xref: /freebsd/sys/kern/subr_witness.c (revision c93b6e5fa24ba172ab271432c6692f9cc604e15a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36 
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42 
43 /*
44  *	Main Entry: witness
45  *	Pronunciation: 'wit-n&s
46  *	Function: noun
47  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *	    testimony, witness, from 2wit
49  *	Date: before 12th century
50  *	1 : attestation of a fact or event : TESTIMONY
51  *	2 : one that gives evidence; specifically : one who testifies in
52  *	    a cause or before a judicial tribunal
53  *	3 : one asked to be present at a transaction so as to be able to
54  *	    testify to its having taken place
55  *	4 : one who has personal knowledge of something
56  *	5 a : something serving as evidence or proof : SIGN
57  *	  b : public affirmation by word or example of usually
58  *	      religious faith or conviction <the heroic witness to divine
59  *	      life -- Pilot>
60  *	6 capitalized : a member of the Jehovah's Witnesses
61  */
62 
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88 
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91 
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96 
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113 
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117 
118 #include <machine/stdarg.h>
119 
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123 
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define	KTR_WITNESS	KTR_SUBSYS
127 #else
128 #define	KTR_WITNESS	0
129 #endif
130 
131 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
132 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
133 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
134 
135 /* Define this to check for blessed mutexes */
136 #undef BLESSING
137 
138 #ifndef WITNESS_COUNT
139 #define	WITNESS_COUNT 		1536
140 #endif
141 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
142 #define	WITNESS_PENDLIST	(512 + (MAXCPU * 4))
143 
144 /* Allocate 256 KB of stack data space */
145 #define	WITNESS_LO_DATA_COUNT	2048
146 
147 /* Prime, gives load factor of ~2 at full load */
148 #define	WITNESS_LO_HASH_SIZE	1021
149 
150 /*
151  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
152  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
153  * probably be safe for the most part, but it's still a SWAG.
154  */
155 #define	LOCK_NCHILDREN	5
156 #define	LOCK_CHILDCOUNT	2048
157 
158 #define	MAX_W_NAME	64
159 
160 #define	FULLGRAPH_SBUF_SIZE	512
161 
162 /*
163  * These flags go in the witness relationship matrix and describe the
164  * relationship between any two struct witness objects.
165  */
166 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
167 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
168 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
169 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
170 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
171 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
172 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
173 #define	WITNESS_RELATED_MASK						\
174 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
175 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
176 					  * observed. */
177 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
178 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
179 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
180 
181 /* Descendant to ancestor flags */
182 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
183 
184 /* Ancestor to descendant flags */
185 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
186 
187 #define	WITNESS_INDEX_ASSERT(i)						\
188 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
189 
190 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
191 
192 /*
193  * Lock instances.  A lock instance is the data associated with a lock while
194  * it is held by witness.  For example, a lock instance will hold the
195  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
196  * are held in a per-cpu list while sleep locks are held in per-thread list.
197  */
198 struct lock_instance {
199 	struct lock_object	*li_lock;
200 	const char		*li_file;
201 	int			li_line;
202 	u_int			li_flags;
203 };
204 
205 /*
206  * A simple list type used to build the list of locks held by a thread
207  * or CPU.  We can't simply embed the list in struct lock_object since a
208  * lock may be held by more than one thread if it is a shared lock.  Locks
209  * are added to the head of the list, so we fill up each list entry from
210  * "the back" logically.  To ease some of the arithmetic, we actually fill
211  * in each list entry the normal way (children[0] then children[1], etc.) but
212  * when we traverse the list we read children[count-1] as the first entry
213  * down to children[0] as the final entry.
214  */
215 struct lock_list_entry {
216 	struct lock_list_entry	*ll_next;
217 	struct lock_instance	ll_children[LOCK_NCHILDREN];
218 	u_int			ll_count;
219 };
220 
221 /*
222  * The main witness structure. One of these per named lock type in the system
223  * (for example, "vnode interlock").
224  */
225 struct witness {
226 	char  			w_name[MAX_W_NAME];
227 	uint32_t 		w_index;  /* Index in the relationship matrix */
228 	struct lock_class	*w_class;
229 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
230 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
231 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
232 	const char		*w_file; /* File where last acquired */
233 	uint32_t 		w_line; /* Line where last acquired */
234 	uint32_t 		w_refcount;
235 	uint16_t 		w_num_ancestors; /* direct/indirect
236 						  * ancestor count */
237 	uint16_t 		w_num_descendants; /* direct/indirect
238 						    * descendant count */
239 	int16_t 		w_ddb_level;
240 	unsigned		w_displayed:1;
241 	unsigned		w_reversed:1;
242 };
243 
244 STAILQ_HEAD(witness_list, witness);
245 
246 /*
247  * The witness hash table. Keys are witness names (const char *), elements are
248  * witness objects (struct witness *).
249  */
250 struct witness_hash {
251 	struct witness	*wh_array[WITNESS_HASH_SIZE];
252 	uint32_t	wh_size;
253 	uint32_t	wh_count;
254 };
255 
256 /*
257  * Key type for the lock order data hash table.
258  */
259 struct witness_lock_order_key {
260 	uint16_t	from;
261 	uint16_t	to;
262 };
263 
264 struct witness_lock_order_data {
265 	struct stack			wlod_stack;
266 	struct witness_lock_order_key	wlod_key;
267 	struct witness_lock_order_data	*wlod_next;
268 };
269 
270 /*
271  * The witness lock order data hash table. Keys are witness index tuples
272  * (struct witness_lock_order_key), elements are lock order data objects
273  * (struct witness_lock_order_data).
274  */
275 struct witness_lock_order_hash {
276 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
277 	u_int	wloh_size;
278 	u_int	wloh_count;
279 };
280 
281 #ifdef BLESSING
282 struct witness_blessed {
283 	const char	*b_lock1;
284 	const char	*b_lock2;
285 };
286 #endif
287 
288 struct witness_pendhelp {
289 	const char		*wh_type;
290 	struct lock_object	*wh_lock;
291 };
292 
293 struct witness_order_list_entry {
294 	const char		*w_name;
295 	struct lock_class	*w_class;
296 };
297 
298 /*
299  * Returns 0 if one of the locks is a spin lock and the other is not.
300  * Returns 1 otherwise.
301  */
302 static __inline int
303 witness_lock_type_equal(struct witness *w1, struct witness *w2)
304 {
305 
306 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
307 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
308 }
309 
310 static __inline int
311 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
312     const struct witness_lock_order_key *b)
313 {
314 
315 	return (a->from == b->from && a->to == b->to);
316 }
317 
318 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
319 		    const char *fname);
320 static void	adopt(struct witness *parent, struct witness *child);
321 #ifdef BLESSING
322 static int	blessed(struct witness *, struct witness *);
323 #endif
324 static void	depart(struct witness *w);
325 static struct witness	*enroll(const char *description,
326 			    struct lock_class *lock_class);
327 static struct lock_instance	*find_instance(struct lock_list_entry *list,
328 				    const struct lock_object *lock);
329 static int	isitmychild(struct witness *parent, struct witness *child);
330 static int	isitmydescendant(struct witness *parent, struct witness *child);
331 static void	itismychild(struct witness *parent, struct witness *child);
332 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
333 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
334 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
335 static int	sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
336 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
337 #ifdef DDB
338 static void	witness_ddb_compute_levels(void);
339 static void	witness_ddb_display(int(*)(const char *fmt, ...));
340 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
341 		    struct witness *, int indent);
342 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
343 		    struct witness_list *list);
344 static void	witness_ddb_level_descendants(struct witness *parent, int l);
345 static void	witness_ddb_list(struct thread *td);
346 #endif
347 static void	witness_debugger(int cond, const char *msg);
348 static void	witness_free(struct witness *m);
349 static struct witness	*witness_get(void);
350 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
351 static struct witness	*witness_hash_get(const char *key);
352 static void	witness_hash_put(struct witness *w);
353 static void	witness_init_hash_tables(void);
354 static void	witness_increment_graph_generation(void);
355 static void	witness_lock_list_free(struct lock_list_entry *lle);
356 static struct lock_list_entry	*witness_lock_list_get(void);
357 static int	witness_lock_order_add(struct witness *parent,
358 		    struct witness *child);
359 static int	witness_lock_order_check(struct witness *parent,
360 		    struct witness *child);
361 static struct witness_lock_order_data	*witness_lock_order_get(
362 					    struct witness *parent,
363 					    struct witness *child);
364 static void	witness_list_lock(struct lock_instance *instance,
365 		    int (*prnt)(const char *fmt, ...));
366 static int	witness_output(const char *fmt, ...) __printflike(1, 2);
367 static int	witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
368 static void	witness_setflag(struct lock_object *lock, int flag, int set);
369 
370 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
371     "Witness Locking");
372 
373 /*
374  * If set to 0, lock order checking is disabled.  If set to -1,
375  * witness is completely disabled.  Otherwise witness performs full
376  * lock order checking for all locks.  At runtime, lock order checking
377  * may be toggled.  However, witness cannot be reenabled once it is
378  * completely disabled.
379  */
380 static int witness_watch = 1;
381 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
382     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
383 
384 #ifdef KDB
385 /*
386  * When KDB is enabled and witness_kdb is 1, it will cause the system
387  * to drop into kdebug() when:
388  *	- a lock hierarchy violation occurs
389  *	- locks are held when going to sleep.
390  */
391 #ifdef WITNESS_KDB
392 int	witness_kdb = 1;
393 #else
394 int	witness_kdb = 0;
395 #endif
396 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
397 #endif /* KDB */
398 
399 #if defined(DDB) || defined(KDB)
400 /*
401  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
402  * to print a stack trace:
403  *	- a lock hierarchy violation occurs
404  *	- locks are held when going to sleep.
405  */
406 int	witness_trace = 1;
407 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
408 #endif /* DDB || KDB */
409 
410 #ifdef WITNESS_SKIPSPIN
411 int	witness_skipspin = 1;
412 #else
413 int	witness_skipspin = 0;
414 #endif
415 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
416 
417 int badstack_sbuf_size;
418 
419 int witness_count = WITNESS_COUNT;
420 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
421     &witness_count, 0, "");
422 
423 /*
424  * Output channel for witness messages.  By default we print to the console.
425  */
426 enum witness_channel {
427 	WITNESS_CONSOLE,
428 	WITNESS_LOG,
429 	WITNESS_NONE,
430 };
431 
432 static enum witness_channel witness_channel = WITNESS_CONSOLE;
433 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
434     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
435     "Output channel for warnings");
436 
437 /*
438  * Call this to print out the relations between locks.
439  */
440 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
441     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
442 
443 /*
444  * Call this to print out the witness faulty stacks.
445  */
446 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
447     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
448 
449 static struct mtx w_mtx;
450 
451 /* w_list */
452 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
453 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
454 
455 /* w_typelist */
456 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
457 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
458 
459 /* lock list */
460 static struct lock_list_entry *w_lock_list_free = NULL;
461 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
462 static u_int pending_cnt;
463 
464 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
465 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
466 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
467 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
468     "");
469 
470 static struct witness *w_data;
471 static uint8_t **w_rmatrix;
472 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
473 static struct witness_hash w_hash;	/* The witness hash table. */
474 
475 /* The lock order data hash */
476 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
477 static struct witness_lock_order_data *w_lofree = NULL;
478 static struct witness_lock_order_hash w_lohash;
479 static int w_max_used_index = 0;
480 static unsigned int w_generation = 0;
481 static const char w_notrunning[] = "Witness not running\n";
482 static const char w_stillcold[] = "Witness is still cold\n";
483 #ifdef __i386__
484 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
485 #endif
486 
487 static struct witness_order_list_entry order_lists[] = {
488 	/*
489 	 * sx locks
490 	 */
491 	{ "proctree", &lock_class_sx },
492 	{ "allproc", &lock_class_sx },
493 	{ "allprison", &lock_class_sx },
494 	{ NULL, NULL },
495 	/*
496 	 * Various mutexes
497 	 */
498 	{ "Giant", &lock_class_mtx_sleep },
499 	{ "pipe mutex", &lock_class_mtx_sleep },
500 	{ "sigio lock", &lock_class_mtx_sleep },
501 	{ "process group", &lock_class_mtx_sleep },
502 #ifdef	HWPMC_HOOKS
503 	{ "pmc-sleep", &lock_class_mtx_sleep },
504 #endif
505 	{ "process lock", &lock_class_mtx_sleep },
506 	{ "session", &lock_class_mtx_sleep },
507 	{ "uidinfo hash", &lock_class_rw },
508 	{ "time lock", &lock_class_mtx_sleep },
509 	{ NULL, NULL },
510 	/*
511 	 * umtx
512 	 */
513 	{ "umtx lock", &lock_class_mtx_sleep },
514 	{ NULL, NULL },
515 	/*
516 	 * Sockets
517 	 */
518 	{ "accept", &lock_class_mtx_sleep },
519 	{ "so_snd", &lock_class_mtx_sleep },
520 	{ "so_rcv", &lock_class_mtx_sleep },
521 	{ "sellck", &lock_class_mtx_sleep },
522 	{ NULL, NULL },
523 	/*
524 	 * Routing
525 	 */
526 	{ "so_rcv", &lock_class_mtx_sleep },
527 	{ "radix node head", &lock_class_rm },
528 	{ "rtentry", &lock_class_mtx_sleep },
529 	{ "ifaddr", &lock_class_mtx_sleep },
530 	{ NULL, NULL },
531 	/*
532 	 * IPv4 multicast:
533 	 * protocol locks before interface locks, after UDP locks.
534 	 */
535 	{ "in_multi_sx", &lock_class_sx },
536 	{ "udpinp", &lock_class_rw },
537 	{ "in_multi_list_mtx", &lock_class_mtx_sleep },
538 	{ "igmp_mtx", &lock_class_mtx_sleep },
539 	{ "ifnet_rw", &lock_class_rw },
540 	{ "if_addr_lock", &lock_class_mtx_sleep },
541 	{ NULL, NULL },
542 	/*
543 	 * IPv6 multicast:
544 	 * protocol locks before interface locks, after UDP locks.
545 	 */
546 	{ "in6_multi_sx", &lock_class_sx },
547 	{ "udpinp", &lock_class_rw },
548 	{ "in6_multi_list_mtx", &lock_class_mtx_sleep },
549 	{ "mld_mtx", &lock_class_mtx_sleep },
550 	{ "ifnet_rw", &lock_class_rw },
551 	{ "if_addr_lock", &lock_class_mtx_sleep },
552 	{ NULL, NULL },
553 	/*
554 	 * UNIX Domain Sockets
555 	 */
556 	{ "unp_link_rwlock", &lock_class_rw },
557 	{ "unp_list_lock", &lock_class_mtx_sleep },
558 	{ "unp", &lock_class_mtx_sleep },
559 	{ "so_snd", &lock_class_mtx_sleep },
560 	{ NULL, NULL },
561 	/*
562 	 * UDP/IP
563 	 */
564 	{ "udp", &lock_class_mtx_sleep },
565 	{ "udpinp", &lock_class_rw },
566 	{ "so_snd", &lock_class_mtx_sleep },
567 	{ NULL, NULL },
568 	/*
569 	 * TCP/IP
570 	 */
571 	{ "tcp", &lock_class_mtx_sleep },
572 	{ "tcpinp", &lock_class_rw },
573 	{ "so_snd", &lock_class_mtx_sleep },
574 	{ NULL, NULL },
575 	/*
576 	 * BPF
577 	 */
578 	{ "bpf global lock", &lock_class_sx },
579 	{ "bpf cdev lock", &lock_class_mtx_sleep },
580 	{ NULL, NULL },
581 	/*
582 	 * NFS server
583 	 */
584 	{ "nfsd_mtx", &lock_class_mtx_sleep },
585 	{ "so_snd", &lock_class_mtx_sleep },
586 	{ NULL, NULL },
587 
588 	/*
589 	 * IEEE 802.11
590 	 */
591 	{ "802.11 com lock", &lock_class_mtx_sleep},
592 	{ NULL, NULL },
593 	/*
594 	 * Network drivers
595 	 */
596 	{ "network driver", &lock_class_mtx_sleep},
597 	{ NULL, NULL },
598 
599 	/*
600 	 * Netgraph
601 	 */
602 	{ "ng_node", &lock_class_mtx_sleep },
603 	{ "ng_worklist", &lock_class_mtx_sleep },
604 	{ NULL, NULL },
605 	/*
606 	 * CDEV
607 	 */
608 	{ "vm map (system)", &lock_class_mtx_sleep },
609 	{ "vnode interlock", &lock_class_mtx_sleep },
610 	{ "cdev", &lock_class_mtx_sleep },
611 	{ NULL, NULL },
612 	/*
613 	 * VM
614 	 */
615 	{ "vm map (user)", &lock_class_sx },
616 	{ "vm object", &lock_class_rw },
617 	{ "vm page", &lock_class_mtx_sleep },
618 	{ "pmap pv global", &lock_class_rw },
619 	{ "pmap", &lock_class_mtx_sleep },
620 	{ "pmap pv list", &lock_class_rw },
621 	{ "vm page free queue", &lock_class_mtx_sleep },
622 	{ "vm pagequeue", &lock_class_mtx_sleep },
623 	{ NULL, NULL },
624 	/*
625 	 * kqueue/VFS interaction
626 	 */
627 	{ "kqueue", &lock_class_mtx_sleep },
628 	{ "struct mount mtx", &lock_class_mtx_sleep },
629 	{ "vnode interlock", &lock_class_mtx_sleep },
630 	{ NULL, NULL },
631 	/*
632 	 * VFS namecache
633 	 */
634 	{ "ncvn", &lock_class_mtx_sleep },
635 	{ "ncbuc", &lock_class_rw },
636 	{ "vnode interlock", &lock_class_mtx_sleep },
637 	{ "ncneg", &lock_class_mtx_sleep },
638 	{ NULL, NULL },
639 	/*
640 	 * ZFS locking
641 	 */
642 	{ "dn->dn_mtx", &lock_class_sx },
643 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
644 	{ "db->db_mtx", &lock_class_sx },
645 	{ NULL, NULL },
646 	/*
647 	 * TCP log locks
648 	 */
649 	{ "TCP ID tree", &lock_class_rw },
650 	{ "tcp log id bucket", &lock_class_mtx_sleep },
651 	{ "tcpinp", &lock_class_rw },
652 	{ "TCP log expireq", &lock_class_mtx_sleep },
653 	{ NULL, NULL },
654 	/*
655 	 * spin locks
656 	 */
657 #ifdef SMP
658 	{ "ap boot", &lock_class_mtx_spin },
659 #endif
660 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
661 	{ "sio", &lock_class_mtx_spin },
662 #ifdef __i386__
663 	{ "cy", &lock_class_mtx_spin },
664 #endif
665 #ifdef __sparc64__
666 	{ "pcib_mtx", &lock_class_mtx_spin },
667 	{ "rtc_mtx", &lock_class_mtx_spin },
668 #endif
669 	{ "scc_hwmtx", &lock_class_mtx_spin },
670 	{ "uart_hwmtx", &lock_class_mtx_spin },
671 	{ "fast_taskqueue", &lock_class_mtx_spin },
672 	{ "intr table", &lock_class_mtx_spin },
673 	{ "process slock", &lock_class_mtx_spin },
674 	{ "syscons video lock", &lock_class_mtx_spin },
675 	{ "sleepq chain", &lock_class_mtx_spin },
676 	{ "rm_spinlock", &lock_class_mtx_spin },
677 	{ "turnstile chain", &lock_class_mtx_spin },
678 	{ "turnstile lock", &lock_class_mtx_spin },
679 	{ "sched lock", &lock_class_mtx_spin },
680 	{ "td_contested", &lock_class_mtx_spin },
681 	{ "callout", &lock_class_mtx_spin },
682 	{ "entropy harvest mutex", &lock_class_mtx_spin },
683 #ifdef SMP
684 	{ "smp rendezvous", &lock_class_mtx_spin },
685 #endif
686 #ifdef __powerpc__
687 	{ "tlb0", &lock_class_mtx_spin },
688 #endif
689 	{ NULL, NULL },
690 	{ "sched lock", &lock_class_mtx_spin },
691 #ifdef	HWPMC_HOOKS
692 	{ "pmc-per-proc", &lock_class_mtx_spin },
693 #endif
694 	{ NULL, NULL },
695 	/*
696 	 * leaf locks
697 	 */
698 	{ "intrcnt", &lock_class_mtx_spin },
699 	{ "icu", &lock_class_mtx_spin },
700 #if defined(SMP) && defined(__sparc64__)
701 	{ "ipi", &lock_class_mtx_spin },
702 #endif
703 #ifdef __i386__
704 	{ "allpmaps", &lock_class_mtx_spin },
705 	{ "descriptor tables", &lock_class_mtx_spin },
706 #endif
707 	{ "clk", &lock_class_mtx_spin },
708 	{ "cpuset", &lock_class_mtx_spin },
709 	{ "mprof lock", &lock_class_mtx_spin },
710 	{ "zombie lock", &lock_class_mtx_spin },
711 	{ "ALD Queue", &lock_class_mtx_spin },
712 #if defined(__i386__) || defined(__amd64__)
713 	{ "pcicfg", &lock_class_mtx_spin },
714 	{ "NDIS thread lock", &lock_class_mtx_spin },
715 #endif
716 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
717 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
718 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
719 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
720 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
721 #ifdef	HWPMC_HOOKS
722 	{ "pmc-leaf", &lock_class_mtx_spin },
723 #endif
724 	{ "blocked lock", &lock_class_mtx_spin },
725 	{ NULL, NULL },
726 	{ NULL, NULL }
727 };
728 
729 #ifdef BLESSING
730 /*
731  * Pairs of locks which have been blessed
732  * Don't complain about order problems with blessed locks
733  */
734 static struct witness_blessed blessed_list[] = {
735 };
736 #endif
737 
738 /*
739  * This global is set to 0 once it becomes safe to use the witness code.
740  */
741 static int witness_cold = 1;
742 
743 /*
744  * This global is set to 1 once the static lock orders have been enrolled
745  * so that a warning can be issued for any spin locks enrolled later.
746  */
747 static int witness_spin_warn = 0;
748 
749 /* Trim useless garbage from filenames. */
750 static const char *
751 fixup_filename(const char *file)
752 {
753 
754 	if (file == NULL)
755 		return (NULL);
756 	while (strncmp(file, "../", 3) == 0)
757 		file += 3;
758 	return (file);
759 }
760 
761 /*
762  * Calculate the size of early witness structures.
763  */
764 int
765 witness_startup_count(void)
766 {
767 	int sz;
768 
769 	sz = sizeof(struct witness) * witness_count;
770 	sz += sizeof(*w_rmatrix) * (witness_count + 1);
771 	sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
772 	    (witness_count + 1);
773 
774 	return (sz);
775 }
776 
777 /*
778  * The WITNESS-enabled diagnostic code.  Note that the witness code does
779  * assume that the early boot is single-threaded at least until after this
780  * routine is completed.
781  */
782 void
783 witness_startup(void *mem)
784 {
785 	struct lock_object *lock;
786 	struct witness_order_list_entry *order;
787 	struct witness *w, *w1;
788 	uintptr_t p;
789 	int i;
790 
791 	p = (uintptr_t)mem;
792 	w_data = (void *)p;
793 	p += sizeof(struct witness) * witness_count;
794 
795 	w_rmatrix = (void *)p;
796 	p += sizeof(*w_rmatrix) * (witness_count + 1);
797 
798 	for (i = 0; i < witness_count + 1; i++) {
799 		w_rmatrix[i] = (void *)p;
800 		p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
801 	}
802 	badstack_sbuf_size = witness_count * 256;
803 
804 	/*
805 	 * We have to release Giant before initializing its witness
806 	 * structure so that WITNESS doesn't get confused.
807 	 */
808 	mtx_unlock(&Giant);
809 	mtx_assert(&Giant, MA_NOTOWNED);
810 
811 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
812 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
813 	    MTX_NOWITNESS | MTX_NOPROFILE);
814 	for (i = witness_count - 1; i >= 0; i--) {
815 		w = &w_data[i];
816 		memset(w, 0, sizeof(*w));
817 		w_data[i].w_index = i;	/* Witness index never changes. */
818 		witness_free(w);
819 	}
820 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
821 	    ("%s: Invalid list of free witness objects", __func__));
822 
823 	/* Witness with index 0 is not used to aid in debugging. */
824 	STAILQ_REMOVE_HEAD(&w_free, w_list);
825 	w_free_cnt--;
826 
827 	for (i = 0; i < witness_count; i++) {
828 		memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
829 		    (witness_count + 1));
830 	}
831 
832 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
833 		witness_lock_list_free(&w_locklistdata[i]);
834 	witness_init_hash_tables();
835 
836 	/* First add in all the specified order lists. */
837 	for (order = order_lists; order->w_name != NULL; order++) {
838 		w = enroll(order->w_name, order->w_class);
839 		if (w == NULL)
840 			continue;
841 		w->w_file = "order list";
842 		for (order++; order->w_name != NULL; order++) {
843 			w1 = enroll(order->w_name, order->w_class);
844 			if (w1 == NULL)
845 				continue;
846 			w1->w_file = "order list";
847 			itismychild(w, w1);
848 			w = w1;
849 		}
850 	}
851 	witness_spin_warn = 1;
852 
853 	/* Iterate through all locks and add them to witness. */
854 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
855 		lock = pending_locks[i].wh_lock;
856 		KASSERT(lock->lo_flags & LO_WITNESS,
857 		    ("%s: lock %s is on pending list but not LO_WITNESS",
858 		    __func__, lock->lo_name));
859 		lock->lo_witness = enroll(pending_locks[i].wh_type,
860 		    LOCK_CLASS(lock));
861 	}
862 
863 	/* Mark the witness code as being ready for use. */
864 	witness_cold = 0;
865 
866 	mtx_lock(&Giant);
867 }
868 
869 void
870 witness_init(struct lock_object *lock, const char *type)
871 {
872 	struct lock_class *class;
873 
874 	/* Various sanity checks. */
875 	class = LOCK_CLASS(lock);
876 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
877 	    (class->lc_flags & LC_RECURSABLE) == 0)
878 		kassert_panic("%s: lock (%s) %s can not be recursable",
879 		    __func__, class->lc_name, lock->lo_name);
880 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
881 	    (class->lc_flags & LC_SLEEPABLE) == 0)
882 		kassert_panic("%s: lock (%s) %s can not be sleepable",
883 		    __func__, class->lc_name, lock->lo_name);
884 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
885 	    (class->lc_flags & LC_UPGRADABLE) == 0)
886 		kassert_panic("%s: lock (%s) %s can not be upgradable",
887 		    __func__, class->lc_name, lock->lo_name);
888 
889 	/*
890 	 * If we shouldn't watch this lock, then just clear lo_witness.
891 	 * Otherwise, if witness_cold is set, then it is too early to
892 	 * enroll this lock, so defer it to witness_initialize() by adding
893 	 * it to the pending_locks list.  If it is not too early, then enroll
894 	 * the lock now.
895 	 */
896 	if (witness_watch < 1 || panicstr != NULL ||
897 	    (lock->lo_flags & LO_WITNESS) == 0)
898 		lock->lo_witness = NULL;
899 	else if (witness_cold) {
900 		pending_locks[pending_cnt].wh_lock = lock;
901 		pending_locks[pending_cnt++].wh_type = type;
902 		if (pending_cnt > WITNESS_PENDLIST)
903 			panic("%s: pending locks list is too small, "
904 			    "increase WITNESS_PENDLIST\n",
905 			    __func__);
906 	} else
907 		lock->lo_witness = enroll(type, class);
908 }
909 
910 void
911 witness_destroy(struct lock_object *lock)
912 {
913 	struct lock_class *class;
914 	struct witness *w;
915 
916 	class = LOCK_CLASS(lock);
917 
918 	if (witness_cold)
919 		panic("lock (%s) %s destroyed while witness_cold",
920 		    class->lc_name, lock->lo_name);
921 
922 	/* XXX: need to verify that no one holds the lock */
923 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
924 		return;
925 	w = lock->lo_witness;
926 
927 	mtx_lock_spin(&w_mtx);
928 	MPASS(w->w_refcount > 0);
929 	w->w_refcount--;
930 
931 	if (w->w_refcount == 0)
932 		depart(w);
933 	mtx_unlock_spin(&w_mtx);
934 }
935 
936 #ifdef DDB
937 static void
938 witness_ddb_compute_levels(void)
939 {
940 	struct witness *w;
941 
942 	/*
943 	 * First clear all levels.
944 	 */
945 	STAILQ_FOREACH(w, &w_all, w_list)
946 		w->w_ddb_level = -1;
947 
948 	/*
949 	 * Look for locks with no parents and level all their descendants.
950 	 */
951 	STAILQ_FOREACH(w, &w_all, w_list) {
952 
953 		/* If the witness has ancestors (is not a root), skip it. */
954 		if (w->w_num_ancestors > 0)
955 			continue;
956 		witness_ddb_level_descendants(w, 0);
957 	}
958 }
959 
960 static void
961 witness_ddb_level_descendants(struct witness *w, int l)
962 {
963 	int i;
964 
965 	if (w->w_ddb_level >= l)
966 		return;
967 
968 	w->w_ddb_level = l;
969 	l++;
970 
971 	for (i = 1; i <= w_max_used_index; i++) {
972 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
973 			witness_ddb_level_descendants(&w_data[i], l);
974 	}
975 }
976 
977 static void
978 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
979     struct witness *w, int indent)
980 {
981 	int i;
982 
983  	for (i = 0; i < indent; i++)
984  		prnt(" ");
985 	prnt("%s (type: %s, depth: %d, active refs: %d)",
986 	     w->w_name, w->w_class->lc_name,
987 	     w->w_ddb_level, w->w_refcount);
988  	if (w->w_displayed) {
989  		prnt(" -- (already displayed)\n");
990  		return;
991  	}
992  	w->w_displayed = 1;
993 	if (w->w_file != NULL && w->w_line != 0)
994 		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
995 		    w->w_line);
996 	else
997 		prnt(" -- never acquired\n");
998 	indent++;
999 	WITNESS_INDEX_ASSERT(w->w_index);
1000 	for (i = 1; i <= w_max_used_index; i++) {
1001 		if (db_pager_quit)
1002 			return;
1003 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1004 			witness_ddb_display_descendants(prnt, &w_data[i],
1005 			    indent);
1006 	}
1007 }
1008 
1009 static void
1010 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1011     struct witness_list *list)
1012 {
1013 	struct witness *w;
1014 
1015 	STAILQ_FOREACH(w, list, w_typelist) {
1016 		if (w->w_file == NULL || w->w_ddb_level > 0)
1017 			continue;
1018 
1019 		/* This lock has no anscestors - display its descendants. */
1020 		witness_ddb_display_descendants(prnt, w, 0);
1021 		if (db_pager_quit)
1022 			return;
1023 	}
1024 }
1025 
1026 static void
1027 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1028 {
1029 	struct witness *w;
1030 
1031 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1032 	witness_ddb_compute_levels();
1033 
1034 	/* Clear all the displayed flags. */
1035 	STAILQ_FOREACH(w, &w_all, w_list)
1036 		w->w_displayed = 0;
1037 
1038 	/*
1039 	 * First, handle sleep locks which have been acquired at least
1040 	 * once.
1041 	 */
1042 	prnt("Sleep locks:\n");
1043 	witness_ddb_display_list(prnt, &w_sleep);
1044 	if (db_pager_quit)
1045 		return;
1046 
1047 	/*
1048 	 * Now do spin locks which have been acquired at least once.
1049 	 */
1050 	prnt("\nSpin locks:\n");
1051 	witness_ddb_display_list(prnt, &w_spin);
1052 	if (db_pager_quit)
1053 		return;
1054 
1055 	/*
1056 	 * Finally, any locks which have not been acquired yet.
1057 	 */
1058 	prnt("\nLocks which were never acquired:\n");
1059 	STAILQ_FOREACH(w, &w_all, w_list) {
1060 		if (w->w_file != NULL || w->w_refcount == 0)
1061 			continue;
1062 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1063 		    w->w_class->lc_name, w->w_ddb_level);
1064 		if (db_pager_quit)
1065 			return;
1066 	}
1067 }
1068 #endif /* DDB */
1069 
1070 int
1071 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1072 {
1073 
1074 	if (witness_watch == -1 || panicstr != NULL)
1075 		return (0);
1076 
1077 	/* Require locks that witness knows about. */
1078 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1079 	    lock2->lo_witness == NULL)
1080 		return (EINVAL);
1081 
1082 	mtx_assert(&w_mtx, MA_NOTOWNED);
1083 	mtx_lock_spin(&w_mtx);
1084 
1085 	/*
1086 	 * If we already have either an explicit or implied lock order that
1087 	 * is the other way around, then return an error.
1088 	 */
1089 	if (witness_watch &&
1090 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1091 		mtx_unlock_spin(&w_mtx);
1092 		return (EDOOFUS);
1093 	}
1094 
1095 	/* Try to add the new order. */
1096 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1097 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1098 	itismychild(lock1->lo_witness, lock2->lo_witness);
1099 	mtx_unlock_spin(&w_mtx);
1100 	return (0);
1101 }
1102 
1103 void
1104 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1105     int line, struct lock_object *interlock)
1106 {
1107 	struct lock_list_entry *lock_list, *lle;
1108 	struct lock_instance *lock1, *lock2, *plock;
1109 	struct lock_class *class, *iclass;
1110 	struct witness *w, *w1;
1111 	struct thread *td;
1112 	int i, j;
1113 
1114 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1115 	    panicstr != NULL)
1116 		return;
1117 
1118 	w = lock->lo_witness;
1119 	class = LOCK_CLASS(lock);
1120 	td = curthread;
1121 
1122 	if (class->lc_flags & LC_SLEEPLOCK) {
1123 
1124 		/*
1125 		 * Since spin locks include a critical section, this check
1126 		 * implicitly enforces a lock order of all sleep locks before
1127 		 * all spin locks.
1128 		 */
1129 		if (td->td_critnest != 0 && !kdb_active)
1130 			kassert_panic("acquiring blockable sleep lock with "
1131 			    "spinlock or critical section held (%s) %s @ %s:%d",
1132 			    class->lc_name, lock->lo_name,
1133 			    fixup_filename(file), line);
1134 
1135 		/*
1136 		 * If this is the first lock acquired then just return as
1137 		 * no order checking is needed.
1138 		 */
1139 		lock_list = td->td_sleeplocks;
1140 		if (lock_list == NULL || lock_list->ll_count == 0)
1141 			return;
1142 	} else {
1143 
1144 		/*
1145 		 * If this is the first lock, just return as no order
1146 		 * checking is needed.  Avoid problems with thread
1147 		 * migration pinning the thread while checking if
1148 		 * spinlocks are held.  If at least one spinlock is held
1149 		 * the thread is in a safe path and it is allowed to
1150 		 * unpin it.
1151 		 */
1152 		sched_pin();
1153 		lock_list = PCPU_GET(spinlocks);
1154 		if (lock_list == NULL || lock_list->ll_count == 0) {
1155 			sched_unpin();
1156 			return;
1157 		}
1158 		sched_unpin();
1159 	}
1160 
1161 	/*
1162 	 * Check to see if we are recursing on a lock we already own.  If
1163 	 * so, make sure that we don't mismatch exclusive and shared lock
1164 	 * acquires.
1165 	 */
1166 	lock1 = find_instance(lock_list, lock);
1167 	if (lock1 != NULL) {
1168 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1169 		    (flags & LOP_EXCLUSIVE) == 0) {
1170 			witness_output("shared lock of (%s) %s @ %s:%d\n",
1171 			    class->lc_name, lock->lo_name,
1172 			    fixup_filename(file), line);
1173 			witness_output("while exclusively locked from %s:%d\n",
1174 			    fixup_filename(lock1->li_file), lock1->li_line);
1175 			kassert_panic("excl->share");
1176 		}
1177 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1178 		    (flags & LOP_EXCLUSIVE) != 0) {
1179 			witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1180 			    class->lc_name, lock->lo_name,
1181 			    fixup_filename(file), line);
1182 			witness_output("while share locked from %s:%d\n",
1183 			    fixup_filename(lock1->li_file), lock1->li_line);
1184 			kassert_panic("share->excl");
1185 		}
1186 		return;
1187 	}
1188 
1189 	/* Warn if the interlock is not locked exactly once. */
1190 	if (interlock != NULL) {
1191 		iclass = LOCK_CLASS(interlock);
1192 		lock1 = find_instance(lock_list, interlock);
1193 		if (lock1 == NULL)
1194 			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1195 			    iclass->lc_name, interlock->lo_name,
1196 			    fixup_filename(file), line);
1197 		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1198 			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1199 			    iclass->lc_name, interlock->lo_name,
1200 			    fixup_filename(file), line);
1201 	}
1202 
1203 	/*
1204 	 * Find the previously acquired lock, but ignore interlocks.
1205 	 */
1206 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1207 	if (interlock != NULL && plock->li_lock == interlock) {
1208 		if (lock_list->ll_count > 1)
1209 			plock =
1210 			    &lock_list->ll_children[lock_list->ll_count - 2];
1211 		else {
1212 			lle = lock_list->ll_next;
1213 
1214 			/*
1215 			 * The interlock is the only lock we hold, so
1216 			 * simply return.
1217 			 */
1218 			if (lle == NULL)
1219 				return;
1220 			plock = &lle->ll_children[lle->ll_count - 1];
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * Try to perform most checks without a lock.  If this succeeds we
1226 	 * can skip acquiring the lock and return success.  Otherwise we redo
1227 	 * the check with the lock held to handle races with concurrent updates.
1228 	 */
1229 	w1 = plock->li_lock->lo_witness;
1230 	if (witness_lock_order_check(w1, w))
1231 		return;
1232 
1233 	mtx_lock_spin(&w_mtx);
1234 	if (witness_lock_order_check(w1, w)) {
1235 		mtx_unlock_spin(&w_mtx);
1236 		return;
1237 	}
1238 	witness_lock_order_add(w1, w);
1239 
1240 	/*
1241 	 * Check for duplicate locks of the same type.  Note that we only
1242 	 * have to check for this on the last lock we just acquired.  Any
1243 	 * other cases will be caught as lock order violations.
1244 	 */
1245 	if (w1 == w) {
1246 		i = w->w_index;
1247 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1248 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1249 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1250 			w->w_reversed = 1;
1251 			mtx_unlock_spin(&w_mtx);
1252 			witness_output(
1253 			    "acquiring duplicate lock of same type: \"%s\"\n",
1254 			    w->w_name);
1255 			witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1256 			    fixup_filename(plock->li_file), plock->li_line);
1257 			witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1258 			    fixup_filename(file), line);
1259 			witness_debugger(1, __func__);
1260 		} else
1261 			mtx_unlock_spin(&w_mtx);
1262 		return;
1263 	}
1264 	mtx_assert(&w_mtx, MA_OWNED);
1265 
1266 	/*
1267 	 * If we know that the lock we are acquiring comes after
1268 	 * the lock we most recently acquired in the lock order tree,
1269 	 * then there is no need for any further checks.
1270 	 */
1271 	if (isitmychild(w1, w))
1272 		goto out;
1273 
1274 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1275 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1276 
1277 			MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1278 			lock1 = &lle->ll_children[i];
1279 
1280 			/*
1281 			 * Ignore the interlock.
1282 			 */
1283 			if (interlock == lock1->li_lock)
1284 				continue;
1285 
1286 			/*
1287 			 * If this lock doesn't undergo witness checking,
1288 			 * then skip it.
1289 			 */
1290 			w1 = lock1->li_lock->lo_witness;
1291 			if (w1 == NULL) {
1292 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1293 				    ("lock missing witness structure"));
1294 				continue;
1295 			}
1296 
1297 			/*
1298 			 * If we are locking Giant and this is a sleepable
1299 			 * lock, then skip it.
1300 			 */
1301 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1302 			    lock == &Giant.lock_object)
1303 				continue;
1304 
1305 			/*
1306 			 * If we are locking a sleepable lock and this lock
1307 			 * is Giant, then skip it.
1308 			 */
1309 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1310 			    lock1->li_lock == &Giant.lock_object)
1311 				continue;
1312 
1313 			/*
1314 			 * If we are locking a sleepable lock and this lock
1315 			 * isn't sleepable, we want to treat it as a lock
1316 			 * order violation to enfore a general lock order of
1317 			 * sleepable locks before non-sleepable locks.
1318 			 */
1319 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1320 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1321 				goto reversal;
1322 
1323 			/*
1324 			 * If we are locking Giant and this is a non-sleepable
1325 			 * lock, then treat it as a reversal.
1326 			 */
1327 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1328 			    lock == &Giant.lock_object)
1329 				goto reversal;
1330 
1331 			/*
1332 			 * Check the lock order hierarchy for a reveresal.
1333 			 */
1334 			if (!isitmydescendant(w, w1))
1335 				continue;
1336 		reversal:
1337 
1338 			/*
1339 			 * We have a lock order violation, check to see if it
1340 			 * is allowed or has already been yelled about.
1341 			 */
1342 #ifdef BLESSING
1343 
1344 			/*
1345 			 * If the lock order is blessed, just bail.  We don't
1346 			 * look for other lock order violations though, which
1347 			 * may be a bug.
1348 			 */
1349 			if (blessed(w, w1))
1350 				goto out;
1351 #endif
1352 
1353 			/* Bail if this violation is known */
1354 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1355 				goto out;
1356 
1357 			/* Record this as a violation */
1358 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1359 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1360 			w->w_reversed = w1->w_reversed = 1;
1361 			witness_increment_graph_generation();
1362 			mtx_unlock_spin(&w_mtx);
1363 
1364 #ifdef WITNESS_NO_VNODE
1365 			/*
1366 			 * There are known LORs between VNODE locks. They are
1367 			 * not an indication of a bug. VNODE locks are flagged
1368 			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1369 			 * is between 2 VNODE locks.
1370 			 */
1371 			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1372 			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1373 				return;
1374 #endif
1375 
1376 			/*
1377 			 * Ok, yell about it.
1378 			 */
1379 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1380 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1381 				witness_output(
1382 		"lock order reversal: (sleepable after non-sleepable)\n");
1383 			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1384 			    && lock == &Giant.lock_object)
1385 				witness_output(
1386 		"lock order reversal: (Giant after non-sleepable)\n");
1387 			else
1388 				witness_output("lock order reversal:\n");
1389 
1390 			/*
1391 			 * Try to locate an earlier lock with
1392 			 * witness w in our list.
1393 			 */
1394 			do {
1395 				lock2 = &lle->ll_children[i];
1396 				MPASS(lock2->li_lock != NULL);
1397 				if (lock2->li_lock->lo_witness == w)
1398 					break;
1399 				if (i == 0 && lle->ll_next != NULL) {
1400 					lle = lle->ll_next;
1401 					i = lle->ll_count - 1;
1402 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1403 				} else
1404 					i--;
1405 			} while (i >= 0);
1406 			if (i < 0) {
1407 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1408 				    lock1->li_lock, lock1->li_lock->lo_name,
1409 				    w1->w_name, fixup_filename(lock1->li_file),
1410 				    lock1->li_line);
1411 				witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1412 				    lock->lo_name, w->w_name,
1413 				    fixup_filename(file), line);
1414 			} else {
1415 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1416 				    lock2->li_lock, lock2->li_lock->lo_name,
1417 				    lock2->li_lock->lo_witness->w_name,
1418 				    fixup_filename(lock2->li_file),
1419 				    lock2->li_line);
1420 				witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1421 				    lock1->li_lock, lock1->li_lock->lo_name,
1422 				    w1->w_name, fixup_filename(lock1->li_file),
1423 				    lock1->li_line);
1424 				witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1425 				    lock->lo_name, w->w_name,
1426 				    fixup_filename(file), line);
1427 			}
1428 			witness_debugger(1, __func__);
1429 			return;
1430 		}
1431 	}
1432 
1433 	/*
1434 	 * If requested, build a new lock order.  However, don't build a new
1435 	 * relationship between a sleepable lock and Giant if it is in the
1436 	 * wrong direction.  The correct lock order is that sleepable locks
1437 	 * always come before Giant.
1438 	 */
1439 	if (flags & LOP_NEWORDER &&
1440 	    !(plock->li_lock == &Giant.lock_object &&
1441 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1442 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1443 		    w->w_name, plock->li_lock->lo_witness->w_name);
1444 		itismychild(plock->li_lock->lo_witness, w);
1445 	}
1446 out:
1447 	mtx_unlock_spin(&w_mtx);
1448 }
1449 
1450 void
1451 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1452 {
1453 	struct lock_list_entry **lock_list, *lle;
1454 	struct lock_instance *instance;
1455 	struct witness *w;
1456 	struct thread *td;
1457 
1458 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1459 	    panicstr != NULL)
1460 		return;
1461 	w = lock->lo_witness;
1462 	td = curthread;
1463 
1464 	/* Determine lock list for this lock. */
1465 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1466 		lock_list = &td->td_sleeplocks;
1467 	else
1468 		lock_list = PCPU_PTR(spinlocks);
1469 
1470 	/* Check to see if we are recursing on a lock we already own. */
1471 	instance = find_instance(*lock_list, lock);
1472 	if (instance != NULL) {
1473 		instance->li_flags++;
1474 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1475 		    td->td_proc->p_pid, lock->lo_name,
1476 		    instance->li_flags & LI_RECURSEMASK);
1477 		instance->li_file = file;
1478 		instance->li_line = line;
1479 		return;
1480 	}
1481 
1482 	/* Update per-witness last file and line acquire. */
1483 	w->w_file = file;
1484 	w->w_line = line;
1485 
1486 	/* Find the next open lock instance in the list and fill it. */
1487 	lle = *lock_list;
1488 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1489 		lle = witness_lock_list_get();
1490 		if (lle == NULL)
1491 			return;
1492 		lle->ll_next = *lock_list;
1493 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1494 		    td->td_proc->p_pid, lle);
1495 		*lock_list = lle;
1496 	}
1497 	instance = &lle->ll_children[lle->ll_count++];
1498 	instance->li_lock = lock;
1499 	instance->li_line = line;
1500 	instance->li_file = file;
1501 	if ((flags & LOP_EXCLUSIVE) != 0)
1502 		instance->li_flags = LI_EXCLUSIVE;
1503 	else
1504 		instance->li_flags = 0;
1505 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1506 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1507 }
1508 
1509 void
1510 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1511 {
1512 	struct lock_instance *instance;
1513 	struct lock_class *class;
1514 
1515 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1516 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1517 		return;
1518 	class = LOCK_CLASS(lock);
1519 	if (witness_watch) {
1520 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1521 			kassert_panic(
1522 			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1523 			    class->lc_name, lock->lo_name,
1524 			    fixup_filename(file), line);
1525 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1526 			kassert_panic(
1527 			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1528 			    class->lc_name, lock->lo_name,
1529 			    fixup_filename(file), line);
1530 	}
1531 	instance = find_instance(curthread->td_sleeplocks, lock);
1532 	if (instance == NULL) {
1533 		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1534 		    class->lc_name, lock->lo_name,
1535 		    fixup_filename(file), line);
1536 		return;
1537 	}
1538 	if (witness_watch) {
1539 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1540 			kassert_panic(
1541 			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1542 			    class->lc_name, lock->lo_name,
1543 			    fixup_filename(file), line);
1544 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1545 			kassert_panic(
1546 			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1547 			    class->lc_name, lock->lo_name,
1548 			    instance->li_flags & LI_RECURSEMASK,
1549 			    fixup_filename(file), line);
1550 	}
1551 	instance->li_flags |= LI_EXCLUSIVE;
1552 }
1553 
1554 void
1555 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1556     int line)
1557 {
1558 	struct lock_instance *instance;
1559 	struct lock_class *class;
1560 
1561 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1562 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1563 		return;
1564 	class = LOCK_CLASS(lock);
1565 	if (witness_watch) {
1566 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1567 			kassert_panic(
1568 			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1569 			    class->lc_name, lock->lo_name,
1570 			    fixup_filename(file), line);
1571 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1572 			kassert_panic(
1573 			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1574 			    class->lc_name, lock->lo_name,
1575 			    fixup_filename(file), line);
1576 	}
1577 	instance = find_instance(curthread->td_sleeplocks, lock);
1578 	if (instance == NULL) {
1579 		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1580 		    class->lc_name, lock->lo_name,
1581 		    fixup_filename(file), line);
1582 		return;
1583 	}
1584 	if (witness_watch) {
1585 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1586 			kassert_panic(
1587 			    "downgrade of shared lock (%s) %s @ %s:%d",
1588 			    class->lc_name, lock->lo_name,
1589 			    fixup_filename(file), line);
1590 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1591 			kassert_panic(
1592 			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1593 			    class->lc_name, lock->lo_name,
1594 			    instance->li_flags & LI_RECURSEMASK,
1595 			    fixup_filename(file), line);
1596 	}
1597 	instance->li_flags &= ~LI_EXCLUSIVE;
1598 }
1599 
1600 void
1601 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1602 {
1603 	struct lock_list_entry **lock_list, *lle;
1604 	struct lock_instance *instance;
1605 	struct lock_class *class;
1606 	struct thread *td;
1607 	register_t s;
1608 	int i, j;
1609 
1610 	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1611 		return;
1612 	td = curthread;
1613 	class = LOCK_CLASS(lock);
1614 
1615 	/* Find lock instance associated with this lock. */
1616 	if (class->lc_flags & LC_SLEEPLOCK)
1617 		lock_list = &td->td_sleeplocks;
1618 	else
1619 		lock_list = PCPU_PTR(spinlocks);
1620 	lle = *lock_list;
1621 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1622 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1623 			instance = &(*lock_list)->ll_children[i];
1624 			if (instance->li_lock == lock)
1625 				goto found;
1626 		}
1627 
1628 	/*
1629 	 * When disabling WITNESS through witness_watch we could end up in
1630 	 * having registered locks in the td_sleeplocks queue.
1631 	 * We have to make sure we flush these queues, so just search for
1632 	 * eventual register locks and remove them.
1633 	 */
1634 	if (witness_watch > 0) {
1635 		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1636 		    lock->lo_name, fixup_filename(file), line);
1637 		return;
1638 	} else {
1639 		return;
1640 	}
1641 found:
1642 
1643 	/* First, check for shared/exclusive mismatches. */
1644 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1645 	    (flags & LOP_EXCLUSIVE) == 0) {
1646 		witness_output("shared unlock of (%s) %s @ %s:%d\n",
1647 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1648 		witness_output("while exclusively locked from %s:%d\n",
1649 		    fixup_filename(instance->li_file), instance->li_line);
1650 		kassert_panic("excl->ushare");
1651 	}
1652 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1653 	    (flags & LOP_EXCLUSIVE) != 0) {
1654 		witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1655 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1656 		witness_output("while share locked from %s:%d\n",
1657 		    fixup_filename(instance->li_file),
1658 		    instance->li_line);
1659 		kassert_panic("share->uexcl");
1660 	}
1661 	/* If we are recursed, unrecurse. */
1662 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1663 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1664 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1665 		    instance->li_flags);
1666 		instance->li_flags--;
1667 		return;
1668 	}
1669 	/* The lock is now being dropped, check for NORELEASE flag */
1670 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1671 		witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1672 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1673 		kassert_panic("lock marked norelease");
1674 	}
1675 
1676 	/* Otherwise, remove this item from the list. */
1677 	s = intr_disable();
1678 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1679 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1680 	    (*lock_list)->ll_count - 1);
1681 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1682 		(*lock_list)->ll_children[j] =
1683 		    (*lock_list)->ll_children[j + 1];
1684 	(*lock_list)->ll_count--;
1685 	intr_restore(s);
1686 
1687 	/*
1688 	 * In order to reduce contention on w_mtx, we want to keep always an
1689 	 * head object into lists so that frequent allocation from the
1690 	 * free witness pool (and subsequent locking) is avoided.
1691 	 * In order to maintain the current code simple, when the head
1692 	 * object is totally unloaded it means also that we do not have
1693 	 * further objects in the list, so the list ownership needs to be
1694 	 * hand over to another object if the current head needs to be freed.
1695 	 */
1696 	if ((*lock_list)->ll_count == 0) {
1697 		if (*lock_list == lle) {
1698 			if (lle->ll_next == NULL)
1699 				return;
1700 		} else
1701 			lle = *lock_list;
1702 		*lock_list = lle->ll_next;
1703 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1704 		    td->td_proc->p_pid, lle);
1705 		witness_lock_list_free(lle);
1706 	}
1707 }
1708 
1709 void
1710 witness_thread_exit(struct thread *td)
1711 {
1712 	struct lock_list_entry *lle;
1713 	int i, n;
1714 
1715 	lle = td->td_sleeplocks;
1716 	if (lle == NULL || panicstr != NULL)
1717 		return;
1718 	if (lle->ll_count != 0) {
1719 		for (n = 0; lle != NULL; lle = lle->ll_next)
1720 			for (i = lle->ll_count - 1; i >= 0; i--) {
1721 				if (n == 0)
1722 					witness_output(
1723 		    "Thread %p exiting with the following locks held:\n", td);
1724 				n++;
1725 				witness_list_lock(&lle->ll_children[i],
1726 				    witness_output);
1727 
1728 			}
1729 		kassert_panic(
1730 		    "Thread %p cannot exit while holding sleeplocks\n", td);
1731 	}
1732 	witness_lock_list_free(lle);
1733 }
1734 
1735 /*
1736  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1737  * exempt Giant and sleepable locks from the checks as well.  If any
1738  * non-exempt locks are held, then a supplied message is printed to the
1739  * output channel along with a list of the offending locks.  If indicated in the
1740  * flags then a failure results in a panic as well.
1741  */
1742 int
1743 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1744 {
1745 	struct lock_list_entry *lock_list, *lle;
1746 	struct lock_instance *lock1;
1747 	struct thread *td;
1748 	va_list ap;
1749 	int i, n;
1750 
1751 	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1752 		return (0);
1753 	n = 0;
1754 	td = curthread;
1755 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1756 		for (i = lle->ll_count - 1; i >= 0; i--) {
1757 			lock1 = &lle->ll_children[i];
1758 			if (lock1->li_lock == lock)
1759 				continue;
1760 			if (flags & WARN_GIANTOK &&
1761 			    lock1->li_lock == &Giant.lock_object)
1762 				continue;
1763 			if (flags & WARN_SLEEPOK &&
1764 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1765 				continue;
1766 			if (n == 0) {
1767 				va_start(ap, fmt);
1768 				vprintf(fmt, ap);
1769 				va_end(ap);
1770 				printf(" with the following %slocks held:\n",
1771 				    (flags & WARN_SLEEPOK) != 0 ?
1772 				    "non-sleepable " : "");
1773 			}
1774 			n++;
1775 			witness_list_lock(lock1, printf);
1776 		}
1777 
1778 	/*
1779 	 * Pin the thread in order to avoid problems with thread migration.
1780 	 * Once that all verifies are passed about spinlocks ownership,
1781 	 * the thread is in a safe path and it can be unpinned.
1782 	 */
1783 	sched_pin();
1784 	lock_list = PCPU_GET(spinlocks);
1785 	if (lock_list != NULL && lock_list->ll_count != 0) {
1786 		sched_unpin();
1787 
1788 		/*
1789 		 * We should only have one spinlock and as long as
1790 		 * the flags cannot match for this locks class,
1791 		 * check if the first spinlock is the one curthread
1792 		 * should hold.
1793 		 */
1794 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1795 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1796 		    lock1->li_lock == lock && n == 0)
1797 			return (0);
1798 
1799 		va_start(ap, fmt);
1800 		vprintf(fmt, ap);
1801 		va_end(ap);
1802 		printf(" with the following %slocks held:\n",
1803 		    (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1804 		n += witness_list_locks(&lock_list, printf);
1805 	} else
1806 		sched_unpin();
1807 	if (flags & WARN_PANIC && n)
1808 		kassert_panic("%s", __func__);
1809 	else
1810 		witness_debugger(n, __func__);
1811 	return (n);
1812 }
1813 
1814 const char *
1815 witness_file(struct lock_object *lock)
1816 {
1817 	struct witness *w;
1818 
1819 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1820 		return ("?");
1821 	w = lock->lo_witness;
1822 	return (w->w_file);
1823 }
1824 
1825 int
1826 witness_line(struct lock_object *lock)
1827 {
1828 	struct witness *w;
1829 
1830 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1831 		return (0);
1832 	w = lock->lo_witness;
1833 	return (w->w_line);
1834 }
1835 
1836 static struct witness *
1837 enroll(const char *description, struct lock_class *lock_class)
1838 {
1839 	struct witness *w;
1840 
1841 	MPASS(description != NULL);
1842 
1843 	if (witness_watch == -1 || panicstr != NULL)
1844 		return (NULL);
1845 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1846 		if (witness_skipspin)
1847 			return (NULL);
1848 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1849 		kassert_panic("lock class %s is not sleep or spin",
1850 		    lock_class->lc_name);
1851 		return (NULL);
1852 	}
1853 
1854 	mtx_lock_spin(&w_mtx);
1855 	w = witness_hash_get(description);
1856 	if (w)
1857 		goto found;
1858 	if ((w = witness_get()) == NULL)
1859 		return (NULL);
1860 	MPASS(strlen(description) < MAX_W_NAME);
1861 	strcpy(w->w_name, description);
1862 	w->w_class = lock_class;
1863 	w->w_refcount = 1;
1864 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1865 	if (lock_class->lc_flags & LC_SPINLOCK) {
1866 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1867 		w_spin_cnt++;
1868 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1869 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1870 		w_sleep_cnt++;
1871 	}
1872 
1873 	/* Insert new witness into the hash */
1874 	witness_hash_put(w);
1875 	witness_increment_graph_generation();
1876 	mtx_unlock_spin(&w_mtx);
1877 	return (w);
1878 found:
1879 	w->w_refcount++;
1880 	if (w->w_refcount == 1)
1881 		w->w_class = lock_class;
1882 	mtx_unlock_spin(&w_mtx);
1883 	if (lock_class != w->w_class)
1884 		kassert_panic(
1885 		    "lock (%s) %s does not match earlier (%s) lock",
1886 		    description, lock_class->lc_name,
1887 		    w->w_class->lc_name);
1888 	return (w);
1889 }
1890 
1891 static void
1892 depart(struct witness *w)
1893 {
1894 
1895 	MPASS(w->w_refcount == 0);
1896 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1897 		w_sleep_cnt--;
1898 	} else {
1899 		w_spin_cnt--;
1900 	}
1901 	/*
1902 	 * Set file to NULL as it may point into a loadable module.
1903 	 */
1904 	w->w_file = NULL;
1905 	w->w_line = 0;
1906 	witness_increment_graph_generation();
1907 }
1908 
1909 
1910 static void
1911 adopt(struct witness *parent, struct witness *child)
1912 {
1913 	int pi, ci, i, j;
1914 
1915 	if (witness_cold == 0)
1916 		mtx_assert(&w_mtx, MA_OWNED);
1917 
1918 	/* If the relationship is already known, there's no work to be done. */
1919 	if (isitmychild(parent, child))
1920 		return;
1921 
1922 	/* When the structure of the graph changes, bump up the generation. */
1923 	witness_increment_graph_generation();
1924 
1925 	/*
1926 	 * The hard part ... create the direct relationship, then propagate all
1927 	 * indirect relationships.
1928 	 */
1929 	pi = parent->w_index;
1930 	ci = child->w_index;
1931 	WITNESS_INDEX_ASSERT(pi);
1932 	WITNESS_INDEX_ASSERT(ci);
1933 	MPASS(pi != ci);
1934 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1935 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1936 
1937 	/*
1938 	 * If parent was not already an ancestor of child,
1939 	 * then we increment the descendant and ancestor counters.
1940 	 */
1941 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1942 		parent->w_num_descendants++;
1943 		child->w_num_ancestors++;
1944 	}
1945 
1946 	/*
1947 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1948 	 * an ancestor of 'pi' during this loop.
1949 	 */
1950 	for (i = 1; i <= w_max_used_index; i++) {
1951 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1952 		    (i != pi))
1953 			continue;
1954 
1955 		/* Find each descendant of 'i' and mark it as a descendant. */
1956 		for (j = 1; j <= w_max_used_index; j++) {
1957 
1958 			/*
1959 			 * Skip children that are already marked as
1960 			 * descendants of 'i'.
1961 			 */
1962 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1963 				continue;
1964 
1965 			/*
1966 			 * We are only interested in descendants of 'ci'. Note
1967 			 * that 'ci' itself is counted as a descendant of 'ci'.
1968 			 */
1969 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1970 			    (j != ci))
1971 				continue;
1972 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1973 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1974 			w_data[i].w_num_descendants++;
1975 			w_data[j].w_num_ancestors++;
1976 
1977 			/*
1978 			 * Make sure we aren't marking a node as both an
1979 			 * ancestor and descendant. We should have caught
1980 			 * this as a lock order reversal earlier.
1981 			 */
1982 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1983 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1984 				printf("witness rmatrix paradox! [%d][%d]=%d "
1985 				    "both ancestor and descendant\n",
1986 				    i, j, w_rmatrix[i][j]);
1987 				kdb_backtrace();
1988 				printf("Witness disabled.\n");
1989 				witness_watch = -1;
1990 			}
1991 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1992 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1993 				printf("witness rmatrix paradox! [%d][%d]=%d "
1994 				    "both ancestor and descendant\n",
1995 				    j, i, w_rmatrix[j][i]);
1996 				kdb_backtrace();
1997 				printf("Witness disabled.\n");
1998 				witness_watch = -1;
1999 			}
2000 		}
2001 	}
2002 }
2003 
2004 static void
2005 itismychild(struct witness *parent, struct witness *child)
2006 {
2007 	int unlocked;
2008 
2009 	MPASS(child != NULL && parent != NULL);
2010 	if (witness_cold == 0)
2011 		mtx_assert(&w_mtx, MA_OWNED);
2012 
2013 	if (!witness_lock_type_equal(parent, child)) {
2014 		if (witness_cold == 0) {
2015 			unlocked = 1;
2016 			mtx_unlock_spin(&w_mtx);
2017 		} else {
2018 			unlocked = 0;
2019 		}
2020 		kassert_panic(
2021 		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2022 		    "the same lock type", __func__, parent->w_name,
2023 		    parent->w_class->lc_name, child->w_name,
2024 		    child->w_class->lc_name);
2025 		if (unlocked)
2026 			mtx_lock_spin(&w_mtx);
2027 	}
2028 	adopt(parent, child);
2029 }
2030 
2031 /*
2032  * Generic code for the isitmy*() functions. The rmask parameter is the
2033  * expected relationship of w1 to w2.
2034  */
2035 static int
2036 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2037 {
2038 	unsigned char r1, r2;
2039 	int i1, i2;
2040 
2041 	i1 = w1->w_index;
2042 	i2 = w2->w_index;
2043 	WITNESS_INDEX_ASSERT(i1);
2044 	WITNESS_INDEX_ASSERT(i2);
2045 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2046 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2047 
2048 	/* The flags on one better be the inverse of the flags on the other */
2049 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2050 	    (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2051 		/* Don't squawk if we're potentially racing with an update. */
2052 		if (!mtx_owned(&w_mtx))
2053 			return (0);
2054 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
2055 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
2056 		    "w_rmatrix[%d][%d] == %hhx\n",
2057 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2058 		    i2, i1, r2);
2059 		kdb_backtrace();
2060 		printf("Witness disabled.\n");
2061 		witness_watch = -1;
2062 	}
2063 	return (r1 & rmask);
2064 }
2065 
2066 /*
2067  * Checks if @child is a direct child of @parent.
2068  */
2069 static int
2070 isitmychild(struct witness *parent, struct witness *child)
2071 {
2072 
2073 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2074 }
2075 
2076 /*
2077  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2078  */
2079 static int
2080 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2081 {
2082 
2083 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2084 	    __func__));
2085 }
2086 
2087 #ifdef BLESSING
2088 static int
2089 blessed(struct witness *w1, struct witness *w2)
2090 {
2091 	int i;
2092 	struct witness_blessed *b;
2093 
2094 	for (i = 0; i < nitems(blessed_list); i++) {
2095 		b = &blessed_list[i];
2096 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2097 			if (strcmp(w2->w_name, b->b_lock2) == 0)
2098 				return (1);
2099 			continue;
2100 		}
2101 		if (strcmp(w1->w_name, b->b_lock2) == 0)
2102 			if (strcmp(w2->w_name, b->b_lock1) == 0)
2103 				return (1);
2104 	}
2105 	return (0);
2106 }
2107 #endif
2108 
2109 static struct witness *
2110 witness_get(void)
2111 {
2112 	struct witness *w;
2113 	int index;
2114 
2115 	if (witness_cold == 0)
2116 		mtx_assert(&w_mtx, MA_OWNED);
2117 
2118 	if (witness_watch == -1) {
2119 		mtx_unlock_spin(&w_mtx);
2120 		return (NULL);
2121 	}
2122 	if (STAILQ_EMPTY(&w_free)) {
2123 		witness_watch = -1;
2124 		mtx_unlock_spin(&w_mtx);
2125 		printf("WITNESS: unable to allocate a new witness object\n");
2126 		return (NULL);
2127 	}
2128 	w = STAILQ_FIRST(&w_free);
2129 	STAILQ_REMOVE_HEAD(&w_free, w_list);
2130 	w_free_cnt--;
2131 	index = w->w_index;
2132 	MPASS(index > 0 && index == w_max_used_index+1 &&
2133 	    index < witness_count);
2134 	bzero(w, sizeof(*w));
2135 	w->w_index = index;
2136 	if (index > w_max_used_index)
2137 		w_max_used_index = index;
2138 	return (w);
2139 }
2140 
2141 static void
2142 witness_free(struct witness *w)
2143 {
2144 
2145 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2146 	w_free_cnt++;
2147 }
2148 
2149 static struct lock_list_entry *
2150 witness_lock_list_get(void)
2151 {
2152 	struct lock_list_entry *lle;
2153 
2154 	if (witness_watch == -1)
2155 		return (NULL);
2156 	mtx_lock_spin(&w_mtx);
2157 	lle = w_lock_list_free;
2158 	if (lle == NULL) {
2159 		witness_watch = -1;
2160 		mtx_unlock_spin(&w_mtx);
2161 		printf("%s: witness exhausted\n", __func__);
2162 		return (NULL);
2163 	}
2164 	w_lock_list_free = lle->ll_next;
2165 	mtx_unlock_spin(&w_mtx);
2166 	bzero(lle, sizeof(*lle));
2167 	return (lle);
2168 }
2169 
2170 static void
2171 witness_lock_list_free(struct lock_list_entry *lle)
2172 {
2173 
2174 	mtx_lock_spin(&w_mtx);
2175 	lle->ll_next = w_lock_list_free;
2176 	w_lock_list_free = lle;
2177 	mtx_unlock_spin(&w_mtx);
2178 }
2179 
2180 static struct lock_instance *
2181 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2182 {
2183 	struct lock_list_entry *lle;
2184 	struct lock_instance *instance;
2185 	int i;
2186 
2187 	for (lle = list; lle != NULL; lle = lle->ll_next)
2188 		for (i = lle->ll_count - 1; i >= 0; i--) {
2189 			instance = &lle->ll_children[i];
2190 			if (instance->li_lock == lock)
2191 				return (instance);
2192 		}
2193 	return (NULL);
2194 }
2195 
2196 static void
2197 witness_list_lock(struct lock_instance *instance,
2198     int (*prnt)(const char *fmt, ...))
2199 {
2200 	struct lock_object *lock;
2201 
2202 	lock = instance->li_lock;
2203 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2204 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2205 	if (lock->lo_witness->w_name != lock->lo_name)
2206 		prnt(" (%s)", lock->lo_witness->w_name);
2207 	prnt(" r = %d (%p) locked @ %s:%d\n",
2208 	    instance->li_flags & LI_RECURSEMASK, lock,
2209 	    fixup_filename(instance->li_file), instance->li_line);
2210 }
2211 
2212 static int
2213 witness_output(const char *fmt, ...)
2214 {
2215 	va_list ap;
2216 	int ret;
2217 
2218 	va_start(ap, fmt);
2219 	ret = witness_voutput(fmt, ap);
2220 	va_end(ap);
2221 	return (ret);
2222 }
2223 
2224 static int
2225 witness_voutput(const char *fmt, va_list ap)
2226 {
2227 	int ret;
2228 
2229 	ret = 0;
2230 	switch (witness_channel) {
2231 	case WITNESS_CONSOLE:
2232 		ret = vprintf(fmt, ap);
2233 		break;
2234 	case WITNESS_LOG:
2235 		vlog(LOG_NOTICE, fmt, ap);
2236 		break;
2237 	case WITNESS_NONE:
2238 		break;
2239 	}
2240 	return (ret);
2241 }
2242 
2243 #ifdef DDB
2244 static int
2245 witness_thread_has_locks(struct thread *td)
2246 {
2247 
2248 	if (td->td_sleeplocks == NULL)
2249 		return (0);
2250 	return (td->td_sleeplocks->ll_count != 0);
2251 }
2252 
2253 static int
2254 witness_proc_has_locks(struct proc *p)
2255 {
2256 	struct thread *td;
2257 
2258 	FOREACH_THREAD_IN_PROC(p, td) {
2259 		if (witness_thread_has_locks(td))
2260 			return (1);
2261 	}
2262 	return (0);
2263 }
2264 #endif
2265 
2266 int
2267 witness_list_locks(struct lock_list_entry **lock_list,
2268     int (*prnt)(const char *fmt, ...))
2269 {
2270 	struct lock_list_entry *lle;
2271 	int i, nheld;
2272 
2273 	nheld = 0;
2274 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2275 		for (i = lle->ll_count - 1; i >= 0; i--) {
2276 			witness_list_lock(&lle->ll_children[i], prnt);
2277 			nheld++;
2278 		}
2279 	return (nheld);
2280 }
2281 
2282 /*
2283  * This is a bit risky at best.  We call this function when we have timed
2284  * out acquiring a spin lock, and we assume that the other CPU is stuck
2285  * with this lock held.  So, we go groveling around in the other CPU's
2286  * per-cpu data to try to find the lock instance for this spin lock to
2287  * see when it was last acquired.
2288  */
2289 void
2290 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2291     int (*prnt)(const char *fmt, ...))
2292 {
2293 	struct lock_instance *instance;
2294 	struct pcpu *pc;
2295 
2296 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2297 		return;
2298 	pc = pcpu_find(owner->td_oncpu);
2299 	instance = find_instance(pc->pc_spinlocks, lock);
2300 	if (instance != NULL)
2301 		witness_list_lock(instance, prnt);
2302 }
2303 
2304 void
2305 witness_save(struct lock_object *lock, const char **filep, int *linep)
2306 {
2307 	struct lock_list_entry *lock_list;
2308 	struct lock_instance *instance;
2309 	struct lock_class *class;
2310 
2311 	/*
2312 	 * This function is used independently in locking code to deal with
2313 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2314 	 * is gone.
2315 	 */
2316 	if (SCHEDULER_STOPPED())
2317 		return;
2318 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2319 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2320 		return;
2321 	class = LOCK_CLASS(lock);
2322 	if (class->lc_flags & LC_SLEEPLOCK)
2323 		lock_list = curthread->td_sleeplocks;
2324 	else {
2325 		if (witness_skipspin)
2326 			return;
2327 		lock_list = PCPU_GET(spinlocks);
2328 	}
2329 	instance = find_instance(lock_list, lock);
2330 	if (instance == NULL) {
2331 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2332 		    class->lc_name, lock->lo_name);
2333 		return;
2334 	}
2335 	*filep = instance->li_file;
2336 	*linep = instance->li_line;
2337 }
2338 
2339 void
2340 witness_restore(struct lock_object *lock, const char *file, int line)
2341 {
2342 	struct lock_list_entry *lock_list;
2343 	struct lock_instance *instance;
2344 	struct lock_class *class;
2345 
2346 	/*
2347 	 * This function is used independently in locking code to deal with
2348 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2349 	 * is gone.
2350 	 */
2351 	if (SCHEDULER_STOPPED())
2352 		return;
2353 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2354 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2355 		return;
2356 	class = LOCK_CLASS(lock);
2357 	if (class->lc_flags & LC_SLEEPLOCK)
2358 		lock_list = curthread->td_sleeplocks;
2359 	else {
2360 		if (witness_skipspin)
2361 			return;
2362 		lock_list = PCPU_GET(spinlocks);
2363 	}
2364 	instance = find_instance(lock_list, lock);
2365 	if (instance == NULL)
2366 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2367 		    class->lc_name, lock->lo_name);
2368 	lock->lo_witness->w_file = file;
2369 	lock->lo_witness->w_line = line;
2370 	if (instance == NULL)
2371 		return;
2372 	instance->li_file = file;
2373 	instance->li_line = line;
2374 }
2375 
2376 void
2377 witness_assert(const struct lock_object *lock, int flags, const char *file,
2378     int line)
2379 {
2380 #ifdef INVARIANT_SUPPORT
2381 	struct lock_instance *instance;
2382 	struct lock_class *class;
2383 
2384 	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2385 		return;
2386 	class = LOCK_CLASS(lock);
2387 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2388 		instance = find_instance(curthread->td_sleeplocks, lock);
2389 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2390 		instance = find_instance(PCPU_GET(spinlocks), lock);
2391 	else {
2392 		kassert_panic("Lock (%s) %s is not sleep or spin!",
2393 		    class->lc_name, lock->lo_name);
2394 		return;
2395 	}
2396 	switch (flags) {
2397 	case LA_UNLOCKED:
2398 		if (instance != NULL)
2399 			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2400 			    class->lc_name, lock->lo_name,
2401 			    fixup_filename(file), line);
2402 		break;
2403 	case LA_LOCKED:
2404 	case LA_LOCKED | LA_RECURSED:
2405 	case LA_LOCKED | LA_NOTRECURSED:
2406 	case LA_SLOCKED:
2407 	case LA_SLOCKED | LA_RECURSED:
2408 	case LA_SLOCKED | LA_NOTRECURSED:
2409 	case LA_XLOCKED:
2410 	case LA_XLOCKED | LA_RECURSED:
2411 	case LA_XLOCKED | LA_NOTRECURSED:
2412 		if (instance == NULL) {
2413 			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2414 			    class->lc_name, lock->lo_name,
2415 			    fixup_filename(file), line);
2416 			break;
2417 		}
2418 		if ((flags & LA_XLOCKED) != 0 &&
2419 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2420 			kassert_panic(
2421 			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2422 			    class->lc_name, lock->lo_name,
2423 			    fixup_filename(file), line);
2424 		if ((flags & LA_SLOCKED) != 0 &&
2425 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2426 			kassert_panic(
2427 			    "Lock (%s) %s exclusively locked @ %s:%d.",
2428 			    class->lc_name, lock->lo_name,
2429 			    fixup_filename(file), line);
2430 		if ((flags & LA_RECURSED) != 0 &&
2431 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2432 			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2433 			    class->lc_name, lock->lo_name,
2434 			    fixup_filename(file), line);
2435 		if ((flags & LA_NOTRECURSED) != 0 &&
2436 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2437 			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2438 			    class->lc_name, lock->lo_name,
2439 			    fixup_filename(file), line);
2440 		break;
2441 	default:
2442 		kassert_panic("Invalid lock assertion at %s:%d.",
2443 		    fixup_filename(file), line);
2444 
2445 	}
2446 #endif	/* INVARIANT_SUPPORT */
2447 }
2448 
2449 static void
2450 witness_setflag(struct lock_object *lock, int flag, int set)
2451 {
2452 	struct lock_list_entry *lock_list;
2453 	struct lock_instance *instance;
2454 	struct lock_class *class;
2455 
2456 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2457 		return;
2458 	class = LOCK_CLASS(lock);
2459 	if (class->lc_flags & LC_SLEEPLOCK)
2460 		lock_list = curthread->td_sleeplocks;
2461 	else {
2462 		if (witness_skipspin)
2463 			return;
2464 		lock_list = PCPU_GET(spinlocks);
2465 	}
2466 	instance = find_instance(lock_list, lock);
2467 	if (instance == NULL) {
2468 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2469 		    class->lc_name, lock->lo_name);
2470 		return;
2471 	}
2472 
2473 	if (set)
2474 		instance->li_flags |= flag;
2475 	else
2476 		instance->li_flags &= ~flag;
2477 }
2478 
2479 void
2480 witness_norelease(struct lock_object *lock)
2481 {
2482 
2483 	witness_setflag(lock, LI_NORELEASE, 1);
2484 }
2485 
2486 void
2487 witness_releaseok(struct lock_object *lock)
2488 {
2489 
2490 	witness_setflag(lock, LI_NORELEASE, 0);
2491 }
2492 
2493 #ifdef DDB
2494 static void
2495 witness_ddb_list(struct thread *td)
2496 {
2497 
2498 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2499 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2500 
2501 	if (witness_watch < 1)
2502 		return;
2503 
2504 	witness_list_locks(&td->td_sleeplocks, db_printf);
2505 
2506 	/*
2507 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2508 	 * if td is currently executing on some other CPU and holds spin locks
2509 	 * as we won't display those locks.  If we had a MI way of getting
2510 	 * the per-cpu data for a given cpu then we could use
2511 	 * td->td_oncpu to get the list of spinlocks for this thread
2512 	 * and "fix" this.
2513 	 *
2514 	 * That still wouldn't really fix this unless we locked the scheduler
2515 	 * lock or stopped the other CPU to make sure it wasn't changing the
2516 	 * list out from under us.  It is probably best to just not try to
2517 	 * handle threads on other CPU's for now.
2518 	 */
2519 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2520 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2521 }
2522 
2523 DB_SHOW_COMMAND(locks, db_witness_list)
2524 {
2525 	struct thread *td;
2526 
2527 	if (have_addr)
2528 		td = db_lookup_thread(addr, true);
2529 	else
2530 		td = kdb_thread;
2531 	witness_ddb_list(td);
2532 }
2533 
2534 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2535 {
2536 	struct thread *td;
2537 	struct proc *p;
2538 
2539 	/*
2540 	 * It would be nice to list only threads and processes that actually
2541 	 * held sleep locks, but that information is currently not exported
2542 	 * by WITNESS.
2543 	 */
2544 	FOREACH_PROC_IN_SYSTEM(p) {
2545 		if (!witness_proc_has_locks(p))
2546 			continue;
2547 		FOREACH_THREAD_IN_PROC(p, td) {
2548 			if (!witness_thread_has_locks(td))
2549 				continue;
2550 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2551 			    p->p_comm, td, td->td_tid);
2552 			witness_ddb_list(td);
2553 			if (db_pager_quit)
2554 				return;
2555 		}
2556 	}
2557 }
2558 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2559 
2560 DB_SHOW_COMMAND(witness, db_witness_display)
2561 {
2562 
2563 	witness_ddb_display(db_printf);
2564 }
2565 #endif
2566 
2567 static void
2568 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2569 {
2570 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2571 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2572 	int generation, i, j;
2573 
2574 	tmp_data1 = NULL;
2575 	tmp_data2 = NULL;
2576 	tmp_w1 = NULL;
2577 	tmp_w2 = NULL;
2578 
2579 	/* Allocate and init temporary storage space. */
2580 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2581 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2582 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2583 	    M_WAITOK | M_ZERO);
2584 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2585 	    M_WAITOK | M_ZERO);
2586 	stack_zero(&tmp_data1->wlod_stack);
2587 	stack_zero(&tmp_data2->wlod_stack);
2588 
2589 restart:
2590 	mtx_lock_spin(&w_mtx);
2591 	generation = w_generation;
2592 	mtx_unlock_spin(&w_mtx);
2593 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2594 	    w_lohash.wloh_count);
2595 	for (i = 1; i < w_max_used_index; i++) {
2596 		mtx_lock_spin(&w_mtx);
2597 		if (generation != w_generation) {
2598 			mtx_unlock_spin(&w_mtx);
2599 
2600 			/* The graph has changed, try again. */
2601 			*oldidx = 0;
2602 			sbuf_clear(sb);
2603 			goto restart;
2604 		}
2605 
2606 		w1 = &w_data[i];
2607 		if (w1->w_reversed == 0) {
2608 			mtx_unlock_spin(&w_mtx);
2609 			continue;
2610 		}
2611 
2612 		/* Copy w1 locally so we can release the spin lock. */
2613 		*tmp_w1 = *w1;
2614 		mtx_unlock_spin(&w_mtx);
2615 
2616 		if (tmp_w1->w_reversed == 0)
2617 			continue;
2618 		for (j = 1; j < w_max_used_index; j++) {
2619 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2620 				continue;
2621 
2622 			mtx_lock_spin(&w_mtx);
2623 			if (generation != w_generation) {
2624 				mtx_unlock_spin(&w_mtx);
2625 
2626 				/* The graph has changed, try again. */
2627 				*oldidx = 0;
2628 				sbuf_clear(sb);
2629 				goto restart;
2630 			}
2631 
2632 			w2 = &w_data[j];
2633 			data1 = witness_lock_order_get(w1, w2);
2634 			data2 = witness_lock_order_get(w2, w1);
2635 
2636 			/*
2637 			 * Copy information locally so we can release the
2638 			 * spin lock.
2639 			 */
2640 			*tmp_w2 = *w2;
2641 
2642 			if (data1) {
2643 				stack_zero(&tmp_data1->wlod_stack);
2644 				stack_copy(&data1->wlod_stack,
2645 				    &tmp_data1->wlod_stack);
2646 			}
2647 			if (data2 && data2 != data1) {
2648 				stack_zero(&tmp_data2->wlod_stack);
2649 				stack_copy(&data2->wlod_stack,
2650 				    &tmp_data2->wlod_stack);
2651 			}
2652 			mtx_unlock_spin(&w_mtx);
2653 
2654 			sbuf_printf(sb,
2655 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2656 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2657 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2658 			if (data1) {
2659 				sbuf_printf(sb,
2660 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2661 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2662 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2663 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2664 				sbuf_printf(sb, "\n");
2665 			}
2666 			if (data2 && data2 != data1) {
2667 				sbuf_printf(sb,
2668 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2669 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2670 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2671 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2672 				sbuf_printf(sb, "\n");
2673 			}
2674 		}
2675 	}
2676 	mtx_lock_spin(&w_mtx);
2677 	if (generation != w_generation) {
2678 		mtx_unlock_spin(&w_mtx);
2679 
2680 		/*
2681 		 * The graph changed while we were printing stack data,
2682 		 * try again.
2683 		 */
2684 		*oldidx = 0;
2685 		sbuf_clear(sb);
2686 		goto restart;
2687 	}
2688 	mtx_unlock_spin(&w_mtx);
2689 
2690 	/* Free temporary storage space. */
2691 	free(tmp_data1, M_TEMP);
2692 	free(tmp_data2, M_TEMP);
2693 	free(tmp_w1, M_TEMP);
2694 	free(tmp_w2, M_TEMP);
2695 }
2696 
2697 static int
2698 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2699 {
2700 	struct sbuf *sb;
2701 	int error;
2702 
2703 	if (witness_watch < 1) {
2704 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2705 		return (error);
2706 	}
2707 	if (witness_cold) {
2708 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2709 		return (error);
2710 	}
2711 	error = 0;
2712 	sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2713 	if (sb == NULL)
2714 		return (ENOMEM);
2715 
2716 	sbuf_print_witness_badstacks(sb, &req->oldidx);
2717 
2718 	sbuf_finish(sb);
2719 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2720 	sbuf_delete(sb);
2721 
2722 	return (error);
2723 }
2724 
2725 #ifdef DDB
2726 static int
2727 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2728 {
2729 
2730 	return (db_printf("%.*s", len, data));
2731 }
2732 
2733 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2734 {
2735 	struct sbuf sb;
2736 	char buffer[128];
2737 	size_t dummy;
2738 
2739 	sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2740 	sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2741 	sbuf_print_witness_badstacks(&sb, &dummy);
2742 	sbuf_finish(&sb);
2743 }
2744 #endif
2745 
2746 static int
2747 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2748 {
2749 	static const struct {
2750 		enum witness_channel channel;
2751 		const char *name;
2752 	} channels[] = {
2753 		{ WITNESS_CONSOLE, "console" },
2754 		{ WITNESS_LOG, "log" },
2755 		{ WITNESS_NONE, "none" },
2756 	};
2757 	char buf[16];
2758 	u_int i;
2759 	int error;
2760 
2761 	buf[0] = '\0';
2762 	for (i = 0; i < nitems(channels); i++)
2763 		if (witness_channel == channels[i].channel) {
2764 			snprintf(buf, sizeof(buf), "%s", channels[i].name);
2765 			break;
2766 		}
2767 
2768 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2769 	if (error != 0 || req->newptr == NULL)
2770 		return (error);
2771 
2772 	error = EINVAL;
2773 	for (i = 0; i < nitems(channels); i++)
2774 		if (strcmp(channels[i].name, buf) == 0) {
2775 			witness_channel = channels[i].channel;
2776 			error = 0;
2777 			break;
2778 		}
2779 	return (error);
2780 }
2781 
2782 static int
2783 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2784 {
2785 	struct witness *w;
2786 	struct sbuf *sb;
2787 	int error;
2788 
2789 #ifdef __i386__
2790 	error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2791 	return (error);
2792 #endif
2793 
2794 	if (witness_watch < 1) {
2795 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2796 		return (error);
2797 	}
2798 	if (witness_cold) {
2799 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2800 		return (error);
2801 	}
2802 	error = 0;
2803 
2804 	error = sysctl_wire_old_buffer(req, 0);
2805 	if (error != 0)
2806 		return (error);
2807 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2808 	if (sb == NULL)
2809 		return (ENOMEM);
2810 	sbuf_printf(sb, "\n");
2811 
2812 	mtx_lock_spin(&w_mtx);
2813 	STAILQ_FOREACH(w, &w_all, w_list)
2814 		w->w_displayed = 0;
2815 	STAILQ_FOREACH(w, &w_all, w_list)
2816 		witness_add_fullgraph(sb, w);
2817 	mtx_unlock_spin(&w_mtx);
2818 
2819 	/*
2820 	 * Close the sbuf and return to userland.
2821 	 */
2822 	error = sbuf_finish(sb);
2823 	sbuf_delete(sb);
2824 
2825 	return (error);
2826 }
2827 
2828 static int
2829 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2830 {
2831 	int error, value;
2832 
2833 	value = witness_watch;
2834 	error = sysctl_handle_int(oidp, &value, 0, req);
2835 	if (error != 0 || req->newptr == NULL)
2836 		return (error);
2837 	if (value > 1 || value < -1 ||
2838 	    (witness_watch == -1 && value != witness_watch))
2839 		return (EINVAL);
2840 	witness_watch = value;
2841 	return (0);
2842 }
2843 
2844 static void
2845 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2846 {
2847 	int i;
2848 
2849 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2850 		return;
2851 	w->w_displayed = 1;
2852 
2853 	WITNESS_INDEX_ASSERT(w->w_index);
2854 	for (i = 1; i <= w_max_used_index; i++) {
2855 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2856 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2857 			    w_data[i].w_name);
2858 			witness_add_fullgraph(sb, &w_data[i]);
2859 		}
2860 	}
2861 }
2862 
2863 /*
2864  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2865  * interprets the key as a string and reads until the null
2866  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2867  * hash value computed from the key.
2868  */
2869 static uint32_t
2870 witness_hash_djb2(const uint8_t *key, uint32_t size)
2871 {
2872 	unsigned int hash = 5381;
2873 	int i;
2874 
2875 	/* hash = hash * 33 + key[i] */
2876 	if (size)
2877 		for (i = 0; i < size; i++)
2878 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2879 	else
2880 		for (i = 0; key[i] != 0; i++)
2881 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2882 
2883 	return (hash);
2884 }
2885 
2886 
2887 /*
2888  * Initializes the two witness hash tables. Called exactly once from
2889  * witness_initialize().
2890  */
2891 static void
2892 witness_init_hash_tables(void)
2893 {
2894 	int i;
2895 
2896 	MPASS(witness_cold);
2897 
2898 	/* Initialize the hash tables. */
2899 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2900 		w_hash.wh_array[i] = NULL;
2901 
2902 	w_hash.wh_size = WITNESS_HASH_SIZE;
2903 	w_hash.wh_count = 0;
2904 
2905 	/* Initialize the lock order data hash. */
2906 	w_lofree = NULL;
2907 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2908 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2909 		w_lodata[i].wlod_next = w_lofree;
2910 		w_lofree = &w_lodata[i];
2911 	}
2912 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2913 	w_lohash.wloh_count = 0;
2914 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2915 		w_lohash.wloh_array[i] = NULL;
2916 }
2917 
2918 static struct witness *
2919 witness_hash_get(const char *key)
2920 {
2921 	struct witness *w;
2922 	uint32_t hash;
2923 
2924 	MPASS(key != NULL);
2925 	if (witness_cold == 0)
2926 		mtx_assert(&w_mtx, MA_OWNED);
2927 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2928 	w = w_hash.wh_array[hash];
2929 	while (w != NULL) {
2930 		if (strcmp(w->w_name, key) == 0)
2931 			goto out;
2932 		w = w->w_hash_next;
2933 	}
2934 
2935 out:
2936 	return (w);
2937 }
2938 
2939 static void
2940 witness_hash_put(struct witness *w)
2941 {
2942 	uint32_t hash;
2943 
2944 	MPASS(w != NULL);
2945 	MPASS(w->w_name != NULL);
2946 	if (witness_cold == 0)
2947 		mtx_assert(&w_mtx, MA_OWNED);
2948 	KASSERT(witness_hash_get(w->w_name) == NULL,
2949 	    ("%s: trying to add a hash entry that already exists!", __func__));
2950 	KASSERT(w->w_hash_next == NULL,
2951 	    ("%s: w->w_hash_next != NULL", __func__));
2952 
2953 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2954 	w->w_hash_next = w_hash.wh_array[hash];
2955 	w_hash.wh_array[hash] = w;
2956 	w_hash.wh_count++;
2957 }
2958 
2959 
2960 static struct witness_lock_order_data *
2961 witness_lock_order_get(struct witness *parent, struct witness *child)
2962 {
2963 	struct witness_lock_order_data *data = NULL;
2964 	struct witness_lock_order_key key;
2965 	unsigned int hash;
2966 
2967 	MPASS(parent != NULL && child != NULL);
2968 	key.from = parent->w_index;
2969 	key.to = child->w_index;
2970 	WITNESS_INDEX_ASSERT(key.from);
2971 	WITNESS_INDEX_ASSERT(key.to);
2972 	if ((w_rmatrix[parent->w_index][child->w_index]
2973 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2974 		goto out;
2975 
2976 	hash = witness_hash_djb2((const char*)&key,
2977 	    sizeof(key)) % w_lohash.wloh_size;
2978 	data = w_lohash.wloh_array[hash];
2979 	while (data != NULL) {
2980 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2981 			break;
2982 		data = data->wlod_next;
2983 	}
2984 
2985 out:
2986 	return (data);
2987 }
2988 
2989 /*
2990  * Verify that parent and child have a known relationship, are not the same,
2991  * and child is actually a child of parent.  This is done without w_mtx
2992  * to avoid contention in the common case.
2993  */
2994 static int
2995 witness_lock_order_check(struct witness *parent, struct witness *child)
2996 {
2997 
2998 	if (parent != child &&
2999 	    w_rmatrix[parent->w_index][child->w_index]
3000 	    & WITNESS_LOCK_ORDER_KNOWN &&
3001 	    isitmychild(parent, child))
3002 		return (1);
3003 
3004 	return (0);
3005 }
3006 
3007 static int
3008 witness_lock_order_add(struct witness *parent, struct witness *child)
3009 {
3010 	struct witness_lock_order_data *data = NULL;
3011 	struct witness_lock_order_key key;
3012 	unsigned int hash;
3013 
3014 	MPASS(parent != NULL && child != NULL);
3015 	key.from = parent->w_index;
3016 	key.to = child->w_index;
3017 	WITNESS_INDEX_ASSERT(key.from);
3018 	WITNESS_INDEX_ASSERT(key.to);
3019 	if (w_rmatrix[parent->w_index][child->w_index]
3020 	    & WITNESS_LOCK_ORDER_KNOWN)
3021 		return (1);
3022 
3023 	hash = witness_hash_djb2((const char*)&key,
3024 	    sizeof(key)) % w_lohash.wloh_size;
3025 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3026 	data = w_lofree;
3027 	if (data == NULL)
3028 		return (0);
3029 	w_lofree = data->wlod_next;
3030 	data->wlod_next = w_lohash.wloh_array[hash];
3031 	data->wlod_key = key;
3032 	w_lohash.wloh_array[hash] = data;
3033 	w_lohash.wloh_count++;
3034 	stack_zero(&data->wlod_stack);
3035 	stack_save(&data->wlod_stack);
3036 	return (1);
3037 }
3038 
3039 /* Call this whenever the structure of the witness graph changes. */
3040 static void
3041 witness_increment_graph_generation(void)
3042 {
3043 
3044 	if (witness_cold == 0)
3045 		mtx_assert(&w_mtx, MA_OWNED);
3046 	w_generation++;
3047 }
3048 
3049 static int
3050 witness_output_drain(void *arg __unused, const char *data, int len)
3051 {
3052 
3053 	witness_output("%.*s", len, data);
3054 	return (len);
3055 }
3056 
3057 static void
3058 witness_debugger(int cond, const char *msg)
3059 {
3060 	char buf[32];
3061 	struct sbuf sb;
3062 	struct stack st;
3063 
3064 	if (!cond)
3065 		return;
3066 
3067 	if (witness_trace) {
3068 		sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3069 		sbuf_set_drain(&sb, witness_output_drain, NULL);
3070 
3071 		stack_zero(&st);
3072 		stack_save(&st);
3073 		witness_output("stack backtrace:\n");
3074 		stack_sbuf_print_ddb(&sb, &st);
3075 
3076 		sbuf_finish(&sb);
3077 	}
3078 
3079 #ifdef KDB
3080 	if (witness_kdb)
3081 		kdb_enter(KDB_WHY_WITNESS, msg);
3082 #endif
3083 }
3084