1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Isilon Systems, Inc. 5 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com> 6 * Copyright (c) 1998 Berkeley Software Design, Inc. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Berkeley Software Design Inc's name may not be used to endorse or 18 * promote products derived from this software without specific prior 19 * written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 34 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 35 */ 36 37 /* 38 * Implementation of the `witness' lock verifier. Originally implemented for 39 * mutexes in BSD/OS. Extended to handle generic lock objects and lock 40 * classes in FreeBSD. 41 */ 42 43 /* 44 * Main Entry: witness 45 * Pronunciation: 'wit-n&s 46 * Function: noun 47 * Etymology: Middle English witnesse, from Old English witnes knowledge, 48 * testimony, witness, from 2wit 49 * Date: before 12th century 50 * 1 : attestation of a fact or event : TESTIMONY 51 * 2 : one that gives evidence; specifically : one who testifies in 52 * a cause or before a judicial tribunal 53 * 3 : one asked to be present at a transaction so as to be able to 54 * testify to its having taken place 55 * 4 : one who has personal knowledge of something 56 * 5 a : something serving as evidence or proof : SIGN 57 * b : public affirmation by word or example of usually 58 * religious faith or conviction <the heroic witness to divine 59 * life -- Pilot> 60 * 6 capitalized : a member of the Jehovah's Witnesses 61 */ 62 63 /* 64 * Special rules concerning Giant and lock orders: 65 * 66 * 1) Giant must be acquired before any other mutexes. Stated another way, 67 * no other mutex may be held when Giant is acquired. 68 * 69 * 2) Giant must be released when blocking on a sleepable lock. 70 * 71 * This rule is less obvious, but is a result of Giant providing the same 72 * semantics as spl(). Basically, when a thread sleeps, it must release 73 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule 74 * 2). 75 * 76 * 3) Giant may be acquired before or after sleepable locks. 77 * 78 * This rule is also not quite as obvious. Giant may be acquired after 79 * a sleepable lock because it is a non-sleepable lock and non-sleepable 80 * locks may always be acquired while holding a sleepable lock. The second 81 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose 82 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1 83 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and 84 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to 85 * execute. Thus, acquiring Giant both before and after a sleepable lock 86 * will not result in a lock order reversal. 87 */ 88 89 #include <sys/cdefs.h> 90 __FBSDID("$FreeBSD$"); 91 92 #include "opt_ddb.h" 93 #include "opt_hwpmc_hooks.h" 94 #include "opt_stack.h" 95 #include "opt_witness.h" 96 97 #include <sys/param.h> 98 #include <sys/bus.h> 99 #include <sys/kdb.h> 100 #include <sys/kernel.h> 101 #include <sys/ktr.h> 102 #include <sys/lock.h> 103 #include <sys/malloc.h> 104 #include <sys/mutex.h> 105 #include <sys/priv.h> 106 #include <sys/proc.h> 107 #include <sys/sbuf.h> 108 #include <sys/sched.h> 109 #include <sys/stack.h> 110 #include <sys/sysctl.h> 111 #include <sys/syslog.h> 112 #include <sys/systm.h> 113 114 #ifdef DDB 115 #include <ddb/ddb.h> 116 #endif 117 118 #include <machine/stdarg.h> 119 120 #if !defined(DDB) && !defined(STACK) 121 #error "DDB or STACK options are required for WITNESS" 122 #endif 123 124 /* Note that these traces do not work with KTR_ALQ. */ 125 #if 0 126 #define KTR_WITNESS KTR_SUBSYS 127 #else 128 #define KTR_WITNESS 0 129 #endif 130 131 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */ 132 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */ 133 #define LI_NORELEASE 0x00020000 /* Lock not allowed to be released. */ 134 135 /* Define this to check for blessed mutexes */ 136 #undef BLESSING 137 138 #ifndef WITNESS_COUNT 139 #define WITNESS_COUNT 1536 140 #endif 141 #define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */ 142 #define WITNESS_PENDLIST (512 + (MAXCPU * 4)) 143 144 /* Allocate 256 KB of stack data space */ 145 #define WITNESS_LO_DATA_COUNT 2048 146 147 /* Prime, gives load factor of ~2 at full load */ 148 #define WITNESS_LO_HASH_SIZE 1021 149 150 /* 151 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads 152 * will hold LOCK_NCHILDREN locks. We handle failure ok, and we should 153 * probably be safe for the most part, but it's still a SWAG. 154 */ 155 #define LOCK_NCHILDREN 5 156 #define LOCK_CHILDCOUNT 2048 157 158 #define MAX_W_NAME 64 159 160 #define FULLGRAPH_SBUF_SIZE 512 161 162 /* 163 * These flags go in the witness relationship matrix and describe the 164 * relationship between any two struct witness objects. 165 */ 166 #define WITNESS_UNRELATED 0x00 /* No lock order relation. */ 167 #define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */ 168 #define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */ 169 #define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */ 170 #define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */ 171 #define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR) 172 #define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT) 173 #define WITNESS_RELATED_MASK \ 174 (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK) 175 #define WITNESS_REVERSAL 0x10 /* A lock order reversal has been 176 * observed. */ 177 #define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */ 178 #define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */ 179 #define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */ 180 181 /* Descendant to ancestor flags */ 182 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2) 183 184 /* Ancestor to descendant flags */ 185 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2) 186 187 #define WITNESS_INDEX_ASSERT(i) \ 188 MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count) 189 190 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness"); 191 192 /* 193 * Lock instances. A lock instance is the data associated with a lock while 194 * it is held by witness. For example, a lock instance will hold the 195 * recursion count of a lock. Lock instances are held in lists. Spin locks 196 * are held in a per-cpu list while sleep locks are held in per-thread list. 197 */ 198 struct lock_instance { 199 struct lock_object *li_lock; 200 const char *li_file; 201 int li_line; 202 u_int li_flags; 203 }; 204 205 /* 206 * A simple list type used to build the list of locks held by a thread 207 * or CPU. We can't simply embed the list in struct lock_object since a 208 * lock may be held by more than one thread if it is a shared lock. Locks 209 * are added to the head of the list, so we fill up each list entry from 210 * "the back" logically. To ease some of the arithmetic, we actually fill 211 * in each list entry the normal way (children[0] then children[1], etc.) but 212 * when we traverse the list we read children[count-1] as the first entry 213 * down to children[0] as the final entry. 214 */ 215 struct lock_list_entry { 216 struct lock_list_entry *ll_next; 217 struct lock_instance ll_children[LOCK_NCHILDREN]; 218 u_int ll_count; 219 }; 220 221 /* 222 * The main witness structure. One of these per named lock type in the system 223 * (for example, "vnode interlock"). 224 */ 225 struct witness { 226 char w_name[MAX_W_NAME]; 227 uint32_t w_index; /* Index in the relationship matrix */ 228 struct lock_class *w_class; 229 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */ 230 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */ 231 struct witness *w_hash_next; /* Linked list in hash buckets. */ 232 const char *w_file; /* File where last acquired */ 233 uint32_t w_line; /* Line where last acquired */ 234 uint32_t w_refcount; 235 uint16_t w_num_ancestors; /* direct/indirect 236 * ancestor count */ 237 uint16_t w_num_descendants; /* direct/indirect 238 * descendant count */ 239 int16_t w_ddb_level; 240 unsigned w_displayed:1; 241 unsigned w_reversed:1; 242 }; 243 244 STAILQ_HEAD(witness_list, witness); 245 246 /* 247 * The witness hash table. Keys are witness names (const char *), elements are 248 * witness objects (struct witness *). 249 */ 250 struct witness_hash { 251 struct witness *wh_array[WITNESS_HASH_SIZE]; 252 uint32_t wh_size; 253 uint32_t wh_count; 254 }; 255 256 /* 257 * Key type for the lock order data hash table. 258 */ 259 struct witness_lock_order_key { 260 uint16_t from; 261 uint16_t to; 262 }; 263 264 struct witness_lock_order_data { 265 struct stack wlod_stack; 266 struct witness_lock_order_key wlod_key; 267 struct witness_lock_order_data *wlod_next; 268 }; 269 270 /* 271 * The witness lock order data hash table. Keys are witness index tuples 272 * (struct witness_lock_order_key), elements are lock order data objects 273 * (struct witness_lock_order_data). 274 */ 275 struct witness_lock_order_hash { 276 struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE]; 277 u_int wloh_size; 278 u_int wloh_count; 279 }; 280 281 #ifdef BLESSING 282 struct witness_blessed { 283 const char *b_lock1; 284 const char *b_lock2; 285 }; 286 #endif 287 288 struct witness_pendhelp { 289 const char *wh_type; 290 struct lock_object *wh_lock; 291 }; 292 293 struct witness_order_list_entry { 294 const char *w_name; 295 struct lock_class *w_class; 296 }; 297 298 /* 299 * Returns 0 if one of the locks is a spin lock and the other is not. 300 * Returns 1 otherwise. 301 */ 302 static __inline int 303 witness_lock_type_equal(struct witness *w1, struct witness *w2) 304 { 305 306 return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) == 307 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK))); 308 } 309 310 static __inline int 311 witness_lock_order_key_equal(const struct witness_lock_order_key *a, 312 const struct witness_lock_order_key *b) 313 { 314 315 return (a->from == b->from && a->to == b->to); 316 } 317 318 static int _isitmyx(struct witness *w1, struct witness *w2, int rmask, 319 const char *fname); 320 static void adopt(struct witness *parent, struct witness *child); 321 #ifdef BLESSING 322 static int blessed(struct witness *, struct witness *); 323 #endif 324 static void depart(struct witness *w); 325 static struct witness *enroll(const char *description, 326 struct lock_class *lock_class); 327 static struct lock_instance *find_instance(struct lock_list_entry *list, 328 const struct lock_object *lock); 329 static int isitmychild(struct witness *parent, struct witness *child); 330 static int isitmydescendant(struct witness *parent, struct witness *child); 331 static void itismychild(struct witness *parent, struct witness *child); 332 static int sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS); 333 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS); 334 static int sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS); 335 static int sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS); 336 static void witness_add_fullgraph(struct sbuf *sb, struct witness *parent); 337 #ifdef DDB 338 static void witness_ddb_compute_levels(void); 339 static void witness_ddb_display(int(*)(const char *fmt, ...)); 340 static void witness_ddb_display_descendants(int(*)(const char *fmt, ...), 341 struct witness *, int indent); 342 static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 343 struct witness_list *list); 344 static void witness_ddb_level_descendants(struct witness *parent, int l); 345 static void witness_ddb_list(struct thread *td); 346 #endif 347 static void witness_debugger(int cond, const char *msg); 348 static void witness_free(struct witness *m); 349 static struct witness *witness_get(void); 350 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size); 351 static struct witness *witness_hash_get(const char *key); 352 static void witness_hash_put(struct witness *w); 353 static void witness_init_hash_tables(void); 354 static void witness_increment_graph_generation(void); 355 static void witness_lock_list_free(struct lock_list_entry *lle); 356 static struct lock_list_entry *witness_lock_list_get(void); 357 static int witness_lock_order_add(struct witness *parent, 358 struct witness *child); 359 static int witness_lock_order_check(struct witness *parent, 360 struct witness *child); 361 static struct witness_lock_order_data *witness_lock_order_get( 362 struct witness *parent, 363 struct witness *child); 364 static void witness_list_lock(struct lock_instance *instance, 365 int (*prnt)(const char *fmt, ...)); 366 static int witness_output(const char *fmt, ...) __printflike(1, 2); 367 static int witness_voutput(const char *fmt, va_list ap) __printflike(1, 0); 368 static void witness_setflag(struct lock_object *lock, int flag, int set); 369 370 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, 371 "Witness Locking"); 372 373 /* 374 * If set to 0, lock order checking is disabled. If set to -1, 375 * witness is completely disabled. Otherwise witness performs full 376 * lock order checking for all locks. At runtime, lock order checking 377 * may be toggled. However, witness cannot be reenabled once it is 378 * completely disabled. 379 */ 380 static int witness_watch = 1; 381 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0, 382 sysctl_debug_witness_watch, "I", "witness is watching lock operations"); 383 384 #ifdef KDB 385 /* 386 * When KDB is enabled and witness_kdb is 1, it will cause the system 387 * to drop into kdebug() when: 388 * - a lock hierarchy violation occurs 389 * - locks are held when going to sleep. 390 */ 391 #ifdef WITNESS_KDB 392 int witness_kdb = 1; 393 #else 394 int witness_kdb = 0; 395 #endif 396 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, ""); 397 #endif /* KDB */ 398 399 #if defined(DDB) || defined(KDB) 400 /* 401 * When DDB or KDB is enabled and witness_trace is 1, it will cause the system 402 * to print a stack trace: 403 * - a lock hierarchy violation occurs 404 * - locks are held when going to sleep. 405 */ 406 int witness_trace = 1; 407 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, ""); 408 #endif /* DDB || KDB */ 409 410 #ifdef WITNESS_SKIPSPIN 411 int witness_skipspin = 1; 412 #else 413 int witness_skipspin = 0; 414 #endif 415 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, ""); 416 417 int badstack_sbuf_size; 418 419 int witness_count = WITNESS_COUNT; 420 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 421 &witness_count, 0, ""); 422 423 /* 424 * Output channel for witness messages. By default we print to the console. 425 */ 426 enum witness_channel { 427 WITNESS_CONSOLE, 428 WITNESS_LOG, 429 WITNESS_NONE, 430 }; 431 432 static enum witness_channel witness_channel = WITNESS_CONSOLE; 433 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING | 434 CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A", 435 "Output channel for warnings"); 436 437 /* 438 * Call this to print out the relations between locks. 439 */ 440 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD, 441 NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs"); 442 443 /* 444 * Call this to print out the witness faulty stacks. 445 */ 446 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD, 447 NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks"); 448 449 static struct mtx w_mtx; 450 451 /* w_list */ 452 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free); 453 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all); 454 455 /* w_typelist */ 456 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin); 457 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep); 458 459 /* lock list */ 460 static struct lock_list_entry *w_lock_list_free = NULL; 461 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST]; 462 static u_int pending_cnt; 463 464 static int w_free_cnt, w_spin_cnt, w_sleep_cnt; 465 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, ""); 466 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, ""); 467 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0, 468 ""); 469 470 static struct witness *w_data; 471 static uint8_t **w_rmatrix; 472 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT]; 473 static struct witness_hash w_hash; /* The witness hash table. */ 474 475 /* The lock order data hash */ 476 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT]; 477 static struct witness_lock_order_data *w_lofree = NULL; 478 static struct witness_lock_order_hash w_lohash; 479 static int w_max_used_index = 0; 480 static unsigned int w_generation = 0; 481 static const char w_notrunning[] = "Witness not running\n"; 482 static const char w_stillcold[] = "Witness is still cold\n"; 483 #ifdef __i386__ 484 static const char w_notallowed[] = "The sysctl is disabled on the arch\n"; 485 #endif 486 487 static struct witness_order_list_entry order_lists[] = { 488 /* 489 * sx locks 490 */ 491 { "proctree", &lock_class_sx }, 492 { "allproc", &lock_class_sx }, 493 { "allprison", &lock_class_sx }, 494 { NULL, NULL }, 495 /* 496 * Various mutexes 497 */ 498 { "Giant", &lock_class_mtx_sleep }, 499 { "pipe mutex", &lock_class_mtx_sleep }, 500 { "sigio lock", &lock_class_mtx_sleep }, 501 { "process group", &lock_class_mtx_sleep }, 502 #ifdef HWPMC_HOOKS 503 { "pmc-sleep", &lock_class_mtx_sleep }, 504 #endif 505 { "process lock", &lock_class_mtx_sleep }, 506 { "session", &lock_class_mtx_sleep }, 507 { "uidinfo hash", &lock_class_rw }, 508 { "time lock", &lock_class_mtx_sleep }, 509 { NULL, NULL }, 510 /* 511 * umtx 512 */ 513 { "umtx lock", &lock_class_mtx_sleep }, 514 { NULL, NULL }, 515 /* 516 * Sockets 517 */ 518 { "accept", &lock_class_mtx_sleep }, 519 { "so_snd", &lock_class_mtx_sleep }, 520 { "so_rcv", &lock_class_mtx_sleep }, 521 { "sellck", &lock_class_mtx_sleep }, 522 { NULL, NULL }, 523 /* 524 * Routing 525 */ 526 { "so_rcv", &lock_class_mtx_sleep }, 527 { "radix node head", &lock_class_rm }, 528 { "rtentry", &lock_class_mtx_sleep }, 529 { "ifaddr", &lock_class_mtx_sleep }, 530 { NULL, NULL }, 531 /* 532 * IPv4 multicast: 533 * protocol locks before interface locks, after UDP locks. 534 */ 535 { "in_multi_sx", &lock_class_sx }, 536 { "udpinp", &lock_class_rw }, 537 { "in_multi_list_mtx", &lock_class_mtx_sleep }, 538 { "igmp_mtx", &lock_class_mtx_sleep }, 539 { "ifnet_rw", &lock_class_rw }, 540 { "if_addr_lock", &lock_class_mtx_sleep }, 541 { NULL, NULL }, 542 /* 543 * IPv6 multicast: 544 * protocol locks before interface locks, after UDP locks. 545 */ 546 { "in6_multi_sx", &lock_class_sx }, 547 { "udpinp", &lock_class_rw }, 548 { "in6_multi_list_mtx", &lock_class_mtx_sleep }, 549 { "mld_mtx", &lock_class_mtx_sleep }, 550 { "ifnet_rw", &lock_class_rw }, 551 { "if_addr_lock", &lock_class_mtx_sleep }, 552 { NULL, NULL }, 553 /* 554 * UNIX Domain Sockets 555 */ 556 { "unp_link_rwlock", &lock_class_rw }, 557 { "unp_list_lock", &lock_class_mtx_sleep }, 558 { "unp", &lock_class_mtx_sleep }, 559 { "so_snd", &lock_class_mtx_sleep }, 560 { NULL, NULL }, 561 /* 562 * UDP/IP 563 */ 564 { "udp", &lock_class_mtx_sleep }, 565 { "udpinp", &lock_class_rw }, 566 { "so_snd", &lock_class_mtx_sleep }, 567 { NULL, NULL }, 568 /* 569 * TCP/IP 570 */ 571 { "tcp", &lock_class_mtx_sleep }, 572 { "tcpinp", &lock_class_rw }, 573 { "so_snd", &lock_class_mtx_sleep }, 574 { NULL, NULL }, 575 /* 576 * BPF 577 */ 578 { "bpf global lock", &lock_class_sx }, 579 { "bpf cdev lock", &lock_class_mtx_sleep }, 580 { NULL, NULL }, 581 /* 582 * NFS server 583 */ 584 { "nfsd_mtx", &lock_class_mtx_sleep }, 585 { "so_snd", &lock_class_mtx_sleep }, 586 { NULL, NULL }, 587 588 /* 589 * IEEE 802.11 590 */ 591 { "802.11 com lock", &lock_class_mtx_sleep}, 592 { NULL, NULL }, 593 /* 594 * Network drivers 595 */ 596 { "network driver", &lock_class_mtx_sleep}, 597 { NULL, NULL }, 598 599 /* 600 * Netgraph 601 */ 602 { "ng_node", &lock_class_mtx_sleep }, 603 { "ng_worklist", &lock_class_mtx_sleep }, 604 { NULL, NULL }, 605 /* 606 * CDEV 607 */ 608 { "vm map (system)", &lock_class_mtx_sleep }, 609 { "vnode interlock", &lock_class_mtx_sleep }, 610 { "cdev", &lock_class_mtx_sleep }, 611 { NULL, NULL }, 612 /* 613 * VM 614 */ 615 { "vm map (user)", &lock_class_sx }, 616 { "vm object", &lock_class_rw }, 617 { "vm page", &lock_class_mtx_sleep }, 618 { "pmap pv global", &lock_class_rw }, 619 { "pmap", &lock_class_mtx_sleep }, 620 { "pmap pv list", &lock_class_rw }, 621 { "vm page free queue", &lock_class_mtx_sleep }, 622 { "vm pagequeue", &lock_class_mtx_sleep }, 623 { NULL, NULL }, 624 /* 625 * kqueue/VFS interaction 626 */ 627 { "kqueue", &lock_class_mtx_sleep }, 628 { "struct mount mtx", &lock_class_mtx_sleep }, 629 { "vnode interlock", &lock_class_mtx_sleep }, 630 { NULL, NULL }, 631 /* 632 * VFS namecache 633 */ 634 { "ncvn", &lock_class_mtx_sleep }, 635 { "ncbuc", &lock_class_rw }, 636 { "vnode interlock", &lock_class_mtx_sleep }, 637 { "ncneg", &lock_class_mtx_sleep }, 638 { NULL, NULL }, 639 /* 640 * ZFS locking 641 */ 642 { "dn->dn_mtx", &lock_class_sx }, 643 { "dr->dt.di.dr_mtx", &lock_class_sx }, 644 { "db->db_mtx", &lock_class_sx }, 645 { NULL, NULL }, 646 /* 647 * TCP log locks 648 */ 649 { "TCP ID tree", &lock_class_rw }, 650 { "tcp log id bucket", &lock_class_mtx_sleep }, 651 { "tcpinp", &lock_class_rw }, 652 { "TCP log expireq", &lock_class_mtx_sleep }, 653 { NULL, NULL }, 654 /* 655 * spin locks 656 */ 657 #ifdef SMP 658 { "ap boot", &lock_class_mtx_spin }, 659 #endif 660 { "rm.mutex_mtx", &lock_class_mtx_spin }, 661 { "sio", &lock_class_mtx_spin }, 662 #ifdef __i386__ 663 { "cy", &lock_class_mtx_spin }, 664 #endif 665 #ifdef __sparc64__ 666 { "pcib_mtx", &lock_class_mtx_spin }, 667 { "rtc_mtx", &lock_class_mtx_spin }, 668 #endif 669 { "scc_hwmtx", &lock_class_mtx_spin }, 670 { "uart_hwmtx", &lock_class_mtx_spin }, 671 { "fast_taskqueue", &lock_class_mtx_spin }, 672 { "intr table", &lock_class_mtx_spin }, 673 { "process slock", &lock_class_mtx_spin }, 674 { "syscons video lock", &lock_class_mtx_spin }, 675 { "sleepq chain", &lock_class_mtx_spin }, 676 { "rm_spinlock", &lock_class_mtx_spin }, 677 { "turnstile chain", &lock_class_mtx_spin }, 678 { "turnstile lock", &lock_class_mtx_spin }, 679 { "sched lock", &lock_class_mtx_spin }, 680 { "td_contested", &lock_class_mtx_spin }, 681 { "callout", &lock_class_mtx_spin }, 682 { "entropy harvest mutex", &lock_class_mtx_spin }, 683 #ifdef SMP 684 { "smp rendezvous", &lock_class_mtx_spin }, 685 #endif 686 #ifdef __powerpc__ 687 { "tlb0", &lock_class_mtx_spin }, 688 #endif 689 { NULL, NULL }, 690 { "sched lock", &lock_class_mtx_spin }, 691 #ifdef HWPMC_HOOKS 692 { "pmc-per-proc", &lock_class_mtx_spin }, 693 #endif 694 { NULL, NULL }, 695 /* 696 * leaf locks 697 */ 698 { "intrcnt", &lock_class_mtx_spin }, 699 { "icu", &lock_class_mtx_spin }, 700 #if defined(SMP) && defined(__sparc64__) 701 { "ipi", &lock_class_mtx_spin }, 702 #endif 703 #ifdef __i386__ 704 { "allpmaps", &lock_class_mtx_spin }, 705 { "descriptor tables", &lock_class_mtx_spin }, 706 #endif 707 { "clk", &lock_class_mtx_spin }, 708 { "cpuset", &lock_class_mtx_spin }, 709 { "mprof lock", &lock_class_mtx_spin }, 710 { "zombie lock", &lock_class_mtx_spin }, 711 { "ALD Queue", &lock_class_mtx_spin }, 712 #if defined(__i386__) || defined(__amd64__) 713 { "pcicfg", &lock_class_mtx_spin }, 714 { "NDIS thread lock", &lock_class_mtx_spin }, 715 #endif 716 { "tw_osl_io_lock", &lock_class_mtx_spin }, 717 { "tw_osl_q_lock", &lock_class_mtx_spin }, 718 { "tw_cl_io_lock", &lock_class_mtx_spin }, 719 { "tw_cl_intr_lock", &lock_class_mtx_spin }, 720 { "tw_cl_gen_lock", &lock_class_mtx_spin }, 721 #ifdef HWPMC_HOOKS 722 { "pmc-leaf", &lock_class_mtx_spin }, 723 #endif 724 { "blocked lock", &lock_class_mtx_spin }, 725 { NULL, NULL }, 726 { NULL, NULL } 727 }; 728 729 #ifdef BLESSING 730 /* 731 * Pairs of locks which have been blessed 732 * Don't complain about order problems with blessed locks 733 */ 734 static struct witness_blessed blessed_list[] = { 735 }; 736 #endif 737 738 /* 739 * This global is set to 0 once it becomes safe to use the witness code. 740 */ 741 static int witness_cold = 1; 742 743 /* 744 * This global is set to 1 once the static lock orders have been enrolled 745 * so that a warning can be issued for any spin locks enrolled later. 746 */ 747 static int witness_spin_warn = 0; 748 749 /* Trim useless garbage from filenames. */ 750 static const char * 751 fixup_filename(const char *file) 752 { 753 754 if (file == NULL) 755 return (NULL); 756 while (strncmp(file, "../", 3) == 0) 757 file += 3; 758 return (file); 759 } 760 761 /* 762 * Calculate the size of early witness structures. 763 */ 764 int 765 witness_startup_count(void) 766 { 767 int sz; 768 769 sz = sizeof(struct witness) * witness_count; 770 sz += sizeof(*w_rmatrix) * (witness_count + 1); 771 sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) * 772 (witness_count + 1); 773 774 return (sz); 775 } 776 777 /* 778 * The WITNESS-enabled diagnostic code. Note that the witness code does 779 * assume that the early boot is single-threaded at least until after this 780 * routine is completed. 781 */ 782 void 783 witness_startup(void *mem) 784 { 785 struct lock_object *lock; 786 struct witness_order_list_entry *order; 787 struct witness *w, *w1; 788 uintptr_t p; 789 int i; 790 791 p = (uintptr_t)mem; 792 w_data = (void *)p; 793 p += sizeof(struct witness) * witness_count; 794 795 w_rmatrix = (void *)p; 796 p += sizeof(*w_rmatrix) * (witness_count + 1); 797 798 for (i = 0; i < witness_count + 1; i++) { 799 w_rmatrix[i] = (void *)p; 800 p += sizeof(*w_rmatrix[i]) * (witness_count + 1); 801 } 802 badstack_sbuf_size = witness_count * 256; 803 804 /* 805 * We have to release Giant before initializing its witness 806 * structure so that WITNESS doesn't get confused. 807 */ 808 mtx_unlock(&Giant); 809 mtx_assert(&Giant, MA_NOTOWNED); 810 811 CTR1(KTR_WITNESS, "%s: initializing witness", __func__); 812 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET | 813 MTX_NOWITNESS | MTX_NOPROFILE); 814 for (i = witness_count - 1; i >= 0; i--) { 815 w = &w_data[i]; 816 memset(w, 0, sizeof(*w)); 817 w_data[i].w_index = i; /* Witness index never changes. */ 818 witness_free(w); 819 } 820 KASSERT(STAILQ_FIRST(&w_free)->w_index == 0, 821 ("%s: Invalid list of free witness objects", __func__)); 822 823 /* Witness with index 0 is not used to aid in debugging. */ 824 STAILQ_REMOVE_HEAD(&w_free, w_list); 825 w_free_cnt--; 826 827 for (i = 0; i < witness_count; i++) { 828 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 829 (witness_count + 1)); 830 } 831 832 for (i = 0; i < LOCK_CHILDCOUNT; i++) 833 witness_lock_list_free(&w_locklistdata[i]); 834 witness_init_hash_tables(); 835 836 /* First add in all the specified order lists. */ 837 for (order = order_lists; order->w_name != NULL; order++) { 838 w = enroll(order->w_name, order->w_class); 839 if (w == NULL) 840 continue; 841 w->w_file = "order list"; 842 for (order++; order->w_name != NULL; order++) { 843 w1 = enroll(order->w_name, order->w_class); 844 if (w1 == NULL) 845 continue; 846 w1->w_file = "order list"; 847 itismychild(w, w1); 848 w = w1; 849 } 850 } 851 witness_spin_warn = 1; 852 853 /* Iterate through all locks and add them to witness. */ 854 for (i = 0; pending_locks[i].wh_lock != NULL; i++) { 855 lock = pending_locks[i].wh_lock; 856 KASSERT(lock->lo_flags & LO_WITNESS, 857 ("%s: lock %s is on pending list but not LO_WITNESS", 858 __func__, lock->lo_name)); 859 lock->lo_witness = enroll(pending_locks[i].wh_type, 860 LOCK_CLASS(lock)); 861 } 862 863 /* Mark the witness code as being ready for use. */ 864 witness_cold = 0; 865 866 mtx_lock(&Giant); 867 } 868 869 void 870 witness_init(struct lock_object *lock, const char *type) 871 { 872 struct lock_class *class; 873 874 /* Various sanity checks. */ 875 class = LOCK_CLASS(lock); 876 if ((lock->lo_flags & LO_RECURSABLE) != 0 && 877 (class->lc_flags & LC_RECURSABLE) == 0) 878 kassert_panic("%s: lock (%s) %s can not be recursable", 879 __func__, class->lc_name, lock->lo_name); 880 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 881 (class->lc_flags & LC_SLEEPABLE) == 0) 882 kassert_panic("%s: lock (%s) %s can not be sleepable", 883 __func__, class->lc_name, lock->lo_name); 884 if ((lock->lo_flags & LO_UPGRADABLE) != 0 && 885 (class->lc_flags & LC_UPGRADABLE) == 0) 886 kassert_panic("%s: lock (%s) %s can not be upgradable", 887 __func__, class->lc_name, lock->lo_name); 888 889 /* 890 * If we shouldn't watch this lock, then just clear lo_witness. 891 * Otherwise, if witness_cold is set, then it is too early to 892 * enroll this lock, so defer it to witness_initialize() by adding 893 * it to the pending_locks list. If it is not too early, then enroll 894 * the lock now. 895 */ 896 if (witness_watch < 1 || panicstr != NULL || 897 (lock->lo_flags & LO_WITNESS) == 0) 898 lock->lo_witness = NULL; 899 else if (witness_cold) { 900 pending_locks[pending_cnt].wh_lock = lock; 901 pending_locks[pending_cnt++].wh_type = type; 902 if (pending_cnt > WITNESS_PENDLIST) 903 panic("%s: pending locks list is too small, " 904 "increase WITNESS_PENDLIST\n", 905 __func__); 906 } else 907 lock->lo_witness = enroll(type, class); 908 } 909 910 void 911 witness_destroy(struct lock_object *lock) 912 { 913 struct lock_class *class; 914 struct witness *w; 915 916 class = LOCK_CLASS(lock); 917 918 if (witness_cold) 919 panic("lock (%s) %s destroyed while witness_cold", 920 class->lc_name, lock->lo_name); 921 922 /* XXX: need to verify that no one holds the lock */ 923 if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL) 924 return; 925 w = lock->lo_witness; 926 927 mtx_lock_spin(&w_mtx); 928 MPASS(w->w_refcount > 0); 929 w->w_refcount--; 930 931 if (w->w_refcount == 0) 932 depart(w); 933 mtx_unlock_spin(&w_mtx); 934 } 935 936 #ifdef DDB 937 static void 938 witness_ddb_compute_levels(void) 939 { 940 struct witness *w; 941 942 /* 943 * First clear all levels. 944 */ 945 STAILQ_FOREACH(w, &w_all, w_list) 946 w->w_ddb_level = -1; 947 948 /* 949 * Look for locks with no parents and level all their descendants. 950 */ 951 STAILQ_FOREACH(w, &w_all, w_list) { 952 953 /* If the witness has ancestors (is not a root), skip it. */ 954 if (w->w_num_ancestors > 0) 955 continue; 956 witness_ddb_level_descendants(w, 0); 957 } 958 } 959 960 static void 961 witness_ddb_level_descendants(struct witness *w, int l) 962 { 963 int i; 964 965 if (w->w_ddb_level >= l) 966 return; 967 968 w->w_ddb_level = l; 969 l++; 970 971 for (i = 1; i <= w_max_used_index; i++) { 972 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 973 witness_ddb_level_descendants(&w_data[i], l); 974 } 975 } 976 977 static void 978 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...), 979 struct witness *w, int indent) 980 { 981 int i; 982 983 for (i = 0; i < indent; i++) 984 prnt(" "); 985 prnt("%s (type: %s, depth: %d, active refs: %d)", 986 w->w_name, w->w_class->lc_name, 987 w->w_ddb_level, w->w_refcount); 988 if (w->w_displayed) { 989 prnt(" -- (already displayed)\n"); 990 return; 991 } 992 w->w_displayed = 1; 993 if (w->w_file != NULL && w->w_line != 0) 994 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file), 995 w->w_line); 996 else 997 prnt(" -- never acquired\n"); 998 indent++; 999 WITNESS_INDEX_ASSERT(w->w_index); 1000 for (i = 1; i <= w_max_used_index; i++) { 1001 if (db_pager_quit) 1002 return; 1003 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 1004 witness_ddb_display_descendants(prnt, &w_data[i], 1005 indent); 1006 } 1007 } 1008 1009 static void 1010 witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 1011 struct witness_list *list) 1012 { 1013 struct witness *w; 1014 1015 STAILQ_FOREACH(w, list, w_typelist) { 1016 if (w->w_file == NULL || w->w_ddb_level > 0) 1017 continue; 1018 1019 /* This lock has no anscestors - display its descendants. */ 1020 witness_ddb_display_descendants(prnt, w, 0); 1021 if (db_pager_quit) 1022 return; 1023 } 1024 } 1025 1026 static void 1027 witness_ddb_display(int(*prnt)(const char *fmt, ...)) 1028 { 1029 struct witness *w; 1030 1031 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1032 witness_ddb_compute_levels(); 1033 1034 /* Clear all the displayed flags. */ 1035 STAILQ_FOREACH(w, &w_all, w_list) 1036 w->w_displayed = 0; 1037 1038 /* 1039 * First, handle sleep locks which have been acquired at least 1040 * once. 1041 */ 1042 prnt("Sleep locks:\n"); 1043 witness_ddb_display_list(prnt, &w_sleep); 1044 if (db_pager_quit) 1045 return; 1046 1047 /* 1048 * Now do spin locks which have been acquired at least once. 1049 */ 1050 prnt("\nSpin locks:\n"); 1051 witness_ddb_display_list(prnt, &w_spin); 1052 if (db_pager_quit) 1053 return; 1054 1055 /* 1056 * Finally, any locks which have not been acquired yet. 1057 */ 1058 prnt("\nLocks which were never acquired:\n"); 1059 STAILQ_FOREACH(w, &w_all, w_list) { 1060 if (w->w_file != NULL || w->w_refcount == 0) 1061 continue; 1062 prnt("%s (type: %s, depth: %d)\n", w->w_name, 1063 w->w_class->lc_name, w->w_ddb_level); 1064 if (db_pager_quit) 1065 return; 1066 } 1067 } 1068 #endif /* DDB */ 1069 1070 int 1071 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2) 1072 { 1073 1074 if (witness_watch == -1 || panicstr != NULL) 1075 return (0); 1076 1077 /* Require locks that witness knows about. */ 1078 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL || 1079 lock2->lo_witness == NULL) 1080 return (EINVAL); 1081 1082 mtx_assert(&w_mtx, MA_NOTOWNED); 1083 mtx_lock_spin(&w_mtx); 1084 1085 /* 1086 * If we already have either an explicit or implied lock order that 1087 * is the other way around, then return an error. 1088 */ 1089 if (witness_watch && 1090 isitmydescendant(lock2->lo_witness, lock1->lo_witness)) { 1091 mtx_unlock_spin(&w_mtx); 1092 return (EDOOFUS); 1093 } 1094 1095 /* Try to add the new order. */ 1096 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1097 lock2->lo_witness->w_name, lock1->lo_witness->w_name); 1098 itismychild(lock1->lo_witness, lock2->lo_witness); 1099 mtx_unlock_spin(&w_mtx); 1100 return (0); 1101 } 1102 1103 void 1104 witness_checkorder(struct lock_object *lock, int flags, const char *file, 1105 int line, struct lock_object *interlock) 1106 { 1107 struct lock_list_entry *lock_list, *lle; 1108 struct lock_instance *lock1, *lock2, *plock; 1109 struct lock_class *class, *iclass; 1110 struct witness *w, *w1; 1111 struct thread *td; 1112 int i, j; 1113 1114 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL || 1115 panicstr != NULL) 1116 return; 1117 1118 w = lock->lo_witness; 1119 class = LOCK_CLASS(lock); 1120 td = curthread; 1121 1122 if (class->lc_flags & LC_SLEEPLOCK) { 1123 1124 /* 1125 * Since spin locks include a critical section, this check 1126 * implicitly enforces a lock order of all sleep locks before 1127 * all spin locks. 1128 */ 1129 if (td->td_critnest != 0 && !kdb_active) 1130 kassert_panic("acquiring blockable sleep lock with " 1131 "spinlock or critical section held (%s) %s @ %s:%d", 1132 class->lc_name, lock->lo_name, 1133 fixup_filename(file), line); 1134 1135 /* 1136 * If this is the first lock acquired then just return as 1137 * no order checking is needed. 1138 */ 1139 lock_list = td->td_sleeplocks; 1140 if (lock_list == NULL || lock_list->ll_count == 0) 1141 return; 1142 } else { 1143 1144 /* 1145 * If this is the first lock, just return as no order 1146 * checking is needed. Avoid problems with thread 1147 * migration pinning the thread while checking if 1148 * spinlocks are held. If at least one spinlock is held 1149 * the thread is in a safe path and it is allowed to 1150 * unpin it. 1151 */ 1152 sched_pin(); 1153 lock_list = PCPU_GET(spinlocks); 1154 if (lock_list == NULL || lock_list->ll_count == 0) { 1155 sched_unpin(); 1156 return; 1157 } 1158 sched_unpin(); 1159 } 1160 1161 /* 1162 * Check to see if we are recursing on a lock we already own. If 1163 * so, make sure that we don't mismatch exclusive and shared lock 1164 * acquires. 1165 */ 1166 lock1 = find_instance(lock_list, lock); 1167 if (lock1 != NULL) { 1168 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 && 1169 (flags & LOP_EXCLUSIVE) == 0) { 1170 witness_output("shared lock of (%s) %s @ %s:%d\n", 1171 class->lc_name, lock->lo_name, 1172 fixup_filename(file), line); 1173 witness_output("while exclusively locked from %s:%d\n", 1174 fixup_filename(lock1->li_file), lock1->li_line); 1175 kassert_panic("excl->share"); 1176 } 1177 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 && 1178 (flags & LOP_EXCLUSIVE) != 0) { 1179 witness_output("exclusive lock of (%s) %s @ %s:%d\n", 1180 class->lc_name, lock->lo_name, 1181 fixup_filename(file), line); 1182 witness_output("while share locked from %s:%d\n", 1183 fixup_filename(lock1->li_file), lock1->li_line); 1184 kassert_panic("share->excl"); 1185 } 1186 return; 1187 } 1188 1189 /* Warn if the interlock is not locked exactly once. */ 1190 if (interlock != NULL) { 1191 iclass = LOCK_CLASS(interlock); 1192 lock1 = find_instance(lock_list, interlock); 1193 if (lock1 == NULL) 1194 kassert_panic("interlock (%s) %s not locked @ %s:%d", 1195 iclass->lc_name, interlock->lo_name, 1196 fixup_filename(file), line); 1197 else if ((lock1->li_flags & LI_RECURSEMASK) != 0) 1198 kassert_panic("interlock (%s) %s recursed @ %s:%d", 1199 iclass->lc_name, interlock->lo_name, 1200 fixup_filename(file), line); 1201 } 1202 1203 /* 1204 * Find the previously acquired lock, but ignore interlocks. 1205 */ 1206 plock = &lock_list->ll_children[lock_list->ll_count - 1]; 1207 if (interlock != NULL && plock->li_lock == interlock) { 1208 if (lock_list->ll_count > 1) 1209 plock = 1210 &lock_list->ll_children[lock_list->ll_count - 2]; 1211 else { 1212 lle = lock_list->ll_next; 1213 1214 /* 1215 * The interlock is the only lock we hold, so 1216 * simply return. 1217 */ 1218 if (lle == NULL) 1219 return; 1220 plock = &lle->ll_children[lle->ll_count - 1]; 1221 } 1222 } 1223 1224 /* 1225 * Try to perform most checks without a lock. If this succeeds we 1226 * can skip acquiring the lock and return success. Otherwise we redo 1227 * the check with the lock held to handle races with concurrent updates. 1228 */ 1229 w1 = plock->li_lock->lo_witness; 1230 if (witness_lock_order_check(w1, w)) 1231 return; 1232 1233 mtx_lock_spin(&w_mtx); 1234 if (witness_lock_order_check(w1, w)) { 1235 mtx_unlock_spin(&w_mtx); 1236 return; 1237 } 1238 witness_lock_order_add(w1, w); 1239 1240 /* 1241 * Check for duplicate locks of the same type. Note that we only 1242 * have to check for this on the last lock we just acquired. Any 1243 * other cases will be caught as lock order violations. 1244 */ 1245 if (w1 == w) { 1246 i = w->w_index; 1247 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) && 1248 !(w_rmatrix[i][i] & WITNESS_REVERSAL)) { 1249 w_rmatrix[i][i] |= WITNESS_REVERSAL; 1250 w->w_reversed = 1; 1251 mtx_unlock_spin(&w_mtx); 1252 witness_output( 1253 "acquiring duplicate lock of same type: \"%s\"\n", 1254 w->w_name); 1255 witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name, 1256 fixup_filename(plock->li_file), plock->li_line); 1257 witness_output(" 2nd %s @ %s:%d\n", lock->lo_name, 1258 fixup_filename(file), line); 1259 witness_debugger(1, __func__); 1260 } else 1261 mtx_unlock_spin(&w_mtx); 1262 return; 1263 } 1264 mtx_assert(&w_mtx, MA_OWNED); 1265 1266 /* 1267 * If we know that the lock we are acquiring comes after 1268 * the lock we most recently acquired in the lock order tree, 1269 * then there is no need for any further checks. 1270 */ 1271 if (isitmychild(w1, w)) 1272 goto out; 1273 1274 for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) { 1275 for (i = lle->ll_count - 1; i >= 0; i--, j++) { 1276 1277 MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN); 1278 lock1 = &lle->ll_children[i]; 1279 1280 /* 1281 * Ignore the interlock. 1282 */ 1283 if (interlock == lock1->li_lock) 1284 continue; 1285 1286 /* 1287 * If this lock doesn't undergo witness checking, 1288 * then skip it. 1289 */ 1290 w1 = lock1->li_lock->lo_witness; 1291 if (w1 == NULL) { 1292 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0, 1293 ("lock missing witness structure")); 1294 continue; 1295 } 1296 1297 /* 1298 * If we are locking Giant and this is a sleepable 1299 * lock, then skip it. 1300 */ 1301 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 && 1302 lock == &Giant.lock_object) 1303 continue; 1304 1305 /* 1306 * If we are locking a sleepable lock and this lock 1307 * is Giant, then skip it. 1308 */ 1309 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 1310 lock1->li_lock == &Giant.lock_object) 1311 continue; 1312 1313 /* 1314 * If we are locking a sleepable lock and this lock 1315 * isn't sleepable, we want to treat it as a lock 1316 * order violation to enfore a general lock order of 1317 * sleepable locks before non-sleepable locks. 1318 */ 1319 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1320 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1321 goto reversal; 1322 1323 /* 1324 * If we are locking Giant and this is a non-sleepable 1325 * lock, then treat it as a reversal. 1326 */ 1327 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 && 1328 lock == &Giant.lock_object) 1329 goto reversal; 1330 1331 /* 1332 * Check the lock order hierarchy for a reveresal. 1333 */ 1334 if (!isitmydescendant(w, w1)) 1335 continue; 1336 reversal: 1337 1338 /* 1339 * We have a lock order violation, check to see if it 1340 * is allowed or has already been yelled about. 1341 */ 1342 #ifdef BLESSING 1343 1344 /* 1345 * If the lock order is blessed, just bail. We don't 1346 * look for other lock order violations though, which 1347 * may be a bug. 1348 */ 1349 if (blessed(w, w1)) 1350 goto out; 1351 #endif 1352 1353 /* Bail if this violation is known */ 1354 if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL) 1355 goto out; 1356 1357 /* Record this as a violation */ 1358 w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL; 1359 w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL; 1360 w->w_reversed = w1->w_reversed = 1; 1361 witness_increment_graph_generation(); 1362 mtx_unlock_spin(&w_mtx); 1363 1364 #ifdef WITNESS_NO_VNODE 1365 /* 1366 * There are known LORs between VNODE locks. They are 1367 * not an indication of a bug. VNODE locks are flagged 1368 * as such (LO_IS_VNODE) and we don't yell if the LOR 1369 * is between 2 VNODE locks. 1370 */ 1371 if ((lock->lo_flags & LO_IS_VNODE) != 0 && 1372 (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0) 1373 return; 1374 #endif 1375 1376 /* 1377 * Ok, yell about it. 1378 */ 1379 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1380 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1381 witness_output( 1382 "lock order reversal: (sleepable after non-sleepable)\n"); 1383 else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 1384 && lock == &Giant.lock_object) 1385 witness_output( 1386 "lock order reversal: (Giant after non-sleepable)\n"); 1387 else 1388 witness_output("lock order reversal:\n"); 1389 1390 /* 1391 * Try to locate an earlier lock with 1392 * witness w in our list. 1393 */ 1394 do { 1395 lock2 = &lle->ll_children[i]; 1396 MPASS(lock2->li_lock != NULL); 1397 if (lock2->li_lock->lo_witness == w) 1398 break; 1399 if (i == 0 && lle->ll_next != NULL) { 1400 lle = lle->ll_next; 1401 i = lle->ll_count - 1; 1402 MPASS(i >= 0 && i < LOCK_NCHILDREN); 1403 } else 1404 i--; 1405 } while (i >= 0); 1406 if (i < 0) { 1407 witness_output(" 1st %p %s (%s) @ %s:%d\n", 1408 lock1->li_lock, lock1->li_lock->lo_name, 1409 w1->w_name, fixup_filename(lock1->li_file), 1410 lock1->li_line); 1411 witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock, 1412 lock->lo_name, w->w_name, 1413 fixup_filename(file), line); 1414 } else { 1415 witness_output(" 1st %p %s (%s) @ %s:%d\n", 1416 lock2->li_lock, lock2->li_lock->lo_name, 1417 lock2->li_lock->lo_witness->w_name, 1418 fixup_filename(lock2->li_file), 1419 lock2->li_line); 1420 witness_output(" 2nd %p %s (%s) @ %s:%d\n", 1421 lock1->li_lock, lock1->li_lock->lo_name, 1422 w1->w_name, fixup_filename(lock1->li_file), 1423 lock1->li_line); 1424 witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock, 1425 lock->lo_name, w->w_name, 1426 fixup_filename(file), line); 1427 } 1428 witness_debugger(1, __func__); 1429 return; 1430 } 1431 } 1432 1433 /* 1434 * If requested, build a new lock order. However, don't build a new 1435 * relationship between a sleepable lock and Giant if it is in the 1436 * wrong direction. The correct lock order is that sleepable locks 1437 * always come before Giant. 1438 */ 1439 if (flags & LOP_NEWORDER && 1440 !(plock->li_lock == &Giant.lock_object && 1441 (lock->lo_flags & LO_SLEEPABLE) != 0)) { 1442 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1443 w->w_name, plock->li_lock->lo_witness->w_name); 1444 itismychild(plock->li_lock->lo_witness, w); 1445 } 1446 out: 1447 mtx_unlock_spin(&w_mtx); 1448 } 1449 1450 void 1451 witness_lock(struct lock_object *lock, int flags, const char *file, int line) 1452 { 1453 struct lock_list_entry **lock_list, *lle; 1454 struct lock_instance *instance; 1455 struct witness *w; 1456 struct thread *td; 1457 1458 if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL || 1459 panicstr != NULL) 1460 return; 1461 w = lock->lo_witness; 1462 td = curthread; 1463 1464 /* Determine lock list for this lock. */ 1465 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK) 1466 lock_list = &td->td_sleeplocks; 1467 else 1468 lock_list = PCPU_PTR(spinlocks); 1469 1470 /* Check to see if we are recursing on a lock we already own. */ 1471 instance = find_instance(*lock_list, lock); 1472 if (instance != NULL) { 1473 instance->li_flags++; 1474 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__, 1475 td->td_proc->p_pid, lock->lo_name, 1476 instance->li_flags & LI_RECURSEMASK); 1477 instance->li_file = file; 1478 instance->li_line = line; 1479 return; 1480 } 1481 1482 /* Update per-witness last file and line acquire. */ 1483 w->w_file = file; 1484 w->w_line = line; 1485 1486 /* Find the next open lock instance in the list and fill it. */ 1487 lle = *lock_list; 1488 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) { 1489 lle = witness_lock_list_get(); 1490 if (lle == NULL) 1491 return; 1492 lle->ll_next = *lock_list; 1493 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__, 1494 td->td_proc->p_pid, lle); 1495 *lock_list = lle; 1496 } 1497 instance = &lle->ll_children[lle->ll_count++]; 1498 instance->li_lock = lock; 1499 instance->li_line = line; 1500 instance->li_file = file; 1501 if ((flags & LOP_EXCLUSIVE) != 0) 1502 instance->li_flags = LI_EXCLUSIVE; 1503 else 1504 instance->li_flags = 0; 1505 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__, 1506 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1); 1507 } 1508 1509 void 1510 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line) 1511 { 1512 struct lock_instance *instance; 1513 struct lock_class *class; 1514 1515 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1516 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1517 return; 1518 class = LOCK_CLASS(lock); 1519 if (witness_watch) { 1520 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1521 kassert_panic( 1522 "upgrade of non-upgradable lock (%s) %s @ %s:%d", 1523 class->lc_name, lock->lo_name, 1524 fixup_filename(file), line); 1525 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1526 kassert_panic( 1527 "upgrade of non-sleep lock (%s) %s @ %s:%d", 1528 class->lc_name, lock->lo_name, 1529 fixup_filename(file), line); 1530 } 1531 instance = find_instance(curthread->td_sleeplocks, lock); 1532 if (instance == NULL) { 1533 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d", 1534 class->lc_name, lock->lo_name, 1535 fixup_filename(file), line); 1536 return; 1537 } 1538 if (witness_watch) { 1539 if ((instance->li_flags & LI_EXCLUSIVE) != 0) 1540 kassert_panic( 1541 "upgrade of exclusive lock (%s) %s @ %s:%d", 1542 class->lc_name, lock->lo_name, 1543 fixup_filename(file), line); 1544 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1545 kassert_panic( 1546 "upgrade of recursed lock (%s) %s r=%d @ %s:%d", 1547 class->lc_name, lock->lo_name, 1548 instance->li_flags & LI_RECURSEMASK, 1549 fixup_filename(file), line); 1550 } 1551 instance->li_flags |= LI_EXCLUSIVE; 1552 } 1553 1554 void 1555 witness_downgrade(struct lock_object *lock, int flags, const char *file, 1556 int line) 1557 { 1558 struct lock_instance *instance; 1559 struct lock_class *class; 1560 1561 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1562 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1563 return; 1564 class = LOCK_CLASS(lock); 1565 if (witness_watch) { 1566 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1567 kassert_panic( 1568 "downgrade of non-upgradable lock (%s) %s @ %s:%d", 1569 class->lc_name, lock->lo_name, 1570 fixup_filename(file), line); 1571 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1572 kassert_panic( 1573 "downgrade of non-sleep lock (%s) %s @ %s:%d", 1574 class->lc_name, lock->lo_name, 1575 fixup_filename(file), line); 1576 } 1577 instance = find_instance(curthread->td_sleeplocks, lock); 1578 if (instance == NULL) { 1579 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d", 1580 class->lc_name, lock->lo_name, 1581 fixup_filename(file), line); 1582 return; 1583 } 1584 if (witness_watch) { 1585 if ((instance->li_flags & LI_EXCLUSIVE) == 0) 1586 kassert_panic( 1587 "downgrade of shared lock (%s) %s @ %s:%d", 1588 class->lc_name, lock->lo_name, 1589 fixup_filename(file), line); 1590 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1591 kassert_panic( 1592 "downgrade of recursed lock (%s) %s r=%d @ %s:%d", 1593 class->lc_name, lock->lo_name, 1594 instance->li_flags & LI_RECURSEMASK, 1595 fixup_filename(file), line); 1596 } 1597 instance->li_flags &= ~LI_EXCLUSIVE; 1598 } 1599 1600 void 1601 witness_unlock(struct lock_object *lock, int flags, const char *file, int line) 1602 { 1603 struct lock_list_entry **lock_list, *lle; 1604 struct lock_instance *instance; 1605 struct lock_class *class; 1606 struct thread *td; 1607 register_t s; 1608 int i, j; 1609 1610 if (witness_cold || lock->lo_witness == NULL || panicstr != NULL) 1611 return; 1612 td = curthread; 1613 class = LOCK_CLASS(lock); 1614 1615 /* Find lock instance associated with this lock. */ 1616 if (class->lc_flags & LC_SLEEPLOCK) 1617 lock_list = &td->td_sleeplocks; 1618 else 1619 lock_list = PCPU_PTR(spinlocks); 1620 lle = *lock_list; 1621 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next) 1622 for (i = 0; i < (*lock_list)->ll_count; i++) { 1623 instance = &(*lock_list)->ll_children[i]; 1624 if (instance->li_lock == lock) 1625 goto found; 1626 } 1627 1628 /* 1629 * When disabling WITNESS through witness_watch we could end up in 1630 * having registered locks in the td_sleeplocks queue. 1631 * We have to make sure we flush these queues, so just search for 1632 * eventual register locks and remove them. 1633 */ 1634 if (witness_watch > 0) { 1635 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name, 1636 lock->lo_name, fixup_filename(file), line); 1637 return; 1638 } else { 1639 return; 1640 } 1641 found: 1642 1643 /* First, check for shared/exclusive mismatches. */ 1644 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 && 1645 (flags & LOP_EXCLUSIVE) == 0) { 1646 witness_output("shared unlock of (%s) %s @ %s:%d\n", 1647 class->lc_name, lock->lo_name, fixup_filename(file), line); 1648 witness_output("while exclusively locked from %s:%d\n", 1649 fixup_filename(instance->li_file), instance->li_line); 1650 kassert_panic("excl->ushare"); 1651 } 1652 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 && 1653 (flags & LOP_EXCLUSIVE) != 0) { 1654 witness_output("exclusive unlock of (%s) %s @ %s:%d\n", 1655 class->lc_name, lock->lo_name, fixup_filename(file), line); 1656 witness_output("while share locked from %s:%d\n", 1657 fixup_filename(instance->li_file), 1658 instance->li_line); 1659 kassert_panic("share->uexcl"); 1660 } 1661 /* If we are recursed, unrecurse. */ 1662 if ((instance->li_flags & LI_RECURSEMASK) > 0) { 1663 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__, 1664 td->td_proc->p_pid, instance->li_lock->lo_name, 1665 instance->li_flags); 1666 instance->li_flags--; 1667 return; 1668 } 1669 /* The lock is now being dropped, check for NORELEASE flag */ 1670 if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) { 1671 witness_output("forbidden unlock of (%s) %s @ %s:%d\n", 1672 class->lc_name, lock->lo_name, fixup_filename(file), line); 1673 kassert_panic("lock marked norelease"); 1674 } 1675 1676 /* Otherwise, remove this item from the list. */ 1677 s = intr_disable(); 1678 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__, 1679 td->td_proc->p_pid, instance->li_lock->lo_name, 1680 (*lock_list)->ll_count - 1); 1681 for (j = i; j < (*lock_list)->ll_count - 1; j++) 1682 (*lock_list)->ll_children[j] = 1683 (*lock_list)->ll_children[j + 1]; 1684 (*lock_list)->ll_count--; 1685 intr_restore(s); 1686 1687 /* 1688 * In order to reduce contention on w_mtx, we want to keep always an 1689 * head object into lists so that frequent allocation from the 1690 * free witness pool (and subsequent locking) is avoided. 1691 * In order to maintain the current code simple, when the head 1692 * object is totally unloaded it means also that we do not have 1693 * further objects in the list, so the list ownership needs to be 1694 * hand over to another object if the current head needs to be freed. 1695 */ 1696 if ((*lock_list)->ll_count == 0) { 1697 if (*lock_list == lle) { 1698 if (lle->ll_next == NULL) 1699 return; 1700 } else 1701 lle = *lock_list; 1702 *lock_list = lle->ll_next; 1703 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__, 1704 td->td_proc->p_pid, lle); 1705 witness_lock_list_free(lle); 1706 } 1707 } 1708 1709 void 1710 witness_thread_exit(struct thread *td) 1711 { 1712 struct lock_list_entry *lle; 1713 int i, n; 1714 1715 lle = td->td_sleeplocks; 1716 if (lle == NULL || panicstr != NULL) 1717 return; 1718 if (lle->ll_count != 0) { 1719 for (n = 0; lle != NULL; lle = lle->ll_next) 1720 for (i = lle->ll_count - 1; i >= 0; i--) { 1721 if (n == 0) 1722 witness_output( 1723 "Thread %p exiting with the following locks held:\n", td); 1724 n++; 1725 witness_list_lock(&lle->ll_children[i], 1726 witness_output); 1727 1728 } 1729 kassert_panic( 1730 "Thread %p cannot exit while holding sleeplocks\n", td); 1731 } 1732 witness_lock_list_free(lle); 1733 } 1734 1735 /* 1736 * Warn if any locks other than 'lock' are held. Flags can be passed in to 1737 * exempt Giant and sleepable locks from the checks as well. If any 1738 * non-exempt locks are held, then a supplied message is printed to the 1739 * output channel along with a list of the offending locks. If indicated in the 1740 * flags then a failure results in a panic as well. 1741 */ 1742 int 1743 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...) 1744 { 1745 struct lock_list_entry *lock_list, *lle; 1746 struct lock_instance *lock1; 1747 struct thread *td; 1748 va_list ap; 1749 int i, n; 1750 1751 if (witness_cold || witness_watch < 1 || panicstr != NULL) 1752 return (0); 1753 n = 0; 1754 td = curthread; 1755 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next) 1756 for (i = lle->ll_count - 1; i >= 0; i--) { 1757 lock1 = &lle->ll_children[i]; 1758 if (lock1->li_lock == lock) 1759 continue; 1760 if (flags & WARN_GIANTOK && 1761 lock1->li_lock == &Giant.lock_object) 1762 continue; 1763 if (flags & WARN_SLEEPOK && 1764 (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0) 1765 continue; 1766 if (n == 0) { 1767 va_start(ap, fmt); 1768 vprintf(fmt, ap); 1769 va_end(ap); 1770 printf(" with the following %slocks held:\n", 1771 (flags & WARN_SLEEPOK) != 0 ? 1772 "non-sleepable " : ""); 1773 } 1774 n++; 1775 witness_list_lock(lock1, printf); 1776 } 1777 1778 /* 1779 * Pin the thread in order to avoid problems with thread migration. 1780 * Once that all verifies are passed about spinlocks ownership, 1781 * the thread is in a safe path and it can be unpinned. 1782 */ 1783 sched_pin(); 1784 lock_list = PCPU_GET(spinlocks); 1785 if (lock_list != NULL && lock_list->ll_count != 0) { 1786 sched_unpin(); 1787 1788 /* 1789 * We should only have one spinlock and as long as 1790 * the flags cannot match for this locks class, 1791 * check if the first spinlock is the one curthread 1792 * should hold. 1793 */ 1794 lock1 = &lock_list->ll_children[lock_list->ll_count - 1]; 1795 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL && 1796 lock1->li_lock == lock && n == 0) 1797 return (0); 1798 1799 va_start(ap, fmt); 1800 vprintf(fmt, ap); 1801 va_end(ap); 1802 printf(" with the following %slocks held:\n", 1803 (flags & WARN_SLEEPOK) != 0 ? "non-sleepable " : ""); 1804 n += witness_list_locks(&lock_list, printf); 1805 } else 1806 sched_unpin(); 1807 if (flags & WARN_PANIC && n) 1808 kassert_panic("%s", __func__); 1809 else 1810 witness_debugger(n, __func__); 1811 return (n); 1812 } 1813 1814 const char * 1815 witness_file(struct lock_object *lock) 1816 { 1817 struct witness *w; 1818 1819 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1820 return ("?"); 1821 w = lock->lo_witness; 1822 return (w->w_file); 1823 } 1824 1825 int 1826 witness_line(struct lock_object *lock) 1827 { 1828 struct witness *w; 1829 1830 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1831 return (0); 1832 w = lock->lo_witness; 1833 return (w->w_line); 1834 } 1835 1836 static struct witness * 1837 enroll(const char *description, struct lock_class *lock_class) 1838 { 1839 struct witness *w; 1840 1841 MPASS(description != NULL); 1842 1843 if (witness_watch == -1 || panicstr != NULL) 1844 return (NULL); 1845 if ((lock_class->lc_flags & LC_SPINLOCK)) { 1846 if (witness_skipspin) 1847 return (NULL); 1848 } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) { 1849 kassert_panic("lock class %s is not sleep or spin", 1850 lock_class->lc_name); 1851 return (NULL); 1852 } 1853 1854 mtx_lock_spin(&w_mtx); 1855 w = witness_hash_get(description); 1856 if (w) 1857 goto found; 1858 if ((w = witness_get()) == NULL) 1859 return (NULL); 1860 MPASS(strlen(description) < MAX_W_NAME); 1861 strcpy(w->w_name, description); 1862 w->w_class = lock_class; 1863 w->w_refcount = 1; 1864 STAILQ_INSERT_HEAD(&w_all, w, w_list); 1865 if (lock_class->lc_flags & LC_SPINLOCK) { 1866 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist); 1867 w_spin_cnt++; 1868 } else if (lock_class->lc_flags & LC_SLEEPLOCK) { 1869 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist); 1870 w_sleep_cnt++; 1871 } 1872 1873 /* Insert new witness into the hash */ 1874 witness_hash_put(w); 1875 witness_increment_graph_generation(); 1876 mtx_unlock_spin(&w_mtx); 1877 return (w); 1878 found: 1879 w->w_refcount++; 1880 if (w->w_refcount == 1) 1881 w->w_class = lock_class; 1882 mtx_unlock_spin(&w_mtx); 1883 if (lock_class != w->w_class) 1884 kassert_panic( 1885 "lock (%s) %s does not match earlier (%s) lock", 1886 description, lock_class->lc_name, 1887 w->w_class->lc_name); 1888 return (w); 1889 } 1890 1891 static void 1892 depart(struct witness *w) 1893 { 1894 1895 MPASS(w->w_refcount == 0); 1896 if (w->w_class->lc_flags & LC_SLEEPLOCK) { 1897 w_sleep_cnt--; 1898 } else { 1899 w_spin_cnt--; 1900 } 1901 /* 1902 * Set file to NULL as it may point into a loadable module. 1903 */ 1904 w->w_file = NULL; 1905 w->w_line = 0; 1906 witness_increment_graph_generation(); 1907 } 1908 1909 1910 static void 1911 adopt(struct witness *parent, struct witness *child) 1912 { 1913 int pi, ci, i, j; 1914 1915 if (witness_cold == 0) 1916 mtx_assert(&w_mtx, MA_OWNED); 1917 1918 /* If the relationship is already known, there's no work to be done. */ 1919 if (isitmychild(parent, child)) 1920 return; 1921 1922 /* When the structure of the graph changes, bump up the generation. */ 1923 witness_increment_graph_generation(); 1924 1925 /* 1926 * The hard part ... create the direct relationship, then propagate all 1927 * indirect relationships. 1928 */ 1929 pi = parent->w_index; 1930 ci = child->w_index; 1931 WITNESS_INDEX_ASSERT(pi); 1932 WITNESS_INDEX_ASSERT(ci); 1933 MPASS(pi != ci); 1934 w_rmatrix[pi][ci] |= WITNESS_PARENT; 1935 w_rmatrix[ci][pi] |= WITNESS_CHILD; 1936 1937 /* 1938 * If parent was not already an ancestor of child, 1939 * then we increment the descendant and ancestor counters. 1940 */ 1941 if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) { 1942 parent->w_num_descendants++; 1943 child->w_num_ancestors++; 1944 } 1945 1946 /* 1947 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 1948 * an ancestor of 'pi' during this loop. 1949 */ 1950 for (i = 1; i <= w_max_used_index; i++) { 1951 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 1952 (i != pi)) 1953 continue; 1954 1955 /* Find each descendant of 'i' and mark it as a descendant. */ 1956 for (j = 1; j <= w_max_used_index; j++) { 1957 1958 /* 1959 * Skip children that are already marked as 1960 * descendants of 'i'. 1961 */ 1962 if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) 1963 continue; 1964 1965 /* 1966 * We are only interested in descendants of 'ci'. Note 1967 * that 'ci' itself is counted as a descendant of 'ci'. 1968 */ 1969 if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 1970 (j != ci)) 1971 continue; 1972 w_rmatrix[i][j] |= WITNESS_ANCESTOR; 1973 w_rmatrix[j][i] |= WITNESS_DESCENDANT; 1974 w_data[i].w_num_descendants++; 1975 w_data[j].w_num_ancestors++; 1976 1977 /* 1978 * Make sure we aren't marking a node as both an 1979 * ancestor and descendant. We should have caught 1980 * this as a lock order reversal earlier. 1981 */ 1982 if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) && 1983 (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) { 1984 printf("witness rmatrix paradox! [%d][%d]=%d " 1985 "both ancestor and descendant\n", 1986 i, j, w_rmatrix[i][j]); 1987 kdb_backtrace(); 1988 printf("Witness disabled.\n"); 1989 witness_watch = -1; 1990 } 1991 if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) && 1992 (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) { 1993 printf("witness rmatrix paradox! [%d][%d]=%d " 1994 "both ancestor and descendant\n", 1995 j, i, w_rmatrix[j][i]); 1996 kdb_backtrace(); 1997 printf("Witness disabled.\n"); 1998 witness_watch = -1; 1999 } 2000 } 2001 } 2002 } 2003 2004 static void 2005 itismychild(struct witness *parent, struct witness *child) 2006 { 2007 int unlocked; 2008 2009 MPASS(child != NULL && parent != NULL); 2010 if (witness_cold == 0) 2011 mtx_assert(&w_mtx, MA_OWNED); 2012 2013 if (!witness_lock_type_equal(parent, child)) { 2014 if (witness_cold == 0) { 2015 unlocked = 1; 2016 mtx_unlock_spin(&w_mtx); 2017 } else { 2018 unlocked = 0; 2019 } 2020 kassert_panic( 2021 "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not " 2022 "the same lock type", __func__, parent->w_name, 2023 parent->w_class->lc_name, child->w_name, 2024 child->w_class->lc_name); 2025 if (unlocked) 2026 mtx_lock_spin(&w_mtx); 2027 } 2028 adopt(parent, child); 2029 } 2030 2031 /* 2032 * Generic code for the isitmy*() functions. The rmask parameter is the 2033 * expected relationship of w1 to w2. 2034 */ 2035 static int 2036 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname) 2037 { 2038 unsigned char r1, r2; 2039 int i1, i2; 2040 2041 i1 = w1->w_index; 2042 i2 = w2->w_index; 2043 WITNESS_INDEX_ASSERT(i1); 2044 WITNESS_INDEX_ASSERT(i2); 2045 r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK; 2046 r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK; 2047 2048 /* The flags on one better be the inverse of the flags on the other */ 2049 if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) || 2050 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) { 2051 /* Don't squawk if we're potentially racing with an update. */ 2052 if (!mtx_owned(&w_mtx)) 2053 return (0); 2054 printf("%s: rmatrix mismatch between %s (index %d) and %s " 2055 "(index %d): w_rmatrix[%d][%d] == %hhx but " 2056 "w_rmatrix[%d][%d] == %hhx\n", 2057 fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1, 2058 i2, i1, r2); 2059 kdb_backtrace(); 2060 printf("Witness disabled.\n"); 2061 witness_watch = -1; 2062 } 2063 return (r1 & rmask); 2064 } 2065 2066 /* 2067 * Checks if @child is a direct child of @parent. 2068 */ 2069 static int 2070 isitmychild(struct witness *parent, struct witness *child) 2071 { 2072 2073 return (_isitmyx(parent, child, WITNESS_PARENT, __func__)); 2074 } 2075 2076 /* 2077 * Checks if @descendant is a direct or inderect descendant of @ancestor. 2078 */ 2079 static int 2080 isitmydescendant(struct witness *ancestor, struct witness *descendant) 2081 { 2082 2083 return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK, 2084 __func__)); 2085 } 2086 2087 #ifdef BLESSING 2088 static int 2089 blessed(struct witness *w1, struct witness *w2) 2090 { 2091 int i; 2092 struct witness_blessed *b; 2093 2094 for (i = 0; i < nitems(blessed_list); i++) { 2095 b = &blessed_list[i]; 2096 if (strcmp(w1->w_name, b->b_lock1) == 0) { 2097 if (strcmp(w2->w_name, b->b_lock2) == 0) 2098 return (1); 2099 continue; 2100 } 2101 if (strcmp(w1->w_name, b->b_lock2) == 0) 2102 if (strcmp(w2->w_name, b->b_lock1) == 0) 2103 return (1); 2104 } 2105 return (0); 2106 } 2107 #endif 2108 2109 static struct witness * 2110 witness_get(void) 2111 { 2112 struct witness *w; 2113 int index; 2114 2115 if (witness_cold == 0) 2116 mtx_assert(&w_mtx, MA_OWNED); 2117 2118 if (witness_watch == -1) { 2119 mtx_unlock_spin(&w_mtx); 2120 return (NULL); 2121 } 2122 if (STAILQ_EMPTY(&w_free)) { 2123 witness_watch = -1; 2124 mtx_unlock_spin(&w_mtx); 2125 printf("WITNESS: unable to allocate a new witness object\n"); 2126 return (NULL); 2127 } 2128 w = STAILQ_FIRST(&w_free); 2129 STAILQ_REMOVE_HEAD(&w_free, w_list); 2130 w_free_cnt--; 2131 index = w->w_index; 2132 MPASS(index > 0 && index == w_max_used_index+1 && 2133 index < witness_count); 2134 bzero(w, sizeof(*w)); 2135 w->w_index = index; 2136 if (index > w_max_used_index) 2137 w_max_used_index = index; 2138 return (w); 2139 } 2140 2141 static void 2142 witness_free(struct witness *w) 2143 { 2144 2145 STAILQ_INSERT_HEAD(&w_free, w, w_list); 2146 w_free_cnt++; 2147 } 2148 2149 static struct lock_list_entry * 2150 witness_lock_list_get(void) 2151 { 2152 struct lock_list_entry *lle; 2153 2154 if (witness_watch == -1) 2155 return (NULL); 2156 mtx_lock_spin(&w_mtx); 2157 lle = w_lock_list_free; 2158 if (lle == NULL) { 2159 witness_watch = -1; 2160 mtx_unlock_spin(&w_mtx); 2161 printf("%s: witness exhausted\n", __func__); 2162 return (NULL); 2163 } 2164 w_lock_list_free = lle->ll_next; 2165 mtx_unlock_spin(&w_mtx); 2166 bzero(lle, sizeof(*lle)); 2167 return (lle); 2168 } 2169 2170 static void 2171 witness_lock_list_free(struct lock_list_entry *lle) 2172 { 2173 2174 mtx_lock_spin(&w_mtx); 2175 lle->ll_next = w_lock_list_free; 2176 w_lock_list_free = lle; 2177 mtx_unlock_spin(&w_mtx); 2178 } 2179 2180 static struct lock_instance * 2181 find_instance(struct lock_list_entry *list, const struct lock_object *lock) 2182 { 2183 struct lock_list_entry *lle; 2184 struct lock_instance *instance; 2185 int i; 2186 2187 for (lle = list; lle != NULL; lle = lle->ll_next) 2188 for (i = lle->ll_count - 1; i >= 0; i--) { 2189 instance = &lle->ll_children[i]; 2190 if (instance->li_lock == lock) 2191 return (instance); 2192 } 2193 return (NULL); 2194 } 2195 2196 static void 2197 witness_list_lock(struct lock_instance *instance, 2198 int (*prnt)(const char *fmt, ...)) 2199 { 2200 struct lock_object *lock; 2201 2202 lock = instance->li_lock; 2203 prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ? 2204 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name); 2205 if (lock->lo_witness->w_name != lock->lo_name) 2206 prnt(" (%s)", lock->lo_witness->w_name); 2207 prnt(" r = %d (%p) locked @ %s:%d\n", 2208 instance->li_flags & LI_RECURSEMASK, lock, 2209 fixup_filename(instance->li_file), instance->li_line); 2210 } 2211 2212 static int 2213 witness_output(const char *fmt, ...) 2214 { 2215 va_list ap; 2216 int ret; 2217 2218 va_start(ap, fmt); 2219 ret = witness_voutput(fmt, ap); 2220 va_end(ap); 2221 return (ret); 2222 } 2223 2224 static int 2225 witness_voutput(const char *fmt, va_list ap) 2226 { 2227 int ret; 2228 2229 ret = 0; 2230 switch (witness_channel) { 2231 case WITNESS_CONSOLE: 2232 ret = vprintf(fmt, ap); 2233 break; 2234 case WITNESS_LOG: 2235 vlog(LOG_NOTICE, fmt, ap); 2236 break; 2237 case WITNESS_NONE: 2238 break; 2239 } 2240 return (ret); 2241 } 2242 2243 #ifdef DDB 2244 static int 2245 witness_thread_has_locks(struct thread *td) 2246 { 2247 2248 if (td->td_sleeplocks == NULL) 2249 return (0); 2250 return (td->td_sleeplocks->ll_count != 0); 2251 } 2252 2253 static int 2254 witness_proc_has_locks(struct proc *p) 2255 { 2256 struct thread *td; 2257 2258 FOREACH_THREAD_IN_PROC(p, td) { 2259 if (witness_thread_has_locks(td)) 2260 return (1); 2261 } 2262 return (0); 2263 } 2264 #endif 2265 2266 int 2267 witness_list_locks(struct lock_list_entry **lock_list, 2268 int (*prnt)(const char *fmt, ...)) 2269 { 2270 struct lock_list_entry *lle; 2271 int i, nheld; 2272 2273 nheld = 0; 2274 for (lle = *lock_list; lle != NULL; lle = lle->ll_next) 2275 for (i = lle->ll_count - 1; i >= 0; i--) { 2276 witness_list_lock(&lle->ll_children[i], prnt); 2277 nheld++; 2278 } 2279 return (nheld); 2280 } 2281 2282 /* 2283 * This is a bit risky at best. We call this function when we have timed 2284 * out acquiring a spin lock, and we assume that the other CPU is stuck 2285 * with this lock held. So, we go groveling around in the other CPU's 2286 * per-cpu data to try to find the lock instance for this spin lock to 2287 * see when it was last acquired. 2288 */ 2289 void 2290 witness_display_spinlock(struct lock_object *lock, struct thread *owner, 2291 int (*prnt)(const char *fmt, ...)) 2292 { 2293 struct lock_instance *instance; 2294 struct pcpu *pc; 2295 2296 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU) 2297 return; 2298 pc = pcpu_find(owner->td_oncpu); 2299 instance = find_instance(pc->pc_spinlocks, lock); 2300 if (instance != NULL) 2301 witness_list_lock(instance, prnt); 2302 } 2303 2304 void 2305 witness_save(struct lock_object *lock, const char **filep, int *linep) 2306 { 2307 struct lock_list_entry *lock_list; 2308 struct lock_instance *instance; 2309 struct lock_class *class; 2310 2311 /* 2312 * This function is used independently in locking code to deal with 2313 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2314 * is gone. 2315 */ 2316 if (SCHEDULER_STOPPED()) 2317 return; 2318 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2319 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2320 return; 2321 class = LOCK_CLASS(lock); 2322 if (class->lc_flags & LC_SLEEPLOCK) 2323 lock_list = curthread->td_sleeplocks; 2324 else { 2325 if (witness_skipspin) 2326 return; 2327 lock_list = PCPU_GET(spinlocks); 2328 } 2329 instance = find_instance(lock_list, lock); 2330 if (instance == NULL) { 2331 kassert_panic("%s: lock (%s) %s not locked", __func__, 2332 class->lc_name, lock->lo_name); 2333 return; 2334 } 2335 *filep = instance->li_file; 2336 *linep = instance->li_line; 2337 } 2338 2339 void 2340 witness_restore(struct lock_object *lock, const char *file, int line) 2341 { 2342 struct lock_list_entry *lock_list; 2343 struct lock_instance *instance; 2344 struct lock_class *class; 2345 2346 /* 2347 * This function is used independently in locking code to deal with 2348 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2349 * is gone. 2350 */ 2351 if (SCHEDULER_STOPPED()) 2352 return; 2353 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2354 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2355 return; 2356 class = LOCK_CLASS(lock); 2357 if (class->lc_flags & LC_SLEEPLOCK) 2358 lock_list = curthread->td_sleeplocks; 2359 else { 2360 if (witness_skipspin) 2361 return; 2362 lock_list = PCPU_GET(spinlocks); 2363 } 2364 instance = find_instance(lock_list, lock); 2365 if (instance == NULL) 2366 kassert_panic("%s: lock (%s) %s not locked", __func__, 2367 class->lc_name, lock->lo_name); 2368 lock->lo_witness->w_file = file; 2369 lock->lo_witness->w_line = line; 2370 if (instance == NULL) 2371 return; 2372 instance->li_file = file; 2373 instance->li_line = line; 2374 } 2375 2376 void 2377 witness_assert(const struct lock_object *lock, int flags, const char *file, 2378 int line) 2379 { 2380 #ifdef INVARIANT_SUPPORT 2381 struct lock_instance *instance; 2382 struct lock_class *class; 2383 2384 if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL) 2385 return; 2386 class = LOCK_CLASS(lock); 2387 if ((class->lc_flags & LC_SLEEPLOCK) != 0) 2388 instance = find_instance(curthread->td_sleeplocks, lock); 2389 else if ((class->lc_flags & LC_SPINLOCK) != 0) 2390 instance = find_instance(PCPU_GET(spinlocks), lock); 2391 else { 2392 kassert_panic("Lock (%s) %s is not sleep or spin!", 2393 class->lc_name, lock->lo_name); 2394 return; 2395 } 2396 switch (flags) { 2397 case LA_UNLOCKED: 2398 if (instance != NULL) 2399 kassert_panic("Lock (%s) %s locked @ %s:%d.", 2400 class->lc_name, lock->lo_name, 2401 fixup_filename(file), line); 2402 break; 2403 case LA_LOCKED: 2404 case LA_LOCKED | LA_RECURSED: 2405 case LA_LOCKED | LA_NOTRECURSED: 2406 case LA_SLOCKED: 2407 case LA_SLOCKED | LA_RECURSED: 2408 case LA_SLOCKED | LA_NOTRECURSED: 2409 case LA_XLOCKED: 2410 case LA_XLOCKED | LA_RECURSED: 2411 case LA_XLOCKED | LA_NOTRECURSED: 2412 if (instance == NULL) { 2413 kassert_panic("Lock (%s) %s not locked @ %s:%d.", 2414 class->lc_name, lock->lo_name, 2415 fixup_filename(file), line); 2416 break; 2417 } 2418 if ((flags & LA_XLOCKED) != 0 && 2419 (instance->li_flags & LI_EXCLUSIVE) == 0) 2420 kassert_panic( 2421 "Lock (%s) %s not exclusively locked @ %s:%d.", 2422 class->lc_name, lock->lo_name, 2423 fixup_filename(file), line); 2424 if ((flags & LA_SLOCKED) != 0 && 2425 (instance->li_flags & LI_EXCLUSIVE) != 0) 2426 kassert_panic( 2427 "Lock (%s) %s exclusively locked @ %s:%d.", 2428 class->lc_name, lock->lo_name, 2429 fixup_filename(file), line); 2430 if ((flags & LA_RECURSED) != 0 && 2431 (instance->li_flags & LI_RECURSEMASK) == 0) 2432 kassert_panic("Lock (%s) %s not recursed @ %s:%d.", 2433 class->lc_name, lock->lo_name, 2434 fixup_filename(file), line); 2435 if ((flags & LA_NOTRECURSED) != 0 && 2436 (instance->li_flags & LI_RECURSEMASK) != 0) 2437 kassert_panic("Lock (%s) %s recursed @ %s:%d.", 2438 class->lc_name, lock->lo_name, 2439 fixup_filename(file), line); 2440 break; 2441 default: 2442 kassert_panic("Invalid lock assertion at %s:%d.", 2443 fixup_filename(file), line); 2444 2445 } 2446 #endif /* INVARIANT_SUPPORT */ 2447 } 2448 2449 static void 2450 witness_setflag(struct lock_object *lock, int flag, int set) 2451 { 2452 struct lock_list_entry *lock_list; 2453 struct lock_instance *instance; 2454 struct lock_class *class; 2455 2456 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2457 return; 2458 class = LOCK_CLASS(lock); 2459 if (class->lc_flags & LC_SLEEPLOCK) 2460 lock_list = curthread->td_sleeplocks; 2461 else { 2462 if (witness_skipspin) 2463 return; 2464 lock_list = PCPU_GET(spinlocks); 2465 } 2466 instance = find_instance(lock_list, lock); 2467 if (instance == NULL) { 2468 kassert_panic("%s: lock (%s) %s not locked", __func__, 2469 class->lc_name, lock->lo_name); 2470 return; 2471 } 2472 2473 if (set) 2474 instance->li_flags |= flag; 2475 else 2476 instance->li_flags &= ~flag; 2477 } 2478 2479 void 2480 witness_norelease(struct lock_object *lock) 2481 { 2482 2483 witness_setflag(lock, LI_NORELEASE, 1); 2484 } 2485 2486 void 2487 witness_releaseok(struct lock_object *lock) 2488 { 2489 2490 witness_setflag(lock, LI_NORELEASE, 0); 2491 } 2492 2493 #ifdef DDB 2494 static void 2495 witness_ddb_list(struct thread *td) 2496 { 2497 2498 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2499 KASSERT(kdb_active, ("%s: not in the debugger", __func__)); 2500 2501 if (witness_watch < 1) 2502 return; 2503 2504 witness_list_locks(&td->td_sleeplocks, db_printf); 2505 2506 /* 2507 * We only handle spinlocks if td == curthread. This is somewhat broken 2508 * if td is currently executing on some other CPU and holds spin locks 2509 * as we won't display those locks. If we had a MI way of getting 2510 * the per-cpu data for a given cpu then we could use 2511 * td->td_oncpu to get the list of spinlocks for this thread 2512 * and "fix" this. 2513 * 2514 * That still wouldn't really fix this unless we locked the scheduler 2515 * lock or stopped the other CPU to make sure it wasn't changing the 2516 * list out from under us. It is probably best to just not try to 2517 * handle threads on other CPU's for now. 2518 */ 2519 if (td == curthread && PCPU_GET(spinlocks) != NULL) 2520 witness_list_locks(PCPU_PTR(spinlocks), db_printf); 2521 } 2522 2523 DB_SHOW_COMMAND(locks, db_witness_list) 2524 { 2525 struct thread *td; 2526 2527 if (have_addr) 2528 td = db_lookup_thread(addr, true); 2529 else 2530 td = kdb_thread; 2531 witness_ddb_list(td); 2532 } 2533 2534 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all) 2535 { 2536 struct thread *td; 2537 struct proc *p; 2538 2539 /* 2540 * It would be nice to list only threads and processes that actually 2541 * held sleep locks, but that information is currently not exported 2542 * by WITNESS. 2543 */ 2544 FOREACH_PROC_IN_SYSTEM(p) { 2545 if (!witness_proc_has_locks(p)) 2546 continue; 2547 FOREACH_THREAD_IN_PROC(p, td) { 2548 if (!witness_thread_has_locks(td)) 2549 continue; 2550 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid, 2551 p->p_comm, td, td->td_tid); 2552 witness_ddb_list(td); 2553 if (db_pager_quit) 2554 return; 2555 } 2556 } 2557 } 2558 DB_SHOW_ALIAS(alllocks, db_witness_list_all) 2559 2560 DB_SHOW_COMMAND(witness, db_witness_display) 2561 { 2562 2563 witness_ddb_display(db_printf); 2564 } 2565 #endif 2566 2567 static void 2568 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx) 2569 { 2570 struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2; 2571 struct witness *tmp_w1, *tmp_w2, *w1, *w2; 2572 int generation, i, j; 2573 2574 tmp_data1 = NULL; 2575 tmp_data2 = NULL; 2576 tmp_w1 = NULL; 2577 tmp_w2 = NULL; 2578 2579 /* Allocate and init temporary storage space. */ 2580 tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2581 tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2582 tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2583 M_WAITOK | M_ZERO); 2584 tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2585 M_WAITOK | M_ZERO); 2586 stack_zero(&tmp_data1->wlod_stack); 2587 stack_zero(&tmp_data2->wlod_stack); 2588 2589 restart: 2590 mtx_lock_spin(&w_mtx); 2591 generation = w_generation; 2592 mtx_unlock_spin(&w_mtx); 2593 sbuf_printf(sb, "Number of known direct relationships is %d\n", 2594 w_lohash.wloh_count); 2595 for (i = 1; i < w_max_used_index; i++) { 2596 mtx_lock_spin(&w_mtx); 2597 if (generation != w_generation) { 2598 mtx_unlock_spin(&w_mtx); 2599 2600 /* The graph has changed, try again. */ 2601 *oldidx = 0; 2602 sbuf_clear(sb); 2603 goto restart; 2604 } 2605 2606 w1 = &w_data[i]; 2607 if (w1->w_reversed == 0) { 2608 mtx_unlock_spin(&w_mtx); 2609 continue; 2610 } 2611 2612 /* Copy w1 locally so we can release the spin lock. */ 2613 *tmp_w1 = *w1; 2614 mtx_unlock_spin(&w_mtx); 2615 2616 if (tmp_w1->w_reversed == 0) 2617 continue; 2618 for (j = 1; j < w_max_used_index; j++) { 2619 if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j) 2620 continue; 2621 2622 mtx_lock_spin(&w_mtx); 2623 if (generation != w_generation) { 2624 mtx_unlock_spin(&w_mtx); 2625 2626 /* The graph has changed, try again. */ 2627 *oldidx = 0; 2628 sbuf_clear(sb); 2629 goto restart; 2630 } 2631 2632 w2 = &w_data[j]; 2633 data1 = witness_lock_order_get(w1, w2); 2634 data2 = witness_lock_order_get(w2, w1); 2635 2636 /* 2637 * Copy information locally so we can release the 2638 * spin lock. 2639 */ 2640 *tmp_w2 = *w2; 2641 2642 if (data1) { 2643 stack_zero(&tmp_data1->wlod_stack); 2644 stack_copy(&data1->wlod_stack, 2645 &tmp_data1->wlod_stack); 2646 } 2647 if (data2 && data2 != data1) { 2648 stack_zero(&tmp_data2->wlod_stack); 2649 stack_copy(&data2->wlod_stack, 2650 &tmp_data2->wlod_stack); 2651 } 2652 mtx_unlock_spin(&w_mtx); 2653 2654 sbuf_printf(sb, 2655 "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n", 2656 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2657 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2658 if (data1) { 2659 sbuf_printf(sb, 2660 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2661 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2662 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2663 stack_sbuf_print(sb, &tmp_data1->wlod_stack); 2664 sbuf_printf(sb, "\n"); 2665 } 2666 if (data2 && data2 != data1) { 2667 sbuf_printf(sb, 2668 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2669 tmp_w2->w_name, tmp_w2->w_class->lc_name, 2670 tmp_w1->w_name, tmp_w1->w_class->lc_name); 2671 stack_sbuf_print(sb, &tmp_data2->wlod_stack); 2672 sbuf_printf(sb, "\n"); 2673 } 2674 } 2675 } 2676 mtx_lock_spin(&w_mtx); 2677 if (generation != w_generation) { 2678 mtx_unlock_spin(&w_mtx); 2679 2680 /* 2681 * The graph changed while we were printing stack data, 2682 * try again. 2683 */ 2684 *oldidx = 0; 2685 sbuf_clear(sb); 2686 goto restart; 2687 } 2688 mtx_unlock_spin(&w_mtx); 2689 2690 /* Free temporary storage space. */ 2691 free(tmp_data1, M_TEMP); 2692 free(tmp_data2, M_TEMP); 2693 free(tmp_w1, M_TEMP); 2694 free(tmp_w2, M_TEMP); 2695 } 2696 2697 static int 2698 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS) 2699 { 2700 struct sbuf *sb; 2701 int error; 2702 2703 if (witness_watch < 1) { 2704 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2705 return (error); 2706 } 2707 if (witness_cold) { 2708 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2709 return (error); 2710 } 2711 error = 0; 2712 sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND); 2713 if (sb == NULL) 2714 return (ENOMEM); 2715 2716 sbuf_print_witness_badstacks(sb, &req->oldidx); 2717 2718 sbuf_finish(sb); 2719 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 2720 sbuf_delete(sb); 2721 2722 return (error); 2723 } 2724 2725 #ifdef DDB 2726 static int 2727 sbuf_db_printf_drain(void *arg __unused, const char *data, int len) 2728 { 2729 2730 return (db_printf("%.*s", len, data)); 2731 } 2732 2733 DB_SHOW_COMMAND(badstacks, db_witness_badstacks) 2734 { 2735 struct sbuf sb; 2736 char buffer[128]; 2737 size_t dummy; 2738 2739 sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN); 2740 sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL); 2741 sbuf_print_witness_badstacks(&sb, &dummy); 2742 sbuf_finish(&sb); 2743 } 2744 #endif 2745 2746 static int 2747 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS) 2748 { 2749 static const struct { 2750 enum witness_channel channel; 2751 const char *name; 2752 } channels[] = { 2753 { WITNESS_CONSOLE, "console" }, 2754 { WITNESS_LOG, "log" }, 2755 { WITNESS_NONE, "none" }, 2756 }; 2757 char buf[16]; 2758 u_int i; 2759 int error; 2760 2761 buf[0] = '\0'; 2762 for (i = 0; i < nitems(channels); i++) 2763 if (witness_channel == channels[i].channel) { 2764 snprintf(buf, sizeof(buf), "%s", channels[i].name); 2765 break; 2766 } 2767 2768 error = sysctl_handle_string(oidp, buf, sizeof(buf), req); 2769 if (error != 0 || req->newptr == NULL) 2770 return (error); 2771 2772 error = EINVAL; 2773 for (i = 0; i < nitems(channels); i++) 2774 if (strcmp(channels[i].name, buf) == 0) { 2775 witness_channel = channels[i].channel; 2776 error = 0; 2777 break; 2778 } 2779 return (error); 2780 } 2781 2782 static int 2783 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS) 2784 { 2785 struct witness *w; 2786 struct sbuf *sb; 2787 int error; 2788 2789 #ifdef __i386__ 2790 error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed)); 2791 return (error); 2792 #endif 2793 2794 if (witness_watch < 1) { 2795 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2796 return (error); 2797 } 2798 if (witness_cold) { 2799 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2800 return (error); 2801 } 2802 error = 0; 2803 2804 error = sysctl_wire_old_buffer(req, 0); 2805 if (error != 0) 2806 return (error); 2807 sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req); 2808 if (sb == NULL) 2809 return (ENOMEM); 2810 sbuf_printf(sb, "\n"); 2811 2812 mtx_lock_spin(&w_mtx); 2813 STAILQ_FOREACH(w, &w_all, w_list) 2814 w->w_displayed = 0; 2815 STAILQ_FOREACH(w, &w_all, w_list) 2816 witness_add_fullgraph(sb, w); 2817 mtx_unlock_spin(&w_mtx); 2818 2819 /* 2820 * Close the sbuf and return to userland. 2821 */ 2822 error = sbuf_finish(sb); 2823 sbuf_delete(sb); 2824 2825 return (error); 2826 } 2827 2828 static int 2829 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS) 2830 { 2831 int error, value; 2832 2833 value = witness_watch; 2834 error = sysctl_handle_int(oidp, &value, 0, req); 2835 if (error != 0 || req->newptr == NULL) 2836 return (error); 2837 if (value > 1 || value < -1 || 2838 (witness_watch == -1 && value != witness_watch)) 2839 return (EINVAL); 2840 witness_watch = value; 2841 return (0); 2842 } 2843 2844 static void 2845 witness_add_fullgraph(struct sbuf *sb, struct witness *w) 2846 { 2847 int i; 2848 2849 if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0)) 2850 return; 2851 w->w_displayed = 1; 2852 2853 WITNESS_INDEX_ASSERT(w->w_index); 2854 for (i = 1; i <= w_max_used_index; i++) { 2855 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) { 2856 sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name, 2857 w_data[i].w_name); 2858 witness_add_fullgraph(sb, &w_data[i]); 2859 } 2860 } 2861 } 2862 2863 /* 2864 * A simple hash function. Takes a key pointer and a key size. If size == 0, 2865 * interprets the key as a string and reads until the null 2866 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit 2867 * hash value computed from the key. 2868 */ 2869 static uint32_t 2870 witness_hash_djb2(const uint8_t *key, uint32_t size) 2871 { 2872 unsigned int hash = 5381; 2873 int i; 2874 2875 /* hash = hash * 33 + key[i] */ 2876 if (size) 2877 for (i = 0; i < size; i++) 2878 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2879 else 2880 for (i = 0; key[i] != 0; i++) 2881 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2882 2883 return (hash); 2884 } 2885 2886 2887 /* 2888 * Initializes the two witness hash tables. Called exactly once from 2889 * witness_initialize(). 2890 */ 2891 static void 2892 witness_init_hash_tables(void) 2893 { 2894 int i; 2895 2896 MPASS(witness_cold); 2897 2898 /* Initialize the hash tables. */ 2899 for (i = 0; i < WITNESS_HASH_SIZE; i++) 2900 w_hash.wh_array[i] = NULL; 2901 2902 w_hash.wh_size = WITNESS_HASH_SIZE; 2903 w_hash.wh_count = 0; 2904 2905 /* Initialize the lock order data hash. */ 2906 w_lofree = NULL; 2907 for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) { 2908 memset(&w_lodata[i], 0, sizeof(w_lodata[i])); 2909 w_lodata[i].wlod_next = w_lofree; 2910 w_lofree = &w_lodata[i]; 2911 } 2912 w_lohash.wloh_size = WITNESS_LO_HASH_SIZE; 2913 w_lohash.wloh_count = 0; 2914 for (i = 0; i < WITNESS_LO_HASH_SIZE; i++) 2915 w_lohash.wloh_array[i] = NULL; 2916 } 2917 2918 static struct witness * 2919 witness_hash_get(const char *key) 2920 { 2921 struct witness *w; 2922 uint32_t hash; 2923 2924 MPASS(key != NULL); 2925 if (witness_cold == 0) 2926 mtx_assert(&w_mtx, MA_OWNED); 2927 hash = witness_hash_djb2(key, 0) % w_hash.wh_size; 2928 w = w_hash.wh_array[hash]; 2929 while (w != NULL) { 2930 if (strcmp(w->w_name, key) == 0) 2931 goto out; 2932 w = w->w_hash_next; 2933 } 2934 2935 out: 2936 return (w); 2937 } 2938 2939 static void 2940 witness_hash_put(struct witness *w) 2941 { 2942 uint32_t hash; 2943 2944 MPASS(w != NULL); 2945 MPASS(w->w_name != NULL); 2946 if (witness_cold == 0) 2947 mtx_assert(&w_mtx, MA_OWNED); 2948 KASSERT(witness_hash_get(w->w_name) == NULL, 2949 ("%s: trying to add a hash entry that already exists!", __func__)); 2950 KASSERT(w->w_hash_next == NULL, 2951 ("%s: w->w_hash_next != NULL", __func__)); 2952 2953 hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size; 2954 w->w_hash_next = w_hash.wh_array[hash]; 2955 w_hash.wh_array[hash] = w; 2956 w_hash.wh_count++; 2957 } 2958 2959 2960 static struct witness_lock_order_data * 2961 witness_lock_order_get(struct witness *parent, struct witness *child) 2962 { 2963 struct witness_lock_order_data *data = NULL; 2964 struct witness_lock_order_key key; 2965 unsigned int hash; 2966 2967 MPASS(parent != NULL && child != NULL); 2968 key.from = parent->w_index; 2969 key.to = child->w_index; 2970 WITNESS_INDEX_ASSERT(key.from); 2971 WITNESS_INDEX_ASSERT(key.to); 2972 if ((w_rmatrix[parent->w_index][child->w_index] 2973 & WITNESS_LOCK_ORDER_KNOWN) == 0) 2974 goto out; 2975 2976 hash = witness_hash_djb2((const char*)&key, 2977 sizeof(key)) % w_lohash.wloh_size; 2978 data = w_lohash.wloh_array[hash]; 2979 while (data != NULL) { 2980 if (witness_lock_order_key_equal(&data->wlod_key, &key)) 2981 break; 2982 data = data->wlod_next; 2983 } 2984 2985 out: 2986 return (data); 2987 } 2988 2989 /* 2990 * Verify that parent and child have a known relationship, are not the same, 2991 * and child is actually a child of parent. This is done without w_mtx 2992 * to avoid contention in the common case. 2993 */ 2994 static int 2995 witness_lock_order_check(struct witness *parent, struct witness *child) 2996 { 2997 2998 if (parent != child && 2999 w_rmatrix[parent->w_index][child->w_index] 3000 & WITNESS_LOCK_ORDER_KNOWN && 3001 isitmychild(parent, child)) 3002 return (1); 3003 3004 return (0); 3005 } 3006 3007 static int 3008 witness_lock_order_add(struct witness *parent, struct witness *child) 3009 { 3010 struct witness_lock_order_data *data = NULL; 3011 struct witness_lock_order_key key; 3012 unsigned int hash; 3013 3014 MPASS(parent != NULL && child != NULL); 3015 key.from = parent->w_index; 3016 key.to = child->w_index; 3017 WITNESS_INDEX_ASSERT(key.from); 3018 WITNESS_INDEX_ASSERT(key.to); 3019 if (w_rmatrix[parent->w_index][child->w_index] 3020 & WITNESS_LOCK_ORDER_KNOWN) 3021 return (1); 3022 3023 hash = witness_hash_djb2((const char*)&key, 3024 sizeof(key)) % w_lohash.wloh_size; 3025 w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN; 3026 data = w_lofree; 3027 if (data == NULL) 3028 return (0); 3029 w_lofree = data->wlod_next; 3030 data->wlod_next = w_lohash.wloh_array[hash]; 3031 data->wlod_key = key; 3032 w_lohash.wloh_array[hash] = data; 3033 w_lohash.wloh_count++; 3034 stack_zero(&data->wlod_stack); 3035 stack_save(&data->wlod_stack); 3036 return (1); 3037 } 3038 3039 /* Call this whenever the structure of the witness graph changes. */ 3040 static void 3041 witness_increment_graph_generation(void) 3042 { 3043 3044 if (witness_cold == 0) 3045 mtx_assert(&w_mtx, MA_OWNED); 3046 w_generation++; 3047 } 3048 3049 static int 3050 witness_output_drain(void *arg __unused, const char *data, int len) 3051 { 3052 3053 witness_output("%.*s", len, data); 3054 return (len); 3055 } 3056 3057 static void 3058 witness_debugger(int cond, const char *msg) 3059 { 3060 char buf[32]; 3061 struct sbuf sb; 3062 struct stack st; 3063 3064 if (!cond) 3065 return; 3066 3067 if (witness_trace) { 3068 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 3069 sbuf_set_drain(&sb, witness_output_drain, NULL); 3070 3071 stack_zero(&st); 3072 stack_save(&st); 3073 witness_output("stack backtrace:\n"); 3074 stack_sbuf_print_ddb(&sb, &st); 3075 3076 sbuf_finish(&sb); 3077 } 3078 3079 #ifdef KDB 3080 if (witness_kdb) 3081 kdb_enter(KDB_WHY_WITNESS, msg); 3082 #endif 3083 } 3084