != 0) { 1004 printf("exclusive lock of (%s) %s @ %s:%d\n", 1005 class->lc_name, lock->lo_name, file, line); 1006 printf("while share locked from %s:%d\n", 1007 lock1->li_file, lock1->li_line); 1008 panic("excl->share"); 1009 } 1010 return; 1011 } 1012 1013 /* 1014 * Check for duplicate locks of the same type. Note that we only 1015 * have to check for this on the last lock we just acquired. Any 1016 * other cases will be caught as lock order violations. 1017 */ 1018 lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1]; 1019 w1 = lock1->li_lock->lo_witness; 1020 if (w1 == w) { 1021 if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) || 1022 (flags & LOP_DUPOK)) 1023 return; 1024 w->w_same_squawked = 1; 1025 printf("acquiring duplicate lock of same type: \"%s\"\n", 1026 w->w_name); 1027 printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name, 1028 lock1->li_file, lock1->li_line); 1029 printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line); 1030 #ifdef KDB 1031 goto debugger; 1032 #else 1033 return; 1034 #endif 1035 } 1036 MPASS(!mtx_owned(&w_mtx)); 1037 mtx_lock_spin(&w_mtx); 1038 /* 1039 * If we know that the the lock we are acquiring comes after 1040 * the lock we most recently acquired in the lock order tree, 1041 * then there is no need for any further checks. 1042 */ 1043 if (isitmychild(w1, w)) { 1044 mtx_unlock_spin(&w_mtx); 1045 return; 1046 } 1047 for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) { 1048 for (i = lle->ll_count - 1; i >= 0; i--, j++) { 1049 1050 MPASS(j < WITNESS_COUNT); 1051 lock1 = &lle->ll_children[i]; 1052 w1 = lock1->li_lock->lo_witness; 1053 1054 /* 1055 * If this lock doesn't undergo witness checking, 1056 * then skip it. 1057 */ 1058 if (w1 == NULL) { 1059 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0, 1060 ("lock missing witness structure")); 1061 continue; 1062 } 1063 /* 1064 * If we are locking Giant and this is a sleepable 1065 * lock, then skip it. 1066 */ 1067 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 && 1068 lock == &Giant.lock_object) 1069 continue; 1070 /* 1071 * If we are locking a sleepable lock and this lock 1072 * is Giant, then skip it. 1073 */ 1074 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 1075 lock1->li_lock == &Giant.lock_object) 1076 continue; 1077 /* 1078 * If we are locking a sleepable lock and this lock 1079 * isn't sleepable, we want to treat it as a lock 1080 * order violation to enfore a general lock order of 1081 * sleepable locks before non-sleepable locks. 1082 */ 1083 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1084 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1085 goto reversal; 1086 /* 1087 * If we are locking Giant and this is a non-sleepable 1088 * lock, then treat it as a reversal. 1089 */ 1090 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 && 1091 lock == &Giant.lock_object) 1092 goto reversal; 1093 /* 1094 * Check the lock order hierarchy for a reveresal. 1095 */ 1096 if (!isitmydescendant(w, w1)) 1097 continue; 1098 reversal: 1099 /* 1100 * We have a lock order violation, check to see if it 1101 * is allowed or has already been yelled about. 1102 */ 1103 mtx_unlock_spin(&w_mtx); 1104 #ifdef BLESSING 1105 /* 1106 * If the lock order is blessed, just bail. We don't 1107 * look for other lock order violations though, which 1108 * may be a bug. 1109 */ 1110 if (blessed(w, w1)) 1111 return; 1112 #endif 1113 if (lock1->li_lock == &Giant.lock_object) { 1114 if (w1->w_Giant_squawked) 1115 return; 1116 else 1117 w1->w_Giant_squawked = 1; 1118 } else { 1119 if (w1->w_other_squawked) 1120 return; 1121 else 1122 w1->w_other_squawked = 1; 1123 } 1124 /* 1125 * Ok, yell about it. 1126 */ 1127 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1128 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1129 printf( 1130 "lock order reversal: (sleepable after non-sleepable)\n"); 1131 else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 1132 && lock == &Giant.lock_object) 1133 printf( 1134 "lock order reversal: (Giant after non-sleepable)\n"); 1135 else 1136 printf("lock order reversal:\n"); 1137 /* 1138 * Try to locate an earlier lock with 1139 * witness w in our list. 1140 */ 1141 do { 1142 lock2 = &lle->ll_children[i]; 1143 MPASS(lock2->li_lock != NULL); 1144 if (lock2->li_lock->lo_witness == w) 1145 break; 1146 if (i == 0 && lle->ll_next != NULL) { 1147 lle = lle->ll_next; 1148 i = lle->ll_count - 1; 1149 MPASS(i >= 0 && i < LOCK_NCHILDREN); 1150 } else 1151 i--; 1152 } while (i >= 0); 1153 if (i < 0) { 1154 printf(" 1st %p %s (%s) @ %s:%d\n", 1155 lock1->li_lock, lock1->li_lock->lo_name, 1156 w1->w_name, lock1->li_file, lock1->li_line); 1157 printf(" 2nd %p %s (%s) @ %s:%d\n", lock, 1158 lock->lo_name, w->w_name, file, line); 1159 } else { 1160 printf(" 1st %p %s (%s) @ %s:%d\n", 1161 lock2->li_lock, lock2->li_lock->lo_name, 1162 lock2->li_lock->lo_witness->w_name, 1163 lock2->li_file, lock2->li_line); 1164 printf(" 2nd %p %s (%s) @ %s:%d\n", 1165 lock1->li_lock, lock1->li_lock->lo_name, 1166 w1->w_name, lock1->li_file, lock1->li_line); 1167 printf(" 3rd %p %s (%s) @ %s:%d\n", lock, 1168 lock->lo_name, w->w_name, file, line); 1169 } 1170 #ifdef KDB 1171 goto debugger; 1172 #else 1173 return; 1174 #endif 1175 } 1176 } 1177 lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1]; 1178 /* 1179 * If requested, build a new lock order. However, don't build a new 1180 * relationship between a sleepable lock and Giant if it is in the 1181 * wrong direction. The correct lock order is that sleepable locks 1182 * always come before Giant. 1183 */ 1184 if (flags & LOP_NEWORDER && 1185 !(lock1->li_lock == &Giant.lock_object && 1186 (lock->lo_flags & LO_SLEEPABLE) != 0)) { 1187 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1188 w->w_name, lock1->li_lock->lo_witness->w_name); 1189 if (!itismychild(lock1->li_lock->lo_witness, w)) 1190 /* Witness is dead. */ 1191 return; 1192 } 1193 mtx_unlock_spin(&w_mtx); 1194 return; 1195 1196 #ifdef KDB 1197 debugger: 1198 if (witness_trace) 1199 kdb_backtrace(); 1200 if (witness_kdb) 1201 kdb_enter(KDB_WHY_WITNESS, __func__); 1202 #endif 1203 } 1204 1205 void 1206 witness_lock(struct lock_object *lock, int flags, const char *file, int line) 1207 { 1208 struct lock_list_entry **lock_list, *lle; 1209 struct lock_instance *instance; 1210 struct witness *w; 1211 struct thread *td; 1212 1213 if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL || 1214 panicstr != NULL) 1215 return; 1216 w = lock->lo_witness; 1217 td = curthread; 1218 file = fixup_filename(file); 1219 1220 /* Determine lock list for this lock. */ 1221 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK) 1222 lock_list = &td->td_sleeplocks; 1223 else 1224 lock_list = PCPU_PTR(spinlocks); 1225 1226 /* Check to see if we are recursing on a lock we already own. */ 1227 instance = find_instance(*lock_list, lock); 1228 if (instance != NULL) { 1229 instance->li_flags++; 1230 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__, 1231 td->td_proc->p_pid, lock->lo_name, 1232 instance->li_flags & LI_RECURSEMASK); 1233 instance->li_file = file; 1234 instance->li_line = line; 1235 return; 1236 } 1237 1238 /* Update per-witness last file and line acquire. */ 1239 w->w_file = file; 1240 w->w_line = line; 1241 1242 /* Find the next open lock instance in the list and fill it. */ 1243 lle = *lock_list; 1244 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) { 1245 lle = witness_lock_list_get(); 1246 if (lle == NULL) 1247 return; 1248 lle->ll_next = *lock_list; 1249 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__, 1250 td->td_proc->p_pid, lle); 1251 *lock_list = lle; 1252 } 1253 instance = &lle->ll_children[lle->ll_count++]; 1254 instance->li_lock = lock; 1255 instance->li_line = line; 1256 instance->li_file = file; 1257 if ((flags & LOP_EXCLUSIVE) != 0) 1258 instance->li_flags = LI_EXCLUSIVE; 1259 else 1260 instance->li_flags = 0; 1261 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__, 1262 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1); 1263 } 1264 1265 void 1266 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line) 1267 { 1268 struct lock_instance *instance; 1269 struct lock_class *class; 1270 1271 KASSERT(!witness_cold, ("%s: witness_cold", __func__)); 1272 if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL) 1273 return; 1274 class = LOCK_CLASS(lock); 1275 file = fixup_filename(file); 1276 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1277 panic("upgrade of non-upgradable lock (%s) %s @ %s:%d", 1278 class->lc_name, lock->lo_name, file, line); 1279 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1280 panic("upgrade of non-sleep lock (%s) %s @ %s:%d", 1281 class->lc_name, lock->lo_name, file, line); 1282 instance = find_instance(curthread->td_sleeplocks, lock); 1283 if (instance == NULL) 1284 panic("upgrade of unlocked lock (%s) %s @ %s:%d", 1285 class->lc_name, lock->lo_name, file, line); 1286 if ((instance->li_flags & LI_EXCLUSIVE) != 0) 1287 panic("upgrade of exclusive lock (%s) %s @ %s:%d", 1288 class->lc_name, lock->lo_name, file, line); 1289 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1290 panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d", 1291 class->lc_name, lock->lo_name, 1292 instance->li_flags & LI_RECURSEMASK, file, line); 1293 instance->li_flags |= LI_EXCLUSIVE; 1294 } 1295 1296 void 1297 witness_downgrade(struct lock_object *lock, int flags, const char *file, 1298 int line) 1299 { 1300 struct lock_instance *instance; 1301 struct lock_class *class; 1302 1303 KASSERT(!witness_cold, ("%s: witness_cold", __func__)); 1304 if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL) 1305 return; 1306 class = LOCK_CLASS(lock); 1307 file = fixup_filename(file); 1308 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1309 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d", 1310 class->lc_name, lock->lo_name, file, line); 1311 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1312 panic("downgrade of non-sleep lock (%s) %s @ %s:%d", 1313 class->lc_name, lock->lo_name, file, line); 1314 instance = find_instance(curthread->td_sleeplocks, lock); 1315 if (instance == NULL) 1316 panic("downgrade of unlocked lock (%s) %s @ %s:%d", 1317 class->lc_name, lock->lo_name, file, line); 1318 if ((instance->li_flags & LI_EXCLUSIVE) == 0) 1319 panic("downgrade of shared lock (%s) %s @ %s:%d", 1320 class->lc_name, lock->lo_name, file, line); 1321 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1322 panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d", 1323 class->lc_name, lock->lo_name, 1324 instance->li_flags & LI_RECURSEMASK, file, line); 1325 instance->li_flags &= ~LI_EXCLUSIVE; 1326 } 1327 1328 void 1329 witness_unlock(struct lock_object *lock, int flags, const char *file, int line) 1330 { 1331 struct lock_list_entry **lock_list, *lle; 1332 struct lock_instance *instance; 1333 struct lock_class *class; 1334 struct thread *td; 1335 register_t s; 1336 int i, j; 1337 1338 if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL || 1339 panicstr != NULL) 1340 return; 1341 td = curthread; 1342 class = LOCK_CLASS(lock); 1343 file = fixup_filename(file); 1344 1345 /* Find lock instance associated with this lock. */ 1346 if (class->lc_flags & LC_SLEEPLOCK) 1347 lock_list = &td->td_sleeplocks; 1348 else 1349 lock_list = PCPU_PTR(spinlocks); 1350 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next) 1351 for (i = 0; i < (*lock_list)->ll_count; i++) { 1352 instance = &(*lock_list)->ll_children[i]; 1353 if (instance->li_lock == lock) 1354 goto found; 1355 } 1356 panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name, 1357 file, line); 1358 found: 1359 1360 /* First, check for shared/exclusive mismatches. */ 1361 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && 1362 (flags & LOP_EXCLUSIVE) == 0) { 1363 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name, 1364 lock->lo_name, file, line); 1365 printf("while exclusively locked from %s:%d\n", 1366 instance->li_file, instance->li_line); 1367 panic("excl->ushare"); 1368 } 1369 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && 1370 (flags & LOP_EXCLUSIVE) != 0) { 1371 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name, 1372 lock->lo_name, file, line); 1373 printf("while share locked from %s:%d\n", instance->li_file, 1374 instance->li_line); 1375 panic("share->uexcl"); 1376 } 1377 1378 /* If we are recursed, unrecurse. */ 1379 if ((instance->li_flags & LI_RECURSEMASK) > 0) { 1380 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__, 1381 td->td_proc->p_pid, instance->li_lock->lo_name, 1382 instance->li_flags); 1383 instance->li_flags--; 1384 return; 1385 } 1386 1387 /* Otherwise, remove this item from the list. */ 1388 s = intr_disable(); 1389 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__, 1390 td->td_proc->p_pid, instance->li_lock->lo_name, 1391 (*lock_list)->ll_count - 1); 1392 for (j = i; j < (*lock_list)->ll_count - 1; j++) 1393 (*lock_list)->ll_children[j] = 1394 (*lock_list)->ll_children[j + 1]; 1395 (*lock_list)->ll_count--; 1396 intr_restore(s); 1397 1398 /* If this lock list entry is now empty, free it. */ 1399 if ((*lock_list)->ll_count == 0) { 1400 lle = *lock_list; 1401 *lock_list = lle->ll_next; 1402 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__, 1403 td->td_proc->p_pid, lle); 1404 witness_lock_list_free(lle); 1405 } 1406 } 1407 1408 /* 1409 * Warn if any locks other than 'lock' are held. Flags can be passed in to 1410 * exempt Giant and sleepable locks from the checks as well. If any 1411 * non-exempt locks are held, then a supplied message is printed to the 1412 * console along with a list of the offending locks. If indicated in the 1413 * flags then a failure results in a panic as well. 1414 */ 1415 int 1416 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...) 1417 { 1418 struct lock_list_entry *lle; 1419 struct lock_instance *lock1; 1420 struct thread *td; 1421 va_list ap; 1422 int i, n; 1423 1424 if (witness_cold || witness_watch == 0 || panicstr != NULL) 1425 return (0); 1426 n = 0; 1427 td = curthread; 1428 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next) 1429 for (i = lle->ll_count - 1; i >= 0; i--) { 1430 lock1 = &lle->ll_children[i]; 1431 if (lock1->li_lock == lock) 1432 continue; 1433 if (flags & WARN_GIANTOK && 1434 lock1->li_lock == &Giant.lock_object) 1435 continue; 1436 if (flags & WARN_SLEEPOK && 1437 (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0) 1438 continue; 1439 if (n == 0) { 1440 va_start(ap, fmt); 1441 vprintf(fmt, ap); 1442 va_end(ap); 1443 printf(" with the following"); 1444 if (flags & WARN_SLEEPOK) 1445 printf(" non-sleepable"); 1446 printf(" locks held:\n"); 1447 } 1448 n++; 1449 witness_list_lock(lock1); 1450 } 1451 if (PCPU_GET(spinlocks) != NULL) { 1452 /* 1453 * Since we already hold a spinlock preemption is 1454 * already blocked. 1455 */ 1456 if (n == 0) { 1457 va_start(ap, fmt); 1458 vprintf(fmt, ap); 1459 va_end(ap); 1460 printf(" with the following"); 1461 if (flags & WARN_SLEEPOK) 1462 printf(" non-sleepable"); 1463 printf(" locks held:\n"); 1464 } 1465 n += witness_list_locks(PCPU_PTR(spinlocks)); 1466 } 1467 if (flags & WARN_PANIC && n) 1468 panic("witness_warn"); 1469 #ifdef KDB 1470 else if (witness_kdb && n) 1471 kdb_enter(KDB_WHY_WITNESS, __func__); 1472 else if (witness_trace && n) 1473 kdb_backtrace(); 1474 #endif 1475 return (n); 1476 } 1477 1478 const char * 1479 witness_file(struct lock_object *lock) 1480 { 1481 struct witness *w; 1482 1483 if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL) 1484 return ("?"); 1485 w = lock->lo_witness; 1486 return (w->w_file); 1487 } 1488 1489 int 1490 witness_line(struct lock_object *lock) 1491 { 1492 struct witness *w; 1493 1494 if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL) 1495 return (0); 1496 w = lock->lo_witness; 1497 return (w->w_line); 1498 } 1499 1500 static struct witness * 1501 enroll(const char *description, struct lock_class *lock_class) 1502 { 1503 struct witness *w; 1504 1505 if (witness_watch == 0 || panicstr != NULL) 1506 return (NULL); 1507 if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin) 1508 return (NULL); 1509 mtx_lock_spin(&w_mtx); 1510 STAILQ_FOREACH(w, &w_all, w_list) { 1511 if (w->w_name == description || (w->w_refcount > 0 && 1512 strcmp(description, w->w_name) == 0)) { 1513 w->w_refcount++; 1514 mtx_unlock_spin(&w_mtx); 1515 if (lock_class != w->w_class) 1516 panic( 1517 "lock (%s) %s does not match earlier (%s) lock", 1518 description, lock_class->lc_name, 1519 w->w_class->lc_name); 1520 return (w); 1521 } 1522 } 1523 if ((w = witness_get()) == NULL) { 1524 printf("WITNESS: unable to allocate a new witness object\n"); 1525 goto out; 1526 } 1527 w->w_name = description; 1528 w->w_class = lock_class; 1529 w->w_refcount = 1; 1530 STAILQ_INSERT_HEAD(&w_all, w, w_list); 1531 if (lock_class->lc_flags & LC_SPINLOCK) { 1532 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist); 1533 w_spin_cnt++; 1534 } else if (lock_class->lc_flags & LC_SLEEPLOCK) { 1535 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist); 1536 w_sleep_cnt++; 1537 } else { 1538 mtx_unlock_spin(&w_mtx); 1539 panic("lock class %s is not sleep or spin", 1540 lock_class->lc_name); 1541 } 1542 mtx_unlock_spin(&w_mtx); 1543 out: 1544 /* 1545 * We issue a warning for any spin locks not defined in the static 1546 * order list as a way to discourage their use (folks should really 1547 * be using non-spin mutexes most of the time). However, several 1548 * 3rd part device drivers use spin locks because that is all they 1549 * have available on Windows and Linux and they think that normal 1550 * mutexes are insufficient. 1551 */ 1552 if ((lock_class->lc_flags & LC_SPINLOCK) && witness_spin_warn) 1553 printf("WITNESS: spin lock %s not in order list\n", 1554 description); 1555 return (w); 1556 } 1557 1558 /* Don't let the door bang you on the way out... */ 1559 static void 1560 depart(struct witness *w) 1561 { 1562 struct witness_child_list_entry *wcl, *nwcl; 1563 struct witness_list *list; 1564 struct witness *parent; 1565 1566 MPASS(w->w_refcount == 0); 1567 if (w->w_class->lc_flags & LC_SLEEPLOCK) { 1568 list = &w_sleep; 1569 w_sleep_cnt--; 1570 } else { 1571 list = &w_spin; 1572 w_spin_cnt--; 1573 } 1574 /* 1575 * First, we run through the entire tree looking for any 1576 * witnesses that the outgoing witness is a child of. For 1577 * each parent that we find, we reparent all the direct 1578 * children of the outgoing witness to its parent. 1579 */ 1580 STAILQ_FOREACH(parent, list, w_typelist) { 1581 if (!isitmychild(parent, w)) 1582 continue; 1583 removechild(parent, w); 1584 } 1585 1586 /* 1587 * Now we go through and free up the child list of the 1588 * outgoing witness. 1589 */ 1590 for (wcl = w->w_children; wcl != NULL; wcl = nwcl) { 1591 nwcl = wcl->wcl_next; 1592 w_child_cnt--; 1593 witness_child_free(wcl); 1594 } 1595 1596 /* 1597 * Detach from various lists and free. 1598 */ 1599 STAILQ_REMOVE(list, w, witness, w_typelist); 1600 STAILQ_REMOVE(&w_all, w, witness, w_list); 1601 witness_free(w); 1602 } 1603 1604 /* 1605 * Add "child" as a direct child of "parent". Returns false if 1606 * we fail due to out of memory. 1607 */ 1608 static int 1609 insertchild(struct witness *parent, struct witness *child) 1610 { 1611 struct witness_child_list_entry **wcl; 1612 1613 MPASS(child != NULL && parent != NULL); 1614 1615 /* 1616 * Insert "child" after "parent" 1617 */ 1618 wcl = &parent->w_children; 1619 while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN) 1620 wcl = &(*wcl)->wcl_next; 1621 if (*wcl == NULL) { 1622 *wcl = witness_child_get(); 1623 if (*wcl == NULL) 1624 return (0); 1625 w_child_cnt++; 1626 } 1627 (*wcl)->wcl_children[(*wcl)->wcl_count++] = child; 1628 1629 return (1); 1630 } 1631 1632 1633 static int 1634 itismychild(struct witness *parent, struct witness *child) 1635 { 1636 1637 MPASS(child != NULL && parent != NULL); 1638 if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) != 1639 (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK))) 1640 panic( 1641 "%s: parent (%s) and child (%s) are not the same lock type", 1642 __func__, parent->w_class->lc_name, 1643 child->w_class->lc_name); 1644 1645 return (insertchild(parent, child)); 1646 } 1647 1648 static void 1649 removechild(struct witness *parent, struct witness *child) 1650 { 1651 struct witness_child_list_entry **wcl, *wcl1; 1652 int i; 1653 1654 for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next) 1655 for (i = 0; i < (*wcl)->wcl_count; i++) 1656 if ((*wcl)->wcl_children[i] == child) 1657 goto found; 1658 return; 1659 found: 1660 (*wcl)->wcl_count--; 1661 if ((*wcl)->wcl_count > i) 1662 (*wcl)->wcl_children[i] = 1663 (*wcl)->wcl_children[(*wcl)->wcl_count]; 1664 MPASS((*wcl)->wcl_children[i] != NULL); 1665 if ((*wcl)->wcl_count != 0) 1666 return; 1667 wcl1 = *wcl; 1668 *wcl = wcl1->wcl_next; 1669 w_child_cnt--; 1670 witness_child_free(wcl1); 1671 } 1672 1673 static int 1674 isitmychild(struct witness *parent, struct witness *child) 1675 { 1676 struct witness_child_list_entry *wcl; 1677 int i; 1678 1679 for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) { 1680 for (i = 0; i < wcl->wcl_count; i++) { 1681 if (wcl->wcl_children[i] == child) 1682 return (1); 1683 } 1684 } 1685 return (0); 1686 } 1687 1688 static int 1689 isitmydescendant(struct witness *parent, struct witness *child) 1690 { 1691 struct witness_child_list_entry *wcl; 1692 int i, j; 1693 1694 if (isitmychild(parent, child)) 1695 return (1); 1696 j = 0; 1697 for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) { 1698 MPASS(j < 1000); 1699 for (i = 0; i < wcl->wcl_count; i++) { 1700 if (isitmydescendant(wcl->wcl_children[i], child)) 1701 return (1); 1702 } 1703 j++; 1704 } 1705 return (0); 1706 } 1707 1708 #ifdef BLESSING 1709 static int 1710 blessed(struct witness *w1, struct witness *w2) 1711 { 1712 int i; 1713 struct witness_blessed *b; 1714 1715 for (i = 0; i < blessed_count; i++) { 1716 b = &blessed_list[i]; 1717 if (strcmp(w1->w_name, b->b_lock1) == 0) { 1718 if (strcmp(w2->w_name, b->b_lock2) == 0) 1719 return (1); 1720 continue; 1721 } 1722 if (strcmp(w1->w_name, b->b_lock2) == 0) 1723 if (strcmp(w2->w_name, b->b_lock1) == 0) 1724 return (1); 1725 } 1726 return (0); 1727 } 1728 #endif 1729 1730 static struct witness * 1731 witness_get(void) 1732 { 1733 struct witness *w; 1734 1735 if (witness_watch == 0) { 1736 mtx_unlock_spin(&w_mtx); 1737 return (NULL); 1738 } 1739 if (STAILQ_EMPTY(&w_free)) { 1740 witness_watch = 0; 1741 mtx_unlock_spin(&w_mtx); 1742 printf("%s: witness exhausted\n", __func__); 1743 return (NULL); 1744 } 1745 w = STAILQ_FIRST(&w_free); 1746 STAILQ_REMOVE_HEAD(&w_free, w_list); 1747 w_free_cnt--; 1748 bzero(w, sizeof(*w)); 1749 return (w); 1750 } 1751 1752 static void 1753 witness_free(struct witness *w) 1754 { 1755 1756 STAILQ_INSERT_HEAD(&w_free, w, w_list); 1757 w_free_cnt++; 1758 } 1759 1760 static struct witness_child_list_entry * 1761 witness_child_get(void) 1762 { 1763 struct witness_child_list_entry *wcl; 1764 1765 if (witness_watch == 0) { 1766 mtx_unlock_spin(&w_mtx); 1767 return (NULL); 1768 } 1769 wcl = w_child_free; 1770 if (wcl == NULL) { 1771 witness_watch = 0; 1772 mtx_unlock_spin(&w_mtx); 1773 printf("%s: witness exhausted\n", __func__); 1774 return (NULL); 1775 } 1776 w_child_free = wcl->wcl_next; 1777 w_child_free_cnt--; 1778 bzero(wcl, sizeof(*wcl)); 1779 return (wcl); 1780 } 1781 1782 static void 1783 witness_child_free(struct witness_child_list_entry *wcl) 1784 { 1785 1786 wcl->wcl_next = w_child_free; 1787 w_child_free = wcl; 1788 w_child_free_cnt++; 1789 } 1790 1791 static struct lock_list_entry * 1792 witness_lock_list_get(void) 1793 { 1794 struct lock_list_entry *lle; 1795 1796 if (witness_watch == 0) 1797 return (NULL); 1798 mtx_lock_spin(&w_mtx); 1799 lle = w_lock_list_free; 1800 if (lle == NULL) { 1801 witness_watch = 0; 1802 mtx_unlock_spin(&w_mtx); 1803 printf("%s: witness exhausted\n", __func__); 1804 return (NULL); 1805 } 1806 w_lock_list_free = lle->ll_next; 1807 mtx_unlock_spin(&w_mtx); 1808 bzero(lle, sizeof(*lle)); 1809 return (lle); 1810 } 1811 1812 static void 1813 witness_lock_list_free(struct lock_list_entry *lle) 1814 { 1815 1816 mtx_lock_spin(&w_mtx); 1817 lle->ll_next = w_lock_list_free; 1818 w_lock_list_free = lle; 1819 mtx_unlock_spin(&w_mtx); 1820 } 1821 1822 static struct lock_instance * 1823 find_instance(struct lock_list_entry *lock_list, struct lock_object *lock) 1824 { 1825 struct lock_list_entry *lle; 1826 struct lock_instance *instance; 1827 int i; 1828 1829 for (lle = lock_list; lle != NULL; lle = lle->ll_next) 1830 for (i = lle->ll_count - 1; i >= 0; i--) { 1831 instance = &lle->ll_children[i]; 1832 if (instance->li_lock == lock) 1833 return (instance); 1834 } 1835 return (NULL); 1836 } 1837 1838 static void 1839 witness_list_lock(struct lock_instance *instance) 1840 { 1841 struct lock_object *lock; 1842 1843 lock = instance->li_lock; 1844 printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ? 1845 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name); 1846 if (lock->lo_witness->w_name != lock->lo_name) 1847 printf(" (%s)", lock->lo_witness->w_name); 1848 printf(" r = %d (%p) locked @ %s:%d\n", 1849 instance->li_flags & LI_RECURSEMASK, lock, instance->li_file, 1850 instance->li_line); 1851 } 1852 1853 #ifdef DDB 1854 static int 1855 witness_thread_has_locks(struct thread *td) 1856 { 1857 1858 return (td->td_sleeplocks != NULL); 1859 } 1860 1861 static int 1862 witness_proc_has_locks(struct proc *p) 1863 { 1864 struct thread *td; 1865 1866 FOREACH_THREAD_IN_PROC(p, td) { 1867 if (witness_thread_has_locks(td)) 1868 return (1); 1869 } 1870 return (0); 1871 } 1872 #endif 1873 1874 int 1875 witness_list_locks(struct lock_list_entry **lock_list) 1876 { 1877 struct lock_list_entry *lle; 1878 int i, nheld; 1879 1880 nheld = 0; 1881 for (lle = *lock_list; lle != NULL; lle = lle->ll_next) 1882 for (i = lle->ll_count - 1; i >= 0; i--) { 1883 witness_list_lock(&lle->ll_children[i]); 1884 nheld++; 1885 } 1886 return (nheld); 1887 } 1888 1889 /* 1890 * This is a bit risky at best. We call this function when we have timed 1891 * out acquiring a spin lock, and we assume that the other CPU is stuck 1892 * with this lock held. So, we go groveling around in the other CPU's 1893 * per-cpu data to try to find the lock instance for this spin lock to 1894 * see when it was last acquired. 1895 */ 1896 void 1897 witness_display_spinlock(struct lock_object *lock, struct thread *owner) 1898 { 1899 struct lock_instance *instance; 1900 struct pcpu *pc; 1901 1902 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU) 1903 return; 1904 pc = pcpu_find(owner->td_oncpu); 1905 instance = find_instance(pc->pc_spinlocks, lock); 1906 if (instance != NULL) 1907 witness_list_lock(instance); 1908 } 1909 1910 void 1911 witness_save(struct lock_object *lock, const char **filep, int *linep) 1912 { 1913 struct lock_list_entry *lock_list; 1914 struct lock_instance *instance; 1915 struct lock_class *class; 1916 1917 KASSERT(!witness_cold, ("%s: witness_cold", __func__)); 1918 if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL) 1919 return; 1920 class = LOCK_CLASS(lock); 1921 if (class->lc_flags & LC_SLEEPLOCK) 1922 lock_list = curthread->td_sleeplocks; 1923 else { 1924 if (witness_skipspin) 1925 return; 1926 lock_list = PCPU_GET(spinlocks); 1927 } 1928 instance = find_instance(lock_list, lock); 1929 if (instance == NULL) 1930 panic("%s: lock (%s) %s not locked", __func__, 1931 class->lc_name, lock->lo_name); 1932 *filep = instance->li_file; 1933 *linep = instance->li_line; 1934 } 1935 1936 void 1937 witness_restore(struct lock_object *lock, const char *file, int line) 1938 { 1939 struct lock_list_entry *lock_list; 1940 struct lock_instance *instance; 1941 struct lock_class *class; 1942 1943 KASSERT(!witness_cold, ("%s: witness_cold", __func__)); 1944 if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL) 1945 return; 1946 class = LOCK_CLASS(lock); 1947 if (class->lc_flags & LC_SLEEPLOCK) 1948 lock_list = curthread->td_sleeplocks; 1949 else { 1950 if (witness_skipspin) 1951 return; 1952 lock_list = PCPU_GET(spinlocks); 1953 } 1954 instance = find_instance(lock_list, lock); 1955 if (instance == NULL) 1956 panic("%s: lock (%s) %s not locked", __func__, 1957 class->lc_name, lock->lo_name); 1958 lock->lo_witness->w_file = file; 1959 lock->lo_witness->w_line = line; 1960 instance->li_file = file; 1961 instance->li_line = line; 1962 } 1963 1964 void 1965 witness_assert(struct lock_object *lock, int flags, const char *file, int line) 1966 { 1967 #ifdef INVARIANT_SUPPORT 1968 struct lock_instance *instance; 1969 struct lock_class *class; 1970 1971 if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL) 1972 return; 1973 class = LOCK_CLASS(lock); 1974 if ((class->lc_flags & LC_SLEEPLOCK) != 0) 1975 instance = find_instance(curthread->td_sleeplocks, lock); 1976 else if ((class->lc_flags & LC_SPINLOCK) != 0) 1977 instance = find_instance(PCPU_GET(spinlocks), lock); 1978 else { 1979 panic("Lock (%s) %s is not sleep or spin!", 1980 class->lc_name, lock->lo_name); 1981 } 1982 file = fixup_filename(file); 1983 switch (flags) { 1984 case LA_UNLOCKED: 1985 if (instance != NULL) 1986 panic("Lock (%s) %s locked @ %s:%d.", 1987 class->lc_name, lock->lo_name, file, line); 1988 break; 1989 case LA_LOCKED: 1990 case LA_LOCKED | LA_RECURSED: 1991 case LA_LOCKED | LA_NOTRECURSED: 1992 case LA_SLOCKED: 1993 case LA_SLOCKED | LA_RECURSED: 1994 case LA_SLOCKED | LA_NOTRECURSED: 1995 case LA_XLOCKED: 1996 case LA_XLOCKED | LA_RECURSED: 1997 case LA_XLOCKED | LA_NOTRECURSED: 1998 if (instance == NULL) { 1999 panic("Lock (%s) %s not locked @ %s:%d.", 2000 class->lc_name, lock->lo_name, file, line); 2001 break; 2002 } 2003 if ((flags & LA_XLOCKED) != 0 && 2004 (instance->li_flags & LI_EXCLUSIVE) == 0) 2005 panic("Lock (%s) %s not exclusively locked @ %s:%d.", 2006 class->lc_name, lock->lo_name, file, line); 2007 if ((flags & LA_SLOCKED) != 0 && 2008 (instance->li_flags & LI_EXCLUSIVE) != 0) 2009 panic("Lock (%s) %s exclusively locked @ %s:%d.", 2010 class->lc_name, lock->lo_name, file, line); 2011 if ((flags & LA_RECURSED) != 0 && 2012 (instance->li_flags & LI_RECURSEMASK) == 0) 2013 panic("Lock (%s) %s not recursed @ %s:%d.", 2014 class->lc_name, lock->lo_name, file, line); 2015 if ((flags & LA_NOTRECURSED) != 0 && 2016 (instance->li_flags & LI_RECURSEMASK) != 0) 2017 panic("Lock (%s) %s recursed @ %s:%d.", 2018 class->lc_name, lock->lo_name, file, line); 2019 break; 2020 default: 2021 panic("Invalid lock assertion at %s:%d.", file, line); 2022 2023 } 2024 #endif /* INVARIANT_SUPPORT */ 2025 } 2026 2027 #ifdef DDB 2028 static void 2029 witness_list(struct thread *td) 2030 { 2031 2032 KASSERT(!witness_cold, ("%s: witness_cold", __func__)); 2033 KASSERT(kdb_active, ("%s: not in the debugger", __func__)); 2034 2035 if (witness_watch == 0) 2036 return; 2037 2038 witness_list_locks(&td->td_sleeplocks); 2039 2040 /* 2041 * We only handle spinlocks if td == curthread. This is somewhat broken 2042 * if td is currently executing on some other CPU and holds spin locks 2043 * as we won't display those locks. If we had a MI way of getting 2044 * the per-cpu data for a given cpu then we could use 2045 * td->td_oncpu to get the list of spinlocks for this thread 2046 * and "fix" this. 2047 * 2048 * That still wouldn't really fix this unless we locked the scheduler 2049 * lock or stopped the other CPU to make sure it wasn't changing the 2050 * list out from under us. It is probably best to just not try to 2051 * handle threads on other CPU's for now. 2052 */ 2053 if (td == curthread && PCPU_GET(spinlocks) != NULL) 2054 witness_list_locks(PCPU_PTR(spinlocks)); 2055 } 2056 2057 DB_SHOW_COMMAND(locks, db_witness_list) 2058 { 2059 struct thread *td; 2060 2061 if (have_addr) 2062 td = db_lookup_thread(addr, TRUE); 2063 else 2064 td = kdb_thread; 2065 witness_list(td); 2066 } 2067 2068 DB_SHOW_COMMAND(alllocks, db_witness_list_all) 2069 { 2070 struct thread *td; 2071 struct proc *p; 2072 2073 /* 2074 * It would be nice to list only threads and processes that actually 2075 * held sleep locks, but that information is currently not exported 2076 * by WITNESS. 2077 */ 2078 FOREACH_PROC_IN_SYSTEM(p) { 2079 if (!witness_proc_has_locks(p)) 2080 continue; 2081 FOREACH_THREAD_IN_PROC(p, td) { 2082 if (!witness_thread_has_locks(td)) 2083 continue; 2084 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid, 2085 td->td_name, td, td->td_tid); 2086 witness_list(td); 2087 } 2088 } 2089 } 2090 2091 DB_SHOW_COMMAND(witness, db_witness_display) 2092 { 2093 2094 witness_display(db_printf); 2095 } 2096 #endif 2097