xref: /freebsd/sys/kern/subr_witness.c (revision c6db8143eda5c775467145ac73e8ebec47afdd8f)
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34 
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40 
41 /*
42  *	Main Entry: witness
43  *	Pronunciation: 'wit-n&s
44  *	Function: noun
45  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *	    testimony, witness, from 2wit
47  *	Date: before 12th century
48  *	1 : attestation of a fact or event : TESTIMONY
49  *	2 : one that gives evidence; specifically : one who testifies in
50  *	    a cause or before a judicial tribunal
51  *	3 : one asked to be present at a transaction so as to be able to
52  *	    testify to its having taken place
53  *	4 : one who has personal knowledge of something
54  *	5 a : something serving as evidence or proof : SIGN
55  *	  b : public affirmation by word or example of usually
56  *	      religious faith or conviction <the heroic witness to divine
57  *	      life -- Pilot>
58  *	6 capitalized : a member of the Jehovah's Witnesses
59  */
60 
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86 
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89 
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94 
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110 
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114 
115 #include <machine/stdarg.h>
116 
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120 
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define	KTR_WITNESS	KTR_SUBSYS
124 #else
125 #define	KTR_WITNESS	0
126 #endif
127 
128 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
129 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
130 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
131 
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134 
135 #ifndef WITNESS_COUNT
136 #define	WITNESS_COUNT 		1536
137 #endif
138 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
139 #define	WITNESS_PENDLIST	(1024 + MAXCPU)
140 
141 /* Allocate 256 KB of stack data space */
142 #define	WITNESS_LO_DATA_COUNT	2048
143 
144 /* Prime, gives load factor of ~2 at full load */
145 #define	WITNESS_LO_HASH_SIZE	1021
146 
147 /*
148  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
149  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
150  * probably be safe for the most part, but it's still a SWAG.
151  */
152 #define	LOCK_NCHILDREN	5
153 #define	LOCK_CHILDCOUNT	2048
154 
155 #define	MAX_W_NAME	64
156 
157 #define	FULLGRAPH_SBUF_SIZE	512
158 
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define	WITNESS_RELATED_MASK						\
171 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173 					  * observed. */
174 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177 
178 /* Descendant to ancestor flags */
179 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
180 
181 /* Ancestor to descendant flags */
182 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
183 
184 #define	WITNESS_INDEX_ASSERT(i)						\
185 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
186 
187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188 
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196 	struct lock_object	*li_lock;
197 	const char		*li_file;
198 	int			li_line;
199 	u_int			li_flags;
200 };
201 
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213 	struct lock_list_entry	*ll_next;
214 	struct lock_instance	ll_children[LOCK_NCHILDREN];
215 	u_int			ll_count;
216 };
217 
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223 	char  			w_name[MAX_W_NAME];
224 	uint32_t 		w_index;  /* Index in the relationship matrix */
225 	struct lock_class	*w_class;
226 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
227 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
228 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
229 	const char		*w_file; /* File where last acquired */
230 	uint32_t 		w_line; /* Line where last acquired */
231 	uint32_t 		w_refcount;
232 	uint16_t 		w_num_ancestors; /* direct/indirect
233 						  * ancestor count */
234 	uint16_t 		w_num_descendants; /* direct/indirect
235 						    * descendant count */
236 	int16_t 		w_ddb_level;
237 	unsigned		w_displayed:1;
238 	unsigned		w_reversed:1;
239 };
240 
241 STAILQ_HEAD(witness_list, witness);
242 
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248 	struct witness	*wh_array[WITNESS_HASH_SIZE];
249 	uint32_t	wh_size;
250 	uint32_t	wh_count;
251 };
252 
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257 	uint16_t	from;
258 	uint16_t	to;
259 };
260 
261 struct witness_lock_order_data {
262 	struct stack			wlod_stack;
263 	struct witness_lock_order_key	wlod_key;
264 	struct witness_lock_order_data	*wlod_next;
265 };
266 
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data).
271  */
272 struct witness_lock_order_hash {
273 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
274 	u_int	wloh_size;
275 	u_int	wloh_count;
276 };
277 
278 #ifdef BLESSING
279 struct witness_blessed {
280 	const char	*b_lock1;
281 	const char	*b_lock2;
282 };
283 #endif
284 
285 struct witness_pendhelp {
286 	const char		*wh_type;
287 	struct lock_object	*wh_lock;
288 };
289 
290 struct witness_order_list_entry {
291 	const char		*w_name;
292 	struct lock_class	*w_class;
293 };
294 
295 /*
296  * Returns 0 if one of the locks is a spin lock and the other is not.
297  * Returns 1 otherwise.
298  */
299 static __inline int
300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
301 {
302 
303 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305 }
306 
307 static __inline int
308 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
309     const struct witness_lock_order_key *b)
310 {
311 
312 	return (a->from == b->from && a->to == b->to);
313 }
314 
315 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
316 		    const char *fname);
317 #ifdef KDB
318 static void	_witness_debugger(int cond, const char *msg);
319 #endif
320 static void	adopt(struct witness *parent, struct witness *child);
321 #ifdef BLESSING
322 static int	blessed(struct witness *, struct witness *);
323 #endif
324 static void	depart(struct witness *w);
325 static struct witness	*enroll(const char *description,
326 			    struct lock_class *lock_class);
327 static struct lock_instance	*find_instance(struct lock_list_entry *list,
328 				    const struct lock_object *lock);
329 static int	isitmychild(struct witness *parent, struct witness *child);
330 static int	isitmydescendant(struct witness *parent, struct witness *child);
331 static void	itismychild(struct witness *parent, struct witness *child);
332 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
333 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
334 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
335 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
336 #ifdef DDB
337 static void	witness_ddb_compute_levels(void);
338 static void	witness_ddb_display(int(*)(const char *fmt, ...));
339 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
340 		    struct witness *, int indent);
341 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
342 		    struct witness_list *list);
343 static void	witness_ddb_level_descendants(struct witness *parent, int l);
344 static void	witness_ddb_list(struct thread *td);
345 #endif
346 static void	witness_free(struct witness *m);
347 static struct witness	*witness_get(void);
348 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
349 static struct witness	*witness_hash_get(const char *key);
350 static void	witness_hash_put(struct witness *w);
351 static void	witness_init_hash_tables(void);
352 static void	witness_increment_graph_generation(void);
353 static void	witness_lock_list_free(struct lock_list_entry *lle);
354 static struct lock_list_entry	*witness_lock_list_get(void);
355 static int	witness_lock_order_add(struct witness *parent,
356 		    struct witness *child);
357 static int	witness_lock_order_check(struct witness *parent,
358 		    struct witness *child);
359 static struct witness_lock_order_data	*witness_lock_order_get(
360 					    struct witness *parent,
361 					    struct witness *child);
362 static void	witness_list_lock(struct lock_instance *instance,
363 		    int (*prnt)(const char *fmt, ...));
364 static void	witness_setflag(struct lock_object *lock, int flag, int set);
365 
366 #ifdef KDB
367 #define	witness_debugger(c)	_witness_debugger(c, __func__)
368 #else
369 #define	witness_debugger(c)
370 #endif
371 
372 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
373     "Witness Locking");
374 
375 /*
376  * If set to 0, lock order checking is disabled.  If set to -1,
377  * witness is completely disabled.  Otherwise witness performs full
378  * lock order checking for all locks.  At runtime, lock order checking
379  * may be toggled.  However, witness cannot be reenabled once it is
380  * completely disabled.
381  */
382 static int witness_watch = 1;
383 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
384     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
385 
386 #ifdef KDB
387 /*
388  * When KDB is enabled and witness_kdb is 1, it will cause the system
389  * to drop into kdebug() when:
390  *	- a lock hierarchy violation occurs
391  *	- locks are held when going to sleep.
392  */
393 #ifdef WITNESS_KDB
394 int	witness_kdb = 1;
395 #else
396 int	witness_kdb = 0;
397 #endif
398 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
399 
400 /*
401  * When KDB is enabled and witness_trace is 1, it will cause the system
402  * to print a stack trace:
403  *	- a lock hierarchy violation occurs
404  *	- locks are held when going to sleep.
405  */
406 int	witness_trace = 1;
407 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
408 #endif /* KDB */
409 
410 #ifdef WITNESS_SKIPSPIN
411 int	witness_skipspin = 1;
412 #else
413 int	witness_skipspin = 0;
414 #endif
415 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
416 
417 int badstack_sbuf_size;
418 
419 int witness_count = WITNESS_COUNT;
420 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
421     &witness_count, 0, "");
422 
423 /*
424  * Call this to print out the relations between locks.
425  */
426 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
427     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
428 
429 /*
430  * Call this to print out the witness faulty stacks.
431  */
432 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
433     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
434 
435 static struct mtx w_mtx;
436 
437 /* w_list */
438 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
439 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
440 
441 /* w_typelist */
442 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
443 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
444 
445 /* lock list */
446 static struct lock_list_entry *w_lock_list_free = NULL;
447 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
448 static u_int pending_cnt;
449 
450 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
451 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
452 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
453 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
454     "");
455 
456 static struct witness *w_data;
457 static uint8_t **w_rmatrix;
458 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
459 static struct witness_hash w_hash;	/* The witness hash table. */
460 
461 /* The lock order data hash */
462 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
463 static struct witness_lock_order_data *w_lofree = NULL;
464 static struct witness_lock_order_hash w_lohash;
465 static int w_max_used_index = 0;
466 static unsigned int w_generation = 0;
467 static const char w_notrunning[] = "Witness not running\n";
468 static const char w_stillcold[] = "Witness is still cold\n";
469 
470 
471 static struct witness_order_list_entry order_lists[] = {
472 	/*
473 	 * sx locks
474 	 */
475 	{ "proctree", &lock_class_sx },
476 	{ "allproc", &lock_class_sx },
477 	{ "allprison", &lock_class_sx },
478 	{ NULL, NULL },
479 	/*
480 	 * Various mutexes
481 	 */
482 	{ "Giant", &lock_class_mtx_sleep },
483 	{ "pipe mutex", &lock_class_mtx_sleep },
484 	{ "sigio lock", &lock_class_mtx_sleep },
485 	{ "process group", &lock_class_mtx_sleep },
486 	{ "process lock", &lock_class_mtx_sleep },
487 	{ "session", &lock_class_mtx_sleep },
488 	{ "uidinfo hash", &lock_class_rw },
489 #ifdef	HWPMC_HOOKS
490 	{ "pmc-sleep", &lock_class_mtx_sleep },
491 #endif
492 	{ "time lock", &lock_class_mtx_sleep },
493 	{ NULL, NULL },
494 	/*
495 	 * Sockets
496 	 */
497 	{ "accept", &lock_class_mtx_sleep },
498 	{ "so_snd", &lock_class_mtx_sleep },
499 	{ "so_rcv", &lock_class_mtx_sleep },
500 	{ "sellck", &lock_class_mtx_sleep },
501 	{ NULL, NULL },
502 	/*
503 	 * Routing
504 	 */
505 	{ "so_rcv", &lock_class_mtx_sleep },
506 	{ "radix node head", &lock_class_rw },
507 	{ "rtentry", &lock_class_mtx_sleep },
508 	{ "ifaddr", &lock_class_mtx_sleep },
509 	{ NULL, NULL },
510 	/*
511 	 * IPv4 multicast:
512 	 * protocol locks before interface locks, after UDP locks.
513 	 */
514 	{ "udpinp", &lock_class_rw },
515 	{ "in_multi_mtx", &lock_class_mtx_sleep },
516 	{ "igmp_mtx", &lock_class_mtx_sleep },
517 	{ "if_addr_lock", &lock_class_rw },
518 	{ NULL, NULL },
519 	/*
520 	 * IPv6 multicast:
521 	 * protocol locks before interface locks, after UDP locks.
522 	 */
523 	{ "udpinp", &lock_class_rw },
524 	{ "in6_multi_mtx", &lock_class_mtx_sleep },
525 	{ "mld_mtx", &lock_class_mtx_sleep },
526 	{ "if_addr_lock", &lock_class_rw },
527 	{ NULL, NULL },
528 	/*
529 	 * UNIX Domain Sockets
530 	 */
531 	{ "unp_link_rwlock", &lock_class_rw },
532 	{ "unp_list_lock", &lock_class_mtx_sleep },
533 	{ "unp", &lock_class_mtx_sleep },
534 	{ "so_snd", &lock_class_mtx_sleep },
535 	{ NULL, NULL },
536 	/*
537 	 * UDP/IP
538 	 */
539 	{ "udp", &lock_class_rw },
540 	{ "udpinp", &lock_class_rw },
541 	{ "so_snd", &lock_class_mtx_sleep },
542 	{ NULL, NULL },
543 	/*
544 	 * TCP/IP
545 	 */
546 	{ "tcp", &lock_class_rw },
547 	{ "tcpinp", &lock_class_rw },
548 	{ "so_snd", &lock_class_mtx_sleep },
549 	{ NULL, NULL },
550 	/*
551 	 * BPF
552 	 */
553 	{ "bpf global lock", &lock_class_mtx_sleep },
554 	{ "bpf interface lock", &lock_class_rw },
555 	{ "bpf cdev lock", &lock_class_mtx_sleep },
556 	{ NULL, NULL },
557 	/*
558 	 * NFS server
559 	 */
560 	{ "nfsd_mtx", &lock_class_mtx_sleep },
561 	{ "so_snd", &lock_class_mtx_sleep },
562 	{ NULL, NULL },
563 
564 	/*
565 	 * IEEE 802.11
566 	 */
567 	{ "802.11 com lock", &lock_class_mtx_sleep},
568 	{ NULL, NULL },
569 	/*
570 	 * Network drivers
571 	 */
572 	{ "network driver", &lock_class_mtx_sleep},
573 	{ NULL, NULL },
574 
575 	/*
576 	 * Netgraph
577 	 */
578 	{ "ng_node", &lock_class_mtx_sleep },
579 	{ "ng_worklist", &lock_class_mtx_sleep },
580 	{ NULL, NULL },
581 	/*
582 	 * CDEV
583 	 */
584 	{ "vm map (system)", &lock_class_mtx_sleep },
585 	{ "vm page queue", &lock_class_mtx_sleep },
586 	{ "vnode interlock", &lock_class_mtx_sleep },
587 	{ "cdev", &lock_class_mtx_sleep },
588 	{ NULL, NULL },
589 	/*
590 	 * VM
591 	 */
592 	{ "vm map (user)", &lock_class_sx },
593 	{ "vm object", &lock_class_rw },
594 	{ "vm page", &lock_class_mtx_sleep },
595 	{ "vm page queue", &lock_class_mtx_sleep },
596 	{ "pmap pv global", &lock_class_rw },
597 	{ "pmap", &lock_class_mtx_sleep },
598 	{ "pmap pv list", &lock_class_rw },
599 	{ "vm page free queue", &lock_class_mtx_sleep },
600 	{ NULL, NULL },
601 	/*
602 	 * kqueue/VFS interaction
603 	 */
604 	{ "kqueue", &lock_class_mtx_sleep },
605 	{ "struct mount mtx", &lock_class_mtx_sleep },
606 	{ "vnode interlock", &lock_class_mtx_sleep },
607 	{ NULL, NULL },
608 	/*
609 	 * ZFS locking
610 	 */
611 	{ "dn->dn_mtx", &lock_class_sx },
612 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
613 	{ "db->db_mtx", &lock_class_sx },
614 	{ NULL, NULL },
615 	/*
616 	 * spin locks
617 	 */
618 #ifdef SMP
619 	{ "ap boot", &lock_class_mtx_spin },
620 #endif
621 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
622 	{ "sio", &lock_class_mtx_spin },
623 	{ "scrlock", &lock_class_mtx_spin },
624 #ifdef __i386__
625 	{ "cy", &lock_class_mtx_spin },
626 #endif
627 #ifdef __sparc64__
628 	{ "pcib_mtx", &lock_class_mtx_spin },
629 	{ "rtc_mtx", &lock_class_mtx_spin },
630 #endif
631 	{ "scc_hwmtx", &lock_class_mtx_spin },
632 	{ "uart_hwmtx", &lock_class_mtx_spin },
633 	{ "fast_taskqueue", &lock_class_mtx_spin },
634 	{ "intr table", &lock_class_mtx_spin },
635 #ifdef	HWPMC_HOOKS
636 	{ "pmc-per-proc", &lock_class_mtx_spin },
637 #endif
638 	{ "process slock", &lock_class_mtx_spin },
639 	{ "sleepq chain", &lock_class_mtx_spin },
640 	{ "umtx lock", &lock_class_mtx_spin },
641 	{ "rm_spinlock", &lock_class_mtx_spin },
642 	{ "turnstile chain", &lock_class_mtx_spin },
643 	{ "turnstile lock", &lock_class_mtx_spin },
644 	{ "sched lock", &lock_class_mtx_spin },
645 	{ "td_contested", &lock_class_mtx_spin },
646 	{ "callout", &lock_class_mtx_spin },
647 	{ "entropy harvest mutex", &lock_class_mtx_spin },
648 	{ "syscons video lock", &lock_class_mtx_spin },
649 #ifdef SMP
650 	{ "smp rendezvous", &lock_class_mtx_spin },
651 #endif
652 #ifdef __powerpc__
653 	{ "tlb0", &lock_class_mtx_spin },
654 #endif
655 	/*
656 	 * leaf locks
657 	 */
658 	{ "intrcnt", &lock_class_mtx_spin },
659 	{ "icu", &lock_class_mtx_spin },
660 #ifdef __i386__
661 	{ "allpmaps", &lock_class_mtx_spin },
662 	{ "descriptor tables", &lock_class_mtx_spin },
663 #endif
664 	{ "clk", &lock_class_mtx_spin },
665 	{ "cpuset", &lock_class_mtx_spin },
666 	{ "mprof lock", &lock_class_mtx_spin },
667 	{ "zombie lock", &lock_class_mtx_spin },
668 	{ "ALD Queue", &lock_class_mtx_spin },
669 #if defined(__i386__) || defined(__amd64__)
670 	{ "pcicfg", &lock_class_mtx_spin },
671 	{ "NDIS thread lock", &lock_class_mtx_spin },
672 #endif
673 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
674 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
675 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
676 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
677 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
678 #ifdef	HWPMC_HOOKS
679 	{ "pmc-leaf", &lock_class_mtx_spin },
680 #endif
681 	{ "blocked lock", &lock_class_mtx_spin },
682 	{ NULL, NULL },
683 	{ NULL, NULL }
684 };
685 
686 #ifdef BLESSING
687 /*
688  * Pairs of locks which have been blessed
689  * Don't complain about order problems with blessed locks
690  */
691 static struct witness_blessed blessed_list[] = {
692 };
693 static int blessed_count =
694 	sizeof(blessed_list) / sizeof(struct witness_blessed);
695 #endif
696 
697 /*
698  * This global is set to 0 once it becomes safe to use the witness code.
699  */
700 static int witness_cold = 1;
701 
702 /*
703  * This global is set to 1 once the static lock orders have been enrolled
704  * so that a warning can be issued for any spin locks enrolled later.
705  */
706 static int witness_spin_warn = 0;
707 
708 /* Trim useless garbage from filenames. */
709 static const char *
710 fixup_filename(const char *file)
711 {
712 
713 	if (file == NULL)
714 		return (NULL);
715 	while (strncmp(file, "../", 3) == 0)
716 		file += 3;
717 	return (file);
718 }
719 
720 /*
721  * The WITNESS-enabled diagnostic code.  Note that the witness code does
722  * assume that the early boot is single-threaded at least until after this
723  * routine is completed.
724  */
725 static void
726 witness_initialize(void *dummy __unused)
727 {
728 	struct lock_object *lock;
729 	struct witness_order_list_entry *order;
730 	struct witness *w, *w1;
731 	int i;
732 
733 	w_data = malloc(sizeof (struct witness) * witness_count, M_WITNESS,
734 	    M_WAITOK | M_ZERO);
735 
736 	w_rmatrix = malloc(sizeof(*w_rmatrix) * (witness_count + 1),
737 	    M_WITNESS, M_WAITOK | M_ZERO);
738 
739 	for (i = 0; i < witness_count + 1; i++) {
740 		w_rmatrix[i] = malloc(sizeof(*w_rmatrix[i]) *
741 		    (witness_count + 1), M_WITNESS, M_WAITOK | M_ZERO);
742 	}
743 	badstack_sbuf_size = witness_count * 256;
744 
745 	/*
746 	 * We have to release Giant before initializing its witness
747 	 * structure so that WITNESS doesn't get confused.
748 	 */
749 	mtx_unlock(&Giant);
750 	mtx_assert(&Giant, MA_NOTOWNED);
751 
752 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
753 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
754 	    MTX_NOWITNESS | MTX_NOPROFILE);
755 	for (i = witness_count - 1; i >= 0; i--) {
756 		w = &w_data[i];
757 		memset(w, 0, sizeof(*w));
758 		w_data[i].w_index = i;	/* Witness index never changes. */
759 		witness_free(w);
760 	}
761 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
762 	    ("%s: Invalid list of free witness objects", __func__));
763 
764 	/* Witness with index 0 is not used to aid in debugging. */
765 	STAILQ_REMOVE_HEAD(&w_free, w_list);
766 	w_free_cnt--;
767 
768 	for (i = 0; i < witness_count; i++) {
769 		memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
770 		    (witness_count + 1));
771 	}
772 
773 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
774 		witness_lock_list_free(&w_locklistdata[i]);
775 	witness_init_hash_tables();
776 
777 	/* First add in all the specified order lists. */
778 	for (order = order_lists; order->w_name != NULL; order++) {
779 		w = enroll(order->w_name, order->w_class);
780 		if (w == NULL)
781 			continue;
782 		w->w_file = "order list";
783 		for (order++; order->w_name != NULL; order++) {
784 			w1 = enroll(order->w_name, order->w_class);
785 			if (w1 == NULL)
786 				continue;
787 			w1->w_file = "order list";
788 			itismychild(w, w1);
789 			w = w1;
790 		}
791 	}
792 	witness_spin_warn = 1;
793 
794 	/* Iterate through all locks and add them to witness. */
795 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
796 		lock = pending_locks[i].wh_lock;
797 		KASSERT(lock->lo_flags & LO_WITNESS,
798 		    ("%s: lock %s is on pending list but not LO_WITNESS",
799 		    __func__, lock->lo_name));
800 		lock->lo_witness = enroll(pending_locks[i].wh_type,
801 		    LOCK_CLASS(lock));
802 	}
803 
804 	/* Mark the witness code as being ready for use. */
805 	witness_cold = 0;
806 
807 	mtx_lock(&Giant);
808 }
809 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
810     NULL);
811 
812 void
813 witness_init(struct lock_object *lock, const char *type)
814 {
815 	struct lock_class *class;
816 
817 	/* Various sanity checks. */
818 	class = LOCK_CLASS(lock);
819 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
820 	    (class->lc_flags & LC_RECURSABLE) == 0)
821 		kassert_panic("%s: lock (%s) %s can not be recursable",
822 		    __func__, class->lc_name, lock->lo_name);
823 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
824 	    (class->lc_flags & LC_SLEEPABLE) == 0)
825 		kassert_panic("%s: lock (%s) %s can not be sleepable",
826 		    __func__, class->lc_name, lock->lo_name);
827 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
828 	    (class->lc_flags & LC_UPGRADABLE) == 0)
829 		kassert_panic("%s: lock (%s) %s can not be upgradable",
830 		    __func__, class->lc_name, lock->lo_name);
831 
832 	/*
833 	 * If we shouldn't watch this lock, then just clear lo_witness.
834 	 * Otherwise, if witness_cold is set, then it is too early to
835 	 * enroll this lock, so defer it to witness_initialize() by adding
836 	 * it to the pending_locks list.  If it is not too early, then enroll
837 	 * the lock now.
838 	 */
839 	if (witness_watch < 1 || panicstr != NULL ||
840 	    (lock->lo_flags & LO_WITNESS) == 0)
841 		lock->lo_witness = NULL;
842 	else if (witness_cold) {
843 		pending_locks[pending_cnt].wh_lock = lock;
844 		pending_locks[pending_cnt++].wh_type = type;
845 		if (pending_cnt > WITNESS_PENDLIST)
846 			panic("%s: pending locks list is too small, "
847 			    "increase WITNESS_PENDLIST\n",
848 			    __func__);
849 	} else
850 		lock->lo_witness = enroll(type, class);
851 }
852 
853 void
854 witness_destroy(struct lock_object *lock)
855 {
856 	struct lock_class *class;
857 	struct witness *w;
858 
859 	class = LOCK_CLASS(lock);
860 
861 	if (witness_cold)
862 		panic("lock (%s) %s destroyed while witness_cold",
863 		    class->lc_name, lock->lo_name);
864 
865 	/* XXX: need to verify that no one holds the lock */
866 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
867 		return;
868 	w = lock->lo_witness;
869 
870 	mtx_lock_spin(&w_mtx);
871 	MPASS(w->w_refcount > 0);
872 	w->w_refcount--;
873 
874 	if (w->w_refcount == 0)
875 		depart(w);
876 	mtx_unlock_spin(&w_mtx);
877 }
878 
879 #ifdef DDB
880 static void
881 witness_ddb_compute_levels(void)
882 {
883 	struct witness *w;
884 
885 	/*
886 	 * First clear all levels.
887 	 */
888 	STAILQ_FOREACH(w, &w_all, w_list)
889 		w->w_ddb_level = -1;
890 
891 	/*
892 	 * Look for locks with no parents and level all their descendants.
893 	 */
894 	STAILQ_FOREACH(w, &w_all, w_list) {
895 
896 		/* If the witness has ancestors (is not a root), skip it. */
897 		if (w->w_num_ancestors > 0)
898 			continue;
899 		witness_ddb_level_descendants(w, 0);
900 	}
901 }
902 
903 static void
904 witness_ddb_level_descendants(struct witness *w, int l)
905 {
906 	int i;
907 
908 	if (w->w_ddb_level >= l)
909 		return;
910 
911 	w->w_ddb_level = l;
912 	l++;
913 
914 	for (i = 1; i <= w_max_used_index; i++) {
915 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
916 			witness_ddb_level_descendants(&w_data[i], l);
917 	}
918 }
919 
920 static void
921 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
922     struct witness *w, int indent)
923 {
924 	int i;
925 
926  	for (i = 0; i < indent; i++)
927  		prnt(" ");
928 	prnt("%s (type: %s, depth: %d, active refs: %d)",
929 	     w->w_name, w->w_class->lc_name,
930 	     w->w_ddb_level, w->w_refcount);
931  	if (w->w_displayed) {
932  		prnt(" -- (already displayed)\n");
933  		return;
934  	}
935  	w->w_displayed = 1;
936 	if (w->w_file != NULL && w->w_line != 0)
937 		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
938 		    w->w_line);
939 	else
940 		prnt(" -- never acquired\n");
941 	indent++;
942 	WITNESS_INDEX_ASSERT(w->w_index);
943 	for (i = 1; i <= w_max_used_index; i++) {
944 		if (db_pager_quit)
945 			return;
946 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
947 			witness_ddb_display_descendants(prnt, &w_data[i],
948 			    indent);
949 	}
950 }
951 
952 static void
953 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
954     struct witness_list *list)
955 {
956 	struct witness *w;
957 
958 	STAILQ_FOREACH(w, list, w_typelist) {
959 		if (w->w_file == NULL || w->w_ddb_level > 0)
960 			continue;
961 
962 		/* This lock has no anscestors - display its descendants. */
963 		witness_ddb_display_descendants(prnt, w, 0);
964 		if (db_pager_quit)
965 			return;
966 	}
967 }
968 
969 static void
970 witness_ddb_display(int(*prnt)(const char *fmt, ...))
971 {
972 	struct witness *w;
973 
974 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
975 	witness_ddb_compute_levels();
976 
977 	/* Clear all the displayed flags. */
978 	STAILQ_FOREACH(w, &w_all, w_list)
979 		w->w_displayed = 0;
980 
981 	/*
982 	 * First, handle sleep locks which have been acquired at least
983 	 * once.
984 	 */
985 	prnt("Sleep locks:\n");
986 	witness_ddb_display_list(prnt, &w_sleep);
987 	if (db_pager_quit)
988 		return;
989 
990 	/*
991 	 * Now do spin locks which have been acquired at least once.
992 	 */
993 	prnt("\nSpin locks:\n");
994 	witness_ddb_display_list(prnt, &w_spin);
995 	if (db_pager_quit)
996 		return;
997 
998 	/*
999 	 * Finally, any locks which have not been acquired yet.
1000 	 */
1001 	prnt("\nLocks which were never acquired:\n");
1002 	STAILQ_FOREACH(w, &w_all, w_list) {
1003 		if (w->w_file != NULL || w->w_refcount == 0)
1004 			continue;
1005 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1006 		    w->w_class->lc_name, w->w_ddb_level);
1007 		if (db_pager_quit)
1008 			return;
1009 	}
1010 }
1011 #endif /* DDB */
1012 
1013 int
1014 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1015 {
1016 
1017 	if (witness_watch == -1 || panicstr != NULL)
1018 		return (0);
1019 
1020 	/* Require locks that witness knows about. */
1021 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1022 	    lock2->lo_witness == NULL)
1023 		return (EINVAL);
1024 
1025 	mtx_assert(&w_mtx, MA_NOTOWNED);
1026 	mtx_lock_spin(&w_mtx);
1027 
1028 	/*
1029 	 * If we already have either an explicit or implied lock order that
1030 	 * is the other way around, then return an error.
1031 	 */
1032 	if (witness_watch &&
1033 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1034 		mtx_unlock_spin(&w_mtx);
1035 		return (EDOOFUS);
1036 	}
1037 
1038 	/* Try to add the new order. */
1039 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1040 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1041 	itismychild(lock1->lo_witness, lock2->lo_witness);
1042 	mtx_unlock_spin(&w_mtx);
1043 	return (0);
1044 }
1045 
1046 void
1047 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1048     int line, struct lock_object *interlock)
1049 {
1050 	struct lock_list_entry *lock_list, *lle;
1051 	struct lock_instance *lock1, *lock2, *plock;
1052 	struct lock_class *class, *iclass;
1053 	struct witness *w, *w1;
1054 	struct thread *td;
1055 	int i, j;
1056 
1057 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1058 	    panicstr != NULL)
1059 		return;
1060 
1061 	w = lock->lo_witness;
1062 	class = LOCK_CLASS(lock);
1063 	td = curthread;
1064 
1065 	if (class->lc_flags & LC_SLEEPLOCK) {
1066 
1067 		/*
1068 		 * Since spin locks include a critical section, this check
1069 		 * implicitly enforces a lock order of all sleep locks before
1070 		 * all spin locks.
1071 		 */
1072 		if (td->td_critnest != 0 && !kdb_active)
1073 			kassert_panic("acquiring blockable sleep lock with "
1074 			    "spinlock or critical section held (%s) %s @ %s:%d",
1075 			    class->lc_name, lock->lo_name,
1076 			    fixup_filename(file), line);
1077 
1078 		/*
1079 		 * If this is the first lock acquired then just return as
1080 		 * no order checking is needed.
1081 		 */
1082 		lock_list = td->td_sleeplocks;
1083 		if (lock_list == NULL || lock_list->ll_count == 0)
1084 			return;
1085 	} else {
1086 
1087 		/*
1088 		 * If this is the first lock, just return as no order
1089 		 * checking is needed.  Avoid problems with thread
1090 		 * migration pinning the thread while checking if
1091 		 * spinlocks are held.  If at least one spinlock is held
1092 		 * the thread is in a safe path and it is allowed to
1093 		 * unpin it.
1094 		 */
1095 		sched_pin();
1096 		lock_list = PCPU_GET(spinlocks);
1097 		if (lock_list == NULL || lock_list->ll_count == 0) {
1098 			sched_unpin();
1099 			return;
1100 		}
1101 		sched_unpin();
1102 	}
1103 
1104 	/*
1105 	 * Check to see if we are recursing on a lock we already own.  If
1106 	 * so, make sure that we don't mismatch exclusive and shared lock
1107 	 * acquires.
1108 	 */
1109 	lock1 = find_instance(lock_list, lock);
1110 	if (lock1 != NULL) {
1111 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1112 		    (flags & LOP_EXCLUSIVE) == 0) {
1113 			printf("shared lock of (%s) %s @ %s:%d\n",
1114 			    class->lc_name, lock->lo_name,
1115 			    fixup_filename(file), line);
1116 			printf("while exclusively locked from %s:%d\n",
1117 			    fixup_filename(lock1->li_file), lock1->li_line);
1118 			kassert_panic("excl->share");
1119 		}
1120 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1121 		    (flags & LOP_EXCLUSIVE) != 0) {
1122 			printf("exclusive lock of (%s) %s @ %s:%d\n",
1123 			    class->lc_name, lock->lo_name,
1124 			    fixup_filename(file), line);
1125 			printf("while share locked from %s:%d\n",
1126 			    fixup_filename(lock1->li_file), lock1->li_line);
1127 			kassert_panic("share->excl");
1128 		}
1129 		return;
1130 	}
1131 
1132 	/* Warn if the interlock is not locked exactly once. */
1133 	if (interlock != NULL) {
1134 		iclass = LOCK_CLASS(interlock);
1135 		lock1 = find_instance(lock_list, interlock);
1136 		if (lock1 == NULL)
1137 			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1138 			    iclass->lc_name, interlock->lo_name,
1139 			    fixup_filename(file), line);
1140 		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1141 			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1142 			    iclass->lc_name, interlock->lo_name,
1143 			    fixup_filename(file), line);
1144 	}
1145 
1146 	/*
1147 	 * Find the previously acquired lock, but ignore interlocks.
1148 	 */
1149 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1150 	if (interlock != NULL && plock->li_lock == interlock) {
1151 		if (lock_list->ll_count > 1)
1152 			plock =
1153 			    &lock_list->ll_children[lock_list->ll_count - 2];
1154 		else {
1155 			lle = lock_list->ll_next;
1156 
1157 			/*
1158 			 * The interlock is the only lock we hold, so
1159 			 * simply return.
1160 			 */
1161 			if (lle == NULL)
1162 				return;
1163 			plock = &lle->ll_children[lle->ll_count - 1];
1164 		}
1165 	}
1166 
1167 	/*
1168 	 * Try to perform most checks without a lock.  If this succeeds we
1169 	 * can skip acquiring the lock and return success.
1170 	 */
1171 	w1 = plock->li_lock->lo_witness;
1172 	if (witness_lock_order_check(w1, w))
1173 		return;
1174 
1175 	/*
1176 	 * Check for duplicate locks of the same type.  Note that we only
1177 	 * have to check for this on the last lock we just acquired.  Any
1178 	 * other cases will be caught as lock order violations.
1179 	 */
1180 	mtx_lock_spin(&w_mtx);
1181 	witness_lock_order_add(w1, w);
1182 	if (w1 == w) {
1183 		i = w->w_index;
1184 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1185 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1186 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1187 			w->w_reversed = 1;
1188 			mtx_unlock_spin(&w_mtx);
1189 			printf(
1190 			    "acquiring duplicate lock of same type: \"%s\"\n",
1191 			    w->w_name);
1192 			printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1193 			    fixup_filename(plock->li_file), plock->li_line);
1194 			printf(" 2nd %s @ %s:%d\n", lock->lo_name,
1195 			    fixup_filename(file), line);
1196 			witness_debugger(1);
1197 		} else
1198 			mtx_unlock_spin(&w_mtx);
1199 		return;
1200 	}
1201 	mtx_assert(&w_mtx, MA_OWNED);
1202 
1203 	/*
1204 	 * If we know that the lock we are acquiring comes after
1205 	 * the lock we most recently acquired in the lock order tree,
1206 	 * then there is no need for any further checks.
1207 	 */
1208 	if (isitmychild(w1, w))
1209 		goto out;
1210 
1211 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1212 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1213 
1214 			MPASS(j < witness_count);
1215 			lock1 = &lle->ll_children[i];
1216 
1217 			/*
1218 			 * Ignore the interlock.
1219 			 */
1220 			if (interlock == lock1->li_lock)
1221 				continue;
1222 
1223 			/*
1224 			 * If this lock doesn't undergo witness checking,
1225 			 * then skip it.
1226 			 */
1227 			w1 = lock1->li_lock->lo_witness;
1228 			if (w1 == NULL) {
1229 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1230 				    ("lock missing witness structure"));
1231 				continue;
1232 			}
1233 
1234 			/*
1235 			 * If we are locking Giant and this is a sleepable
1236 			 * lock, then skip it.
1237 			 */
1238 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1239 			    lock == &Giant.lock_object)
1240 				continue;
1241 
1242 			/*
1243 			 * If we are locking a sleepable lock and this lock
1244 			 * is Giant, then skip it.
1245 			 */
1246 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1247 			    lock1->li_lock == &Giant.lock_object)
1248 				continue;
1249 
1250 			/*
1251 			 * If we are locking a sleepable lock and this lock
1252 			 * isn't sleepable, we want to treat it as a lock
1253 			 * order violation to enfore a general lock order of
1254 			 * sleepable locks before non-sleepable locks.
1255 			 */
1256 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1257 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1258 				goto reversal;
1259 
1260 			/*
1261 			 * If we are locking Giant and this is a non-sleepable
1262 			 * lock, then treat it as a reversal.
1263 			 */
1264 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1265 			    lock == &Giant.lock_object)
1266 				goto reversal;
1267 
1268 			/*
1269 			 * Check the lock order hierarchy for a reveresal.
1270 			 */
1271 			if (!isitmydescendant(w, w1))
1272 				continue;
1273 		reversal:
1274 
1275 			/*
1276 			 * We have a lock order violation, check to see if it
1277 			 * is allowed or has already been yelled about.
1278 			 */
1279 #ifdef BLESSING
1280 
1281 			/*
1282 			 * If the lock order is blessed, just bail.  We don't
1283 			 * look for other lock order violations though, which
1284 			 * may be a bug.
1285 			 */
1286 			if (blessed(w, w1))
1287 				goto out;
1288 #endif
1289 
1290 			/* Bail if this violation is known */
1291 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1292 				goto out;
1293 
1294 			/* Record this as a violation */
1295 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1296 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1297 			w->w_reversed = w1->w_reversed = 1;
1298 			witness_increment_graph_generation();
1299 			mtx_unlock_spin(&w_mtx);
1300 
1301 #ifdef WITNESS_NO_VNODE
1302 			/*
1303 			 * There are known LORs between VNODE locks. They are
1304 			 * not an indication of a bug. VNODE locks are flagged
1305 			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1306 			 * is between 2 VNODE locks.
1307 			 */
1308 			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1309 			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1310 				return;
1311 #endif
1312 
1313 			/*
1314 			 * Ok, yell about it.
1315 			 */
1316 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1317 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1318 				printf(
1319 		"lock order reversal: (sleepable after non-sleepable)\n");
1320 			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1321 			    && lock == &Giant.lock_object)
1322 				printf(
1323 		"lock order reversal: (Giant after non-sleepable)\n");
1324 			else
1325 				printf("lock order reversal:\n");
1326 
1327 			/*
1328 			 * Try to locate an earlier lock with
1329 			 * witness w in our list.
1330 			 */
1331 			do {
1332 				lock2 = &lle->ll_children[i];
1333 				MPASS(lock2->li_lock != NULL);
1334 				if (lock2->li_lock->lo_witness == w)
1335 					break;
1336 				if (i == 0 && lle->ll_next != NULL) {
1337 					lle = lle->ll_next;
1338 					i = lle->ll_count - 1;
1339 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1340 				} else
1341 					i--;
1342 			} while (i >= 0);
1343 			if (i < 0) {
1344 				printf(" 1st %p %s (%s) @ %s:%d\n",
1345 				    lock1->li_lock, lock1->li_lock->lo_name,
1346 				    w1->w_name, fixup_filename(lock1->li_file),
1347 				    lock1->li_line);
1348 				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1349 				    lock->lo_name, w->w_name,
1350 				    fixup_filename(file), line);
1351 			} else {
1352 				printf(" 1st %p %s (%s) @ %s:%d\n",
1353 				    lock2->li_lock, lock2->li_lock->lo_name,
1354 				    lock2->li_lock->lo_witness->w_name,
1355 				    fixup_filename(lock2->li_file),
1356 				    lock2->li_line);
1357 				printf(" 2nd %p %s (%s) @ %s:%d\n",
1358 				    lock1->li_lock, lock1->li_lock->lo_name,
1359 				    w1->w_name, fixup_filename(lock1->li_file),
1360 				    lock1->li_line);
1361 				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1362 				    lock->lo_name, w->w_name,
1363 				    fixup_filename(file), line);
1364 			}
1365 			witness_debugger(1);
1366 			return;
1367 		}
1368 	}
1369 
1370 	/*
1371 	 * If requested, build a new lock order.  However, don't build a new
1372 	 * relationship between a sleepable lock and Giant if it is in the
1373 	 * wrong direction.  The correct lock order is that sleepable locks
1374 	 * always come before Giant.
1375 	 */
1376 	if (flags & LOP_NEWORDER &&
1377 	    !(plock->li_lock == &Giant.lock_object &&
1378 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1379 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1380 		    w->w_name, plock->li_lock->lo_witness->w_name);
1381 		itismychild(plock->li_lock->lo_witness, w);
1382 	}
1383 out:
1384 	mtx_unlock_spin(&w_mtx);
1385 }
1386 
1387 void
1388 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1389 {
1390 	struct lock_list_entry **lock_list, *lle;
1391 	struct lock_instance *instance;
1392 	struct witness *w;
1393 	struct thread *td;
1394 
1395 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1396 	    panicstr != NULL)
1397 		return;
1398 	w = lock->lo_witness;
1399 	td = curthread;
1400 
1401 	/* Determine lock list for this lock. */
1402 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1403 		lock_list = &td->td_sleeplocks;
1404 	else
1405 		lock_list = PCPU_PTR(spinlocks);
1406 
1407 	/* Check to see if we are recursing on a lock we already own. */
1408 	instance = find_instance(*lock_list, lock);
1409 	if (instance != NULL) {
1410 		instance->li_flags++;
1411 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1412 		    td->td_proc->p_pid, lock->lo_name,
1413 		    instance->li_flags & LI_RECURSEMASK);
1414 		instance->li_file = file;
1415 		instance->li_line = line;
1416 		return;
1417 	}
1418 
1419 	/* Update per-witness last file and line acquire. */
1420 	w->w_file = file;
1421 	w->w_line = line;
1422 
1423 	/* Find the next open lock instance in the list and fill it. */
1424 	lle = *lock_list;
1425 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1426 		lle = witness_lock_list_get();
1427 		if (lle == NULL)
1428 			return;
1429 		lle->ll_next = *lock_list;
1430 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1431 		    td->td_proc->p_pid, lle);
1432 		*lock_list = lle;
1433 	}
1434 	instance = &lle->ll_children[lle->ll_count++];
1435 	instance->li_lock = lock;
1436 	instance->li_line = line;
1437 	instance->li_file = file;
1438 	if ((flags & LOP_EXCLUSIVE) != 0)
1439 		instance->li_flags = LI_EXCLUSIVE;
1440 	else
1441 		instance->li_flags = 0;
1442 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1443 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1444 }
1445 
1446 void
1447 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1448 {
1449 	struct lock_instance *instance;
1450 	struct lock_class *class;
1451 
1452 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1453 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1454 		return;
1455 	class = LOCK_CLASS(lock);
1456 	if (witness_watch) {
1457 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1458 			kassert_panic(
1459 			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1460 			    class->lc_name, lock->lo_name,
1461 			    fixup_filename(file), line);
1462 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1463 			kassert_panic(
1464 			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1465 			    class->lc_name, lock->lo_name,
1466 			    fixup_filename(file), line);
1467 	}
1468 	instance = find_instance(curthread->td_sleeplocks, lock);
1469 	if (instance == NULL) {
1470 		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1471 		    class->lc_name, lock->lo_name,
1472 		    fixup_filename(file), line);
1473 		return;
1474 	}
1475 	if (witness_watch) {
1476 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1477 			kassert_panic(
1478 			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1479 			    class->lc_name, lock->lo_name,
1480 			    fixup_filename(file), line);
1481 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1482 			kassert_panic(
1483 			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1484 			    class->lc_name, lock->lo_name,
1485 			    instance->li_flags & LI_RECURSEMASK,
1486 			    fixup_filename(file), line);
1487 	}
1488 	instance->li_flags |= LI_EXCLUSIVE;
1489 }
1490 
1491 void
1492 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1493     int line)
1494 {
1495 	struct lock_instance *instance;
1496 	struct lock_class *class;
1497 
1498 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1499 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1500 		return;
1501 	class = LOCK_CLASS(lock);
1502 	if (witness_watch) {
1503 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1504 			kassert_panic(
1505 			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1506 			    class->lc_name, lock->lo_name,
1507 			    fixup_filename(file), line);
1508 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1509 			kassert_panic(
1510 			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1511 			    class->lc_name, lock->lo_name,
1512 			    fixup_filename(file), line);
1513 	}
1514 	instance = find_instance(curthread->td_sleeplocks, lock);
1515 	if (instance == NULL) {
1516 		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1517 		    class->lc_name, lock->lo_name,
1518 		    fixup_filename(file), line);
1519 		return;
1520 	}
1521 	if (witness_watch) {
1522 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1523 			kassert_panic(
1524 			    "downgrade of shared lock (%s) %s @ %s:%d",
1525 			    class->lc_name, lock->lo_name,
1526 			    fixup_filename(file), line);
1527 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1528 			kassert_panic(
1529 			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1530 			    class->lc_name, lock->lo_name,
1531 			    instance->li_flags & LI_RECURSEMASK,
1532 			    fixup_filename(file), line);
1533 	}
1534 	instance->li_flags &= ~LI_EXCLUSIVE;
1535 }
1536 
1537 void
1538 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1539 {
1540 	struct lock_list_entry **lock_list, *lle;
1541 	struct lock_instance *instance;
1542 	struct lock_class *class;
1543 	struct thread *td;
1544 	register_t s;
1545 	int i, j;
1546 
1547 	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1548 		return;
1549 	td = curthread;
1550 	class = LOCK_CLASS(lock);
1551 
1552 	/* Find lock instance associated with this lock. */
1553 	if (class->lc_flags & LC_SLEEPLOCK)
1554 		lock_list = &td->td_sleeplocks;
1555 	else
1556 		lock_list = PCPU_PTR(spinlocks);
1557 	lle = *lock_list;
1558 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1559 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1560 			instance = &(*lock_list)->ll_children[i];
1561 			if (instance->li_lock == lock)
1562 				goto found;
1563 		}
1564 
1565 	/*
1566 	 * When disabling WITNESS through witness_watch we could end up in
1567 	 * having registered locks in the td_sleeplocks queue.
1568 	 * We have to make sure we flush these queues, so just search for
1569 	 * eventual register locks and remove them.
1570 	 */
1571 	if (witness_watch > 0) {
1572 		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1573 		    lock->lo_name, fixup_filename(file), line);
1574 		return;
1575 	} else {
1576 		return;
1577 	}
1578 found:
1579 
1580 	/* First, check for shared/exclusive mismatches. */
1581 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1582 	    (flags & LOP_EXCLUSIVE) == 0) {
1583 		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1584 		    lock->lo_name, fixup_filename(file), line);
1585 		printf("while exclusively locked from %s:%d\n",
1586 		    fixup_filename(instance->li_file), instance->li_line);
1587 		kassert_panic("excl->ushare");
1588 	}
1589 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1590 	    (flags & LOP_EXCLUSIVE) != 0) {
1591 		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1592 		    lock->lo_name, fixup_filename(file), line);
1593 		printf("while share locked from %s:%d\n",
1594 		    fixup_filename(instance->li_file),
1595 		    instance->li_line);
1596 		kassert_panic("share->uexcl");
1597 	}
1598 	/* If we are recursed, unrecurse. */
1599 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1600 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1601 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1602 		    instance->li_flags);
1603 		instance->li_flags--;
1604 		return;
1605 	}
1606 	/* The lock is now being dropped, check for NORELEASE flag */
1607 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1608 		printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1609 		    lock->lo_name, fixup_filename(file), line);
1610 		kassert_panic("lock marked norelease");
1611 	}
1612 
1613 	/* Otherwise, remove this item from the list. */
1614 	s = intr_disable();
1615 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1616 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1617 	    (*lock_list)->ll_count - 1);
1618 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1619 		(*lock_list)->ll_children[j] =
1620 		    (*lock_list)->ll_children[j + 1];
1621 	(*lock_list)->ll_count--;
1622 	intr_restore(s);
1623 
1624 	/*
1625 	 * In order to reduce contention on w_mtx, we want to keep always an
1626 	 * head object into lists so that frequent allocation from the
1627 	 * free witness pool (and subsequent locking) is avoided.
1628 	 * In order to maintain the current code simple, when the head
1629 	 * object is totally unloaded it means also that we do not have
1630 	 * further objects in the list, so the list ownership needs to be
1631 	 * hand over to another object if the current head needs to be freed.
1632 	 */
1633 	if ((*lock_list)->ll_count == 0) {
1634 		if (*lock_list == lle) {
1635 			if (lle->ll_next == NULL)
1636 				return;
1637 		} else
1638 			lle = *lock_list;
1639 		*lock_list = lle->ll_next;
1640 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1641 		    td->td_proc->p_pid, lle);
1642 		witness_lock_list_free(lle);
1643 	}
1644 }
1645 
1646 void
1647 witness_thread_exit(struct thread *td)
1648 {
1649 	struct lock_list_entry *lle;
1650 	int i, n;
1651 
1652 	lle = td->td_sleeplocks;
1653 	if (lle == NULL || panicstr != NULL)
1654 		return;
1655 	if (lle->ll_count != 0) {
1656 		for (n = 0; lle != NULL; lle = lle->ll_next)
1657 			for (i = lle->ll_count - 1; i >= 0; i--) {
1658 				if (n == 0)
1659 		printf("Thread %p exiting with the following locks held:\n",
1660 					    td);
1661 				n++;
1662 				witness_list_lock(&lle->ll_children[i], printf);
1663 
1664 			}
1665 		kassert_panic(
1666 		    "Thread %p cannot exit while holding sleeplocks\n", td);
1667 	}
1668 	witness_lock_list_free(lle);
1669 }
1670 
1671 /*
1672  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1673  * exempt Giant and sleepable locks from the checks as well.  If any
1674  * non-exempt locks are held, then a supplied message is printed to the
1675  * console along with a list of the offending locks.  If indicated in the
1676  * flags then a failure results in a panic as well.
1677  */
1678 int
1679 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1680 {
1681 	struct lock_list_entry *lock_list, *lle;
1682 	struct lock_instance *lock1;
1683 	struct thread *td;
1684 	va_list ap;
1685 	int i, n;
1686 
1687 	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1688 		return (0);
1689 	n = 0;
1690 	td = curthread;
1691 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1692 		for (i = lle->ll_count - 1; i >= 0; i--) {
1693 			lock1 = &lle->ll_children[i];
1694 			if (lock1->li_lock == lock)
1695 				continue;
1696 			if (flags & WARN_GIANTOK &&
1697 			    lock1->li_lock == &Giant.lock_object)
1698 				continue;
1699 			if (flags & WARN_SLEEPOK &&
1700 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1701 				continue;
1702 			if (n == 0) {
1703 				va_start(ap, fmt);
1704 				vprintf(fmt, ap);
1705 				va_end(ap);
1706 				printf(" with the following");
1707 				if (flags & WARN_SLEEPOK)
1708 					printf(" non-sleepable");
1709 				printf(" locks held:\n");
1710 			}
1711 			n++;
1712 			witness_list_lock(lock1, printf);
1713 		}
1714 
1715 	/*
1716 	 * Pin the thread in order to avoid problems with thread migration.
1717 	 * Once that all verifies are passed about spinlocks ownership,
1718 	 * the thread is in a safe path and it can be unpinned.
1719 	 */
1720 	sched_pin();
1721 	lock_list = PCPU_GET(spinlocks);
1722 	if (lock_list != NULL && lock_list->ll_count != 0) {
1723 		sched_unpin();
1724 
1725 		/*
1726 		 * We should only have one spinlock and as long as
1727 		 * the flags cannot match for this locks class,
1728 		 * check if the first spinlock is the one curthread
1729 		 * should hold.
1730 		 */
1731 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1732 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1733 		    lock1->li_lock == lock && n == 0)
1734 			return (0);
1735 
1736 		va_start(ap, fmt);
1737 		vprintf(fmt, ap);
1738 		va_end(ap);
1739 		printf(" with the following");
1740 		if (flags & WARN_SLEEPOK)
1741 			printf(" non-sleepable");
1742 		printf(" locks held:\n");
1743 		n += witness_list_locks(&lock_list, printf);
1744 	} else
1745 		sched_unpin();
1746 	if (flags & WARN_PANIC && n)
1747 		kassert_panic("%s", __func__);
1748 	else
1749 		witness_debugger(n);
1750 	return (n);
1751 }
1752 
1753 const char *
1754 witness_file(struct lock_object *lock)
1755 {
1756 	struct witness *w;
1757 
1758 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1759 		return ("?");
1760 	w = lock->lo_witness;
1761 	return (w->w_file);
1762 }
1763 
1764 int
1765 witness_line(struct lock_object *lock)
1766 {
1767 	struct witness *w;
1768 
1769 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1770 		return (0);
1771 	w = lock->lo_witness;
1772 	return (w->w_line);
1773 }
1774 
1775 static struct witness *
1776 enroll(const char *description, struct lock_class *lock_class)
1777 {
1778 	struct witness *w;
1779 	struct witness_list *typelist;
1780 
1781 	MPASS(description != NULL);
1782 
1783 	if (witness_watch == -1 || panicstr != NULL)
1784 		return (NULL);
1785 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1786 		if (witness_skipspin)
1787 			return (NULL);
1788 		else
1789 			typelist = &w_spin;
1790 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1791 		typelist = &w_sleep;
1792 	} else {
1793 		kassert_panic("lock class %s is not sleep or spin",
1794 		    lock_class->lc_name);
1795 		return (NULL);
1796 	}
1797 
1798 	mtx_lock_spin(&w_mtx);
1799 	w = witness_hash_get(description);
1800 	if (w)
1801 		goto found;
1802 	if ((w = witness_get()) == NULL)
1803 		return (NULL);
1804 	MPASS(strlen(description) < MAX_W_NAME);
1805 	strcpy(w->w_name, description);
1806 	w->w_class = lock_class;
1807 	w->w_refcount = 1;
1808 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1809 	if (lock_class->lc_flags & LC_SPINLOCK) {
1810 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1811 		w_spin_cnt++;
1812 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1813 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1814 		w_sleep_cnt++;
1815 	}
1816 
1817 	/* Insert new witness into the hash */
1818 	witness_hash_put(w);
1819 	witness_increment_graph_generation();
1820 	mtx_unlock_spin(&w_mtx);
1821 	return (w);
1822 found:
1823 	w->w_refcount++;
1824 	mtx_unlock_spin(&w_mtx);
1825 	if (lock_class != w->w_class)
1826 		kassert_panic(
1827 			"lock (%s) %s does not match earlier (%s) lock",
1828 			description, lock_class->lc_name,
1829 			w->w_class->lc_name);
1830 	return (w);
1831 }
1832 
1833 static void
1834 depart(struct witness *w)
1835 {
1836 	struct witness_list *list;
1837 
1838 	MPASS(w->w_refcount == 0);
1839 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1840 		list = &w_sleep;
1841 		w_sleep_cnt--;
1842 	} else {
1843 		list = &w_spin;
1844 		w_spin_cnt--;
1845 	}
1846 	/*
1847 	 * Set file to NULL as it may point into a loadable module.
1848 	 */
1849 	w->w_file = NULL;
1850 	w->w_line = 0;
1851 	witness_increment_graph_generation();
1852 }
1853 
1854 
1855 static void
1856 adopt(struct witness *parent, struct witness *child)
1857 {
1858 	int pi, ci, i, j;
1859 
1860 	if (witness_cold == 0)
1861 		mtx_assert(&w_mtx, MA_OWNED);
1862 
1863 	/* If the relationship is already known, there's no work to be done. */
1864 	if (isitmychild(parent, child))
1865 		return;
1866 
1867 	/* When the structure of the graph changes, bump up the generation. */
1868 	witness_increment_graph_generation();
1869 
1870 	/*
1871 	 * The hard part ... create the direct relationship, then propagate all
1872 	 * indirect relationships.
1873 	 */
1874 	pi = parent->w_index;
1875 	ci = child->w_index;
1876 	WITNESS_INDEX_ASSERT(pi);
1877 	WITNESS_INDEX_ASSERT(ci);
1878 	MPASS(pi != ci);
1879 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1880 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1881 
1882 	/*
1883 	 * If parent was not already an ancestor of child,
1884 	 * then we increment the descendant and ancestor counters.
1885 	 */
1886 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1887 		parent->w_num_descendants++;
1888 		child->w_num_ancestors++;
1889 	}
1890 
1891 	/*
1892 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1893 	 * an ancestor of 'pi' during this loop.
1894 	 */
1895 	for (i = 1; i <= w_max_used_index; i++) {
1896 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1897 		    (i != pi))
1898 			continue;
1899 
1900 		/* Find each descendant of 'i' and mark it as a descendant. */
1901 		for (j = 1; j <= w_max_used_index; j++) {
1902 
1903 			/*
1904 			 * Skip children that are already marked as
1905 			 * descendants of 'i'.
1906 			 */
1907 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1908 				continue;
1909 
1910 			/*
1911 			 * We are only interested in descendants of 'ci'. Note
1912 			 * that 'ci' itself is counted as a descendant of 'ci'.
1913 			 */
1914 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1915 			    (j != ci))
1916 				continue;
1917 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1918 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1919 			w_data[i].w_num_descendants++;
1920 			w_data[j].w_num_ancestors++;
1921 
1922 			/*
1923 			 * Make sure we aren't marking a node as both an
1924 			 * ancestor and descendant. We should have caught
1925 			 * this as a lock order reversal earlier.
1926 			 */
1927 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1928 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1929 				printf("witness rmatrix paradox! [%d][%d]=%d "
1930 				    "both ancestor and descendant\n",
1931 				    i, j, w_rmatrix[i][j]);
1932 				kdb_backtrace();
1933 				printf("Witness disabled.\n");
1934 				witness_watch = -1;
1935 			}
1936 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1937 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1938 				printf("witness rmatrix paradox! [%d][%d]=%d "
1939 				    "both ancestor and descendant\n",
1940 				    j, i, w_rmatrix[j][i]);
1941 				kdb_backtrace();
1942 				printf("Witness disabled.\n");
1943 				witness_watch = -1;
1944 			}
1945 		}
1946 	}
1947 }
1948 
1949 static void
1950 itismychild(struct witness *parent, struct witness *child)
1951 {
1952 	int unlocked;
1953 
1954 	MPASS(child != NULL && parent != NULL);
1955 	if (witness_cold == 0)
1956 		mtx_assert(&w_mtx, MA_OWNED);
1957 
1958 	if (!witness_lock_type_equal(parent, child)) {
1959 		if (witness_cold == 0) {
1960 			unlocked = 1;
1961 			mtx_unlock_spin(&w_mtx);
1962 		} else {
1963 			unlocked = 0;
1964 		}
1965 		kassert_panic(
1966 		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1967 		    "the same lock type", __func__, parent->w_name,
1968 		    parent->w_class->lc_name, child->w_name,
1969 		    child->w_class->lc_name);
1970 		if (unlocked)
1971 			mtx_lock_spin(&w_mtx);
1972 	}
1973 	adopt(parent, child);
1974 }
1975 
1976 /*
1977  * Generic code for the isitmy*() functions. The rmask parameter is the
1978  * expected relationship of w1 to w2.
1979  */
1980 static int
1981 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1982 {
1983 	unsigned char r1, r2;
1984 	int i1, i2;
1985 
1986 	i1 = w1->w_index;
1987 	i2 = w2->w_index;
1988 	WITNESS_INDEX_ASSERT(i1);
1989 	WITNESS_INDEX_ASSERT(i2);
1990 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1991 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1992 
1993 	/* The flags on one better be the inverse of the flags on the other */
1994 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1995 		(WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1996 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
1997 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
1998 		    "w_rmatrix[%d][%d] == %hhx\n",
1999 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2000 		    i2, i1, r2);
2001 		kdb_backtrace();
2002 		printf("Witness disabled.\n");
2003 		witness_watch = -1;
2004 	}
2005 	return (r1 & rmask);
2006 }
2007 
2008 /*
2009  * Checks if @child is a direct child of @parent.
2010  */
2011 static int
2012 isitmychild(struct witness *parent, struct witness *child)
2013 {
2014 
2015 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2016 }
2017 
2018 /*
2019  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2020  */
2021 static int
2022 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2023 {
2024 
2025 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2026 	    __func__));
2027 }
2028 
2029 #ifdef BLESSING
2030 static int
2031 blessed(struct witness *w1, struct witness *w2)
2032 {
2033 	int i;
2034 	struct witness_blessed *b;
2035 
2036 	for (i = 0; i < blessed_count; i++) {
2037 		b = &blessed_list[i];
2038 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2039 			if (strcmp(w2->w_name, b->b_lock2) == 0)
2040 				return (1);
2041 			continue;
2042 		}
2043 		if (strcmp(w1->w_name, b->b_lock2) == 0)
2044 			if (strcmp(w2->w_name, b->b_lock1) == 0)
2045 				return (1);
2046 	}
2047 	return (0);
2048 }
2049 #endif
2050 
2051 static struct witness *
2052 witness_get(void)
2053 {
2054 	struct witness *w;
2055 	int index;
2056 
2057 	if (witness_cold == 0)
2058 		mtx_assert(&w_mtx, MA_OWNED);
2059 
2060 	if (witness_watch == -1) {
2061 		mtx_unlock_spin(&w_mtx);
2062 		return (NULL);
2063 	}
2064 	if (STAILQ_EMPTY(&w_free)) {
2065 		witness_watch = -1;
2066 		mtx_unlock_spin(&w_mtx);
2067 		printf("WITNESS: unable to allocate a new witness object\n");
2068 		return (NULL);
2069 	}
2070 	w = STAILQ_FIRST(&w_free);
2071 	STAILQ_REMOVE_HEAD(&w_free, w_list);
2072 	w_free_cnt--;
2073 	index = w->w_index;
2074 	MPASS(index > 0 && index == w_max_used_index+1 &&
2075 	    index < witness_count);
2076 	bzero(w, sizeof(*w));
2077 	w->w_index = index;
2078 	if (index > w_max_used_index)
2079 		w_max_used_index = index;
2080 	return (w);
2081 }
2082 
2083 static void
2084 witness_free(struct witness *w)
2085 {
2086 
2087 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2088 	w_free_cnt++;
2089 }
2090 
2091 static struct lock_list_entry *
2092 witness_lock_list_get(void)
2093 {
2094 	struct lock_list_entry *lle;
2095 
2096 	if (witness_watch == -1)
2097 		return (NULL);
2098 	mtx_lock_spin(&w_mtx);
2099 	lle = w_lock_list_free;
2100 	if (lle == NULL) {
2101 		witness_watch = -1;
2102 		mtx_unlock_spin(&w_mtx);
2103 		printf("%s: witness exhausted\n", __func__);
2104 		return (NULL);
2105 	}
2106 	w_lock_list_free = lle->ll_next;
2107 	mtx_unlock_spin(&w_mtx);
2108 	bzero(lle, sizeof(*lle));
2109 	return (lle);
2110 }
2111 
2112 static void
2113 witness_lock_list_free(struct lock_list_entry *lle)
2114 {
2115 
2116 	mtx_lock_spin(&w_mtx);
2117 	lle->ll_next = w_lock_list_free;
2118 	w_lock_list_free = lle;
2119 	mtx_unlock_spin(&w_mtx);
2120 }
2121 
2122 static struct lock_instance *
2123 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2124 {
2125 	struct lock_list_entry *lle;
2126 	struct lock_instance *instance;
2127 	int i;
2128 
2129 	for (lle = list; lle != NULL; lle = lle->ll_next)
2130 		for (i = lle->ll_count - 1; i >= 0; i--) {
2131 			instance = &lle->ll_children[i];
2132 			if (instance->li_lock == lock)
2133 				return (instance);
2134 		}
2135 	return (NULL);
2136 }
2137 
2138 static void
2139 witness_list_lock(struct lock_instance *instance,
2140     int (*prnt)(const char *fmt, ...))
2141 {
2142 	struct lock_object *lock;
2143 
2144 	lock = instance->li_lock;
2145 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2146 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2147 	if (lock->lo_witness->w_name != lock->lo_name)
2148 		prnt(" (%s)", lock->lo_witness->w_name);
2149 	prnt(" r = %d (%p) locked @ %s:%d\n",
2150 	    instance->li_flags & LI_RECURSEMASK, lock,
2151 	    fixup_filename(instance->li_file), instance->li_line);
2152 }
2153 
2154 #ifdef DDB
2155 static int
2156 witness_thread_has_locks(struct thread *td)
2157 {
2158 
2159 	if (td->td_sleeplocks == NULL)
2160 		return (0);
2161 	return (td->td_sleeplocks->ll_count != 0);
2162 }
2163 
2164 static int
2165 witness_proc_has_locks(struct proc *p)
2166 {
2167 	struct thread *td;
2168 
2169 	FOREACH_THREAD_IN_PROC(p, td) {
2170 		if (witness_thread_has_locks(td))
2171 			return (1);
2172 	}
2173 	return (0);
2174 }
2175 #endif
2176 
2177 int
2178 witness_list_locks(struct lock_list_entry **lock_list,
2179     int (*prnt)(const char *fmt, ...))
2180 {
2181 	struct lock_list_entry *lle;
2182 	int i, nheld;
2183 
2184 	nheld = 0;
2185 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2186 		for (i = lle->ll_count - 1; i >= 0; i--) {
2187 			witness_list_lock(&lle->ll_children[i], prnt);
2188 			nheld++;
2189 		}
2190 	return (nheld);
2191 }
2192 
2193 /*
2194  * This is a bit risky at best.  We call this function when we have timed
2195  * out acquiring a spin lock, and we assume that the other CPU is stuck
2196  * with this lock held.  So, we go groveling around in the other CPU's
2197  * per-cpu data to try to find the lock instance for this spin lock to
2198  * see when it was last acquired.
2199  */
2200 void
2201 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2202     int (*prnt)(const char *fmt, ...))
2203 {
2204 	struct lock_instance *instance;
2205 	struct pcpu *pc;
2206 
2207 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2208 		return;
2209 	pc = pcpu_find(owner->td_oncpu);
2210 	instance = find_instance(pc->pc_spinlocks, lock);
2211 	if (instance != NULL)
2212 		witness_list_lock(instance, prnt);
2213 }
2214 
2215 void
2216 witness_save(struct lock_object *lock, const char **filep, int *linep)
2217 {
2218 	struct lock_list_entry *lock_list;
2219 	struct lock_instance *instance;
2220 	struct lock_class *class;
2221 
2222 	/*
2223 	 * This function is used independently in locking code to deal with
2224 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2225 	 * is gone.
2226 	 */
2227 	if (SCHEDULER_STOPPED())
2228 		return;
2229 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2230 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2231 		return;
2232 	class = LOCK_CLASS(lock);
2233 	if (class->lc_flags & LC_SLEEPLOCK)
2234 		lock_list = curthread->td_sleeplocks;
2235 	else {
2236 		if (witness_skipspin)
2237 			return;
2238 		lock_list = PCPU_GET(spinlocks);
2239 	}
2240 	instance = find_instance(lock_list, lock);
2241 	if (instance == NULL) {
2242 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2243 		    class->lc_name, lock->lo_name);
2244 		return;
2245 	}
2246 	*filep = instance->li_file;
2247 	*linep = instance->li_line;
2248 }
2249 
2250 void
2251 witness_restore(struct lock_object *lock, const char *file, int line)
2252 {
2253 	struct lock_list_entry *lock_list;
2254 	struct lock_instance *instance;
2255 	struct lock_class *class;
2256 
2257 	/*
2258 	 * This function is used independently in locking code to deal with
2259 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2260 	 * is gone.
2261 	 */
2262 	if (SCHEDULER_STOPPED())
2263 		return;
2264 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2265 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2266 		return;
2267 	class = LOCK_CLASS(lock);
2268 	if (class->lc_flags & LC_SLEEPLOCK)
2269 		lock_list = curthread->td_sleeplocks;
2270 	else {
2271 		if (witness_skipspin)
2272 			return;
2273 		lock_list = PCPU_GET(spinlocks);
2274 	}
2275 	instance = find_instance(lock_list, lock);
2276 	if (instance == NULL)
2277 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2278 		    class->lc_name, lock->lo_name);
2279 	lock->lo_witness->w_file = file;
2280 	lock->lo_witness->w_line = line;
2281 	if (instance == NULL)
2282 		return;
2283 	instance->li_file = file;
2284 	instance->li_line = line;
2285 }
2286 
2287 void
2288 witness_assert(const struct lock_object *lock, int flags, const char *file,
2289     int line)
2290 {
2291 #ifdef INVARIANT_SUPPORT
2292 	struct lock_instance *instance;
2293 	struct lock_class *class;
2294 
2295 	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2296 		return;
2297 	class = LOCK_CLASS(lock);
2298 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2299 		instance = find_instance(curthread->td_sleeplocks, lock);
2300 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2301 		instance = find_instance(PCPU_GET(spinlocks), lock);
2302 	else {
2303 		kassert_panic("Lock (%s) %s is not sleep or spin!",
2304 		    class->lc_name, lock->lo_name);
2305 		return;
2306 	}
2307 	switch (flags) {
2308 	case LA_UNLOCKED:
2309 		if (instance != NULL)
2310 			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2311 			    class->lc_name, lock->lo_name,
2312 			    fixup_filename(file), line);
2313 		break;
2314 	case LA_LOCKED:
2315 	case LA_LOCKED | LA_RECURSED:
2316 	case LA_LOCKED | LA_NOTRECURSED:
2317 	case LA_SLOCKED:
2318 	case LA_SLOCKED | LA_RECURSED:
2319 	case LA_SLOCKED | LA_NOTRECURSED:
2320 	case LA_XLOCKED:
2321 	case LA_XLOCKED | LA_RECURSED:
2322 	case LA_XLOCKED | LA_NOTRECURSED:
2323 		if (instance == NULL) {
2324 			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2325 			    class->lc_name, lock->lo_name,
2326 			    fixup_filename(file), line);
2327 			break;
2328 		}
2329 		if ((flags & LA_XLOCKED) != 0 &&
2330 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2331 			kassert_panic(
2332 			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2333 			    class->lc_name, lock->lo_name,
2334 			    fixup_filename(file), line);
2335 		if ((flags & LA_SLOCKED) != 0 &&
2336 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2337 			kassert_panic(
2338 			    "Lock (%s) %s exclusively locked @ %s:%d.",
2339 			    class->lc_name, lock->lo_name,
2340 			    fixup_filename(file), line);
2341 		if ((flags & LA_RECURSED) != 0 &&
2342 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2343 			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2344 			    class->lc_name, lock->lo_name,
2345 			    fixup_filename(file), line);
2346 		if ((flags & LA_NOTRECURSED) != 0 &&
2347 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2348 			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2349 			    class->lc_name, lock->lo_name,
2350 			    fixup_filename(file), line);
2351 		break;
2352 	default:
2353 		kassert_panic("Invalid lock assertion at %s:%d.",
2354 		    fixup_filename(file), line);
2355 
2356 	}
2357 #endif	/* INVARIANT_SUPPORT */
2358 }
2359 
2360 static void
2361 witness_setflag(struct lock_object *lock, int flag, int set)
2362 {
2363 	struct lock_list_entry *lock_list;
2364 	struct lock_instance *instance;
2365 	struct lock_class *class;
2366 
2367 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2368 		return;
2369 	class = LOCK_CLASS(lock);
2370 	if (class->lc_flags & LC_SLEEPLOCK)
2371 		lock_list = curthread->td_sleeplocks;
2372 	else {
2373 		if (witness_skipspin)
2374 			return;
2375 		lock_list = PCPU_GET(spinlocks);
2376 	}
2377 	instance = find_instance(lock_list, lock);
2378 	if (instance == NULL) {
2379 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2380 		    class->lc_name, lock->lo_name);
2381 		return;
2382 	}
2383 
2384 	if (set)
2385 		instance->li_flags |= flag;
2386 	else
2387 		instance->li_flags &= ~flag;
2388 }
2389 
2390 void
2391 witness_norelease(struct lock_object *lock)
2392 {
2393 
2394 	witness_setflag(lock, LI_NORELEASE, 1);
2395 }
2396 
2397 void
2398 witness_releaseok(struct lock_object *lock)
2399 {
2400 
2401 	witness_setflag(lock, LI_NORELEASE, 0);
2402 }
2403 
2404 #ifdef DDB
2405 static void
2406 witness_ddb_list(struct thread *td)
2407 {
2408 
2409 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2410 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2411 
2412 	if (witness_watch < 1)
2413 		return;
2414 
2415 	witness_list_locks(&td->td_sleeplocks, db_printf);
2416 
2417 	/*
2418 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2419 	 * if td is currently executing on some other CPU and holds spin locks
2420 	 * as we won't display those locks.  If we had a MI way of getting
2421 	 * the per-cpu data for a given cpu then we could use
2422 	 * td->td_oncpu to get the list of spinlocks for this thread
2423 	 * and "fix" this.
2424 	 *
2425 	 * That still wouldn't really fix this unless we locked the scheduler
2426 	 * lock or stopped the other CPU to make sure it wasn't changing the
2427 	 * list out from under us.  It is probably best to just not try to
2428 	 * handle threads on other CPU's for now.
2429 	 */
2430 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2431 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2432 }
2433 
2434 DB_SHOW_COMMAND(locks, db_witness_list)
2435 {
2436 	struct thread *td;
2437 
2438 	if (have_addr)
2439 		td = db_lookup_thread(addr, TRUE);
2440 	else
2441 		td = kdb_thread;
2442 	witness_ddb_list(td);
2443 }
2444 
2445 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2446 {
2447 	struct thread *td;
2448 	struct proc *p;
2449 
2450 	/*
2451 	 * It would be nice to list only threads and processes that actually
2452 	 * held sleep locks, but that information is currently not exported
2453 	 * by WITNESS.
2454 	 */
2455 	FOREACH_PROC_IN_SYSTEM(p) {
2456 		if (!witness_proc_has_locks(p))
2457 			continue;
2458 		FOREACH_THREAD_IN_PROC(p, td) {
2459 			if (!witness_thread_has_locks(td))
2460 				continue;
2461 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2462 			    p->p_comm, td, td->td_tid);
2463 			witness_ddb_list(td);
2464 			if (db_pager_quit)
2465 				return;
2466 		}
2467 	}
2468 }
2469 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2470 
2471 DB_SHOW_COMMAND(witness, db_witness_display)
2472 {
2473 
2474 	witness_ddb_display(db_printf);
2475 }
2476 #endif
2477 
2478 static int
2479 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2480 {
2481 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2482 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2483 	struct sbuf *sb;
2484 	u_int w_rmatrix1, w_rmatrix2;
2485 	int error, generation, i, j;
2486 
2487 	tmp_data1 = NULL;
2488 	tmp_data2 = NULL;
2489 	tmp_w1 = NULL;
2490 	tmp_w2 = NULL;
2491 	if (witness_watch < 1) {
2492 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2493 		return (error);
2494 	}
2495 	if (witness_cold) {
2496 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2497 		return (error);
2498 	}
2499 	error = 0;
2500 	sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2501 	if (sb == NULL)
2502 		return (ENOMEM);
2503 
2504 	/* Allocate and init temporary storage space. */
2505 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2506 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2507 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2508 	    M_WAITOK | M_ZERO);
2509 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2510 	    M_WAITOK | M_ZERO);
2511 	stack_zero(&tmp_data1->wlod_stack);
2512 	stack_zero(&tmp_data2->wlod_stack);
2513 
2514 restart:
2515 	mtx_lock_spin(&w_mtx);
2516 	generation = w_generation;
2517 	mtx_unlock_spin(&w_mtx);
2518 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2519 	    w_lohash.wloh_count);
2520 	for (i = 1; i < w_max_used_index; i++) {
2521 		mtx_lock_spin(&w_mtx);
2522 		if (generation != w_generation) {
2523 			mtx_unlock_spin(&w_mtx);
2524 
2525 			/* The graph has changed, try again. */
2526 			req->oldidx = 0;
2527 			sbuf_clear(sb);
2528 			goto restart;
2529 		}
2530 
2531 		w1 = &w_data[i];
2532 		if (w1->w_reversed == 0) {
2533 			mtx_unlock_spin(&w_mtx);
2534 			continue;
2535 		}
2536 
2537 		/* Copy w1 locally so we can release the spin lock. */
2538 		*tmp_w1 = *w1;
2539 		mtx_unlock_spin(&w_mtx);
2540 
2541 		if (tmp_w1->w_reversed == 0)
2542 			continue;
2543 		for (j = 1; j < w_max_used_index; j++) {
2544 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2545 				continue;
2546 
2547 			mtx_lock_spin(&w_mtx);
2548 			if (generation != w_generation) {
2549 				mtx_unlock_spin(&w_mtx);
2550 
2551 				/* The graph has changed, try again. */
2552 				req->oldidx = 0;
2553 				sbuf_clear(sb);
2554 				goto restart;
2555 			}
2556 
2557 			w2 = &w_data[j];
2558 			data1 = witness_lock_order_get(w1, w2);
2559 			data2 = witness_lock_order_get(w2, w1);
2560 
2561 			/*
2562 			 * Copy information locally so we can release the
2563 			 * spin lock.
2564 			 */
2565 			*tmp_w2 = *w2;
2566 			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2567 			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2568 
2569 			if (data1) {
2570 				stack_zero(&tmp_data1->wlod_stack);
2571 				stack_copy(&data1->wlod_stack,
2572 				    &tmp_data1->wlod_stack);
2573 			}
2574 			if (data2 && data2 != data1) {
2575 				stack_zero(&tmp_data2->wlod_stack);
2576 				stack_copy(&data2->wlod_stack,
2577 				    &tmp_data2->wlod_stack);
2578 			}
2579 			mtx_unlock_spin(&w_mtx);
2580 
2581 			sbuf_printf(sb,
2582 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2583 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2584 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2585 #if 0
2586  			sbuf_printf(sb,
2587 			"w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2588  			    tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2589  			    tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2590 #endif
2591 			if (data1) {
2592 				sbuf_printf(sb,
2593 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2594 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2595 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2596 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2597 				sbuf_printf(sb, "\n");
2598 			}
2599 			if (data2 && data2 != data1) {
2600 				sbuf_printf(sb,
2601 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2602 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2603 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2604 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2605 				sbuf_printf(sb, "\n");
2606 			}
2607 		}
2608 	}
2609 	mtx_lock_spin(&w_mtx);
2610 	if (generation != w_generation) {
2611 		mtx_unlock_spin(&w_mtx);
2612 
2613 		/*
2614 		 * The graph changed while we were printing stack data,
2615 		 * try again.
2616 		 */
2617 		req->oldidx = 0;
2618 		sbuf_clear(sb);
2619 		goto restart;
2620 	}
2621 	mtx_unlock_spin(&w_mtx);
2622 
2623 	/* Free temporary storage space. */
2624 	free(tmp_data1, M_TEMP);
2625 	free(tmp_data2, M_TEMP);
2626 	free(tmp_w1, M_TEMP);
2627 	free(tmp_w2, M_TEMP);
2628 
2629 	sbuf_finish(sb);
2630 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2631 	sbuf_delete(sb);
2632 
2633 	return (error);
2634 }
2635 
2636 static int
2637 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2638 {
2639 	struct witness *w;
2640 	struct sbuf *sb;
2641 	int error;
2642 
2643 	if (witness_watch < 1) {
2644 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2645 		return (error);
2646 	}
2647 	if (witness_cold) {
2648 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2649 		return (error);
2650 	}
2651 	error = 0;
2652 
2653 	error = sysctl_wire_old_buffer(req, 0);
2654 	if (error != 0)
2655 		return (error);
2656 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2657 	if (sb == NULL)
2658 		return (ENOMEM);
2659 	sbuf_printf(sb, "\n");
2660 
2661 	mtx_lock_spin(&w_mtx);
2662 	STAILQ_FOREACH(w, &w_all, w_list)
2663 		w->w_displayed = 0;
2664 	STAILQ_FOREACH(w, &w_all, w_list)
2665 		witness_add_fullgraph(sb, w);
2666 	mtx_unlock_spin(&w_mtx);
2667 
2668 	/*
2669 	 * Close the sbuf and return to userland.
2670 	 */
2671 	error = sbuf_finish(sb);
2672 	sbuf_delete(sb);
2673 
2674 	return (error);
2675 }
2676 
2677 static int
2678 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2679 {
2680 	int error, value;
2681 
2682 	value = witness_watch;
2683 	error = sysctl_handle_int(oidp, &value, 0, req);
2684 	if (error != 0 || req->newptr == NULL)
2685 		return (error);
2686 	if (value > 1 || value < -1 ||
2687 	    (witness_watch == -1 && value != witness_watch))
2688 		return (EINVAL);
2689 	witness_watch = value;
2690 	return (0);
2691 }
2692 
2693 static void
2694 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2695 {
2696 	int i;
2697 
2698 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2699 		return;
2700 	w->w_displayed = 1;
2701 
2702 	WITNESS_INDEX_ASSERT(w->w_index);
2703 	for (i = 1; i <= w_max_used_index; i++) {
2704 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2705 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2706 			    w_data[i].w_name);
2707 			witness_add_fullgraph(sb, &w_data[i]);
2708 		}
2709 	}
2710 }
2711 
2712 /*
2713  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2714  * interprets the key as a string and reads until the null
2715  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2716  * hash value computed from the key.
2717  */
2718 static uint32_t
2719 witness_hash_djb2(const uint8_t *key, uint32_t size)
2720 {
2721 	unsigned int hash = 5381;
2722 	int i;
2723 
2724 	/* hash = hash * 33 + key[i] */
2725 	if (size)
2726 		for (i = 0; i < size; i++)
2727 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2728 	else
2729 		for (i = 0; key[i] != 0; i++)
2730 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2731 
2732 	return (hash);
2733 }
2734 
2735 
2736 /*
2737  * Initializes the two witness hash tables. Called exactly once from
2738  * witness_initialize().
2739  */
2740 static void
2741 witness_init_hash_tables(void)
2742 {
2743 	int i;
2744 
2745 	MPASS(witness_cold);
2746 
2747 	/* Initialize the hash tables. */
2748 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2749 		w_hash.wh_array[i] = NULL;
2750 
2751 	w_hash.wh_size = WITNESS_HASH_SIZE;
2752 	w_hash.wh_count = 0;
2753 
2754 	/* Initialize the lock order data hash. */
2755 	w_lofree = NULL;
2756 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2757 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2758 		w_lodata[i].wlod_next = w_lofree;
2759 		w_lofree = &w_lodata[i];
2760 	}
2761 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2762 	w_lohash.wloh_count = 0;
2763 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2764 		w_lohash.wloh_array[i] = NULL;
2765 }
2766 
2767 static struct witness *
2768 witness_hash_get(const char *key)
2769 {
2770 	struct witness *w;
2771 	uint32_t hash;
2772 
2773 	MPASS(key != NULL);
2774 	if (witness_cold == 0)
2775 		mtx_assert(&w_mtx, MA_OWNED);
2776 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2777 	w = w_hash.wh_array[hash];
2778 	while (w != NULL) {
2779 		if (strcmp(w->w_name, key) == 0)
2780 			goto out;
2781 		w = w->w_hash_next;
2782 	}
2783 
2784 out:
2785 	return (w);
2786 }
2787 
2788 static void
2789 witness_hash_put(struct witness *w)
2790 {
2791 	uint32_t hash;
2792 
2793 	MPASS(w != NULL);
2794 	MPASS(w->w_name != NULL);
2795 	if (witness_cold == 0)
2796 		mtx_assert(&w_mtx, MA_OWNED);
2797 	KASSERT(witness_hash_get(w->w_name) == NULL,
2798 	    ("%s: trying to add a hash entry that already exists!", __func__));
2799 	KASSERT(w->w_hash_next == NULL,
2800 	    ("%s: w->w_hash_next != NULL", __func__));
2801 
2802 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2803 	w->w_hash_next = w_hash.wh_array[hash];
2804 	w_hash.wh_array[hash] = w;
2805 	w_hash.wh_count++;
2806 }
2807 
2808 
2809 static struct witness_lock_order_data *
2810 witness_lock_order_get(struct witness *parent, struct witness *child)
2811 {
2812 	struct witness_lock_order_data *data = NULL;
2813 	struct witness_lock_order_key key;
2814 	unsigned int hash;
2815 
2816 	MPASS(parent != NULL && child != NULL);
2817 	key.from = parent->w_index;
2818 	key.to = child->w_index;
2819 	WITNESS_INDEX_ASSERT(key.from);
2820 	WITNESS_INDEX_ASSERT(key.to);
2821 	if ((w_rmatrix[parent->w_index][child->w_index]
2822 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2823 		goto out;
2824 
2825 	hash = witness_hash_djb2((const char*)&key,
2826 	    sizeof(key)) % w_lohash.wloh_size;
2827 	data = w_lohash.wloh_array[hash];
2828 	while (data != NULL) {
2829 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2830 			break;
2831 		data = data->wlod_next;
2832 	}
2833 
2834 out:
2835 	return (data);
2836 }
2837 
2838 /*
2839  * Verify that parent and child have a known relationship, are not the same,
2840  * and child is actually a child of parent.  This is done without w_mtx
2841  * to avoid contention in the common case.
2842  */
2843 static int
2844 witness_lock_order_check(struct witness *parent, struct witness *child)
2845 {
2846 
2847 	if (parent != child &&
2848 	    w_rmatrix[parent->w_index][child->w_index]
2849 	    & WITNESS_LOCK_ORDER_KNOWN &&
2850 	    isitmychild(parent, child))
2851 		return (1);
2852 
2853 	return (0);
2854 }
2855 
2856 static int
2857 witness_lock_order_add(struct witness *parent, struct witness *child)
2858 {
2859 	struct witness_lock_order_data *data = NULL;
2860 	struct witness_lock_order_key key;
2861 	unsigned int hash;
2862 
2863 	MPASS(parent != NULL && child != NULL);
2864 	key.from = parent->w_index;
2865 	key.to = child->w_index;
2866 	WITNESS_INDEX_ASSERT(key.from);
2867 	WITNESS_INDEX_ASSERT(key.to);
2868 	if (w_rmatrix[parent->w_index][child->w_index]
2869 	    & WITNESS_LOCK_ORDER_KNOWN)
2870 		return (1);
2871 
2872 	hash = witness_hash_djb2((const char*)&key,
2873 	    sizeof(key)) % w_lohash.wloh_size;
2874 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2875 	data = w_lofree;
2876 	if (data == NULL)
2877 		return (0);
2878 	w_lofree = data->wlod_next;
2879 	data->wlod_next = w_lohash.wloh_array[hash];
2880 	data->wlod_key = key;
2881 	w_lohash.wloh_array[hash] = data;
2882 	w_lohash.wloh_count++;
2883 	stack_zero(&data->wlod_stack);
2884 	stack_save(&data->wlod_stack);
2885 	return (1);
2886 }
2887 
2888 /* Call this whenver the structure of the witness graph changes. */
2889 static void
2890 witness_increment_graph_generation(void)
2891 {
2892 
2893 	if (witness_cold == 0)
2894 		mtx_assert(&w_mtx, MA_OWNED);
2895 	w_generation++;
2896 }
2897 
2898 #ifdef KDB
2899 static void
2900 _witness_debugger(int cond, const char *msg)
2901 {
2902 
2903 	if (witness_trace && cond)
2904 		kdb_backtrace();
2905 	if (witness_kdb && cond)
2906 		kdb_enter(KDB_WHY_WITNESS, msg);
2907 }
2908 #endif
2909